Rhodium Carbenoid Initiated O-H Insertion/Aldol/Oxy-Cope Cascade for the Stereoselective Synthesis of Functionalized Oxacycles

Kiran Chinthapally, Nicholas P. Massaro and Indrajeet Sharma*
Department of Chemistry and Biochemistry, and Institute of Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, OK-USA

Supplementary Information

A. Materials and methods S2
B. Synthesis of vinyl diazo esters $\mathbf{1 a}, \mathbf{1 b}$ S3
C. Synthesis of β-hydroxy vinyl ketones 2a-2f S4
D. Synthesis of aldol cascade intermediate 3a S7
E. General procedure for the synthesis of oxacycles $\mathbf{4 a} \mathbf{- 4 k}$ S8
F. X-ray diffraction data for oxacycle $\mathbf{4 i}$ S13
G. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, COSY, HSQC, and nOe spectra S21

A. Materials and Methods

Reagents

Reagents and solvents were obtained from Sigma-Aldrich (www.sigma-aldrich.com), ChemImpex (www.chemimpex.com) or Acros Organics (www.fishersci.com) and used without further purification unless otherwise indicated. Dry solvents such as dichloromethane was distilled over CaH under N_{2} unless otherwise indicated. THF purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator. Dry toluene and acetonitrile were obtained from Acros Organics (www.fishersci.com) in 1 L bottles stored over molecular sieves.

Reactions

All reactions were performed in flame-dried glassware under positive N_{2} pressure with magnetic stirring unless otherwise noted. Liquid reagents and solutions were transferred through rubber septa via syringes flushed with N_{2} prior to use. Cold baths were generated as follows: $0^{\circ} \mathrm{C}$ with wet ice/water and $-78^{\circ} \mathrm{C}$ with dry ice/acetone. Syringe pump addition reactions were conducted using a Harvard Apparatus (Model: 55-1111) or a New Era Pump Systems, Inc. (Model: NE-300) syringe pump.

Chromatography

TLC was performed on 0.25 mm E. Merck silica gel 60 F 254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$, cerium ammonium molybdenate (CAM), phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230-400 mesh silica gel 60.

Analytical Instrumentation

IR spectra were recorded on a Shimadzu IRAffinity-1 FTIR spectrometer with peaks reported in cm^{-1}. NMR spectra were recorded on a Varian VNMRS 400 and 500 MHz NMR spectrometer in CDCl_{3} unless otherwise indicated. Chemical shifts are expressed in ppm relative to solvent signals: $\mathrm{CDCl}_{3}\left(\left({ }^{1} \mathrm{H}, 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}, 77.0 \mathrm{ppm}\right)\right.$; coupling constants are expressed in Hz . NMR spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained at the OU Analytical Core Facility on an Agilent 6538 High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC. X-ray crystallography analysis was carried out at the University of Oklahoma using a Bruker APEX ccd area detector (1) and graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ source. Crystal structures were visualized using CCDC Mercury software (http://www.ccdc.cam.ac.uk/products/mercury/).

Nomenclature

N.B.: Atom numbers shown in chemical structures herein correspond to IUPAC nomenclature, which was used to name each compound.

B. SYNTHESIS OF DIAZO ESTERS 1a, 1b

1a
Benzyl 2-diazobut-3-enoate (1a). Compound was prepared using known literature procedure. ${ }^{1}$

1b
Methyl (E)-2-diazohexa-3,5-dienoate (1b). To a stirred solution of diisopropylamine (1.1 mL , $8.09 \mathrm{mmol}, 1.2$ equiv) in dry THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(4.6 \mathrm{~mL}, 7.44 \mathrm{mmol}, 1.1$ equiv, 1.6 M) and stirred for 30 minutes at $-78^{\circ} \mathrm{C}$. Then HMPA ($2.3 \mathrm{~mL}, 13.5 \mathrm{mmol}, 2.0$ equiv) was added and allowed to stir for an additional 5 minutes. Methyl (E)-hexa-3,5-dienoate, prepared from known literature procedures ${ }^{2}$ was then added ($850 \mathrm{mg}, 6.70 \mathrm{mmol}, 1.0$ equiv) in 10 mL THF and allowed to stir for 30 minutes at $-78^{\circ} \mathrm{C}$. Once enolate formation was complete, a solution of 4-Acetamidobenzenesulfonyl azide (p-ABSA) ($1.94 \mathrm{~g}, 8.09 \mathrm{mmol}$) in 8 mL THF was added and the reaction was allowed to stir for an additional 30 minutes at $-78{ }^{\circ} \mathrm{C}$. The reaction was then allowed to slowly reach $-20^{\circ} \mathrm{C}$ over 1.5 h before it was quenched with saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The reaction mixture was then extracted with $\mathrm{EtOAc}(3 \times$ 30 mL), and the combined EtOAc layers were washed with water (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give crude compound. Column chromatographic purification of the crude compound over silica gel ($9: 1$ hexanes/EtOAc) afforded the compound $\mathbf{1 b}(622 \mathrm{mg}, 65 \%)$ as a red oil. TLC: $R_{f} 0.50$ ($9: 1$ hexanes/EtOAc). IR $(\mathrm{NaCl}): 3005,2085,1710,1627,1436,1327,1168,1103,999,742 .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}) \delta$ $6.57-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~m}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.14-5.07(\mathrm{dd}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz) δ 165.3, 136.0, 124.2, 115.1, 114.9, 52.2.

1. Wu, J. Q.; Yang, Z.; Zhang, S. S.; Jiang, C. Y.; Li, Q. J.; Huang, Z. S.; Wang, H. G. ACS Catal. 2015, 5, 6453-6457.
2. Iosub, A. V.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3454-3457.

