Supporting Information

Structure-Guided Design of Novel, Potent and Selective Macrocyclic Plasma Kallikrein Inhibitors

Zhe Li, ${ }^{\dagger} *$ James Partridge, ${ }^{\dagger}$ Abel Silva, ${ }^{\dagger}$ Peter Rademacher, ${ }^{\dagger}$ Andreas Betz, ${ }^{\dagger}$ Qing Xu, ${ }^{\dagger}$ Hing Sham, ${ }^{\dagger}$ Yunjin Hu, ${ }^{\ddagger}$ Yuqing Shan, ${ }^{\ddagger}$ Bin Liu, ${ }^{\ddagger}$ Ying Zhang,${ }^{\ddagger}$ Haijuan Shi, ${ }^{\ddagger}$ Qiong Xu, ${ }^{\ddagger}$ Xubo Ma,${ }^{\ddagger}$ Li Zhang ${ }^{\ddagger}$
${ }^{\dagger}$ Global Blood Therapeutics, South San Francisco, CA 94080
*Pharmaron Xi’an Co., Xi'an, Shaanxi, China 710018

Contents:

1. Biological Evaluation..S1
2. Chemistry...S3
3. Crystallography and Molecular Modeling..S19
4. NMR spectra for compounds $3 \mathrm{a}, 3 \mathrm{~b}$, 29a, 29b, 32a, and 32b.................................... 23

EXPERIMENTAL SECTION

Enzymatic Assays. Plasma Kallikrein and factor XIIa were purchased from Molecular Innovations (Novi MI), factor VIIA, factor Xa, factor XIa, α-thrombin and Lys-plasmin from Heamatologic Technology (Burlington Vermont), tPA from Innovative Research (Novi MI) and trypsin from Worthington Biochemical Corporation (Lakewood, NJ). The chromogenic substrates D-Pro-Phe-ArgpNA (S-2302), N-Z-D-Arg-Gly-Arg-pNA (S-2765), D-Phe-Pip-Arg-pNA (S-2238) were from Aniara (Westchester, OH) or Diapharma (Detroit, respectively). Methylsulfonyl-D-Phe-Gly-Arg-pNA (Chromozyme t-PA) and Tosyl-Gly-Pro-Lys-4-nitranilide (Chromozyme PL) were purchased from Sigma (St. Louis, MI). Chromogenic substrates were prepared by dissolving 25 mg in 5 mL of deionized water. Substrate concentration was calculated from absorbance using a molar extinction coefficient of $8270 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. All assays were performed in Assay Buffer (20 mM HEPES, 150 mM $\mathrm{NaCl}, 0.1 \%$ PEG $8000,0.01 \%$ triton $\mathrm{x}-100, \mathrm{pH} 7.4)$

For the determination of $\mathrm{IC}_{50}, 8 \mu \mathrm{~L}$ of a serial dilution of inhibitor in DMSO including one blank were added to $72 \mu \mathrm{~L}$ of enzyme in Assay buffer in rows of a 96 well plate. After incubation for 30 min and addition of substrate, the initial rates of substrate hydrolysis determined by continuously monitoring the increase of absorbance at 405 nm in a kinetic plate reader Envision (Perkin-Elmer, Waltham, MA). The
dependence of the initial rates on the concentration of inhibitor was analyzed by regression to a sigmoid logistic function and the IC_{50} was interpolated. Seven increasing concentrations of inhibitor. Final concentration of chromogenic substrate for the individual enzymes tested was $200 \mu \mathrm{M}$, except for pKal which was $600 \mu \mathrm{M}$. All enzyme kinetic measurements were carried out at ambient temperature.

Protease	[Protease] (nM)	Substrate
fXa	0.5	$\mathrm{~S}-2765$
fXIa	0.5	$\mathrm{~S}-2366$
fXIIa	10	$\mathrm{~S}-2302$
t-PA	10	Chromozyme TPA
bovine trypsin	0.2	S-2765
Lys-plasmin	3	Chromozyme PL
thrombin	0.5	$\mathrm{~S}-2238$
pKal	0.25	$\mathrm{~S}-2302$
C1s protease	10	$\mathrm{~S}-2288$

In-vivo Studies. Test compounds were subjected to pharmacokinetic studies on male Sprague-Dawley rats with three animals in each group. Compounds administered by oral gavage as a suspension in 0.5% methylcellulose ($20 \mathrm{mg} / \mathrm{kg}$). Blood samples were collected at $0.25,0.5,1,2,4,6,8$, and 24 h following oral dosing and the blood was centrifuged to separate the plasma. The concentration of test compounds were determined by high pressure liquid chromatography/tandem mass spectrometry (LC-MS/MS). Relevant pharmacokinetic parameters were derived by noncompartmental analysis (Phoenix version 6.3.0.395). In vivo studies were carried out at Portola Pharmaceuticals, Inc. (South San Francisco, CA 94080). All procedures were approved and carried out in accordance with Portola Inc.'s Institutional Animal Care and Use Committee protocol PPI-009-15.

In-vitro Microsomal Stability Studies. Procedures and analysis for human and rat microsomal studies. In a 96-deep well plate $200 \mu \mathrm{~L}$ of 0.5 M Potassium phosphate pH 7.4 is added to $648 \mu \mathrm{~L}$ of water along with $50 \mu \mathrm{~L}$ of either HLM's or RLM's ($1 \mathrm{mg} / \mathrm{ml}$ final concentration) and $2 \mu \mathrm{~L}$ of a 2 mM solution of test compound dissolved in DMSO. The plate was incubated at $37{ }^{\circ} \mathrm{C}$ for 5 min followed by the addition of $100 \mu \mathrm{~L}$ of 10 mM NADPH solution in $\mathrm{H}_{2} \mathrm{O}$. The total incubation volume is $1 \mathrm{ml} .50 \mu \mathrm{~L}$ aliquots are removed and added to $100 \mu \mathrm{~L}$ of ACN (containing 0.1% formic acid and internal standard) at $0,5,10,15,30,45$, and 60 min . At the conclusion of the experiment the plate is centrifuged at 4000 RPM for 5 min , the supernatant removed and samples analyzed by LC/MS/MS.

Table 3. Measured permeability across MCDK cells for compounds 2, 29a, 29b and $\mathbf{3 0}$.

