Rhodium Carbenoid Initiated O–H Insertion/Aldol/Oxy-Cope Cascade for the Stereoselective Synthesis of Functionalized Oxacycles

Kiran Chinthapally, Nicholas P. Massaro and Indrajeet Sharma*

Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, OK-USA

A.	Materials and methods	S2
B.	Synthesis of vinyl diazo esters 1a, 1b	S3
С.	Synthesis of β -hydroxy vinyl ketones 2a–2f	S4
D.	Synthesis of aldol cascade intermediate 3a	S7
E.	General procedure for the synthesis of oxacycles 4a-4k	S 8
F.	X-ray diffraction data for oxacycle 4i	S13
G.	¹ H-NMR, ¹³ C-NMR, COSY, HSQC, and nOe spectra	S21

A. MATERIALS AND METHODS

Reagents

Reagents and solvents were obtained from Sigma-Aldrich (<u>www.sigma-aldrich.com</u>), Chem-Impex (<u>www.chemimpex.com</u>) or Acros Organics (<u>www.fishersci.com</u>) and used without further purification unless otherwise indicated. Dry solvents such as dichloromethane was distilled over CaH under N₂ unless otherwise indicated. THF purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator. Dry toluene and acetonitrile were obtained from Acros Organics (<u>www.fishersci.com</u>) in 1 L bottles stored over molecular sieves.

Reactions

All reactions were performed in flame-dried glassware under positive N_2 pressure with magnetic stirring unless otherwise noted. Liquid reagents and solutions were transferred through rubber septa via syringes flushed with N_2 prior to use. Cold baths were generated as follows: 0 °C with wet ice/water and -78 °C with dry ice/acetone. Syringe pump addition reactions were conducted using a Harvard Apparatus (Model: 55-1111) or a New Era Pump Systems, Inc. (Model: NE-300) syringe pump.

Chromatography

TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate (KMnO₄), cerium ammonium molybdenate (CAM), phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230–400 mesh silica gel 60.

Analytical Instrumentation

IR spectra were recorded on a Shimadzu IRAffinity-1 FTIR spectrometer with peaks reported in cm⁻¹. NMR spectra were recorded on a Varian VNMRS 400 and 500 MHz NMR spectrometer in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in ppm relative to solvent signals: CDCl₃ ((¹H, 7.26 ppm, ¹³C, 77.0 ppm); coupling constants are expressed in Hz. NMR spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained at the OU Analytical Core Facility on an Agilent 6538 High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC. X-ray crystallography analysis was carried out at the University of Oklahoma using a Bruker APEX ccd area detector (1) and graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) source. Crystal structures were visualized using CCDC Mercury software (http://www.ccdc.cam.ac.uk/products/mercury/).

Nomenclature

N.B.: Atom numbers shown in chemical structures herein correspond to IUPAC nomenclature, which was used to name each compound.

B. SYNTHESIS OF DIAZO ESTERS 1a, 1b

Benzyl 2-diazobut-3-enoate (1a). Compound was prepared using known literature procedure.¹

Methyl (E)-2-diazohexa-3,5-dienoate (1b). To a stirred solution of diisopropylamine (1.1 mL, 8.09 mmol, 1.2 equiv) in dry THF (10 mL) at -78 °C was added *n*-BuLi (4.6 mL, 7.44 mmol, 1.1 equiv, 1.6 M) and stirred for 30 minutes at -78 °C. Then HMPA (2.3 mL, 13.5 mmol, 2.0 equiv) was added and allowed to stir for an additional 5 minutes. Methyl (E)-hexa-3,5-dienoate, prepared from known literature procedures² was then added (850 mg, 6.70 mmol, 1.0 equiv) in 10 mL THF and allowed to stir for 30 minutes at -78 °C. Once enolate formation was complete, a solution of 4-Acetamidobenzenesulfonyl azide (p-ABSA) (1.94 g, 8.09 mmol) in 8 mL THF was added and the reaction was allowed to stir for an additional 30 minutes at -78 °C. The reaction was then allowed to slowly reach -20 °C over 1.5 h before it was guenched with saturated solution of NH₄Cl (10 mL). The reaction mixture was then extracted with EtOAc (3 \times 30 mL), and the combined EtOAc layers were washed with water (20 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude compound. Column chromatographic purification of the crude compound over silica gel (9:1 hexanes/EtOAc) afforded the compound 1b (622 mg, 65%) as a red oil. TLC: $R_f 0.50$ (9:1 hexanes/EtOAc). IR (NaCl): 3005, 2085, 1710, 1627, 1436, 1327, 1168, 1103, 999, 742. ¹H NMR (400 MHz) δ 6.57-6.30 (m, 1H), 5.93 (m, J = 1.6 Hz, 2H), 5.14-5.07 (dd, 1H), 4.99 (dd, J = 10.1, 1.6 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (101 MHz) δ 165.3, 136.0, 124.2, 115.1, 114.9, 52.2.

^{1.} Wu, J. Q.; Yang, Z.; Zhang, S. S.; Jiang, C. Y.; Li, Q. J.; Huang, Z. S.; Wang, H. G. ACS *Catal.* **2015**, *5*, 6453–6457.

^{2.} Iosub, A. V.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3454-3457.

C. SYNTHESIS OF β -HYDROXY VINYL KETONES 2a-2f

Method A

To a stirred solution of ethyl ester (1.0 equiv, commercial available) in THF (0.55 M) was added LiHMDS (1.1 equiv, 1.0 M) at -78 °C. The resulting mixture was stirred for 1 h at -78 °C. Corresponding aldehyde (1.0 equiv, commercially available) was then added *via* syringe and the temperature was maintained for 3 h at -78 °C. Reaction was then quenched at -78 °C with saturated aqueous NH₄Cl solution. The aqueous layer was separated and extracted with ethyl acetate (3x). The combined extracts were dried over Na₂SO₄. The crude reaction extract was filtered through a silica gel plug, evaporated under reduced pressure and the residue was taken forward without further purification.

To a stirred suspension of LiAlH₄ (1.2 equiv, 0.25 M) in dry THF at 0 °C was added a solution of crude aldol product (1.0 equiv, 0.4 M) in freshly distilled THF (0.4 M). Reaction was monitored by TLC until completion (1-2 h). Reaction was quenched by adding copious amounts of ethyl acetate followed by 15% aqueous NaOH solution at 0 °C. The crude mixture was filtered through a celite pad and extracted with ethyl acetate (3x). The combined organic layers were then dried over sodium sulfate, filtered through a silica gel plug and concentrated by rotary evaporation to afford the crude diol that was taken forward without further purification.