C. Synthesis of $\boldsymbol{\beta}$-Hydroxy Vinyl Ketones 2a-2f

Method A

To a stirred solution of ethyl ester (1.0 equiv, commercial available) in THF (0.55 M) was added LiHMDS (1.1 equiv, 1.0 M) at $-70^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$. Corresponding aldehyde (1.0 equiv, commercially available) was then added via syringe and the temperature was maintained for 3 h at $-78{ }^{\circ} \mathrm{C}$. Reaction was then quenched at $-78{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was separated and extracted with ethyl acetate (3x). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude reaction extract was filtered through a silica gel plug, evaporated under reduced pressure and the residue was taken forward without further purification.

To a stirred suspension of $\mathrm{LiAlH}_{4}(1.2$ equiv, 0.25 M$)$ in dry THF at $0{ }^{\circ} \mathrm{C}$ was added a solution of crude aldol product (1.0 equiv, 0.4 M) in freshly distilled THF (0.4 M). Reaction was monitored by TLC until completion (1-2 h). Reaction was quenched by adding copious amounts of ethyl acetate followed by 15% aqueous NaOH solution at $0^{\circ} \mathrm{C}$. The crude mixture was filtered through a celite pad and extracted with ethyl acetate (3x). The combined organic layers were then dried over sodium sulfate, filtered through a silica gel plug and concentrated by rotary evaporation to afford the crude diol that was taken forward without further purification.
$\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.01 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (0.03 equiv) were dissolved in THF-toluene ($15 \% ; 3.4 \mathrm{~mL}$). Crude diol (1.0 mmol) was added and the reaction mixture was heated to $45^{\circ} \mathrm{C}$ under 1 atm of O_{2} (balloon) for 20 h . After completion of reaction, solvent was evaporated under reduced pressure. Purification by silica gel flash chromatography using hexanes-ethyl acetate ($30-40 \%$, gradient elution) afforded β-hydroxy vinyl ketone.

Method B

To a stirred solution of ethyl ester (1.0 equiv, commercial available) in THF (0.55 M) was added LiHMDS (1.1 equiv, 1.0 M) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$. Corresponding aldehyde (1.0 equiv, commercially available) was then added via syringe and the temperature was maintained for 3 h at $-78^{\circ} \mathrm{C}$. Reaction was then quenched at $-78{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was separated and extracted with ethyl acetate (3x). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude reaction extract was filtered through a silica gel plug, evaporated under reduced pressure and the residue was taken forward without further purification.

To a stirred suspension of $\mathrm{LiAlH}_{4}(1.2$ equiv, 0.25 M$)$ in dry THF at $0{ }^{\circ} \mathrm{C}$ was added a solution of crude aldol product (1.0 equiv, 0.4 M) in freshly distilled THF (0.4 M). Reaction was monitored by TLC until completion (1-2 h). Reaction was quenched by adding copious amounts of ethyl acetate followed by 15% aqueous NaOH solution at $0^{\circ} \mathrm{C}$. The crude mixture was filtered
through a celite pad and extracted with ethyl acetate (3 x). The combined organic layers were then dried over sodium sulfate, filtered through a silica gel plug and concentrated by rotary evaporation to afford the crude diol that was taken forward without further purification.

To a stirred solution of crude diol (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was added MnO_{2} (20.0 equiv) all at once. The reaction was stirred overnight. Then the mixture was filtered over a celite pad and concentrated by rotary evaporation to afford the crude product. Purification by silica gel flash chromatography using hexanes-ethyl acetate ($30-40 \%$, gradient elution) afforded β-hydroxy vinyl ketone.

5-hydroxypent-1-en-3-one (2a). Prepared from acrolein and ethyl acetate using general procedure A. Pale yellow oil ($392 \mathrm{mg}, 80 \%$). TLC: $R_{f} 0.28$ ($1: 1$ hexanes/EtOAc). IR (NaCl): 3410, 3394, 2947, 2893, 1672, 1614, 1406, 1197, 1049, 972, $621 .{ }^{1} \mathbf{H}$ NMR (500 MHz) $\delta 6.33$ (dd, $J=17.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=10.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ $(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz) $\delta 200.9,136.5$, 129.1, 57.6, 41.1.

5-hydroxy-5-phenylpent-1-en-3-one (2b). To a solution of Weinreb amide ($600 \mathrm{mg}, 2.87 \mathrm{mmol}$ 1.0 equiv, prepared from known literature protocol ${ }^{3}$) in THF (48 mL) was added vinyl magnesium bromide solution ($6.9 \mathrm{~mL}, 6.90 \mathrm{mmol}, 2.4$ equiv, 1.0 M) at $-78{ }^{\circ} \mathrm{C}$ over the course of 10 minutes. The temperature was maintained at $-78^{\circ} \mathrm{C}$ for six hours prior to quenching with ammonium chloride at $-78^{\circ} \mathrm{C}$. The aqueous layer was separated and extracted with ethyl acetate (3x). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by rotary evaporation to afford crude product. Purification by silica gel flash chromatography using hexanes-ethyl acetate ($25-30 \%$, gradient elution) afforded pure $\mathbf{2 f}$ as a pale yellow oil ($121 \mathrm{mg}, 24 \%$). TLC: $R_{f} 0.40$ (7:3 hexanes/EtOAc). IR (NaCl): 3458, 1682, 1614, 1402, 760, 702. ${ }^{1} \mathbf{H}$ NMR (400 MHz) $\delta 7.41-$ $7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=17.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=17.8,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89$ (dd, $J=10.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09-2.89 (m, 2H). ${ }^{13}$ C NMR (101 MHz) $\delta 200.4,142.8,136.5,129.4,128.4,127.5,125.6,69.7$, 47.8. Data matches known literature values. ${ }^{4}$