Cmpd	Concentration$(\mu \mathrm{M})$	$\begin{array}{lll} \hline P_{\text {app }}, & \text { A-B } & \left(\times 10^{-6}\right. \\ \mathrm{cm} / \mathrm{s}) & & \\ \hline \end{array}$		Recover Rate (\%)
		Value	Mean	
Digoxin	5	1.3	1.1	97
		0.9		
Propranolol	5	58.3	56.0	97
		53.7		
2	1	0.973	0.996	81
		1.086		
		0.928		
30	1	0.55	0.43	82
		0.32		
29	1	0.28	0.34	79
		0.40		
29a	1	0.30	0.26	80
		0.21		
29b	1	0.67	0.62	77

Chemistry/Compound Characterization: Reagents and solvents were purchased from Aldrich Chemical, Acros Organics, Alfa Aesar, AK Scientific, TCI America, Shanghai BePharm Ltd, J\&K Scientific Ltd and used as received unless otherwise indicated. Air- and/or moisture-sensitive reactions were carried out under a nitrogen or argon atmosphere in oven-dried glassware using anhydrous solvents from Pharmaron. Air- and/or moisture-sensitive reagents were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Solvent removal was accomplished with a rotary evaporator at $\sim 10-50$ Torr. Microwave irradiation was carried out with a Biotage initiator system. Automated silica gel column chromatography was carried out using a Biotage SP1 system and silica gel cartridges from Biotage. Analytical TLC plates from Merk (Silica Gel $60 \mathrm{~F}_{254}$) were employed for TLC analyses. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance III 300 MHz . Chemical shifts are reported in δ units (ppm) relative to TMS as an internal standard. Coupling constants (J) are reported in
hertz (Hz). Characterization data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}$, $\mathrm{br}=\mathrm{broad}, \mathrm{m}=$ multiplet), coupling constants, number of protons, mass to charge ratio.

All analogs submitted for testing were judged to be of $\geq 95 \%$ purity based on analytical LC/MS analysis performed on a Shimadzu LCMS-2020 Series, a quadruple mass spectrometer equipped with a Phenomenex Kinetex XB-C C_{18} column ($50 \times 3.0 \mathrm{~mm}, 2.6 \mu \mathrm{~m}$), at 40 degree C using a mobile phase of water-acetonitrile containing 0.05% TFAwith a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. Gradient elution was employed wherein the acetonitrile: water ratio was increased linearly from 5% to 100% acetonitrile over 2 min , then maintained at 100% acetonitrile for 0.8 min , and then decreased to 5% acetonitrile over 0.1 min , and maintained at 5% acetonitrile for 0.1 min . Compound purity was determined by integrating peak areas of the liquid chromatogram, monitored at 254 nm .

General Procedure A for Amide Coupling with 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate (HATU) for the Preparation of 4, 5, 6 and 39. To a solution of appropriate carboxylic acid (0.5 to 1.0 mmol), appropriate amine (0.5 to 1.0 mmol), and HATU (1.2 equiv.) in anhydrous DMF (4 to 8 mL), diisopropylethylamine (DIPEA) (2.5 equiv.) was added. The reaction mixture was stirred at rt for 0.5 to 12 h . The mixture was diluted with EtOAc (50 mL), washed with brine ($3 \times 20 \mathrm{~mL}$) and concentrated to give the crude product, which was purified by silica gel column chromatography (dichloromethane/methanol: 8:1) to give the corresponding amides in good yield.

General Procedure B for Grubbs Ring Closing Metathesis for the Preparation of 3, 29, 30, and

 32. The reaction vial containing a solution of bis-alkene ($0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$) in DCE (20 mL) was purged and maintained under an inert atmosphere of nitrogen. The $2^{\text {nd }}$ generation Grubbs catalyst (20 $\mathrm{mg}, 0.024 \mathrm{mmol}, 0.24$ equiv) was added. The resulting mixture was heated and stirred at $70^{\circ} \mathrm{C}$ for $2-48$ h under nitrogen. The mixture was then concentrated and the resulting residue was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 10: 1$) or by prep-TLC (DCM/MeOH,5:1) to afford the desired macrocyclic analogs in low to moderate yields (4-64\% yield) as a mixture of cis- and trans-isomers. Further HPLC purification may be needed to separate the olefinic isomers using the following conditions: (1) Waters $5 \mu \mathrm{M}$ XBridge C18 column, $19 \times 150 \mathrm{~mm}$; (2) elution gradient: 30% to 45% MeCN in water over 8 min run time, where the aqueous phase contains $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ and 0.05% ammonia.
Scheme 1. Synthesis of Aminopyridine Intermediates 9 and $\mathbf{1 0}^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}$, dioxane, reflux $2 \mathrm{~h}, 44 \%$; (b) $\mathrm{EtONa}, \mathrm{EtOH}$, reflux, 89%; (c) for $\mathbf{1 7} \mathrm{K}_{2} \mathrm{CO}_{3}$, 4-bromobut-1-ene (15), DMF, $50^{\circ} \mathrm{C}, 16 \mathrm{~h}, 74 \%$; for $18 \mathrm{~K}_{2} \mathrm{CO}_{3}$, 5-bromopent-1-ene (16), DMF, $50{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 100 \%$; (d) LAH, $\mathrm{Et}_{2} \mathrm{O}$, reflux, $16 \mathrm{~h}, 46 \%$ for $\mathbf{9}$ and 38% for $\mathbf{1 0}$.
(2Z)-2-(1-aminoethylidene)-3-oxopentanedinitrile (13). Acetic anhydride ($44.8 \mathrm{~g}, 438.5 \mathrm{mmol}, 1.20$ equiv) was added dropwise over 20 min to a solution of 2-cyanoacetic acid ($37.1 \mathrm{~g}, 436.2 \mathrm{mmol}, 1.20$ equiv) and (2 Z)-3-aminobut-2-enenitrile ($30.0 \mathrm{~g}, 365.4 \mathrm{mmol}, 1.00$ equiv) in dioxane (300 mL). The mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h and cooled to rt . Yellow crystals were formed, which were collected by filtration to afford the title compound as a yellow solid ($23.2 \mathrm{~g}, 44 \%$). LCMS (ES) m / z $150.2[\mathrm{M}+1]^{+}$.

6-Amino-4-hydroxy-2-methylnicotinonitrile (14). Compound $\mathbf{1 3}$ ($23.0 \mathrm{~g}, 154.2 \mathrm{mmol}, 1.00$ equiv) was added to a 500 mL round-bottom flask containing sodium ethoxide $(11.0 \mathrm{~g}, 161.6 \mathrm{mmol}, 1.05$ equiv) in anhydrous ethanol (300 mL). The resulting mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h and then cooled to rt. Yellow crystals were formed, which were collected by filtration to provide the sodium salt of compound $\mathbf{1 4}$ as a yellow solid ($20.5 \mathrm{~g}, 89 \%$). LCMS (ES) $m / z 150.2[\mathrm{M}+1]^{+}$.