Pd(OAc)₂ (0.01 equiv) and Et₃N (0.03 equiv) were dissolved in THF-toluene (15%; 3.4 mL). Crude diol (1.0 mmol) was added and the reaction mixture was heated to 45 °C under 1 atm of O₂ (balloon) for 20 h. After completion of reaction, solvent was evaporated under reduced pressure. Purification by silica gel flash chromatography using hexanes-ethyl acetate (30-40%, gradient elution) afforded β -hydroxy vinyl ketone.

Method B

To a stirred solution of ethyl ester (1.0 equiv, commercial available) in THF (0.55 M) was added LiHMDS (1.1 equiv, 1.0 M) at -78 °C. The resulting mixture was stirred for 1 h at -78 °C. Corresponding aldehyde (1.0 equiv, commercially available) was then added *via* syringe and the temperature was maintained for 3 h at -78 °C. Reaction was then quenched at -78 °C with saturated aqueous NH₄Cl solution. The aqueous layer was separated and extracted with ethyl acetate (3x). The combined extracts were dried over Na₂SO₄. The crude reaction extract was filtered through a silica gel plug, evaporated under reduced pressure and the residue was taken forward without further purification.

To a stirred suspension of $LiAlH_4$ (1.2 equiv, 0.25 M) in dry THF at 0 °C was added a solution of crude aldol product (1.0 equiv, 0.4 M) in freshly distilled THF (0.4 M). Reaction was monitored by TLC until completion (1-2 h). Reaction was quenched by adding copious amounts of ethyl acetate followed by 15% aqueous NaOH solution at 0 °C. The crude mixture was filtered

through a celite pad and extracted with ethyl acetate (3x). The combined organic layers were then dried over sodium sulfate, filtered through a silica gel plug and concentrated by rotary evaporation to afford the crude diol that was taken forward without further purification.

To a stirred solution of crude diol (1.0 equiv) in CH_2Cl_2 (0.1 M) was added MnO_2 (20.0 equiv) all at once. The reaction was stirred overnight. Then the mixture was filtered over a celite pad and concentrated by rotary evaporation to afford the crude product. Purification by silica gel flash chromatography using hexanes-ethyl acetate (30-40%, gradient elution) afforded β -hydroxy vinyl ketone.

5-hydroxypent-1-en-3-one (2a). Prepared from acrolein and ethyl acetate using general procedure **A**. Pale yellow oil (392 mg, 80%). **TLC**: R_f 0.28 (1:1 hexanes/EtOAc). **IR** (NaCl): 3410, 3394, 2947, 2893, 1672, 1614, 1406, 1197, 1049, 972, 621. ¹H **NMR** (500 MHz) δ 6.33 (dd, J = 17.7, 10.5 Hz, 1H), 6.23 (dd, J = 17.7, 1.1 Hz, 1H), 5.88 (dd, J = 10.4, 1.1 Hz, 1H), 3.87 (t, J = 5.5 Hz, 2H), 2.84 (t, J = 5.0 Hz, 2H), 2.78 (s, 1H). ¹³C **NMR** (126 MHz) δ 200.9, 136.5, 129.1, 57.6, 41.1.

5-hydroxy-5-phenylpent-1-en-3-one (2b). To a solution of Weinreb amide (600 mg, 2.87 mmol 1.0 equiv, prepared from known literature protocol³) in THF (48 mL) was added vinyl magnesium bromide solution (6.9 mL, 6.90 mmol, 2.4 equiv, 1.0 M) at -78 °C over the course of 10 minutes. The temperature was maintained at -78 °C for six hours prior to quenching with ammonium chloride at -78 °C. The aqueous layer was separated and extracted with ethyl acetate (3x). The combined extracts were dried over Na₂SO₄ and concentrated by rotary evaporation to afford crude product. Purification by silica gel flash chromatography using hexanes-ethyl acetate (25-30%, gradient elution) afforded pure **2f** as a pale yellow oil (121 mg, 24%). **TLC**: *R*_f 0.40 (7:3 hexanes/EtOAc). **IR** (NaCl): 3458, 1682, 1614, 1402, 760, 702. ¹**H NMR** (400 MHz) δ 7.41–7.31 (m, 4H), 7.31–7.23 (m, 1H), 6.35 (dd, *J* = 17.7, 10.4 Hz, 1H), 6.22 (dd, *J* = 17.8, 1.1 Hz, 1H), 5.89 (dd, *J* = 10.5, 1.1 Hz, 1H), 5.19 (dt, *J* = 8.8, 2.6 Hz, 1H), 3.51 (d, *J* = 2.9 Hz, 1H), 3.09–2.89 (m, 2H). ¹³C **NMR** (101 MHz) δ 200.4, 142.8, 136.5, 129.4, 128.4, 127.5, 125.6, 69.7, 47.8. Data matches known literature values.⁴

5-hydroxy-4-methylpent-1-en-3-one (2c). Prepared from acrolein and ethyl propionate using general procedure **A**. Pale yellow oil (127 mg, 16% isolated over three steps). **TLC**: R_f 0.30 (2:3 hexanes/EtOAc). **IR** (NaCl): 3491, 2972, 2935, 2882, 1738, 1686, 1516, 1462, 1406, 1030, 980. ¹**H NMR** (400 MHz) δ 6.39 (dd, J = 17.5, 10.5 Hz, 1H), 6.24 (dd, J = 17.6, 1.3 Hz, 1H), 5.78 (dd, J = 10.5, 1.3 Hz, 1H), 3.77–3.57 (m, 2H), 3.00 (pd, J = 7.2, 4.5 Hz, 1H), 1.07 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz) δ 203.8, 135.1, 128.9, 64.0, 45.2, 13.4. Data matches known literature values.⁵

5-hydroxy-2-methylpent-1-en-3-one (2d). Prepared from methacrolein and ethyl acetate using general procedure **B**. Pale yellow oil (347 mg, 27% isolated over three steps). **TLC**: R_f 0.20 (3:2 hexanes/EtOAc). **IR** (NaCl): 3445, 2957, 2928, 2889, 2357, 2326, 1672, 1373, 1053, 939, 737. ¹H **NMR** (400 MHz) δ 6.00 (s, 1H), 5.85–5.83 (m, 1H), 3.91 (q, J = 5.3 Hz, 2H), 2.95 (t, J = 5.4 Hz, 2H), 2.53 (s, 1H), 1.92–1.86 (m, 3H). ¹³C **NMR** (101 MHz) δ 201.4, 144.1, 125.3, 57.6, 39.3, 16.9.

