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Supplement: Creating DCIS digital cell lines from clinical immunohistochemical data 
Protocol version: 1.0 (November 29, 2016) 
Further updates: http://MultiCellDS.org and http://MultiCellDS.sf.net  
 
Previously, Macklin and collaborators2,3 developed a protocol to estimate simulation parameters for an agent-
based model, based on morphometric and immunohistochemical measurements performed on ductal carcino-
ma in situ (DCIS) of the breast by Edgerton and co-workers1. Those calculations estimated cell birth, death, 
and size information, as well as (dimensionless) tissue oxygenation within the breast duct viable rims for 2-D 
simulations. (See prior works2,3 for further details.) The calibrated model was able to predict DCIS growth rates 
consistent with the literature, match Ki-67 and cleaved Caspase-3 fractions of viable DCIS tissue, the higher 
prevalence of Ki-67 positive cells near the outer edge of the viable rim, and the size of the viable rim and ne-
crotic core2. Coarse-graining these parameters1 allowed Edgerton et al. to predict DCIS excision volumes in 12 
of 17 measured cases; the poorest matches corresponded to cases where the steady state assumption of the 
coarse graining failed to hold1. We now improve and extend the technique to 3D to estimate cell phenotypic 
properties (for the standardized cell cycle models in MultiCellDS) in physioxic conditions for normal breast tis-
sue, “standardized” physioxia, patient-specific in vivo ductal conditions, hypoxia, and in chronic hypoxia / ne-
crotic conditions.  
 
The available measurements by Edgerton et al.1 include the tumor viable rim thickness (Trim), duct radius 
(Rduct), the proliferative index (PI: percentage of cells staining positive for Ki-67), the raw apoptotic index (AIraw, 
the percentage of cells staining positive for cleaved Caspase-3), the tumor cell density ρ (in 12 of the cases), 
and the DCIS subtype (cribriform, solid, or a mix of these types). All these measurements were recorded in 
several ducts for each of 17 patients; the mean values are given in Table 1.  
 
The protocol below is our current best estimate of the mathematical model parameters. As measurement 
methods and mathematical analyses are improved, we will update this protocol and the digital cell lines accord-
ingly. Indeed, this is one of the main ideas of curated digital cell lines: any data element can be replaced by a 
superior measurement or estimate as they become available, and shared with the broader research communi-
ty.  

Table 1: Mean DCIS patient measurements by Edgerton et al.1 NA denotes “not available”. 'C' = cribriform, 'S' = solid type, and 'M' 
= mixed type (partly solid, partly cribriform).  

Case 
MultiCellDS Digital 

Cell Name 
MultiCellDS Digital 

Cell Line ID 
Type 

(S, C, M) 
Trim  

(µm) 
Rduct  
(µm) 

ρ  
(cells/µm2) PI (%) 

AIraw 
(%) 