6-Amino-4-(but-3-en-1-yloxy)-2-methylnicotinonitrile (17). To a solution of sodium 6-amino-3-cyano-2-methylpyridin-4-olate ($\mathbf{1 4}, 3.42 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{DMF}(30 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2.76 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv) and 4 -bromobut-1-ene ($\mathbf{1 5}, 2.97 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.10$ equiv). The reaction mixture was heated and stirred at $50^{\circ} \mathrm{C}$ for 16 h . Excess solvents were removed under vacuum at $50^{\circ} \mathrm{C}$ on a rotary evaporator. The resulting residue was diluted with EtOAc (100 mL), washed with brine ($2 \times 20 \mathrm{~mL}$), dried over anhydrous sodium sulfate. Organic layer was concentrated under vacuum to give a gray solid, which was then triturated with TBME ($2 \times 30 \mathrm{~mL}$) to provide the title compound as a gray solid ($3.01 \mathrm{~g}, 74 \%$). LCMS (ES) $m / z 204.2[\mathrm{M}+1]^{+}$.

5-(Aminomethyl)-4-(but-3-enyloxy)-6-methylpyridin-2-amine (9). To a solution of 6-amino-4-(but-3-enyloxy)-2-methylnicotinonitrile ($\mathbf{1 7}, 3.00 \mathrm{~g}, 14.8 \mathrm{mmol}, 1.00$ equiv) in ether (100 mL) in a 250 mL round-bottom flask over ice bath was added LAH ($5.46 \mathrm{~g}, 148 \mathrm{mmol}, 10.00$ equiv) in portions over 20 min . The ice bath was removed and the reaction mixture was heated and stirred at $40^{\circ} \mathrm{C}$ for 16 h
under nitrogen atmosphere. The reaction was cooled to $0^{\circ} \mathrm{C}$ and diluted with ether (100 mL), water (5.5 $\mathrm{mL})$, aqueous sodium hydroxide $(15 \%, 11.0 \mathrm{~mL})$, and water $(16.5 \mathrm{~mL})$ was added sequentially. The solids were filtered and washed with ether ($3 \times 30 \mathrm{~mL}$). Solvents were removed from the filtrate on a rotary evaporator. The resulting residue was purified on a silica column with $\mathrm{DCM} / \mathrm{MeOH}(10 / 1)$ to provide the title compound as a yellow solid ($1.40 \mathrm{~g}, 46 \%$). LCMS (ES) $m / z 208.2[\mathrm{M}+1]^{+}$.

6-amino-2-methyl-4-(pent-4-enyloxy)nicotinonitrile (18). To a solution of sodium 6-amino-3-cyano-2-methylpyridin-4-olate ($\mathbf{1 4}, 1.03 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.00$ equiv) in DMF (10.0 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.83 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.00$ equiv) and 5-bromopent-1-ene (16, $0.98 \mathrm{~g}, 6.6 \mathrm{mmol}, 1.10$ equiv). The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h . After cooling to rt , the mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$, washed with brine ($4 \times 20 \mathrm{~mL}$), dried over anhydrous sodium sulfate and concentrated under vacuum to give the crude product as a brown solid, which was triturated with TBME ($2 \times 10 \mathrm{~mL}$) to provide 1.30 g (100%) of the title compound as a brown solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 6.81(\mathrm{~s}, 2 \mathrm{H}), 5.90-$ $5.81(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}$, 2H). LCMS (ES) $m / z 218.2[\mathrm{M}+1]^{+}$.

5-(Aminomethyl)-6-methyl-4-(pent-4-enyloxy)pyridin-2-amine (10). To a cold solution of 6-amino-2-methyl-4-(pent-4-en-1-yloxy)pyridine-3-carbonitrile (18, $1.30 \mathrm{~g}, 5.98 \mathrm{mmol}, 1.00$ equiv) in ether (30 mL) over ice-bath was added LAH ($2.30 \mathrm{~g}, 60.61 \mathrm{mmol}, 10.00$ equiv) in portions. After the addition, the ice-bath was removed and the reaction was heated and stirred at $45^{\circ} \mathrm{C}$ for 48 h under N_{2}. The reaction mixture was diluted with ether (50 mL), quenched with water (9.2 mL) and 15% aqueous solution of sodium hydroxide (2.3 mL). The mixture was filtered and filtrate was concentrated on a rotary evaporator to afford 5-(aminomethyl)-6-methyl-4-(pent-4-en-1-yloxy) pyridin-2-amine as a yellow oil ($500 \mathrm{mg}, 38 \%$). LCMS (ES) m/z $222.2[\mathrm{M}+1]^{+}$.

Scheme 2. Synthesis of Macrocycles 3, 29, 30 and 31 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) TFAA,TFA, acetone, rt, $3 \mathrm{~d}, 46 \%$; (b) NBS, $\mathrm{BPO}, \mathrm{CCl}_{4}, 75^{\circ} \mathrm{C}, 1 \mathrm{~h}, 66 \%$; (c) pyrazole 22, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 100 \%$; (d) LAH, THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 84 \%$; (e) 15, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 14 \mathrm{~h}, 30 \%$; (f) $\mathrm{SOCl}_{2}, \mathrm{DCM}, \mathrm{rt}, 30 \mathrm{~min}$, 93%; (g) ethyl 1H-pyrazole-4-carboxylate 27, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $14 \mathrm{~h}, 65 \%$; (h) $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 85 \%$; (i) 9 or $\mathbf{1 0}$, HATU, DIPEA, DMF, rt, $14 \mathrm{~h}, 63 \%$ for 4; 59\% for 5; (j) Grubbs' catalyst (II), DCE, $70^{\circ} \mathrm{C}, 12$ to $48 \mathrm{~h} ; 4 \%$ for 3; 13\% for 29.

2,2,7-Trimethyl-4H-benzo[d][1,3]dioxin-4-one (20). A mixture of 2-hydroxy-4-methylbenzoic acid (19, $10.0 \mathrm{~g}, 65.73 \mathrm{mmol}, 1.00$ equiv), TFA (50 mL), TFAA (30 mL) and acetone ($7.6 \mathrm{~g}, 130.85 \mathrm{mmol}$, 2.00 equiv) was stirred at rt for 3 days. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined organic layers were concentrated, and the resulting residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:10). This gave 2,2,7-trimethyl-2,4-dihydro-1,3-benzodioxin-4-one as a yellow solid (5.8 g, 46\%). LCMS (ESI) m/z 193 $[\mathrm{M}+\mathrm{H}]^{+}$.