(E)-1-hydroxyhex-4-en-3-one (2e). Prepared from predominately trans crotonaldehyde and ethyl acetate using general procedure **B**. Pale yellow oil (726 mg, 61% isolated over three steps). **TLC**: R_f 0.48 (1:1 hexanes/EtOAc). **IR** (NaCl): 3443, 3422, 3398, 2965, 2945, 2889, 1661, 1632, 1443, 1373, 1055, 972, 737. ¹H NMR (400 MHz) δ 6.89 (dq, J = 15.8, 6.8 Hz, 1H), 6.13 (dq, J = 15.8, 1.7 Hz, 1H), 3.88 (t, J = 5.4 Hz, 2H), 2.79 (t, J = 5.4 Hz, 2H), 2.61 (s, 1H), 1.92 (dd, J = 6.8, 1.7 Hz, 3H). ¹³C NMR (101 MHz) δ 200.6, 143.9, 132.1, 58.1, 41.2, 18.3. Data matches known literature values.⁶

(4E,6E)-1-hydroxyocta-4,6-dien-3-one (2f). Prepared from sorbaldehyde and ethyl acetate using general procedure **B**. Pale yellow oil (412 mg, 35% isolated over three steps). TLC: R_f 0.2 (3:2 hexanes/EtOAc). IR (NaCl): 3441, 3416, 2963, 2938, 2913, 2886, 2359, 1678, 1636, 1591, 1377, 1190, 1055, 999. ¹H NMR (500 MHz) δ 7.19–7.12 (m, 1H), 6.29–6.13 (m, 2H), 6.07 (d, J = 15.7 Hz, 1H), 3.89 (t, J = 5.4 Hz, 2H), 2.82 (t, J = 5.4 Hz, 2H), 2.65 (s, 1H), 1.88 (d, J = 5.1 Hz, 3H). ¹³C NMR (126 MHz) δ 201.0, 143.9, 141.2, 130.1, 127.6, 58.2, 41.7, 18.8.

- 5. Batt, F.; Bourcet, E.; Kassab, Y.; Fache, F. Synlett 2007, 12, 1869–1872.
- 6. Prandi, C.; Venturello, P. J. Org. Chem. 1994, 59, 3494-3496.

^{3.} Roche, C.; Labeeuw, O.; Haddad, M.; Ayad, T.; Genet, J.-P.; Ratovelomanana-Vidal, V.; Phansavath, P. *Eur. J. Org. Chem.* **2009**, 3977.

^{4.} Hong, B. C.; Chin, S. F. Synthetic Communications 1997, 27, 1191–1197.

D. SYNTHESIS OF ALDOL CASCADE INTERMEDIATE 3a

Benzyl 3-hydroxy-2,3-divinyltetrahydrofuran-2-carboxylate (3a). To a flame dried 15 mL pear shaped round bottom with stir bar was added $Rh_2(esp)_2$ (1 mol%). A solution of β -hydroxy vinvl ketone (25 mg, 0.25 mmol) in 1.5 mL CH₂Cl₂ was then added, the flask was equipped with a reflux condenser, and set to stirring while at reflux. While at reflux, a solution of vinyl diazo (76 mg, 0.37 mmol) in 1 mL CH₂Cl₂ was added over 3 h *via* syringe pump at this temperature. After the addition was completed, the reaction was left to reflux for an additional 1 hour. After reaction was completed, the crude reaction mixture was concentrated using rotary evaporation and then purified using flash column chromatography eluting with 1:3 ethyl acetate: hexanes to afford aldol product **3a** as a colorless liquid (49 mg, 72%). TLC: $R_f 0.21$ (7:3 hexanes/EtOAc). IR (NaCl): 3522, 3496, 3481, 3466, 2981, 2951, 2893, 1734, 1718, 1639, 1456, 1375, 1267, 1151, 1056, 991, 929, 742. ¹H NMR (400 MHz) δ 7.36–7.31 (m, 5H), 6.09–5.98 (m, 2H), 5.51 (dd, J = 17.0, 1.4 Hz, 1H), 5.33 (dd, J = 17.3, 1.1 Hz, 1H), 5.29-5.15 (m, 4H), 4.33-4.25 (m, 4H), 4.25 (m, 4H), 4.25 (m, 4H), 4.25 (m, 4H), 4.21H), 4.20–4.15 (m, 1H), 2.43 (d, J = 2.8 Hz, 1H), 2.25–2.16 (m, 1H), 1.90 (ddd, J = 12.8, 6.1, 1.7 Hz, 1H). ¹³C NMR (101 MHz): δ 170.2, 137.4, 135.5, 135.3, 128.5, 128.2, 128.1, 116.5, 115.8, 91.9, 84.3, 67.0, 66.9, 37.2. **ESI-MS** m/z calcd for C₁₆H₁₈O₄Na ([M+Na]⁺) 297.1102; found 296.5. Relative stereochemistry was assigned based on previous literature reports.⁷

7. Nicolle, S. M.; Christopher W. L.; Hayes, J.; Moody, C. J. Angew. Chem. Int. Ed. 2015, 54, 8485–8489.

E. GENERAL PROCEDURE FOR THE SYNTHESIS OF OXACYCLES 4a-4k

To a flame dried 15 mL pear shaped round bottom with stir bar was added $Rh_2(OAc)_4$ (1 mol%). A solution of β -hydroxy vinyl ketone (0.25 mmol) in 1.5 mL toluene was then added, the flask was equipped with a reflux condenser, and set to stirring while at reflux. While at reflux a solution of vinyl diazo (0.37 mmol) in 1 mL toluene was added over 3 h *via* syringe pump at this temperature. After the addition was completed, the reaction was left to reflux for an additional 1 hour. After reaction was completed, the crude reaction mixture was purified using flash column chromatography eluting with 1:3 ethyl acetate: hexanes to afford oxacycle **4a–4k**.

