Get real: A synthetic dataset illustrating clinical and genetic covariates
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Goals

N/

** Develop a script to generate realistic synthetic
datasets for hands-on learning in BD2K
workshops

Learning Objectives

N/

¢ Learn the difficulties and challenges of working
with both clinical data and genetic data

e Learn the strengths/weaknesses of machine
learning algorithms for classification in a “safe
context”

% Highlight known issues with integrating clinical

and genetic data

Scenario

* Task s a classification problem, where
students predict (low or high) cardiovascular
risk (< or =>7.5%/10 years), given the following
data:

» Clinical Data derived from Electronic Health
Record systems (EHRs)

** Lab Values (LOINC)
** Medications (RxNorm)

»* Genetic data modeled as SNPs

» Task structure is to train a model using initial

set, then test algorithm on (hidden) set

*» Tosynthesize data, we use variable

‘importance’, defined as population affected
and predictive impact determines level in

decision tree
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Decision Trees for Generating Realistic Data Discussion Questions
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¢ Decision Trees provide framework for integrating
clinical and genetic datatypes, but they are overly
simplistic.

*» How difficult do we make the problem?

* Tradeoffs between learning and difficulty

» How can we incorporate other techniques such as
natural language processing (NLP) into this task?

» What are other scenarios we can model?

** What extra covariates should we include for clinical

and genetic data?

Smoking = < Should they be extraneous or collinear with

other variables?

Tuning Difficulty Level

F

Race =
Caucasian ¢ Difficulty of problem can be refined using iterative
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testing framework

* Canrefine probabilities, estimate difficulty from ROC
curves, and recalculate dataset until desired difficulty
reached
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Next Steps

sroblem can be Sample Datasets and the generation script will be made
usting open-access and open-source on GitHub. We encourage
orobabilities of collaboration to improve this idea.

CVD risk association for
each risk group

For More Information
www.ohsu.edu/od2k
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