7-(bromomethyl)-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (21). Benzoyl peroxide (BPO) (621 $\mathrm{mg}, 2.42 \mathrm{mmol}, 0.22$ equiv) was added to a mixture of 2,2,7-trimethyl-2,4-dihydro-1,3-benzodioxin-4one ($\mathbf{2 0}, 2.24 \mathrm{~g}, 11.65 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{NBS}\left(2.41 \mathrm{~g}, 13.54 \mathrm{mmol}, 1.20\right.$ equiv) in $\mathrm{CCl}_{4}(40 \mathrm{~mL})$. The resulting solution was heated and stirred at $75^{\circ} \mathrm{C}$ for 1 h . It was concentrated on a rotary evaporator and the resulting residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, $1: 10$). This resulted in 2.10 g (66\%) of 7-(bromomethyl)-2,2-dimethyl-2,4-dihydro-1,3-benzodioxin-4-one as a white solid. LCMS (ESI) $m / z 271[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{t}_{R}: 1.57 \mathrm{~min}$.

7-((1H-pyrazol-1-yl)methyl)-2,2-dimethyl-4H-benzo[d][1,3]dioxin-4-one (23). A suspension of 7-(bromomethyl)-2,2-dimethyl-2,4-dihydro-1,3-benzodioxin-4-one (21, $2.10 \mathrm{~g}, 7.75 \mathrm{mmol}, 1.00$ equiv), potassium carbonate ($1.10 \mathrm{~g}, 7.96 \mathrm{mmol}, 1.03$ equiv), and 1 H -pyrazole ($\mathbf{2 2}, 635 \mathrm{mg}, 9.33 \mathrm{mmol}, 1.20$ equiv) in DMF (40 mL) was heated and stirred at $50^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated on a rotary evaporator, the resulting residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:3). This resulted in 2.00 g (100\%) of 2,2-dimethyl-7-(1H-pyrazol-1-ylmethyl)-2,4-dihydro-1,3-benzodioxin-4-one as a yellow solid. LCMS (ESI) $m / z 259[\mathrm{M}+\mathrm{H}]^{+}$.

5-((1H-pyrazol-1-yl)methyl)-2-(hydroxymethyl)phenol (24). To a solution of 2,2-dimethyl-7-(1H-pyrazol-1-ylmethyl)-2,4-dihydro-1,3-benzodioxin-4-one (23, $1.80 \mathrm{~g}, 6.97 \mathrm{mmol}, 1.00$ equiv) in THF (18 mL) at $-78^{\circ} \mathrm{C}$ was added LAH ($318 \mathrm{mg}, 8.38 \mathrm{mmol}, 1.20$ equiv) in portions over 10 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and warmed to $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by the addition of water (0.4 mL), acidified with 1 N aqueous HCl until a clear solution was obtained. It was then diluted with EtOAc (100 mL), washed with brine ($3 \times 30 \mathrm{~mL}$). The organic layers were dried over anhydrous sodium sulfate and concentrated on a rotary evaporator to afford a yellow residue, which was purified
by silica gel column chromatography (ethyl acetate/petroleum ether, 10:1) to give $1.20 \mathrm{~g}(84 \%)$ of 2-(hydroxymethyl)-5-(1H-pyrazol-1-ylmethyl)phenol as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO, ppm): $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$). LCMS (ESI) $m / z 205[\mathrm{M}+\mathrm{H}]^{+}$.
(4-((1H-pyrazol-1-yl)methyl)-2-(but-3-enyloxy)phenyl)methanol (25). A mixture of 2-(hydroxymethyl)-5-(1H-pyrazol-1-ylmethyl)phenol (24, $1.0 \mathrm{~g}, 4.90 \mathrm{mmol}, 1.00$ equiv), 4-bromobut-1ene ($\mathbf{1 5}, 788 \mathrm{mg}, 5.84 \mathrm{mmol}, 1.20$ equiv), and sodium carbonate ($1.04 \mathrm{~g}, 9.81 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{DMF}(15 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ and stirred for 14 h . The mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic combined organic layers were dried over anhydrous sodium sulfate and concentrated on a rotary evaporator to dryness. The resulting yellow residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:1) to afford 380 mg (30%) of [2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methanol as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}, p p m\right): \delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.95-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 5.24-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H})$, $4.06(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 2 \mathrm{H})$; LCMS (ESI) $m / z 259[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-(but-3-enyloxy)-4-(chloromethyl)benzyl)-1H-pyrazole (26). To a solution of [2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methanol ($\mathbf{2 5}, 380 \mathrm{mg}, 1.47 \mathrm{mmol}, 1.00$ equiv) in dichloromethane (10 mL) was added thionyl chloride ($351 \mathrm{mg}, 2.95 \mathrm{mmmol}, 2.00$ equiv) over a period of 10 min . The resulting solution was stirred for 30 min at rt and then concentrated. This resulted in 380 mg (93%) of 1-[[3-(but-3-en-1-yloxy)-4-(chloromethyl)phenyl]methyl]-1H-pyrazole as a yellow oil. LCMS (ESI) $m / z 277[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl 1-(4-((1H-pyrazol-1-yl)methyl)-2-(but-3-enyloxy)benzyl)-1H-pyrazole-4-carboxylate (28).

 A mixture of 1-[[3-(but-3-en-1-yloxy)-4-(chloromethyl)phenyl]methyl] -1H-pyrazole (26, $400 \mathrm{mg}, 1.45$ mmol, 1.00 equiv), ethyl 1H-pyrazole-4-carboxylate (27, $244 \mathrm{mg}, 1.74 \mathrm{mmol}, 1.20$ equiv), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($400 \mathrm{mg}, 2.90 \mathrm{mmol}, 2.00$ equiv) in DMF (18 mL) was stirred overnight at rt . Then it was diluted with water (60 mL) and extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The organic layers were combined, dried over anhydrous sodium sulfate and concentrated. The resulting residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:3) to give 360 mg (65\%) of ethyl 1-[[2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylate as a yellow oil. LCMS (ESI) $m / z 381[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{t}_{R}: 1.94 \mathrm{~min}$.1-(4-((1H-pyrazol-1-yl)methyl)-2-(but-3-enyloxy)benzyl)-1H-pyrazole-4-carboxylic acid (7). To a solution of ethyl 1-[[2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4carboxylate ($\mathbf{2 8}, 380 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) in methanol (8 mL) was $\mathrm{NaOH}(80 \mathrm{mg}, 2.00 \mathrm{mmol}$, 2.00 equiv) in water (2 mL). The resulting solution was stirred overnight at rt . The mixture was concentrated on a rotary evaporator to dryness, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and adjusted to $\mathrm{pH} \sim 4$ by the addition of 2 N aqueous HCl . The mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), combined organic layers were dried over sodium sulfate and concentrated to afford 300 mg (85%) of 1-[[2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylic acid as a white solid.