8 DCIS_ACP2011_8 45.0.0.1 C 183.22 422.58 4.77e-3 9.37 0.24 

13 DCIS_ACP2011_13 46.0.0.1 S 96.43 243.03 2.79e-3 25.90 8.59 

14 DCIS_ACP2011_14 47.0.0.1 C 171.83 204.53 8.51e-3 7.87 0.04 

15 DCIS_ACP2011_15 48.0.0.1 C 147.77 147.77 8.83e-3 0.56 0.10 

17 DCIS_ACP2011_17 49.0.0.1 M 108.92 115.86 5.94e-3 3.08 10.07 

18.1 DCIS_ACP2011_18.1 50.0.0.1 C 116.35 146.27 1.12e-2 0.11 0.04 

18.2 DCIS_ACP2011_18.2 51.0.0.1 M 111.71 232.75 3.44e-3 13.99 0.86 

19 DCIS_ACP2011_19 52.0.0.1 M 78.87 158.75 3.21e-3 17.43 0.64 

21 DCIS_ACP2011_21 53.0.0.1 C 113.11 120.68 5.57e-3 3.64 0.00 

22 DCIS_ACP2011_22 54.0.0.1 C 97.08 270.87 4.52e-3 16.08 0.77 

23 DCIS_ACP2011_23 55.0.0.1 S 134.78 157.62 4.36e-3 17.07 2.81 

28 DCIS_ACP2011_28 56.0.0.1 S 86.58 135.51 NA 19.78 1.410 

39 DCIS_ACP2011_39 57.0.0.1 M 77.55 119.60 NA 3.30 0.18 

40 DCIS_ACP2011_40 58.0.0.1 M 223.91 323.17 NA 4.39 0.34 

42 DCIS_ACP2011_42 59.0.0.1 C 148.70 191.82 NA 3.33 0.25 

48 DCIS_ACP2011_48 60.0.0.1 C 136.28 136.28 NA 5.05 0.23 

51 DCIS_ACP2011_51 61.0.0.1 S 106.91 293.21 NA 16.24 1.81 
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Estimating cell geometrical properties: 
As in the earlier protocol3, we adjust the mean cell density (cells per slide viable rim area) to the confluent cell 
density (cells per confluent viable rim area), and use this to get the average cell cross-sectional area Acell, radi-
us Rcell, and volume Vcell: 
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In the equations above, f is the viable tissue confluence: the fraction of the viable rim occupied by tumor cells. 
(Note that f = 1 in fully confluent tissue, and f = 0 in open lumen.) Hyun and Macklin3 estimated f = 0.90 for a 
mixed-typed DCIS case (mixed solid type and cribriform type). For this work, we set f = 1 for solid-type DCIS,   
f = 0.9 for mixed type, and f = 0.80 for cribriform. (Image analysis of several hematoxylin and eosin-stained 
samples of cribriform-type DCIS by Dong et al.4 yielded f between 0.6 and 0.85, with many in the higher end of 
this range, so we chose 0.8 as an estimate consistent with this range and observations.) If better estimates for 
f become available, we can update the protocol and digital cell lines accordingly.  
 
Estimating tissue oxygenation: 
In physioxic (normal) breast tissue, oxygenation is approximately 52 mmHg pO2 by prior measurements5,6 
(equivalent to culturing tissue at around 6.8% oxygenation). “Standardized” physioxic conditions are defined5 to 
be 5% oxygenation or 38 mmHg pO2. We define hypoxia to be 1% oxygenation or 8 mmHg pO2: this is a rep-
resentative, intermediate value between the half-maximum HIF-1α response (HIF-1α is a hypoxic response 
protein5,7) at 11-15 mmHg and the maximum response at 3.8 mmHg (0.5%)5. This is also consistent with re-
ports that hypoxic proteomic and gene expression changes are observed below 7 mmHg pO2 (approximately 
1% oxygenation)6. See the summary in Table 2.  
 
Tumor cells can vary widely in their survival in chronic low oxygenation conditions5, complicating our effort to 
estimate typical oxygenation in necrotic tissues without direct measurements. We set the hypoxic tissue condi-
tions discussed above (0.5% to 1.5%, or 3.8 to 11.4 mmHg pO2) as an upper bound. McKeown reported that 
tumor cells are killed when exposed to 0.01% oxygenation for 24 hours, and most tumor cells are killed after 72 
hours’ exposure to 0.1% oxygenation5. This sets 0.01% to 0.1% (0.076 to 0.76 mmHg pO2) as a lower-bound 
for necrotic tissues observed in pathology images. Under the assumption that most cells in necrotic ductal re-
gions have been exposed to low oxygenation conditions for several days or more (chronic hypoxia), we shall 
initially set our necrotic threshold value to an intermediate value of 5 mmHg pO2 (0.66%). This value is con-
sistent with the observations by Vaupel that proteo-
mic and genetic changes are observable in cells un-
der 7 mmHg pO2, and necrosis can result6. 
 