5-hydroxy-4-methylpent-1-en-3-one (2c). Prepared from acrolein and ethyl propionate using general procedure A. Pale yellow oil ($127 \mathrm{mg}, 16 \%$ isolated over three steps). TLC: $R_{f} 0.30$ (2:3 hexanes/EtOAc). IR (NaCl): 3491, 2972, 2935, 2882, 1738, 1686, 1516, 1462, 1406, 1030, 980. ${ }^{1} \mathbf{H}$ NMR (400 MHz) $\delta 6.39(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=17.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (dd, $J=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{pd}, J=7.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz) $\delta 203.8,135.1,128.9,64.0,45.2,13.4$. Data matches known literature values. ${ }^{5}$

5-hydroxy-2-methylpent-1-en-3-one (2d). Prepared from methacrolein and ethyl acetate using general procedure B. Pale yellow oil ($347 \mathrm{mg}, 27 \%$ isolated over three steps). TLC: $R_{f} 0.20$ (3:2 hexanes/EtOAc). IR (NaCl): 3445, 2957, 2928, 2889, 2357, 2326, 1672, 1373, 1053, 939, 737. ${ }^{1}$ H NMR $(400 \mathrm{MHz}) \delta 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.83(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz) $\delta 201.4,144.1,125.3,57.6$, 39.3, 16.9.

(E)-1-hydroxyhex-4-en-3-one (2e). Prepared from predominately trans crotonaldehyde and ethyl acetate using general procedure B. Pale yellow oil ($726 \mathrm{mg}, 61 \%$ isolated over three steps). TLC: $R_{f} 0.48$ ($1: 1$ hexanes/EtOAc). IR (NaCl): 3443, 3422, 3398, 2965, 2945, 2889, 1661, 1632, 1443, 1373, 1055, 972, 737. ${ }^{1}$ H NMR (400 MHz) $\delta 6.89(\mathrm{dq}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (dq, $J=15.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 1.92$ (dd, $J=6.8,1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz) $\delta 200.6,143.9,132.1,58.1,41.2$, 18.3. Data matches known literature values. ${ }^{6}$

(4E,6E)-1-hydroxyocta-4,6-dien-3-one (2f). Prepared from sorbaldehyde and ethyl acetate using general procedure B. Pale yellow oil ($412 \mathrm{mg}, 35 \%$ isolated over three steps). TLC: $R_{f} 0.2$ (3:2 hexanes/EtOAc). IR (NaCl): 3441, 3416, 2963, 2938, 2913, 2886, 2359, 1678, 1636, 1591, 1377, 1190, 1055, 999. ${ }^{1}$ H NMR (500 MHz) $\delta 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.13(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J$ $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz) $\delta 201.0,143.9,141.2,130.1,127.6,58.2,41.7,18.8$.
3. Roche, C.; Labeeuw, O.; Haddad, M.; Ayad, T.; Genet, J.-P.; Ratovelomanana-Vidal, V.; Phansavath, P. Eur. J. Org. Chem. 2009, 3977.
4. Hong, B. C.; Chin, S. F. Synthetic Communications 1997, 27, 1191-1197.
5. Batt, F.; Bourcet, E.; Kassab, Y.; Fache, F. Synlett 2007, 12, 1869-1872.
6. Prandi, C.; Venturello, P. J. Org. Chem. 1994, 59, 3494-3496.

D. Sinthesis of Aldol Cascade Intermediate 3a

Benzyl 3-hydroxy-2,3-divinyltetrahydrofuran-2-carboxylate (3a). To a flame dried 15 mL pear shaped round bottom with stir bar was added $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(1 \mathrm{~mol} \%)$. A solution of β-hydroxy vinyl ketone ($25 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $1.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added, the flask was equipped with a reflux condenser, and set to stirring while at reflux. While at reflux, a solution of vinyl diazo ($76 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added over 3 h via syringe pump at this temperature. After the addition was completed, the reaction was left to reflux for an additional 1 hour. After reaction was completed, the crude reaction mixture was concentrated using rotary evaporation and then purified using flash column chromatography eluting with 1:3 ethyl acetate: hexanes to afford aldol product 3a as a colorless liquid ($49 \mathrm{mg}, 72 \%$). TLC: $R_{f} 0.21$ ($7: 3$ hexanes/EtOAc). IR (NaCl): 3522, 3496, 3481, 3466, 2981, 2951, 2893, 1734, 1718, 1639, 1456, 1375, 1267, 1151, 1056, 991, 929, 742. ${ }^{1}$ H NMR (400 MHz) $\delta 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.09-5.98(\mathrm{~m}, 2 \mathrm{H}), 5.51$ (dd, $J=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=17.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.15(\mathrm{~m}, 4 \mathrm{H}), 4.33-4.25$ (m, $1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=12.8,6.1$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13}$ C NMR (101 MHz): $\delta 170.2,137.4,135.5,135.3,128.5,128.2,128.1,116.5$, $115.8,91.9,84.3,67.0,66.9,37.2$. ESI-MS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$297.1102; found 296.5. Relative stereochemistry was assigned based on previous literature reports. ${ }^{7}$
7. Nicolle, S. M.; Christopher W. L.; Hayes, J.; Moody, C. J. Angew. Chem. Int. Ed. 2015, 54, 8485-8489.