1-(4-((1H-pyrazol-1-yl)methyl)-2-(but-3-enyloxy)benzyl)-N-((6-amino-4-(but-3-enyloxy)-2-methylpyridin-3-yl)methyl)-1H-pyrazole-4-carboxamide (4). The title compound was prepared from acid 7 and amine 9 according to the general procedure of amide coupling with HATU (Method A) (yellow solid, 63\%). ${ }^{1} \mathrm{H}$ NMR (300MHz, DMSO- $d_{6}, p p m$): $\delta 8.07$ (s, 1H), 7.82 (s, 1H), 7.80 (d, $J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.80(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.16-$ $4.96(\mathrm{~m}, 4 \mathrm{H}), 4.22(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$. LCMS (ESI) $\mathrm{m} / \mathrm{z} 542[\mathrm{M}+\mathrm{H}]^{+}$.

19-amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,20,24,28tetraazatetracyclo[24.2.1.0 $\left.{ }^{3},{ }^{8} .0^{17},{ }^{22}\right]$ nonacosa-3,5,7,12,17(22),18,20,26(29),27-nonaen-25-one (3). The title compound was prepared from $\mathbf{4}$ according to the general procedure of Grubbs RCM (Method B) (crude, black oil, 100\%). LC-MS (ESI) $m / z 514[\mathrm{M}+\mathrm{H}]^{+}$.

Separation of 3 into 3a and 3b: (12E or 12Z)-19-amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,20,24,28-tetraazatetracyclo[24.2.1.0 $\left.{ }^{3},{ }^{8} .0^{17},^{22}\right]$ nonacosa-3,5,7,12,17(22),18,20,26(29),27-nonaen-25-one (cmpd 3a) and (12Z or 12E)- 19-amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,20,24,28-tetraazatetracyclo[24.2.1.0 $\left.{ }^{3},{ }^{8} .0^{17},{ }^{22}\right]$ nonacosa-3,5,7,12,17(22),18,20,26(29),27-nonaen-25-one (cmpd 3b). The above crude product $\mathbf{3}$ was purified by preparative HPLC with the following conditions. (1) Waters $5 \mu \mathrm{M}$ XBridge C18 column, $19 \times 150 \mathrm{~mm}$; (2) elution gradient: 30% to $45 \% \mathrm{MeCN}$ in water over 8 min run time, where the aqueous phase contains $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ and 0.05% ammonia. This provided $2.0 \mathrm{mg}(4 \%)$ of $\mathbf{3 a}$ as a white solid and $1.4 \mathrm{mg}(2 \%)$ of $\mathbf{3 b}$, respectively.

For 3a, LCMS (ESI) $m / z 514[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{t}_{R}: 1.51 \mathrm{~min}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$514.2567, found $514.2566 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, p p m\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}$, $1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=1.8$
$\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H}), 5.65-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, $4.21(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 7 \mathrm{H})$.

For 3b, LCMS (ESI) $m / z 514[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{R}: 1.54 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$514.2567, found $514.2564 ;{ }^{1} \mathrm{H}$ NMR (300MHz, DMSO- d_{6}, ppm) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.50$ $(\mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H})$, $5.69(\mathrm{~s}, 2 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.89-3.86 (m, 4H), 2.40-2.34 (m, 4H), $2.30(\mathrm{~s}, 3 \mathrm{H})$.

Scheme 2-2. Synthesis of Macrocyclic Analog 31 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Cbz}-\mathrm{Cl}, \mathrm{NaHCO}_{3}$, acetone/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 5 \mathrm{~h}, 85 \%$; (b) Grubbs' catalyst (II), DCE, $70{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 87 \%$; (c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{rt}, 14 \mathrm{~h}, 21 \%$.

Benzyl (5-((1-(4-((1H-pyrazol-1-yl)methyl)-2-(but-3-en-1-yloxy)benzyl)-1H-pyrazole-4-

 carboxamido)methyl)-4-(but-3-en-1-yloxy)-6-methylpyridin-2-yl)carbamate (4Cbz). To a solution of N-[[6-amino-4-(but-3-en-1-yloxy)-2-methylpyridin-3-yl]methyl]-1-[[2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxamide ($4,30 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.00$ equiv) in a mixture of water $(2 \mathrm{~mL})$ and acetone $(2 \mathrm{~mL})$ was added sodium bicarbonate $(9 \mathrm{mg}, 0.11 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{Cbz}-\mathrm{Cl}(46 \mathrm{mg}, 0.27 \mathrm{mmol}, 5.00$ equiv), respectively. The reaction mixture was stirred for 5 h at rt and then concentrated on a rotary evaporator. The resulting residue was purified by silica gel column chromatography (dichloromethane/methanol, 10:1) to afford $32 \mathrm{mg}(85 \%)$ of benzyl N-[4-(but-3-en-1-yloxy)-5-[[(1-[[2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazol-4-yl)formamido]methyl]-6-methylpyridin-2-yl]carbamate as a yellow solid. LCMS (ESI) $\mathrm{m} / \mathrm{z} 676.0$ $[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{R}: 2.07 \mathrm{~min}$.Benzyl ($\left(3^{4} \mathrm{E}\right)$-14-((1H-pyrazol-1-yl)methyl)-7²-methyl-4-oxo-3 ${ }^{1} \mathrm{H}-8,15-d i o x a-5-a z a-7(3,4)-$ pyridina-3(1,4)-pyrazola-1(1,2)-benzenacyclopentadecaphan-11-en-76-yl)carbamate (3Cbz). The
title compound was prepared from 4Cbz according to the general procedure of Grubbs RCM (Method B) (yellow solid, 87%). LC-MS (ESI) $m / z 648.0[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{t}_{R}: 1.91 \mathrm{~min}$.

19-Amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,20,24,28tetraazatetracyclo[24.2.1.0 $\left.{ }^{3},{ }^{8} .0^{17},{ }^{22}\right]$ nonacosa-3,5,7,17(22),18,20,26(29),27-octaen-25-one (31). To а solution of compound ($\mathbf{3 C b z}, 25 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.00$ equiv) in methanol (8 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}$ (10 mg). The mixture was degassed and hydrogenated under one atmosphere of hydrogen overnight at rt . The reaction mixture was filtered and filtrate was concentrated to give an off-white residue, which was purified by prep-TLC to provide 4.1 mg (21%) of 19-amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,20,24,28-tetraazatetracyclo[24.2.1.03, 8.0 ${ }^{17}$, ${ }^{22}$]nonacosa-3,5,7,17(22),18,20,26(29),27-octaen-25-one (31) as a white solid. LCMS (ESI) $\mathrm{m} / \mathrm{z} 516[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{R}: 1.90 \mathrm{~min}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 516.2723$, found 516.2522; ${ }^{1} \mathrm{H}$ NMR (300MHz, DMSO- $\left.d_{6}, p p m\right) ~ \delta 8.05(\mathrm{~s}, 1 \mathrm{H})$, 7.82 (s, 1H), 7.72 (s, 1H), 7.58 (t, J=4.2 Hz, 1H), 7.46 (s, 1H), 7.37 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (s, 1H), 6.73 (d, J=7.8 Hz, 1H), $6.27(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.13-$ $1.11(\mathrm{~m}, 2 \mathrm{H})$.