Benzyl (Z)-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4a). Colorless liquid (47 mg, 68%). **TLC**: R_f 0.34 (7:3 hexanes/EtOAc). **IR** (NaCl): 3496, 2953, 2937, 1726, 1712, 1647, 1498, 1454, 1269, 1170, 1101, 769, 752, 738, 698. ¹H NMR (400 MHz) δ 7.40–7.34 (m, 5H), 6.39 (t, J = 8.4 Hz, 1H), 5.23 (s, 2H), 4.34 (t, J = 6.0 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H), 2.47–2.44 (m, 2H), 2.26–2.20 (m, 2H), 1.94–1.88 (m, 2H). ¹³C NMR (101 MHz): δ 212.6, 163.4, 146.8, 135.6, 128.6, 128.3, 128.2, 127.4, 69.8, 66.8, 44.6, 37.6, 23.0. **HRMS** (ESI) *m/z* calcd for C₁₆H₁₈O₄Na ([M+Na]⁺) 297.1102; found 297.1105.

Benzyl (Z)-7-oxo-9-phenyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4b). Colorless liquid (34.6 mg, 58%). TLC: R_f 0.46 (7:3 hexanes/EtOAc). IR (NaCl): 3061, 3032, 2947, 1712, 1649, 1498, 1452, 1379, 1263, 975, 916, 744, 698. ¹H NMR (400 MHz) δ 7.40–7.26 (m, 8H), 7.17–7.15 (m, 2H), 6.37 (t, J = 7.9 Hz, 1H), 5.27 (dd, J = 11.2, 3.5 Hz, 1H), 5.06 (q, J = 12.3 Hz, 2H), 3.18 (dd, J = 14.3, 11.3 Hz, 1H), 2.66–2.57 (m, 3H), 2.55–2.49 (m, 1H), 2.39 (dt, J = 17.0, 6.5 Hz, 1H), 2.13 (dtd, J = 14.8, 7.6, 2.8 Hz, 1H), 1.80–1.71 (m, 1H). ¹³C NMR (101 MHz): δ 211.7, 163.3, 146.5, 141.4, 135.4, 128.4, 128.3, 128.2, 128.1, 127.6, 127.0, 125.5, 82.4, 66.7, 52.5, 41.4, 24.6, 22.9. HRMS (ESI) *m/z* calcd for C₂₂H₂₂O₄Na ([M+Na]⁺) 373.1415; found 373.1419.

Benzyl (Z)-8-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4c). Colorless liquid (35 mg, 60%). **TLC**: R_f 0.44 (7:3 hexanes/EtOAc). **IR** (NaCl): 3977, 2960, 2933, 1743, 1718, 1647, 1456, 1269, 1170, 1103, 752, 738, 698. ¹H NMR (400 MHz) δ 7.39–7.33 (m, 5H), 6.36 (t, J = 8.5 Hz, 1H), 5.22 (s, 2H), 4.33 (dd, J = 11.7, 5.4 Hz, 1H), 3.94 (dd, J = 11.6, 8.6 Hz, 1H), 2.87 (ddd, J = 8.4, 7.0, 5.4 Hz, 1H), 2.44–2.40 (m, 2H), 2.19 (dtd, J = 12.7, 8.5, 4.3 Hz, 2H), 1.93 (td, J = 7.7, 3.9 Hz, 1H), 1.89–1.78 (m, 1H), 1.04 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz): δ 214.6, 163.4, 147.4, 135.6, 128.6, 128.3, 128.2, 126.7, 76.0, 66.8, 48.0, 35.5, 22.8, 22.4, 12.6. HRMS (ESI) m/z calcd for C₁₇H₂₀O₄Na ([M+Na]⁺) 311.1259; found 311.1263.

Benzyl (Z)-6-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4d). Colorless liquid (45 mg, 71%). **TLC**: R_f 0.43 (7:3 hexanes/EtOAc). **IR** (NaCl): 3859, 3741, 3647, 1737, 1712, 1647, 1543, 1512, 1456, 1265, 1165, 1095, 893, 842, 740. ¹H NMR (400 MHz) δ 7.38–7.32 (m, 5H), 6.40 (dd, J = 9.2, 7.7 Hz, 1H), 5.26–5.18 (m, 2H), 4.46 (dt, J = 12.0, 5.2 Hz, 1H), 4.18 (ddd, J = 12.0, 8.9, 4.3 Hz, 1H), 2.88 (ddt, J = 9.9, 7.4, 3.7 Hz, 1H), 2.73 (ddd, J = 15.2, 5.5, 4.3 Hz, 1H), 2.62 (ddd, J = 15.0, 8.9, 5.0 Hz, 1H), 2.43–2.33 (m, 1H), 2.11–2.04 (m, 1H), 1.87 (tdd, J = 10.9, 5.8, 3.6 Hz, 1H), 1.68–1.60 (m, 1H), 1.03 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz): δ 215.7, 163.4, 146.3, 135.6, 128.6, 128.3, 128.2, 69.4, 66.8, 43.2, 42.5, 31.9, 22.7, 17.7. HRMS (ESI) m/z calcd for C₁₇H₂₀O₄Na ([M+Na]⁺) 311.1259; found 311.1263.

Benzyl (Z)-5-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4e). Colorless liquid (48.5 mg, 64%). TLC: R_f 0.45 (7:3 hexanes/EtOAc). IR (NaCl): 2956, 2929, 1726, 1716, 1456, 1267, 1093, 750, 738, 698. ¹H NMR (400 MHz) δ 7.38–7.33 (m, 5H), 6.44 (t, J = 8.5 Hz, 1H), 5.27–5.18 (m, 2H), 4.47 (dt, J = 11.8, 5.0 Hz, 1H), 4.20 (ddd, J = 11.8, 9.6, 4.3 Hz, 1H), 2.70 (ddd, J = 14.9, 9.6, 5.1 Hz, 1H), 2.58 (dt, J = 15.5, 4.6 Hz, 1H), 2.52–2.45 (m, 1H), 2.45–2.36 (m, 2H), 2.22–2.18 (m, 1H), 2.02 (ddd, J = 13.5, 8.3, 6.0 Hz, 1H), 1.05 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz): δ 211.9, 163.3, 146.5, 135.6, 128.6, 128.3, 128.1, 126.5, 69.7, 66.8, 45.7, 44.8, 31.3, 30.1, 21.4. HRMS (ESI) *m*/*z* calcd for C₁₇H₂₀O₄Na ([M+Na]⁺) 311.1259; found 311.1263.