We now estimate the patient-specific oxygenation in 
the viable DCIS tissue. Using the earlier protocol3 but 
solving for a 3-D cylindrical duct geometry rather than 
a 2-D geometry, the mean tissue oxygenation ‹σ› in 
the viable rim is given by:  
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!
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!!
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!
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where σN is a necrotic oxygenation threshold estimated above (σN = 5 mmHg), RN = RDuct – Trim is the radius of 
the necrotic core, and f is the viable tissue confluence defined as above. (Note that I1(x) is modified Bessel 
function of the first kind.) As before1-3, L0 = (D/λ)½ is the oxygen diffusion length scale in confluent tissue, where 
D is the oxygen diffusion coefficient in tissue (D = 105 µm2/min by earlier experiments8 and analysis9), λ is the 

Table 2: Oxygenation values used for DCIS digital cell lines 
Condition pO2 (mmHg) % O2 
Physioxic (breast) 52 6.8 
Physioxic (standard) 38 5 
viable rim patient-specific 
hypoxic 8 1 
necrotic 5 0.66 
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oxygen consumption rate in confluent tumor tissue, and we set L0 = 100 µm. We note that this combination of f 
and L0 yields effective diffusion length scales L ranging from 100 to 115 µm, consistent with prior measure-
ments for breast10 and other tumor tissues11,12 giving L ~ 100 µm to 200 µm.  
 
Estimating cell cycle and apoptosis parameters (Advanced Ki-67 model): 
We update the earlier analysis3 to use the “Advanced Ki-67” cell cycle phase model, where cycling cells stain 
positive for Ki-67 in the S, G2, and M phases prior to mitosis (jointly, these are population K1), and for a few 
hours after mitosis1-3 (population K2) before returning to a non-cycling, Ki-67-negative state (population Q).  
Any live cell can become apoptotic (population A). Because we have no data to specify the cell cycle phase at 
the onset of apoptosis, we use a constant background rate of apoptosis rA for all cycle phases. We require T1 
(the mean duration of K1), T2 (the mean duration of T2), the overall apoptosis rate rA, the mean time spent in Q 
prior to cell cycle re-entry (TQ), and the in vivo duration of apoptosis (TA).  
 
In this model, we require the following parameters:  
Parameter Physical meaning  
TQ Mean time spent in (duration of) the quiescent Q state (Ki-67- cells) 
T1 The mean time spent in (duration of) the K1 phase (pre-mitotic Ki-67+ cells) 
T2 The mean time spent in (duration of) the K2 phase (post-mitotic Ki-67+ cells) 
TA The mean duration of apoptosis  
rA The mean rate of apoptosis across all non-apoptotic cells 
  
We also seek to estimate the mean population doubling time (Tdouble) for cells in exponential growth.  
 
Ki-67 is primarily expressed in the (particularly late) S, G2, and M-phases13,14, and less reliably in the G1 
phase15. Ki-67 is observed in post-mitotic daughter cells1-3,16, but it is not produced post-mitotically13,14; instead, 
any remaining Ki-67 protein from the preceding M phase is degraded quickly, with a half-life of 60-90 
minutes11,12. Thus, we set T1 to be the combined duration of S, G2, and M, which are relatively fixed compared 
to the duration of G0/G1 (T2 + TQ in the Ki-67 advanced model)19,20. As an estimate, we set T1 = 13 hours, 
based upon typical estimates for the S, G2, and M phases for eukaryotic cells17, and consistent with reports 
where S+G2+M can vary from 10 to 24 hours (e.g., 12.3 hours18, 12 to 24 hours19, and 10 to 10.5 hours20). We 
set T2 to be on the order of two Ki-67 half-lives (we shall use the intermediate estimate of a 75 minute half-life), 
or 2.5 hours. We retain our prior estimate2,3 of the duration of apoptosis TA = 8.6 hours. The remaining data 
elements are TQ and rA.  
 