E. General Procedure for the Synthesis of Oxacycles 4a-4k

To a flame dried 15 mL pear shaped round bottom with stir bar was added $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1$ $\mathrm{mol} \%$). A solution of β-hydroxy vinyl ketone (0.25 mmol) in 1.5 mL toluene was then added, the flask was equipped with a reflux condenser, and set to stirring while at reflux. While at reflux a solution of vinyl diazo (0.37 mmol) in 1 mL toluene was added over 3 h via syringe pump at this temperature. After the addition was completed, the reaction was left to reflux for an additional 1 hour. After reaction was completed, the crude reaction mixture was purified using flash column chromatography eluting with 1:3 ethyl acetate: hexanes to afford oxacycle 4a-4k.

Benzyl (Z)-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4a). Colorless liquid (47 mg, 68\%). TLC: $R_{f} 0.34$ (7:3 hexanes/EtOAc). IR (NaCl): 3496, 2953, 2937, 1726, 1712, 1647, 1498, 1454, 1269, 1170, 1101, 769, 752, 738, 698. ${ }^{1} \mathbf{H}$ NMR (400 MHz) $\delta 7.40-7.34(\mathrm{~m}, 5 \mathrm{H})$, $6.39(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.44$ (m, 2H), 2.26-2.20 (m, 2H), 1.94-1.88 (m, 2H). ${ }^{13}$ C NMR (101 MHz): $\delta 212.6,163.4,146.8$, 135.6, 128.6, 128.3, 128.2, 127.4, 69.8, 66.8, 44.6, 37.6, 23.0. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 297.1102$; found 297.1105 .

Benzyl (Z)-7-oxo-9-phenyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4b). Colorless liquid ($34.6 \mathrm{mg}, 58 \%$). TLC: $R_{f} 0.46$ (7:3 hexanes/EtOAc). IR (NaCl): 3061, 3032, 2947, 1712, 1649, $1498,1452,1379,1263,975,916,744,698 .{ }^{1} \mathbf{H}$ NMR (400 MHz) $\delta 7.40-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.17-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{q}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.18 (dd, $J=14.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dt}, J=17.0,6.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.13 (dtd, $J=14.8,7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80-1.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 211.7$, $163.3,146.5,141.4,135.4,128.4,128.3,128.2,128.1,127.6,127.0,125.5,82.4,66.7,52.5,41.4$, 24.6, 22.9. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 373.1415$; found 373.1419.

Benzyl (Z)-8-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4c). Colorless liquid ($35 \mathrm{mg}, 60 \%$). TLC: $R_{f} 0.44$ (7:3 hexanes/EtOAc). IR (NaCl): 3977, 2960, 2933, 1743, 1718, 1647, 1456, 1269, 1170, 1103, 752, 738, 698. ${ }^{1} \mathbf{H}$ NMR (400 MHz) $\delta 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.36(\mathrm{t}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=11.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11.6,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.87 (ddd, $J=8.4,7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (dtd, $J=12.7,8.5,4.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.93(\mathrm{td}, J=7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 214.6,163.4,147.4,135.6,128.6,128.3,128.2,126.7,76.0,66.8,48.0,35.5,22.8,22.4$, 12.6. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 311.1259$; found 311.1263.

Benzyl (Z)-6-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4d). Colorless liquid ($45 \mathrm{mg}, 71 \%$). TLC: $R_{f} 0.43$ (7:3 hexanes/EtOAc). IR (NaCl): 3859, 3741, 3647, 1737, 1712, 1647, 1543, 1512, 1456, 1265, 1165, 1095, 893, 842, 740. ${ }^{1}$ H NMR (400 MHz) $\delta 7.38-$ $7.32(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{dd}, J=9.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{dt}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.18 (ddd, $J=12.0,8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (ddt, $J=9.9,7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (ddd, $J=15.2,5.5$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=15.0,8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.87$ $(\mathrm{tdd}, J=10.9,5.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): δ 215.7, 163.4, 146.3, 135.6, 128.6, 128.3, 128.2, 69.4, 66.8, 43.2, 42.5, 31.9, 22.7, 17.7. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 311.1259$; found 311.1263.

Benzyl (Z)-5-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4e). Colorless liquid ($48.5 \mathrm{mg}, 64 \%$). TLC: $R_{f} 0.45$ (7:3 hexanes/EtOAc). IR (NaCl): 2956, 2929, 1726, 1716, 1456, $1267,1093,750,738,698 .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}) \delta 7.38-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.27-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{dt}, J=11.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=11.8,9.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (ddd, $J=14.9,9.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.58(\mathrm{dt}, J=15.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36$ $(\mathrm{m}, 2 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.5,8.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 211.9,163.3,146.5,135.6,128.6,128.3,128.1,126.5,69.7,66.8,45.7$, 44.8, 31.3, 30.1, 21.4. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 311.1259$; found 311.1263.

Benzyl (Z)-7-oxo-5-((E)-prop-1-en-1-yl)-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4f). Colorless liquid ($34 \mathrm{mg}, 61 \%$). TLC: $R_{f} 0.57$ (7:3 hexanes/EtOAc). IR (NaCl): 3747, 3736, $3469,2960,1747,1710,1649,1558,1541,1521,1506,1454,1265,1101,752,738,698 .{ }^{1} \mathbf{H}$ NMR (400 MHz) $\delta 7.39-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{dd}, J=9.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.29-$ $5.18(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dt}, J=11.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=11.8,9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (ddd, $J=$ $12.2,8.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, $J=13.1,9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=13.4,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=8.0,3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 211.5,163.3,146.7,135.6$, $133.5,128.6,128.3,128.1,126.4,124.8,69.7,66.8,44.8,43.4,38.8,28.9,17.9$. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 337.1415$; found 337.1417.