Benzyl (Z)-7-oxo-5-((E)-prop-1-en-1-yl)-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4f). Colorless liquid (34 mg, 61%). TLC: R_f 0.57 (7:3 hexanes/EtOAc). IR (NaCl): 3747, 3736, 3469, 2960, 1747, 1710, 1649, 1558, 1541, 1521, 1506, 1454, 1265, 1101, 752, 738, 698. ¹H NMR (400 MHz) δ 7.39–7.32 (m, 5H), 6.42 (dd, J = 9.3, 8.0 Hz, 1H), 5.49–5.45 (m, 1H), 5.29–5.18 (m, 2H), 4.49 (dt, J = 11.8, 4.9 Hz, 1H), 4.20 (ddd, J = 11.8, 9.6, 4.5 Hz, 1H), 2.95 (ddd, J = 12.2, 8.0, 4.2 Hz, 1H), 2.74–2.66 (m, 1H), 2.65–2.61 (m, 1H), 2.58 (t, J = 4.6 Hz, 1H), 2.47 (ddd, J = 13.1, 9.3, 4.0 Hz, 1H), 2.22 (dd, J = 13.5, 4.5 Hz, 1H), 2.10 (ddd, J = 13.4, 8.0, 5.7 Hz, 1H), 1.89–1.86 (m, 1H), 1.66 (d, J = 8.0, 3H). ¹³C NMR (101 MHz): δ 211.5, 163.3, 146.7, 135.6, 133.5, 128.6, 128.3, 128.1, 126.4, 124.8, 69.7, 66.8, 44.8, 43.4, 38.8, 28.9, 17.9. HRMS (ESI) m/z calcd for C₁₉H₂₂O₄Na ([M+Na]⁺) 337.1415; found 337.1417.

Methyl (Z)-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4g). Colorless liquid (34.5 mg, 64%). **TLC**: *R_f* 0.44 (7:3 hexanes/EtOAc). **IR** (NaCl): 3745, 2954, 1722, 1647, 1541, 1512, 1433, 1340, 1309, 1292, 1246, 1097, 1001, 918, 775. ¹**H NMR** (400 MHz) δ 6.17 (dd, *J* = 9.4, 0.9 Hz, 1H), 5.79–5.70 (m, 1H), 5.09–5.00 (m, 2H), 4.54–4.49 (m, 1H), 4.21–4.14 (m, 1H), 3.80 (s, 3H), 3.33–3.24 (m, 1H), 2.78–2.69 (m, 2H), 2.64–2.58 (m, 1H), 2.25–2.14 (m, 2H), 1.62–1.50 (m, 1H). ¹³**C NMR** (101 MHz): δ 212.2, 163.9, 145.5, 139.5, 129.4, 115.1, 69.5, 52.1, 44.5, 37.9, 37.1, 30.0. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₆O₄Na ([M+Na]⁺) 247.0946; found 247.0948.

Methyl (4*R*,5*S*,*Z*)-7-oxo-5-((E)-prop-1-en-1-yl)-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2carboxylate (4h). Colorless liquid (32 mg, 59%, (dr > 98:2)). TLC: R_f 0.53 (7:3 hexanes/EtOAc). IR (NaCl): 2954, 2927, 2872, 1714, 1639, 1456, 1435, 1315, 1271, 1238, 1195, 1087, 974, 777, 732. ¹H NMR (400 MHz) δ 6.72 (d, J = 10.8 Hz, 1H), 6.09–6.02 (m, 1H), 5.86 (ddd, J = 15.4, 8.3, 6.3 Hz, 1H), 5.38–5.21 (m, 2H), 4.29 (ddd, J = 12.4, 8.1, 2.0 Hz, 1H), 4.20 (ddd, J = 12.4, 6.4, 2.2 Hz, 1H), 3.77 (s, 3H), 3.01 (d, J = 7.4 Hz, 2H), 2.70 (ddd, J = 19.0, 8.2, 2.2 Hz, 1H), 2.57 (ddd, J = 18.9, 6.4, 2.0 Hz, 1H), 2.22–2.11 (m, 2H), 1.91–1.82 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz): δ 204.4, 164.4, 141.4, 140.0, 136.9, 127.9, 127.7, 122.0, 64.1, 51.9, 47.1, 40.3, 39.0, 37.0, 20.6. **HRMS** (ESI) *m/z* calcd for C₁₅H₂₀O₄Na ([M+Na]⁺) 287.1259; found 287.1261.

Methyl (4*R***,5***R***,***Z***)-5-methyl-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4i). (36 mg, 60%, (dr > 98:2)). Recrystallization from hexanes (slow evaporation method) yielded monoclinic colorless crystal (mp 72–74 °C). TLC: R_f 0.40 (7:3 hexanes/EtOAc). IR (NaCl): 2962, 1720, 1641, 1442, 1429, 1300, 1238, 1161, 1095, 1004, 767, 723, 671, 644. ¹H NMR (400 MHz) \delta 6.31 (d, J = 10.0 Hz, 1H), 5.81 (ddd, J = 17.2, 10.5, 5.7 Hz, 1H), 5.13–4.98 (m, 2H), 4.57 (ddd, J = 11.9, 5.8, 3.1 Hz, 1H), 4.11 (td, J = 11.6, 4.2 Hz, 1H), 3.82 (s, 3H), 3.43 (dtt, J = 9.5, 3.6, 1.8 Hz, 1H), 2.83–2.75 (m, 1H), 2.64–2.43 (m, 3H), 2.10 (dd, J = 13.7, 4.5 Hz, 1H), 0.88 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz): \delta 211.6, 163.8, 146.5, 138.8, 126.7, 115.9, 77.3, 77.0, 76.7, 69.8, 52.2, 45.1, 44.5, 40.7, 36.1, 15.2. HRMS (ESI)** *m/z* **calcd for C₁₃H₁₈O₄Na ([M+Na]⁺) 261.1102; found 261.1100.**

Methyl (4S,9S,Z)-7-oxo-9-phenyl-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4j). Colorless liquid (33 mg, 67%, (dr > 98:2)). **TLC**: R_f 0.41 (7:3 hexanes/EtOAc). **IR** (NaCl): 3734, 2312, 1722, 1647, 1541, 1508, 1436, 1352, 1300, 1247, 1203, 1143, 1097, 1001, 925, 877, 761, 694, 671. ¹H **NMR** (400 MHz) δ 7.44–7.34 (m, 4H), 7.33–7.27 (m, 1H), 6.17 (d, J = 9.3 Hz, 1H), 5.80 (ddd, J = 17.1, 10.3, 6.7 Hz, 1H), 5.25 (dd, J = 11.2, 3.8 Hz, 1H), 5.16–5.02 (m, 2H), 3.58 (s, 3H), 3.49–3.38 (m, 1H), 3.08 (dd, J = 15.3, 11.2 Hz, 1H), 2.82–2.70 (m, 2H), 2.44 (ddd, J = 13.9, 6.5, 4.4 Hz, 1H), 2.28–2.20 (m, 1H), 1.69–1.57 (m, 1H). ¹³C **NMR** (101 MHz): δ 210.9, 163.8, 145.6, 141.5, 139.8, 129.2, 128.3, 127.6, 125.4, 115.1, 81.9, 77.3, 77.0, 76.7, 53.1, 51.8, 38.4, 38.2, 30.0. **HRMS** (ESI) *m/z* calcd for C₁₈H₂₀O₄Na ([M+Na]⁺) 323.1259; found 323.1255