Scheme 3. Synthesis of Aminopyridine 38^{a}

${ }^{a}$ Reagents and conditions: (a) Raney-Ni, $\mathrm{H}_{2}, \mathrm{Boc}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 33 \%$; (b) 4-bromobut-1-ene $\mathbf{1 5}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 80{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$, 50%; (c) $\mathrm{NaOH}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 16 \mathrm{~h}, 77 \%$; (d) TEA, DPPA, t-BuOH, toluene, $100^{\circ} \mathrm{C}, 16 \mathrm{~h}, 84 \%$; (e) TFA, DCM, rt, $12 \mathrm{~h}, 98 \%$.

Ethyl 5-((bis (tert-butoxycarbonyl) amino) methyl)-4-methyl-6-oxo-1, 6-dihydropyridine-2-
carboxylate (34). To a solution of ethyl 5-cyano-4-methyl-6-oxo-1, 6-dihydropyridine-2-carboxylate ($\mathbf{3 3}, 8.00 \mathrm{~g}, 38.80 \mathrm{mmol}, 1.00$ equiv) in methanol (80 mL) was added Raney- $\mathrm{Ni}(4.0 \mathrm{~g})$, and $\mathrm{Boc}_{2} \mathrm{O}$ ($16.93 \mathrm{~g}, 77.57 \mathrm{mmol}, 2.00$ equiv). The reaction vessel was allowed to go through three cycles of degassing and purging with hydrogen, and then kept at rt for 16 h with stirring. The reaction mixture was filtered through a pad of Celite and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:5) to give $5.3 \mathrm{~g}(33 \%)$ of
ethyl 5-((bis (tert-butoxycarbonyl) amino) methyl)-4-methyl-6-oxo-1,6 dihydropyridine-2-carboxylate as a white solid. LCMS (ESI) m/z $311[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+} ; \mathrm{t}_{\mathrm{R}}: 1.28 \mathrm{~min}$.

Ethyl 5-((bis (tert-butoxycarbonyl) amino) methyl)-6-(but-3-enyloxy)-4-methylpicolinate (35). To a suspension of ethyl 5-([[(tert-butoxy)carbonyl]amino]methyl)-4-methyl-6-oxo-1,6-dihydropyridine-2-carboxylate ($\mathbf{3 4}, 2.00 \mathrm{~g}, 6.44 \mathrm{mmol}, 1.00$ equiv), potassium carbonate ($887 \mathrm{mg}, 6.42$ mmol, 1.00 equiv), and $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1.78 \mathrm{~g}, 6.44 \mathrm{mmol}, 1.00$ equiv) in DMF (50 mL) was added 4-bromobut-1-ene ($1.74 \mathrm{~g}, 12.89 \mathrm{mmol}, 2.00$ equiv). The resulting mixture was heated and stirred at $80^{\circ} \mathrm{C}$ overnight. It was then concentrated, diluted with EtOAc (100 mL), washed with brine ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate and concentrated on a rotary evaporator to afford a yellow residue, which was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:5) to afford $1.13 \mathrm{~g}(50 \%)$ of ethyl 5-((bis (tertbutoxycarbonyl) amino) methyl)-6-(but-3-enyloxy)-4-methylpicolinate as a light yellow oil. LCMS (ESI) $m / z 465[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{\mathrm{R}}$: 1.87 min .

5-((Bis(tert-butoxycarbonyl)amino)methyl)-6-(but-3-enyloxy)-4-methylpicolinic acid (36). To a

 solution of ethyl 5-([bis[(tert-butoxy)carbonyl]amino]methyl)-6-(but-3-en-1-yloxy)-4-methylpyridine-2carboxylate ($\mathbf{3 5}, 1.13 \mathrm{~g}, 2.43 \mathrm{mmol}, 1.00$ equiv) in a mixture of solvents (8 mL) (THF/methanol, 1:1) was added sodium hydroxide ($107 \mathrm{mg}, 2.68 \mathrm{mmol}, 1.10$ equiv) in water (2 mL). The reaction was heated and stirred at $50^{\circ} \mathrm{C}$ for 16 h . Solvents removed under vacuum. The residue was diluted with water (30 mL), adjusted pH to 3.0 by the addition of 1 N HCl aqueous solution, and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate and concentrated on a rotary evaporator to afford $818 \mathrm{mg}(77 \%)$ of 5-((bis(tert-butoxycarbonyl)amino)methyl)-6-(but-3-enyloxy)-4-methylpicolinic acid as a light yellow oil. LCMS (ESI) $m / z 437[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{R}: 1.69 \mathrm{~min}$.Tert-butyl N-[[2-(but-3-en-1-yloxy)-6-[[(tert-butoxy) carbonyl] amino]pyridin-3-yl]methyl]-N-[(tert-butoxy)carbonyl]carbamate (37). To a solution of 5-([bis[(tert-butoxy)carbonyl]amino]methyl)-6-(but-3-en-1-yloxy)-4-methylpyridine-2-carboxylic acid (36, $1.60 \mathrm{~g}, 3.67 \mathrm{mmol}, 1.00$ equiv) in toluene (50 mL) was added sequentially tert-butanol ($543 \mathrm{mg}, 7.34 \mathrm{mmol}, 2.00$ equiv), TEA ($1.11 \mathrm{~g}, 10.97$ $\mathrm{mmol}, 3.00$ equiv). The reaction was cooled to $0^{\circ} \mathrm{C}$ and DPPA ($1.21 \mathrm{~g}, 4.40 \mathrm{mmol}, 1.20$ equiv) added over 30 min . The reaction mixture was heated and kept at $100^{\circ} \mathrm{C}$ for 16 h . After cooling to rt , the mixture was diluted with EtOAc (100 mL), washed with brine ($2 \times 50 \mathrm{~mL}$), dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:5) to give 800 mg (44%) of tert-butyl N-[[2-(but-3-en-

1-yloxy)-6-[[(tert-butoxy)carbonyl]amino]pyridin-3-yl]methyl]-N-[(tert-butoxy)carbonyl]carbamate as a yellow oil. LCMS (ESI) $m / z 408[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+} ; \mathrm{t}_{R}: 1.77 \mathrm{~min}$.