Adjusting the apoptotic index for undercounting 
As in prior work21-23, we note that cleaved Caspase-3 only stains a fraction of apoptotic cells, and thus we ad-
just the apoptotic index to compensate via:  
 

AI = !.!
!.!
AI!"# (6) 

 
Estimating the mean parameter values (TQ and rA) in the viable rim 
The number of cells in the K1, K2, Q, and A states satisfy the following system of ordinary differential equations:  
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where N = K1+K2+Q+A is the total number of cells.  
 
As in the prior protocol3, we rewrite these as differential equations for KI1=K1/N, KI2=K2/N, and AI=A/N: 
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As before3, we approximate these population fractions as near steady state at the time of biopsy, set d/dt = 0, 
and solve for TQ and rA. If KI1 and KI2 = PI-KI1 are not measured independently, we can preliminarily estimate:  
 

𝐾𝐼! ≈
!!

!!!!!!
𝑃𝐼   (15) 
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!!!
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(For any one cell leaving K1 after T1 time, there are two daughter cells spending T2 time in K2.) Solving Equa-
tion (14) to steady state, we can solve for rA:  
 

𝑟! =
!
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!"! !

!!
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!
!!
!!!

!!!"
 (17) 

 
Using this and Equation (12) for KI1 (after solving to steady state), we can estimate TQ:  

 

𝑇! =
!!!"!!"

!!!!!! !!!!!!!!!
!!
!!

!"  !!!
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Lastly, we iterate this process to refine our estimates as follows:  
 
Step 1: Estimate TQ and rA based upon Equations (17) and (18).  
 
Step 2: For the current estimates of KI1, KI2, TQ, and rA, and starting with AI(0) = AI, KI1(0) = KI1, KI2(0) = KI2, 

numerically solve the differential equations (12)-(14) for AI, KI1, KI2 to steady state. In our work, we 
solve with Δt = 0.1 hour until Tmax = 365 days.  

 
Step 4: Evaluate PInumerical = KI1(Tmax) + KI2(Tmax), and AInumerical = AI(Tmax). If |PInumerical – PI| > ε ⋅ PI or if 

|AInumerical – AI| > ε⋅ AI for some (relative) tolerance ε, then return to Step 1. In our work, we use ε = 10-4. 
  
Estimating the population doubling time 
Equation (11) gives the total population versus time in the absence of spatial or other constraints. This can be 
rewritten as  
 

!"
!"
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!!
− !" !

!!
𝑁.  (19) 

 
If the population fractions have reached steady state, then  
 

𝑁 𝑡 = 𝑁 0 𝑒
!!!
!!
!!"
!!

!  ,  (20) 
 
so 𝑟!"# = (𝐾𝐼!)/𝑇! − 𝐴𝐼/𝑇! is the net birth rate, and the population doubling time is given by  
 

𝑇!"#$%& =
!" !

!"!
!!
!!"
!!

 . (21) 

 
Estimating the parameter values in other oxygenation conditions 
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Following the earlier protocol1-3 and prior experimental evidence24,25 that the cell cycle duration primarily varies 
in the duration of the G0/G1 phase (Q in the Ki-67 advanced model), we model a linear relationship between 
1/TQ (the rate of cell cycle entry) and oxygenation via: 
 

!
!! !

= !
!! !

!!!!
! !!!

, (22) 

 
where σN is the necrotic oxygen value, and ‹σ› is the mean oxygenation estimated in the viable rim above.  
 
We evaluate this expression for the mean time spent in the Q state for oxygenation values of 5 mmHg (chronic 
hypoxia / necrotic tissue), 8 mmHg (hypoxic), 38 mmHg (standard physioxia), and 52 mmHg (breast physiox-
ia). All other parameter values are left unchanged. To estimate the population doubling time, we solve Equa-
tions (12)-(14) to steady state using the new value for TQ and the prior values for T1, T2, TA and rA, obtain the 
steady state values for KI1 and AI, and use Equation (21).  
 