Methyl (4*S*,6*S*,**Z**)-6-methyl-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4k). (41 mg, 68%, (dr = 3:1);

4k (Major diastereomer): White solid mp 49–50 °C). **TLC**: R_f 0.50 (7:3 hexanes/EtOAc). **IR** (NaCl): 2962, 1722, 1645, 1460, 1294, 1246, 1093, 999, 923, 775, 675, 624. ¹H NMR (400 MHz) δ 6.20 (d, J = 9.7 Hz, 1H), 5.77–5.63 (m, 1H), 5.08–4.94 (m, 2H), 4.55–4.48 (m, 1H), 4.21–4.11 (m, 1H), 3.78 (s, 3H), 3.32–3.23 (m, 1H), 2.94–2.86 (m, 1H), 2.74–2.62 (m, 2H), 1.99–1.90 (m, 1H), 1.49–1.39 (m, 1H), 1.03 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz): δ 215.4, 163.9, 145.4, 139.5, 129.9, 114.9, 77.3, 77.0, 76.7, 69.2, 52.1, 43.3, 40.9, 38.7, 37.3, 17.8. **HRMS** (ESI) *m/z* calcd for C₁₃H₁₈O₄Na ([M+Na]⁺) 261.1102; found 261.1107.

4k (Minor diastereomer): isolated as pale yellow liquid along with major diastereomer (dr = 1:1); ¹H NMR (400 MHz) δ 6.21 (d, J = 9.6 Hz, 1H), 6.11 (d, J = 9.5 Hz, 1H), 5.72 (dddd, J = 17.1, 10.4, 6.8, 5.1 Hz, 2H), 5.06–4.98 (m, 4H), 4.52 (dd, J = 11.2, 5.8 Hz, 1H), 4.35–4.23 (m, 2H), 4.17 (ddd, J = 11.9, 9.1, 4.9 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.41–3.25 (m, 2H), 2.96–2.83 (m, 2H), 2.75–2.64 (m, 2H), 1.99–1.86 (m, 3H), 1.79 (ddd, J = 14.0, 4.8, 2.5 Hz, 1H), 1.46 (td, J = 12.8, 4.0 Hz, 1H), 1.05 (s, 3H), 1.04 (s, 3H). ¹³C NMR (101 MHz): δ 215.59, 215.35, 163.94, 145.39, 143.44, 139.87, 139.54, 130.70, 129.97, 114.98, 114.69, 77.32, 77.00, 76.68, 69.18, 68.66, 52.11, 52.09, 46.56, 43.34, 42.67, 41.00, 40.98, 39.54, 38.77, 37.35, 17.85, 17.82.

F. X-RAY DIFFRACTION DATA FOR OXACYCLE 4i

Sample: KC-508 CCDC 1510906 User: Kiran Formula: C₁₃ H₁₈ O₄

Comment

The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A colorless, needle-shaped crystal of dimensions 0.05 x 0.08 x 0.58 mm was selected for structural analysis. Intensity data for this compound were collected using a diffractometer with a Bruker APEX ccd area detector⁸ and graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The sample was cooled to 100(2) K. Cell parameters were determined from a non-linear least squares fit of 3066 peaks in the range 2.36 < θ < 27.28°. A total of 9302 data were measured in the range 1.543 < θ < 27.503° using ϕ and ω oscillation frames. The data were

corrected for absorption by the empirical method giving minimum and maximum transmission factors of 0.948 and 0.995.⁹ The data were merged to form a set of 2838 independent data with R(int) = 0.0239 and a coverage of 99.7 %.

The monoclinic space group $P2_1/n$ was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on $F^{2,10}$ The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the isotropic equivalent displacement parameters of the bonded atoms. A total of 154 parameters were refined against 2838 data to give wR(F^2) = 0.1232 and S = 0.973 for weights of w = $1/[\sigma^2 (F^2) + (0.0850 \text{ P})^2 + 0.2000 \text{ P}]$, where P = $[F_o^2 + 2F_c^2]/3$. The final R(*F*) was 0.0431 for the 2334 observed, $[F > 4\sigma(F)]$, data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 0.338 and -0.211 e/Å³, respectively.

Acknowledgment

The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers. This structure was determined by Douglas R. Powell.

References

- (a) Data Collection: APEX2 (2007) Bruker AXS Inc., Madison, Wisconsin, USA. (b) Data Reduction: SAINT (2007) Bruker AXS Inc., Madison, Wisconsin, USA.
- 9. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke (2015). J. Appl. Cryst., 48, 3-10.
- 10. (a) G. M. Sheldrick (2015). *Acta Cryst., A71*, 3-8. (b) G. M. Sheldrick (2015). *Acta Cryst., C71*, 3-8.

Table 1. Crystal data and structure refinement for KC-508

Empirical formula	C13 H18 O4		
Formula weight	238.27		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
Unit cell dimensions	a = 15.381(2) Å	α= 90°	
	b = 5.4641(7) Å	β = 113.595(2)°	
	c = 16.210(2) Å	γ= 90°	
Volume	1248.4(3) Å3		
Z, Z'	4, 1		
Density (calculated)	1.268 Mg/m3		
Wavelength	0.71073 Å		
Temperature	100(2) K		
F(000)	512		
Absorption coefficient 0.093 mm-1			
Absorption correction	semi-empirical from equi	valents	
Max. and min. transmission	0.995 and 0.948		
Theta range for data collection	1.543 to 27.503°		
Reflections collected 9302			
Independent reflections 2838 [R(int) = 0.0239]			
Data / restraints / parameters	Data / restraints / parameters 2838 / 0 / 154		
$wR(F^2 \text{ all data})$	<i>wR</i> 2 = 0.1232		
R(F obsd data)	<i>R</i> 1 = 0.0431		
Goodness-of-fit on F^2	0.973		
Observed data $[I > 2s(I)]$	> 2s(I)] 2334		
Largest and mean shift / s.u. 0.000 and 0.000			
Largest diff. peak and hole	0.338 and -0.211 e/Å ³		