Methyl (Z)-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4g). Colorless liquid ($34.5 \mathrm{mg}, 64 \%$). TLC: $R_{f} 0.44$ (7:3 hexanes/EtOAc). IR (NaCl): 3745, 2954, 1722, 1647, 1541, 1512, 1433, 1340, 1309, 1292, 1246, 1097, 1001, 918, 775. ${ }^{1}$ H NMR (400 MHz) $\delta 6.17$ (dd, $J=$ $9.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 212.2,163.9,145.5,139.5,129.4,115.1,69.5,52.1$, $44.5,37.9,37.1,30.0$. HRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$247.0946; found 247.0948 .

Methyl (4R,5S,Z)-7-oxo-5-((E)-prop-1-en-1-yl)-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2carboxylate (4h). Colorless liquid (32 mg, 59\%, (dr > 98:2)). TLC: $R_{f} 0.53$ (7:3 hexanes/EtOAc). IR (NaCl): 2954, 2927, 2872, 1714, 1639, 1456, 1435, 1315, 1271, 1238, 1195, 1087, 974, 777, 732. ¹H NMR (400 MHz) $\delta 6.72$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.02(\mathrm{~m}, 1 \mathrm{H})$, 5.86 (ddd, $J=15.4,8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{ddd}, J=12.4,8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{ddd}, J=12.4,6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{ddd}, J=19.0$,
8.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (ddd, $J=18.9,6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 204.4,164.4,141.4,140.0,136.9,127.9,127.7$, $122.0,64.1,51.9,47.1,40.3,39.0,37.0,20.6$. HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 287.1259$; found 287.1261 .

Methyl (4R,5R,Z)-5-methyl-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4i). ($36 \mathrm{mg}, 60 \%$, $(\mathrm{dr}>98: 2$)). Recrystallization from hexanes (slow evaporation method) yielded monoclinic colorless crystal (mp 72-74 ${ }^{\circ} \mathrm{C}$). TLC: $R_{f} 0.40$ (7:3 hexanes/EtOAc). IR (NaCl): 2962, 1720, 1641, 1442, 1429, 1300, 1238, 1161, 1095, 1004, 767, 723, 671, 644. ${ }^{1}$ H NMR (400 $\mathrm{MHz}) \delta 6.31(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{ddd}, J=17.2,10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-4.98(\mathrm{~m}, 2 \mathrm{H})$, 4.57 (ddd, $J=11.9,5.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=11.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.43$ (dtt, $J=$ $9.5,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.43(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{dd}, J=13.7,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 211.6,163.8,146.5,138.8,126.7,115.9,77.3$, $77.0,76.7,69.8,52.2,45.1,44.5,40.7,36.1,15.2$. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 261.1102$; found 261.1100 .

Methyl (4S,9S,Z)-7-oxo-9-phenyl-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4j). Colorless liquid ($33 \mathrm{mg}, 67 \%$, (dr > 98:2)). TLC: $R_{f} 0.41$ (7:3 hexanes/EtOAc). IR (NaCl): 3734, 2312, 1722, 1647, 1541, 1508, 1436, 1352, 1300, 1247, 1203, 1143, 1097, 1001, 925, 877, 761, 694, 671. ${ }^{1}$ H NMR (400 MHz) $\delta 7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, 1 H), 5.80 (ddd, $J=17.1,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (dd, $J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.02$ (m, 2H), $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.44$ (ddd, $J=13.9,6.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 210.9$, $163.8,145.6,141.5,139.8,129.2,128.3,127.6,125.4,115.1,81.9,77.3,77.0,76.7,53.1,51.8$, $38.4,38.2,30.0$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 323.1259$; found 323.1255

Methyl (4S,6S,Z)-6-methyl-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (4k). (41 mg, 68\%, (dr = 3:1);

4k (Major diastereomer): White solid mp 49-50 ${ }^{\circ} \mathrm{C}$). TLC: $R_{f} 0.50$ ($7: 3$ hexanes/EtOAc). IR (NaCl): 2962, 1722, 1645, 1460, 1294, 1246, 1093, 999, 923, 775, 675, 624. ${ }^{1}$ H NMR (400 $\mathrm{MHz}) \delta 6.20(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 1 \mathrm{H})$, $4.21-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 2 \mathrm{H})$, $1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(101 \mathrm{MHz}): \delta 215.4$, 163.9, 145.4, 139.5, 129.9, 114.9, 77.3, 77.0, 76.7, 69.2, 52.1, 43.3, 40.9, 38.7, 37.3, 17.8. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$261.1102; found 261.1107.

4k (Minor diastereomer): isolated as pale yellow liquid along with major diastereomer ($\mathrm{dr}=$ 1:1); ${ }^{1}$ H NMR (400 MHz) $\delta 6.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dddd, $J=$ $17.1,10.4,6.8,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.06-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.52$ (dd, $J=11.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.23$ (m, 2 H), 4.17 (ddd, $J=11.9,9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.96-$ $2.83(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.79(\mathrm{ddd}, J=14.0,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ $(\mathrm{td}, J=12.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz): $\delta 215.59,215.35$, 163.94, 145.39, 143.44, 139.87, 139.54, 130.70, 129.97, 114.98, 114.69, 77.32, 77.00, 76.68, $69.18,68.66,52.11,52.09,46.56,43.34,42.67,41.00,40.98,39.54,38.77,37.35,17.85,17.82$.

F. X-RAY DIFFRACTION DATA FOR OXACYCLE 4i

Sample: KC-508
CCDC 1510906
User: Kiran
Formula: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$

Comment

The displacement ellipsoids were drawn at the 50% probability level.