Estimating cell cycle and apoptosis parameters (Basic Ki-67 model): 
In this model, Ki-67 positive cells are included in a proliferative state P (with duration TP), Ki-67 negative cells 
are in a non-proliferative state Q (with duration TQ), and apoptotic cells are in the A state (with duration TA). As 
before, we also seek the population doubling time. In this section, we assume that the parameters have al-
ready been determined for the advanced Ki-67 model (in each oxygenation condition), so we seek parameters 
that are as consistent with that model as possible. Thus, we choose TQ and rA to fit the measured Ki-67 posi-
tive fraction (PI) and corrected apoptotic fraction (AI), and we choose TP so that the population doubling time 
matches the Ki-67 advanced model. We use the same apoptosis duration TA.  
 
In this model, we require the following parameters:  
Parameter Physical meaning  
TQ Mean time spent in (duration of) the quiescent Q state (Ki-67 negative cells) 
TP The mean time spent in (duration of) the K phase 
TA The mean duration of apoptosis  
rA The mean rate of apoptosis across all non-apoptotic cells 
 
Estimating the mean parameter values (TQ, TP and rA) in the viable rim 
The number of cells in the P, Q, and A states satisfy the following system of ordinary differential equations:  
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where N = P +Q+A is the total number of cells.  
 
Similarly to the work for the Ki-67 advanced model above, we rewrite these as differential equations for PI=P/N 
and AI=A/N: 
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Continuing, if the population fractions AI and PI have reached steady state, then the population doubling time 
is given by  
 

𝑇!"#$%& =
!" !
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!!

  (29) 



6 
 

 
We match this to Equation (21) to set the value of TP, so that both Ki-67 models give consistent population 
doubling times:  
 

𝑇! =
!"
!!!

𝑇!.  (30) 

 
We use this value of TP throughout the remaining calculations. We solve Equations (27)-(28) to steady state to 
determine rA and TQ:  
 

𝑟! =
!
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!"! !
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!"⋅!"! !
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!!!

!!!"
 (31) 
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!!
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Estimating the parameter values in other oxygenation conditions 
We model TA and rA as fixed in all other oxygenation conditions. Because KI1 varies with oxygenation (as cal-
culated by the Ki-67 advanced model), we re-calculate TP for each oxygenation condition based on Equation 
(30), and then TQ based on Equation (32). We evaluate these for oxygenation values of 5 mmHg (necrotic tis-
sue), 8 mmHg (hypoxic), 38 mmHg (physioxic_standard), and 52 mmHg (physioxic_breast).  
 
Estimating cell cycle and apoptosis parameters (Live-Dead model): 
This model tracks live cells L (with mean cell birth rate b and cell cycle duration TP = 1/b, and with death rate d) 
and dead (assumed apoptotic) cells A (with duration TA, with no change in value from the more detailed cell 
cycle models). As before, we also seek the population doubling time. We set the parameters to match the live 
fraction 1-AI, and to match the population doubling time of the advanced Ki-67 model. The Live-Dead model is:  
 

!"
!"
= 𝑏 − 𝑑 𝐿 (33) 
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!!
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!!
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where N = L+A is the total number of cells. If AI reaches steady state, then the population doubling time is  
 

𝑇!"#$%& =
!" !

! !!!" ! !
!!
!"  

. (36) 

 
If we match to the population doubling time for the Ki-67 Advanced model in Equation (21), then we obtain a 
matched estimate for the birth rate b: 
 

𝑏 = !!!
!!
⋅ !
!!!"

. (37) 

 
We now require an estimate for the death rate d. Following the earlier analyses, we can write an equation for 
the apoptotic fraction AI:  
 

!!"
!"

= 𝑑 1 − AI − !
!!
AI − 𝑏AI 1 − AI + !

!!
AI! (38) 

 
If the population fractions have reached steady state, then  
 

𝑑 =
!
!!
!"!!!" !!!" ! !

!!
!!!

!!!"
 (39) 

 
These parameters should be separately matched for each phenotype dataset.  
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Estimating cell cycle and apoptosis parameters (Total Cells model): 
This model tracks the total number of cells N with net birth rate rnet. The basic equation to parameterize is 
 

!"
!"
= 𝑟!"#𝑁. (40) 

 
By matching directly with Equation (19) in the advanced Ki-67 model, we obtain  
 

𝑟!"# =
!!!
!!
− !"