 $wR2 = \{ \Sigma [w(F_02 - F_c2)2] / \Sigma [w(F_02)2] \} 1/2$ R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|

	X	у	Z	U(eq)
0(1)	0.46907(6)	0.10996(16)	0.60579(6)	0.0178(2)
C(2)	0.42734(8)	0.2668(2)	0.64565(8)	0.0169(3)
C(3)	0.43172(8)	0.2249(2)	0.72827(8)	0.0176(3)
C(4)	0.48388(8)	0.0095(2)	0.78505(8)	0.0174(3)
C(7)	0.64307(8)	-0.0454(2)	0.72005(9)	0.0179(3)
C(6)	0.64721(8)	0.1400(2)	0.79107(9)	0.0178(3)
C(5)	0.58961(8)	0.0672(2)	0.84585(8)	0.0179(3)
C(9)	0.54699(8)	0.2188(2)	0.58841(9)	0.0180(3)
C(8)	0.63172(8)	0.0466(2)	0.62814(9)	0.0192(3)
C(10)	0.36759(8)	0.4617(2)	0.58420(8)	0.0175(3)
0(11)	0.34903(6)	0.46664(17)	0.50434(6)	0.0226(2)
0(12)	0.33447(6)	0.62443(16)	0.62668(6)	0.0198(2)
C(13)	0.26974(9)	0.8043(2)	0.56842(9)	0.0219(3)
C(14)	0.43403(9)	-0.0960(2)	0.84073(9)	0.0215(3)
C(15)	0.34565(10)	-0.0569(3)	0.83131(10)	0.0263(3)
C(16)	0.59979(10)	0.2650(3)	0.91594(9)	0.0245(3)
0(17)	0.64891(6)	-0.26361(16)	0.73678(7)	0.0232(2)

Table 2. A	Atomic coordinates	and equivalent isotropic disp	lacement parameters for KC-508.
U(eq) is de	efined as one third o	of the trace of the orthogonaliz	zed U _{ij} tensor.

0(1)-C(2)	1.3769(14)	C(9)-H(9A)	0.9900
O(1)-C(9)	1.4630(14)	С(9)-Н(9В)	0.9900
C(2)-C(3)	1.3335(18)	C(8)-H(8A)	0.9900
C(2)-C(10)	1.4959(17)	C(8)-H(8B)	0.9900
C(3)-C(4)	1.5115(17)	C(10)-O(11)	1.2092(15)
C(3)-H(3)	0.9500	C(10)-O(12)	1.3436(15)
C(4)-C(14)	1.5130(17)	O(12)-C(13)	1.4477(15)
C(4)-C(5)	1.5596(17)	С(13)-Н(13А)	0.9800
C(4)-H(4)	1.0000	С(13)-Н(13В)	0.9800
C(7)-O(17)	1.2181(15)	С(13)-Н(13С)	0.9800
C(7)-C(8)	1.5148(18)	C(14)-C(15)	1.3231(19)
C(7)-C(6)	1.5156(18)	C(14)-H(14)	0.9500
C(6)-C(5)	1.5367(17)	С(15)-Н(15А)	0.9500
C(6)-H(6A)	0.9900	C(15)-H(15B)	0.9500
C(6)-H(6B)	0.9900	С(16)-Н(16А)	0.9800
C(5)-C(16)	1.5302(18)	С(16)-Н(16В)	0.9800
C(5)-H(5)	1.0000	С(16)-Н(16С)	0.9800
C(9)-C(8)	1.5254(17)		
C(2)-O(1)-C(9)	114.14(9)	C(16)-C(5)-C(4)	112.51(10)
L(3)-L(2)-U(1)	121.25(11)	L(6)-L(5)-L(4)	112.56(10)
L(3)-L(2)-L(10)	124.16(11)	C(16)-C(5)-H(5)	107.3
0(1)-C(2)-C(10)	114.09(10)	C(6)-C(5)-H(5)	107.3
L(2)-L(3)-L(4)	123.11(11)	C(4)-C(5)-H(5)	107.3
C(2)-C(3)-H(3)	118.4	0(1)- $C(9)$ - $C(8)$	107.17(10)
C(4)-C(3)-H(3)	118.4	0(1)-C(9)-H(9A)	110.3
C(3)-C(4)-C(14)	112. 81(10)	C(8)-C(9)-H(9A)	110.3
C(3)-C(4)-C(5)	113. 12(10)	O(1)-C(9)-H(9B)	110.3
C(14)-C(4)-C(5)	110.44(10)	C(8)-C(9)-H(9B)	110.3
C(3)-C(4)-H(4)	106.7	H(9A)-C(9)-H(9B)	108.5
C(14)-C(4)-H(4)	106.7	C(7)-C(8)-C(9)	111.26(10)
C(5)-C(4)-H(4)	106.7	C(7)-C(8)-H(8A)	109.4
0(17)-C(7)-C(8)	120.87(12)	C(9)-C(8)-H(8A)	109.4
0(17)-C(7)-C(6)	120.53(12)	C(7)-C(8)-H(8B)	109.4
C(8)-C(7)-C(6)	118.59(11)	C(9)-C(8)-H(8B)	109.4
C(7)-C(6)-C(5)	114.04(10)	H(8A)-C(8)-H(8B)	108.0
C(7)-C(6)-H(6A)	108.7	0(11)-C(10)-O(12)	123.95(11)
C(5)-C(6)-H(6A)	108.7	O(11)-C(10)-C(2)	123.20(11)
C(7)-C(6)-H(6B)	108.7	O(12)-C(10)-C(2)	112.81(10)
C(5)-C(6)-H(6B)	108.7	C(10)-O(12)-C(13)	114.69(10)
H(6A)-C(6)-H(6B)	107.6	0(12)-C(13)-H(13A)	109.5
C(16)-C(5)-C(6)	109.56(10)	O(12)-C(13)-H(13B)	109.5