Experimental

A colorless, needle-shaped crystal of dimensions $0.05 \times 0.08 \times 0.58 \mathrm{~mm}$ was selected for structural analysis. Intensity data for this compound were collected using a diffractometer with a Bruker APEX ccd area detector ${ }^{8}$ and graphite-monochromated Mo K α radiation ($\lambda=0.71073$ \AA). The sample was cooled to $100(2) \mathrm{K}$. Cell parameters were determined from a non-linear least squares fit of 3066 peaks in the range $2.36<\theta<27.28^{\circ}$. A total of 9302 data were measured in the range $1.543<\theta<27.503^{\circ}$ using ϕ and ω oscillation frames. The data were
corrected for absorption by the empirical method giving minimum and maximum transmission factors of 0.948 and $0.995 .{ }^{9}$ The data were merged to form a set of 2838 independent data with $R($ int $)=0.0239$ and a coverage of 99.7%.

The monoclinic space group $P 2_{1} / n$ was determined by systematic absences and statistical tests and verified by subsequent refinement. The structure was solved by direct methods and refined by full-matrix least-squares methods on $F^{2} .{ }^{10}$ The positions of hydrogens were initially determined by geometry and were refined using a riding model. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the isotropic equivalent displacement parameters of the bonded atoms. A total of 154 parameters were refined against 2838 data to give $\mathrm{wR}\left(F^{2}\right)=$ 0.1232 and $\mathrm{S}=0.973$ for weights of $\mathrm{w}=1 /\left[\sigma^{2}\left(F^{2}\right)+(0.0850 \mathrm{P})^{2}+0.2000 \mathrm{P}\right]$, where $\mathrm{P}=\left[F_{\mathrm{o}}{ }^{2}+\right.$ $\left.2 F_{\mathrm{c}}{ }^{2}\right] / 3$. The final $\mathrm{R}(F)$ was 0.0431 for the 2334 observed, $[F>4 \sigma(F)]$, data. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 0.338 and $-0.211 \mathrm{e} / \AA^{3}$, respectively.

Acknowledgment

The authors thank the National Science Foundation (grant CHE-0130835) and the University of Oklahoma for funds to purchase of the X-ray instrument and computers. This structure was determined by Douglas R. Powell.

References

8. (a) Data Collection: APEX2 (2007) Bruker AXS Inc., Madison, Wisconsin, USA. (b) Data Reduction: SAINT (2007) Bruker AXS Inc., Madison, Wisconsin, USA.
9. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke (2015). J. Appl. Cryst., 48, 3-10.
10. (a) G. M. Sheldrick (2015). Acta Cryst., A71, 3-8. (b) G. M. Sheldrick (2015). Acta Cryst., C71, 3-8.

Table 1. Crystal data and structure refinement for KC-508

Table 2. Atomic coordinates and equivalent isotropic displacement parameters for KC-508. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$0.46907(6)$	$0.10996(16)$	$0.60579(6)$	$0.0178(2)$
$\mathrm{C}(2)$	$0.42734(8)$	$0.2668(2)$	$0.64565(8)$	$0.0169(3)$
$\mathrm{C}(3)$	$0.43172(8)$	$0.2249(2)$	$0.72827(8)$	$0.0176(3)$
$\mathrm{C}(4)$	$0.48388(8)$	$0.0095(2)$	$0.78505(8)$	$0.0174(3)$
$\mathrm{C}(7)$	$0.64307(8)$	$-0.0454(2)$	$0.72005(9)$	$0.0179(3)$
$\mathrm{C}(6)$	$0.64721(8)$	$0.1400(2)$	$0.79107(9)$	$0.0178(3)$
$\mathrm{C}(5)$	$0.58961(8)$	$0.0672(2)$	$0.84585(8)$	$0.0179(3)$
$\mathrm{C}(9)$	$0.54699(8)$	$0.2188(2)$	$0.58841(9)$	$0.0180(3)$
$\mathrm{C}(8)$	$0.63172(8)$	$0.0466(2)$	$0.62814(9)$	$0.0192(3)$
$\mathrm{C}(10)$	$0.36759(8)$	$0.4617(2)$	$0.58420(8)$	$0.0175(3)$
$\mathrm{O}(11)$	$0.34903(6)$	$0.46664(17)$	$0.50434(6)$	$0.0226(2)$
$\mathrm{O}(12)$	$0.33447(6)$	$0.62443(16)$	$0.62668(6)$	$0.0198(2)$
$\mathrm{C}(13)$	$0.26974(9)$	$0.8043(2)$	$0.56842(9)$	$0.0219(3)$
$\mathrm{C}(14)$	$0.43403(9)$	$-0.0960(2)$	$0.84073(9)$	$0.0215(3)$
$\mathrm{C}(15)$	$0.34565(10)$	$-0.0569(3)$	$0.83131(10)$	$0.0263(3)$
$\mathrm{C}(16)$	$0.59979(10)$	$0.2650(3)$	$0.91594(9)$	$0.0245(3)$
$\mathrm{O}(17)$	$0.64891(6)$	$-0.26361(16)$	$0.73678(7)$	$0.0232(2)$

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for KC-508.