!!
. (41) 

 
We repeat this conversion for each phenotype dataset.  
 
Estimating necrosis parameters (order of magnitude analysis): 
We wish to estimate (to order of magnitude, given the relative lack of direct measurements) the necrotic cell 
death rate rnec in chronic hypoxic conditions at σ = 5 mmHg pO2 (and equivalently, the mean tumor cell survival 
time Tsurvival in these conditions conditions), so that the tumor cell population satisfies  
 

!"
!"
= −𝑟!"# 𝜎 𝐿 (42) 

!"
!"
= 𝑟!"# 𝜎 𝐿 − !

!!"#$%&'&
𝑁 (43) 

 
where L is the live cell population, N is the necrotic cell population, rnecrosis is the (pO2-dependent) necrotic 
death rate, and Tnecrosis is the mean time for a necrotic cell to fully degrade. By prior estimates2,26, Tnecrosis ~ 60 
days.  
 
By prior modeling work2, the population-scale model in Equation (42) is consistent with a cell-scale model 
where the individual cell’s survival time Tsurvival is exponentially distributed with parameter rnec: 
  

𝑇!"#$%$&' ∼ Exp 𝑟!"# 𝜎 ,        where          𝑟!"# 𝜎 = !
!!"#$%$&' !   

, (44) 
 
and whose cumulative probability distribution is given by  
 

Prob 𝑇!"#$%$&'(𝜎) ≤ 𝑡 = 1 − 𝑒!!!"# ! ! . (45) 
 
Typical hypoxia measurements (e.g., these prior works27,28) give the time to reach a cell surviving fraction of 
10% or less. In one study27 (see Figure 1 of the study27), ~85% of murine fibroblast cells died after exposure to 
0.01% (0.076 mmHg pO2) conditions. In another study28, the authors worked with several prostate cancer lines, 
and found that in 0.1% oxygenation conditions, cell proliferation slowed after 1 day of exposure, death could be 
observed after 2 days, and ~95% of cells were killed by 3 days. (See Figure 2 of the study28.) We use these 
reports to estimate Tsurvival(0.01%) and Tsurvival(0.1%) based upon Equation (45):  
 

0.85 = 1 − 𝑒!!!"# !.!"% !.!" ⟹ 𝑟!"# 0.01% =   − !" !.!"
!.!"  !"#

 T (46) 

𝑇!"#$%$&' 0.01% =
1
𝑟!"#

≈ 0.7  days 

 
and similarly (with rounding to the nearest 0.1 day),  
 

0.95 = 1 − 𝑒!!!"# !.!% ! ⟹ 𝑟!"# 0.1% =   − !" !.!"
!  !"#

 (48) 

  𝑇!"#$%$&' 0.1% = !
!!"#

≈ 1  day. (49) 
 
Thus, cancer cells survive (on average) on the order of one day in very low oxygen conditions. Our earlier cal-
culations use a necrotic oxygen threshold σN = 5 mmHg (0.67%), about 7 times higher than the experimental 
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conditions in the prostate cancer cell experiment28, but with comparable order of magnitude. Thus, we estimate 
the cell survival time in 0.67% oxygenation is on the order of 1 to 7 days. As an intermediate estimate, we set 
Tsurvival(0.67%) = 4 days and rnec(0.67%) = 0.25 day-1. We note that Papandreou et al.27 observed a decrease in 
net cell proliferation (birth-death) at 0.5% (3.8 mmHg pO2) after 3 days of exposure, and even at 15 mmHg pO2 
(2%) oxygenation, cell death has been reported after 4 days of exposure for several prostate cancer cell 
lines29, consistent with this estimate. Lastly, we point out that these estimates can be improved (and the digital 
cell lines can be updated) as more direct cell tracking measurements of necrotic cell death come available.  
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