N-(6-(but-3-enyloxy)-4-methyl-5-((2, 2, 2-trifluoroacetamido) methyl) pyridin-2-yl)-2, 2, 2trifluoroacetamide (38). To a solution of tert-butyl N-[[2-(but-3-en-1-yloxy)-6-[[(tert-butoxy) carbonyl]amino]-4-methylpyridin-3-yl]methyl]-N-[(tert-butoxy) carbonyl]carbamate (37, $770 \mathrm{mg}, 1.52$ mmol, 1.00 equiv.) in dichloromethane (10 mL) was added TFA $(10 \mathrm{~mL})$ dropwise over 10 min . The resulting solution was stirred for 12 h at rt . The mixture was concentrated under vacuum to give a sticky residue, which was dissolved in water (30 mL) and then lyophilized. This resulted in $613.7 \mathrm{mg}(98 \%)$ of N-(6-(but-3-enyloxy)-4-methyl-5-((2,2,2-trifluoroacetamido)methyl)pyridin-2-yl)-2,2,2trifluoroacetamide as a light brown solid. LCMS (ESI) m/z $191\left[\mathrm{M}-\mathrm{NH}_{2}\right]{ }^{+} ; \mathrm{t}_{R}: 0.99 \mathrm{~min} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.72(\mathrm{br}, 3 \mathrm{H}), 5.97-5.84(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.

Scheme 4. Synthesis of Macrocycle 32 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) HATU, DIPEA, DMF, $\mathrm{rt}, 14 \mathrm{~h}, 52 \%$; (b) Grubbs' catalyst (II), DCE, $70{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 63 \%$.
N-[[6-amino-2-(but-3-en-1-yloxy)-4-methylpyridin-3-yl]methyl]-1-[[2-(but-3-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxamide (39). The title compound was prepared from acid $\mathbf{7}$ and amine $\mathbf{3 8}$ according to the general procedure of amide coupling with HATU (Method A) (yellow solid, 52\%). LCMS (ESI) m/z $542[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{\mathrm{R}}: 1.90 \mathrm{~min}$.

19-Amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,18,24,28-

 tetraazatetracyclo[24.2.1.0 $\left.{ }^{3}, .^{8} 0^{17},{ }^{22}\right]$ nonacosa-3,5,7,12,17(22),18,20,26(29),27-nonaen-25-one (cmpd 32). The title compound was prepared from 39 according to the general procedure of Grubbs RCM (Method B) (off-white solid, 63\%) (mixture of two isomers). LCMS (ESI) m/z $514[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{R}: 1.12$ min.Separation of 32 into 32a and 32b: (12E or 12Z)-19-amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,18,24,28-tetraazatetracyclo[24.2.1.0 $\left.{ }^{3},{ }^{8} .0^{17},{ }^{22}\right]$ nonacosa-3,5,7,12,17(22),18,20,26(29),27-nonaen-25-one (cmpd 32a) and (12Z or 12E)-19-amino-21-methyl-6-(1H-pyrazol-1-ylmethyl)-9,16-dioxa-1,18,24,28-tetraazatetracyclo[24.2.1.0 $\left.{ }^{3},{ }^{8} .0^{17},{ }^{22}\right]$ nonacosa-3,5,7,12,17(22),18,20,26(29),27-
nonaen-25-one (cmpd 32b). The isomeric mixture of $32(90 \mathrm{mg})$ was separated by Prep-HPLC with the following conditions. (1) Waters $5 \mu \mathrm{M}$ XBridge C18 column, $19 \times 150 \mathrm{~mm}$; (2) elution gradient: 30% to $45 \% \mathrm{MeCN}$ in water over 8 min run time, where the aqueous phase contains $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ and 0.05% ammonia. This provided $9.0 \mathrm{mg}(6 \%)$ of 32a as an off-white solid and $10.1 \mathrm{mg}(7 \%)$ of $\mathbf{3 2 b}$ as an off-white solid.

For 32a: LC-MS (ESI) $m / z 514[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{t}_{R}: 1.42 \mathrm{~min}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$514.2567, found 514.2562; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, 7.50 (br, 1H), 7.45 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (t, J=2.1 Hz, 1H), 5.82 (s, 1H), 5.66 (s, 2H), 5.60-5.40 (m, 1H), 5.38-5.22 (m, 3H), $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.18-$ 4.09 (m, 4H), 3.86 (t, J=6.9 Hz, 2H), 2.50-2.34 (m, 4H), 2.18 ($\mathrm{s}, 3 \mathrm{H})$.

For 32b: LC-MS (ESI) $m / z 514[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{t}_{R}: 1.40 \mathrm{~min}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$ 514.2567, found 514.2567; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73 (s, 1H), 7.55 (br, 1H), 7.45 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (s, 1H), 6.76 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 5.60-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.25(\mathrm{~m}, 3 \mathrm{H}), 5.16$ (s, 2H), 4.21-4.09 (m, 4H), 3.73 (t, J=6.9 Hz, 2H), 2.30-2.19 (m, 2H), 2.17 (s, 3H), 2.05-2.00 (m, 2H).

Scheme 5. Synthesis of Macrocycle $\mathbf{2 9}^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, rt, $16 \mathrm{~h}, 79 \%$; (b) $\mathrm{NBS}, \mathrm{BPO}, \mathrm{CCl}_{4}, 80{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 100 \%$; (c) pyrazole 22, $\mathrm{K}_{2} \mathrm{CO}_{3}, 50^{\circ} \mathrm{C}, 16 \mathrm{~h}, 21 \%$; (d) LAH, THF, $0-25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 100 \%$; (e) $\mathrm{SOCl}_{2}, \mathrm{DCM}, 0-25^{\circ} \mathrm{C}, 90 \mathrm{~min}, 100 \%$; (f) ethyl 1H-pyrazole-4-carboxylate $27, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 5{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}, 64 \%$; (g) $\mathrm{BBr}_{3}, \mathrm{DCM},-78-0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 52 \%$; (h) 5-bromopent-1-ene 16, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; $90^{\circ} \mathrm{C}, 2 \mathrm{~h}, 66 \%$; (i) $\mathrm{NaOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 85 \%$; (j) see scheme 2 step i, HATU, DIPEA, DMF, rt, 30 min, 59%; (k) see scheme 2 step j, Grubbs' catalyst (II), DCE, $70^{\circ} \mathrm{C}, 12 \mathrm{~h} ; 13 \%$.