$\mathrm{O}(1)-\mathrm{C}(2)$	1.3769(14)	C(9)-H(9A)	0.9900
$\mathrm{O}(1)-\mathrm{C}(9)$	1.4630 (14)	C(9)-H(9B)	0.9900
C(2)-C(3)	1.3335(18)	C(8)-H(8A)	0.9900
C(2)-C(10)	1.4959(17)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
C(3)-C(4)	1.5115(17)	$\mathrm{C}(10)-\mathrm{O}(11)$	$1.2092(15)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(10)-\mathrm{O}(12)$	$1.3436(15)$
C(4)-C(14)	1.5130(17)	$\mathrm{O}(12)-\mathrm{C}(13)$	1.4477(15)
C(4)-C(5)	1.5596(17)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4)$	1.0000	C(13)-H(13B)	0.9800
C(7)-O(17)	1.2181(15)	C(13)-H(13C)	0.9800
C(7)-C(8)	1.5148(18)	C(14)-C(15)	1.3231(19)
C(7)-C(6)	1.5156(18)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
C(6)-C(5)	1.5367(17)	C(15)-H(15A)	0.9500
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900	C(15)-H(15B)	0.9500
C(6)-H(6B)	0.9900	C(16)-H(16A)	0.9800
C(5)-C(16)	1.5302(18)	C(16)-H(16B)	0.9800
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000	C(16)-H(16C)	0.9800
C(9)-C(8)	1.5254(17)		
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(9)$	114.14(9)	$C(16)-C(5)-C(4)$	112.51(10)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	121.25(11)	C(6)-C(5)-C(4)	112.56(10)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)$	124.16(11)	C(16)-C(5)-H(5)	107.3
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(10)$	114.09(10)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	107.3
C(2)-C(3)-C(4)	123.11(11)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	107.3
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	118.4	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	107.17(10)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	118.4	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	110.3
C(3)-C(4)-C(14)	112. 81(10)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	110.3
C(3)-C(4)-C(5)	113. 12(10)	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110.3
C(14)-C(4)-C(5)	110.44(10)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	110.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	106.7	H(9A)-C(9)-H(9B)	108.5
$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{H}(4)$	106.7	С(7)-C(8)-C(9)	111.26(10)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	106.7	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4
O(17)-C(7)-C(8)	120.87(12)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.4
O(17)-C(7)-C(6)	120.53(12)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.4
C(8)-C(7)-C(6)	118.59(11)	C(9)-C(8)-H(8B)	109.4
C(7)-C(6)-C(5)	114.04(10)	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.7	$\mathrm{O}(11)-\mathrm{C}(10)-\mathrm{O}(12)$	123.95(11)
C(5)-C(6)-H(6A)	108.7	$\mathrm{O}(11)-\mathrm{C}(10)-\mathrm{C}(2)$	123.20(11)
C(7)-C(6)-H(6B)	108.7	$\mathrm{O}(12)-\mathrm{C}(10)-\mathrm{C}(2)$	112.81(10)
C(5)-C(6)-H(6B)	108.7	C(10)-O(12)-C(13)	114.69(10)
H(6A)-C(6)-H(6B)	107.6	$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
C(16)-C(5)-C(6)	109.56(10)	$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5

$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	120.0
$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	120.0
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(4)$	$127.75(13)$	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	116.1	$\mathrm{C}(5)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{H}(14)$	116.1	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.0	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
			Table 4.

Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for KC-508. The anisotropic displacement factor exponent takes the form: $-2_{\pi} 2\left[\mathrm{~h} 2 a^{*} 2 \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a}{ }^{*} b^{*} \mathrm{U}_{12}\right]$

	U11	U22	U33	U23	U13	U12
C(2)	$17(1)$	$19(1)$	$19(1)$	$-1(1)$	$8(1)$	$-1(1)$
C(3)	$14(1)$	$18(1)$	$17(1)$	$-2(1)$	$5(1)$	$-1(1)$
C(4)	$15(1)$	$19(1)$	$17(1)$	$-1(1)$	$5(1)$	$-1(1)$
C(7)	$18(1)$	$18(1)$	$16(1)$	$0(1)$	$7(1)$	$1(1)$
C(6)	$11(1)$	$20(1)$	$21(1)$	$0(1)$	$5(1)$	$0(1)$
C(5)	$17(1)$	$18(1)$	$17(1)$	$1(1)$	$4(1)$	$-1(1)$
C(9)	$19(1)$	$18(1)$	$15(1)$	$1(1)$	$5(1)$	$1(1)$
C(8)	$18(1)$	$20(1)$	$17(1)$	$1(1)$	$7(1)$	$-1(1)$
C(10)	$17(1)$	$21(1)$	$19(1)$	$-1(1)$	$7(1)$	$-1(1)$
O(11)	$15(1)$	$19(1)$	$17(1)$	$-1(1)$	$5(1)$	$-2(1)$
O(12)	$26(1)$	$26(1)$	$15(1)$	$1(1)$	$6(1)$	$3(1)$
C(13)	$20(1)$	$21(1)$	$17(1)$	$0(1)$	$6(1)$	$4(1)$
C(14)	$20(1)$	$19(1)$	$22(1)$	$2(1)$	$4(1)$	$4(1)$
C(15)	$25(1)$	$21(1)$	$20(1)$	$3(1)$	$10(1)$	$1(1)$
C(16)	$26(1)$	$32(1)$	$23(1)$	$4(1)$	$13(1)$	$1(1)$
O(17)	$25(1)$	$26(1)$	$19(1)$	$-3(1)$	$6(1)$	$0(1)$
	$24(1)$	$18(1)$	$28(1)$	$1(1)$	$12(1)$	$2(1)$

Table 5. Hydrogen coordinates and isotropic displacement parameters for KC-508.

	x	y	z	
		$\mathrm{U}(\mathrm{eq})$		
$\mathrm{H}(3)$	0.4006	0.3357	0.7526	0.021
H(4)	0.4844	-0.1218	0.7423	0.021
H(6A)	0.6233	0.2989	0.7613	0.021
H(6B)	0.7143	0.1632	0.8329	0.021
H(5)	0.6184	-0.0861	0.8793	0.022
H(9A)	0.5631	0.3821	0.6170	0.022
H(9B)	0.5287	0.2380	0.5228	0.022
H(8A)	0.6229	-0.0944	0.5872	0.023
H(8B)	0.6901	0.1338	0.6334	0.023
H(13A)	0.3015	0.8959	0.5365	0.033
H(13B)	0.2501	0.9173	0.6047	0.033
H(13C)	0.2138	0.7213	0.5247	0.033
H(14)	0.4706	-0.2030	0.8881	0.026
H(15A)	0.3056	0.0485	0.7851	0.032
H(15B)	0.3222	-0.1343	0.8708	0.032
H(16A)	0.6667	0.2814	0.9568	0.037
H(16B)	0.5626	0.2190	0.9505	0.037
H(16C)	0.5766	0.4214	0.8855	0.037

Table 6. Torsion angles [${ }^{\circ}$] for KC-508.

