Dramatically improved performance of an esterase for Cilastatin synthesis by cap domain engineering

Zheng-Jiao Luan^{#[a]}, Hui-Lei Yu^{#[a]}, Bao-Di Ma^[b], Yi-Ke Qi^[a], Qi Chen^[a] and Jian-He Xu^{*[a]}

^a State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China.

^b School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.

[#]Zheng-Jiao Luan and Hui-Lei Yu contributed equally to this paper.

* Corresponding author. E-mail: jianhexu@ecust.edu.cn; Fax: +86-21-6425-0840.

Supporting Information

Contents

Table S1 Primers for directed evolution of the cap domain

Table S2 Primers for site-directed evolution of the cap domain

Table S3 Enzyme immobilization on resins with different functional groups

Fig. S1 Schematic presentation for the cap-domain error-prone PCR

Fig. S2 Covalent immobilization of enzyme on resins with epoxy group or amino group

Fig. S3 Thermostabilities of the free enzyme and immobilized enzyme at 30°C

Primers	Oligonucleotide sequences (5'-3')		
F1	GCGATCACCAGCATCTATCCGCAGGGTGTCCCCGCT		
R1	AGCGGGACACCCTGCGGATAGATGCTGGTGATCGC		
F2	CCG <u>GAATTC</u> ATGTCTATTCGTGAAGCCGT		
R2	CCAGGTTGCGAAGCAACTCGTCGTGACCGA		
F3	TCGGTCACGACGAGTTGCTTCGCAACCTGG		
R3	CCC <u>AAGCTT</u> TTAACCGAGGCTCGAGATGAAG		

Table S1 Primers for directed evolution of the cap domain

The underlined bases are the restriction sites

Table 52 IT met's for site-un ected evolution of the cap domain						
Primers	Oligonucleotide sequences (5'-3')					
S142-F	TGGCAAGGTCGGC <u>NNK</u> GCGATGCGTAGCAT					
S142-R	ATGCTACGCATCGC <u>MNN</u> GCCGACCTTGCCA					
A143-F	TGGCAAGGTCGGCTCG <u>NNK</u> ATGCGTAGCAT					
A143-R	ATGCTACGCATMNNCGAGCCGACCTTGCCA					
M144-F	TGGCAAGGTCGGCTCGGCG <u>NNK</u> CGTAGCGCAGTTCCCGGC					
M144-R	GCCGGGAACTGCGCTACG <u>MNN</u> CGCCGAGCCGACCTTGCCA					
R145-F	GGCTCGGCGATG <u>NNK</u> AGCATTTTTCCCGGC					
R145-R	GCCGGGAAAAATGCT <u>MNN</u> CATCGCCGAGCC					
S146-F	GGCTCGGCGATGCGT <u>NNK</u> ATTTTTCCCGGC					
S146-R	GCCGGGAAAAAT <u>MNN</u> ACGCATCGCCGAGCC					
P149-F	TGCGTAGCATTTTT <u>NNK</u> GGCGCGATGTCCG					
P149-R	CGGACATCGCGCC <u>MNN</u> AAAAATGCTACGCA					
G150-F	TGCGTAGCATTTTTCCC <u>NNK</u> GCGATGTCCG					
G150-R	CGGACATCGC <u>MNN</u> GGGAAAAATGCTACGCA					
A151-F	TTTTCCCGGC <u>NNK</u> ATGTCCGAAGATCCCCG					
A151-R	CGGGGATCTTCGGACAT <u>MNN</u> GCCGGGAAAA					
M152-F	TTTTCCCGGCGCG <u>NNK</u> TCCGAAGATCCCCG					
M152-R	CGGGGATCTTCGGA <u>MNN</u> CGCGCCGGGAAAA					

Table S2 Primers for site-directed evolution of the cap domain

The underlined bases are the mutation sites.

Style	Name	hydrophobic property	Size (µm)	Specific activity (U/g) ^a	Activity recovery (%) ^b
Epoxy group	ES-1	hydrophilic	150 - 300	0.29 ± 0.05	3
	ES-101	hydrophobic	150 - 300	1.1 ± 0.2	12
	ES-103	hydrophobic	100 - 250	1.4 ± 0.1	16
Amine group	ESR-1	hydrophilic	100 - 300	4.2 ± 0.8	48
	ESR-2	hydrophobic	100 - 300	6.0 ± 0.2	70
	ESR-3	hydrophobic	100 - 300	4.5 ± 0.7	51

Table S3 Enzyme immobilization on resins with different functional groups

^a Specific activity of immobilized enzyme towards (*RS*)-DmCpCe.

^b Activity recovery was calculated as the rate of immobilized enzyme activity and activity of the enzyme bound to the resins.

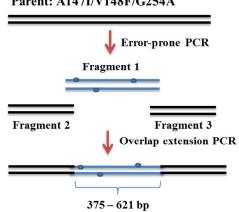
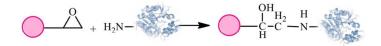
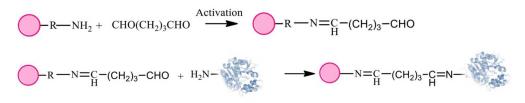
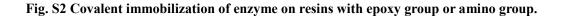




Fig. S1 Scheme presentation for the cap-domain error-prone PCR.


Parent: A147I/V148F/G254A

Enzyme immobilization to resins with epoxy group

Enzyme immobilization to glutaraldehyde activated resins with amino group

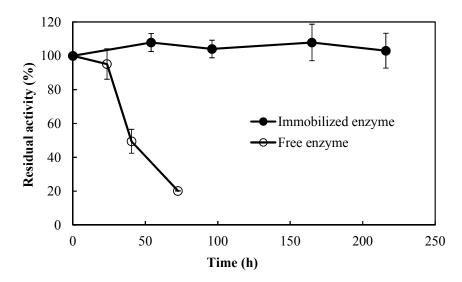


Fig. S3 Thermostabilities of the free enzyme and immobilized enzyme at 30°C.