	2	2	_
			Table 4.
C(14)-C(15)-H(15A)	120.0	H(16B)-C(16)-H(16C)	109.5
C(4)-C(14)-H(14)	116.1	H(16A)-C(16)-H(16C)	109.5
C(15)-C(14)-H(14)	116.1	C(5)-C(16)-H(16C)	109.5
C(15)-C(14)-C(4)	127.75(13)	H(16A)-C(16)-H(16B)	109.5
H(13B)-C(13)-H(13C)	109.5	C(5)-C(16)-H(16B)	109.5
H(13A)-C(13)-H(13C)	109.5	C(5)-C(16)-H(16A)	109.5
O(12)-C(13)-H(13C)	109.5	H(15A)-C(15)-H(15B)	120.0
H(13A)-C(13)-H(13B)	109.5	C(14)-C(15)-H(15B)	120.0

Anisotropic displacement parameters (Å²x 10³) for KC-508. The anisotropic displacement factor exponent takes the form: -2 $_{\pi}2[h2 a^{*}2 U_{11} + ... + 2 h k a^{*}b^{*}U_{12}]$

	U11	U22	U33	U23	U13	U12
		40(4)	40(4)			-
0(1)	17(1)	19(1)	19(1)	-1(1)	8(1)	-1(1)
C(2)	14(1)	18(1)	17(1)	-2(1)	5(1)	-1(1)
C(3)	15(1)	19(1)	17(1)	-1(1)	5(1)	-1(1)
C(4)	18(1)	18(1)	16(1)	0(1)	7(1)	1(1)
C(7)	11(1)	20(1)	21(1)	0(1)	5(1)	0(1)
C(6)	17(1)	18(1)	17(1)	1(1)	4(1)	-1(1)
C(5)	19(1)	18(1)	15(1)	1(1)	5(1)	1(1)
C(9)	18(1)	20(1)	17(1)	1(1)	7(1)	-1(1)
C(8)	17(1)	21(1)	19(1)	-1(1)	7(1)	-1(1)
C(10)	15(1)	19(1)	17(1)	-1(1)	5(1)	-2(1)
0(11)	26(1)	26(1)	15(1)	1(1)	6(1)	3(1)
0(12)	20(1)	21(1)	17(1)	0(1)	6(1)	4(1)
C(13)	20(1)	19(1)	22(1)	2(1)	4(1)	4(1)
C(14)	25(1)	21(1)	20(1)	3(1)	10(1)	1(1)
C(15)	26(1)	32(1)	23(1)	4(1)	13(1)	1(1)
C(16)	25(1)	26(1)	19(1)	-3(1)	6(1)	0(1)
0(17)	24(1)	18(1)	28(1)	1(1)	12(1)	2(1)

	Х	У	Z	U(eq)
H(3)	0.4006	0.3357	0.7526	0.021
H(4)	0.4844	-0.1218	0.7423	0.021
H(6A)	0.6233	0.2989	0.7613	0.021
H(6B)	0.7143	0.1632	0.8329	0.021
H(5)	0.6184	-0.0861	0.8793	0.022
H(9A)	0.5631	0.3821	0.6170	0.022
H(9B)	0.5287	0.2380	0.5228	0.022
H(8A)	0.6229	-0.0944	0.5872	0.023
H(8B)	0.6901	0.1338	0.6334	0.023
H(13A)	0.3015	0.8959	0.5365	0.033
H(13B)	0.2501	0.9173	0.6047	0.033
H(13C)	0.2138	0.7213	0.5247	0.033
H(14)	0.4706	-0.2030	0.8881	0.026
H(15A)	0.3056	0.0485	0.7851	0.032
H(15B)	0.3222	-0.1343	0.8708	0.032
H(16A)	0.6667	0.2814	0.9568	0.037
H(16B)	0.5626	0.2190	0.9505	0.037
H(16C)	0.5766	0.4214	0.8855	0.037

Table 6. Torsion angles [°] for KC-508.

C(9)-O(1)-C(2)-C(3)	-115.44(13)
C(9)-O(1)-C(2)-C(10)	72.37(13)
O(1)-C(2)-C(3)-C(4)	1.56(19)
C(10)-C(2)-C(3)-C(4)	172.93(11)
C(2)-C(3)-C(4)-C(14)	-143.28(12)
C(2)-C(3)-C(4)-C(5)	90.46(15)
O(17)-C(7)-C(6)-C(5)	-42.40(16)
C(8)-C(7)-C(6)-C(5)	137.71(11)
C(7)-C(6)-C(5)-C(16)	179.32(10)
C(7)-C(6)-C(5)-C(4)	-54.69(14)
C(3)-C(4)-C(5)-C(16)	63.69(14)
C(14)-C(4)-C(5)-C(16)	-63.83(14)
C(3)-C(4)-C(5)-C(6)	-60.69(14)

C(14)-C(4)-C(5)-C(6)	171.79(10)
C(2)-O(1)-C(9)-C(8)	128.70(10)
O(17)-C(7)-C(8)-C(9)	127.43(12)
C(6)-C(7)-C(8)-C(9)	-52.68(14)
O(1)-C(9)-C(8)-C(7)	-43.05(13)
C(3)-C(2)-C(10)-O(11)	-164.40(12)
O(1)-C(2)-C(10)-O(11)	7.52(17)
C(3)-C(2)-C(10)-O(12)	13.47(17)
O(1)-C(2)-C(10)-O(12)	-174.60(9)
0(11)-C(10)-O(12)-C(13)	2.86(17)
C(2)-C(10)-O(12)-C(13)	-174.99(10)
C(3)-C(4)-C(14)-C(15)	15.1(2)
C(5)-C(4)-C(14)-C(15)	142.77(15)

	Table 7.	Hydrogen bonds for	KC-508[Å and °].
--	----------	--------------------	------------------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(6)-H(6A)O(17)#1	0.99	2.48	3.3784(16)	150.6
C(8)-H(8A)O(11)#2	0.99	2.65	3.6156(16)	164.1
C(8)-H(8B)O(17)#3	0.99	2.59	3.3675(15)	135.5
C(13)-H(13A)O(1)#1	0.98	2.64	3.3272(16) 12	27.6

Symmetry transformations used to generate equivalent atoms: #1 x, y+1, z #2 -x+1, -y, -z+1 #3 -x+3/2, y+1/2, -z+3/2

G. ¹H-NMR, ¹³C-NMR, COSY, HSQC, AND nOe SPECTRA

1.	Diazo ester 1b	S22
2.	β -Hydroxy vinyl ketones 2a–2f	S23
3.	Cascade intermediate 3a	S29
4.	Oxacycles 4a-4k	\$32

Chinthapally, et. al. kc-475_PROTON_01 - kc-475 -