$C(9)-O(1)-C(2)-C(3)$	$-115.44(13)$
$C(9)-O(1)-C(2)-C(10)$	$72.37(13)$
$O(1)-C(2)-C(3)-C(4)$	$1.56(19)$
$C(10)-C(2)-C(3)-C(4)$	$172.93(11)$
$C(2)-C(3)-C(4)-C(14)$	$-143.28(12)$
$C(2)-C(3)-C(4)-C(5)$	$-42.46(15)$
$O(17)-C(7)-C(6)-C(5)$	$137.71(11)$
$C(8)-C(7)-C(6)-C(5)$	$179.32(10)$
$C(7)-C(6)-C(5)-C(16)$	$-54.69(14)$
$C(7)-C(6)-C(5)-C(4)$	$63.69(14)$
$C(3)-C(4)-C(5)-C(16)$	$-63.83(14)$
$C(14)-C(4)-C(5)-C(16)$	$-60.69(14)$

$C(14)-C(4)-C(5)-C(6)$	$171.79(10)$
$C(2)-O(1)-C(9)-C(8)$	$128.70(10)$
$O(17)-C(7)-C(8)-C(9)$	$127.43(12)$
$C(6)-C(7)-C(8)-C(9)$	$-52.68(14)$
$O(1)-C(9)-C(8)-C(7)$	$-164.05(13)$
$C(3)-C(2)-C(10)-O(11)$	$7.52(17)$
$O(1)-C(2)-C(10)-O(11)$	$13.47(17)$
$C(3)-C(2)-C(10)-O(12)$	$-174.60(9)$
$O(1)-C(2)-C(10)-O(12)$	$2.86(17)$
O(11)-C(10)-O(12)-C(13)	$-174.99(10)$
$C(2)-C(10)-O(12)-C(13)$	$15.1(2)$
$C(3)-C(4)-C(14)-C(15)$	$142.77(15)$
$C(5)-C(4)-C(14)-C(15)$	

Table 7. Hydrogen bonds for KC-508[\AA and $\left.{ }^{\circ}\right]$.

| D-H...A | $\mathrm{d}(\mathrm{D}-\mathrm{H})$ | $\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$ | $\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$ | $<(\mathrm{DHA})$ |
| :--- | :---: | :---: | :--- | :--- | :--- |
| $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A}) \ldots \mathrm{O}(17) \# 1$ | 0.99 | 2.48 | $3.3784(16)$ | 150.6 |
| $\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A}) \ldots \mathrm{O}(11) \# 2$ | 0.99 | 2.65 | $3.6156(16)$ | 164.1 |
| $\mathrm{C}(8)-\mathrm{H}(8 B) \ldots \mathrm{O}(17) \# 3$ | 0.99 | 2.59 | $3.3675(15)$ | 135.5 |
| $\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A}) \ldots \mathrm{O}(1) \# 1$ | 0.98 | 2.64 | $3.3272(16) 127.6$ | |

Symmetry transformations used to generate equivalent atoms:
\#1 x, y+1, z \#2-x+1, -y, -z+1 \#3-x+3/2, y+1/2, -z+3/2

G. ${ }^{1}$ H-NMR, ${ }^{13}$ C-NMR, COSY, HSQC, AND nOe SPECTRA

1. Diazo ester 1b S22
2. β-Hydroxy vinyl ketones 2a-2f S23
3. Cascade intermediate 3a S29
4. Oxacycles $\mathbf{4 a} \mathbf{- 4 k} \quad$ S32

2a

Massaro_N_2016_178t6-8_CARBON_01 - Massaro_N_2016_178t6-8 -

														1									
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	100	90	80	70	60	50	40	30	20	10	0	-1

2c

2c

\square

2d

1.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1

Massaro_N_2016_170t19-23_CARBON_01-nm-170-

Massaro_N_2016_334t20-28_PROTON_01 - Massaro_N_2016_334t20-28-

2e

2e

					170	16	150	140	1	1	110		1				5					
20	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{~m}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

2f

Massaro＿N＿2016＿223t9－12＿CARBON＿01－Massaro＿N＿2016＿223t9－12－

				$\stackrel{\substack{8 \\ \sim \\ \sim}}{1}$	¢	＋

$2 f$

4b

4c

20	210	200	190	180	170	160	150	140	130	120	0		90	80	70	60	50	40				
2	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	$\begin{gathered} 100 \\ \mathrm{pm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

kc-272_CARBON_01-kc-272-

4e

4e

kc－369＿CARBON＿01
$\mathrm{kc}-36 \stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\text { 品 }}$

旁彦彦

$4 g$

Γ	1	1	1	T		,	1	1		1	1	1		1		T	1			1	1
0.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\stackrel{4.5}{\mathrm{f} 1(\mathrm{ppm})}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

kc-456-1_CARBON 01
kc-456-1
ハ

$4 g$

$4 i$

$4 i$

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
		200	1	180	170	160	150						¢	80	70	60	So	0	30	20		

9

4j

4j

4k