Methyl 2-methoxy-4-methylbenzoate (40). To a suspension of 2-hydroxy-4-methylbenzoic acid $(\mathbf{1 9}, 60.8 \mathrm{~g}, 399.61 \mathrm{mmol}, 1.00$ equiv) and potassium carbonate ($165.6 \mathrm{~g}, 1.20 \mathrm{~mol}, 3.00$ equiv) in DMF (800 mL) was $\mathrm{CH}_{3} \mathrm{I}(98.9 \mathrm{~mL}, 1.6 \mathrm{~mol}, 4.00$ equiv) dropwise with stirring at rt. The resulting mixture was stirred for 16 h at rt . It was then concentrated, diluted with MTBE (1000 mL), and washed with brine ($3 \times 300 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under vacuum. The crude product was purified by silica gel column chromatography (ethyl acetate/petroleum ether, $1: 10$) to give 57.0 g (79%) of methyl 2-methoxy-4-methylbenzoate as a light yellow oil. LCMS (ESI) $m / z .181[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, p p m\right) \delta 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 6.79-$ $6.77(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 4-(bromomethyl)-2-methoxybenzoate (41). To a solution of methyl 2-methoxy-4methylbenzoate ($\mathbf{4 0}, 57.0 \mathrm{~g}, 316 \mathrm{mmol}, 1.00$ equiv) and NBS ($62.0 \mathrm{~g}, 348 \mathrm{mmol}, 1.10$ equiv) in CCl_{4} $(800 \mathrm{~mL})$ was added BPO ($4.05 \mathrm{~g}, 15.8 \mathrm{mmol}, 0.05$ equiv) in 5 portions over 10 min . The resulting mixture was heated and stirred at $80^{\circ} \mathrm{C}$ for 16 h . After cooling to rt , the mixture was concentrated, the resulting residue was diluted with TBME (1000 mL) and washed with brine ($3 \times 500 \mathrm{~mL}$). The organic layers were dried over anhydrous sodium sulfate and concentrated to give $86.9 \mathrm{~g}(100 \%)$ of the title compound as a brown crude oil. LCMS (ESI) $m / z 259[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 2-methoxy-4-(1H-pyrazol-1-ylmethyl)benzoate (42). A mixture of methyl 4-
(bromomethyl)-2-hydroxybenzoate ($\mathbf{4 1}, 81.6 \mathrm{~g}, 316 \mathrm{mmol}, 1.00$ equiv), 1 H -pyrazole ($25.7 \mathrm{~g}, 379 \mathrm{mmol}$, 1.20 equiv), and potassium carbonate ($43.6 \mathrm{~g}, 316 \mathrm{mmol}, 1.00$ equiv) in DMF (500 mL) was heated and stirred at $50^{\circ} \mathrm{C}$ overnight. After concentration, the residue was diluted with $\mathrm{EtOAc}(1000 \mathrm{~mL})$ and washed with brine ($2 \times 300 \mathrm{~mL}$), dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by silica gel column chromatography (THF/petroleum ether, $1: 1$) to give the title compound ($14.42 \mathrm{~g}, 20.8 \%$) of as a brown oil. LCMS (ESI) $m / z 247[\mathrm{M}+\mathrm{H}]^{+}$.
[2-Methoxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methanol (43). To a solution of methyl 2-methoxy-4-(1H-pyrazol-1-ylmethyl)benzoate ($\mathbf{4 2}, 14.42 \mathrm{~g}, 58.56 \mathrm{mmol}, 1.00$ equiv) in THF (150 mL) over ice bath was added $\mathrm{LiAlH}_{4}(2.46 \mathrm{~g}, 64.82 \mathrm{mmol}, 1.10$ equiv) in portions over 20 min . The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then warmed up to rt . Water (50 mL) and 1 N aqueous NaOH were added until a clear solution was obtained. The mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 100 \mathrm{~mL}$), dried over anhydrous sodium sulfate, and concentrated under vacuum. This resulted in 14.0 g (100%) of [2-methoxy-4-(1H-pyrazol-1ylmethyl)phenyl]methanol as white solid. LCMS (ESI) $m / z 219[\mathrm{M}+\mathrm{H}]^{+}$.

1-[[4-(Chloromethyl)-3-methoxyphenyl]methyl]-1H-pyrazole (44). A solution of thionyl chloride ($43,9.44 \mathrm{~g}, 79.9 \mathrm{mmol}, 2.00$ equiv) in anhydrous DCM (50 mL) was added to a solution of [2-methoxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methanol ($8.72 \mathrm{~g}, 39.95 \mathrm{mmol}, 1.00$ equiv) in anhydrous DCM (150 mL) at $0^{\circ} \mathrm{C}$ over 30 min . Ice bath was then removed and the reaction mixture was stirred at rt for 1.5 h . It was then concentrated to yield the title compound $(10.33 \mathrm{~g}, 100 \%)$ as a light yellow solid.

Ethyl 1-[[2-methoxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylate (45).

A suspension of 1-[[4-(chloromethyl)-3-methoxyphenyl]methyl]-1H-pyrazole (44, $10.33 \mathrm{~g}, 43.64 \mathrm{mmol}$, 1.00 equiv), ethyl 1 H -pyrazole-4-carboxylate ($27,7.96 \mathrm{~g}, 56.80 \mathrm{mmol}, 1.30$ equiv), and potassium carbonate ($15.10 \mathrm{~g}, 109.1 \mathrm{mmol}, 2.50$ equiv) in DMF (200 mL) was heated and stirred at $50^{\circ} \mathrm{C}$ overnight. After concentration, the residue was diluted with EtOAc (800 mL), washed with brine (3 x 200 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by silica gel column chromatography (dichloromethane/ethyl acetate, 1:1) to give the title compound ($9.50 \mathrm{~g}, 64 \%$) as a light yellow solid. LCMS (ESI) $m / z 341[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl 1-[[2-hydroxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylate (46).

To a cold solution of ethyl 1-[[2-methoxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4carboxylate ($\mathbf{4 5}, 4.80 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{DCM}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise $\mathrm{BBr}_{3}(42.3 \mathrm{~mL}, 1 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{DCM}, 42.3 \mathrm{mmol}, 3.00$ equiv) over 45 min . The reaction mixture was allowed to warm up to rt and stirred for 2 h . The mixture was poured into ice water (100 mL), extracted with DCM (3 x 200 mL). The combined organic layers were washed with brine ($2 \times 200 \mathrm{~mL}$), dried over anhydrous sodium sulfate and concentrated under vacuum. This produced the product (2.41 g , 52%) as a light yellow solid. LCMS (ESI) $m / z 327[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (300MHz, CD3OD, ppm) $\delta 8.32$ $(\mathrm{s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 3 \mathrm{H})$, 5.58 (s, 2H), 5.35 (s, 2H), 4.28 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 1-[[2-hydroxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylate (47).

 A mixture of ethyl 1-[[2-hydroxy-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylate ($\mathbf{4 6}, 670 \mathrm{mg}, 2.05 \mathrm{mmol}, 1.00$ equiv), 5 -bromopent-1-ene ($\mathbf{1 6}, 605 \mathrm{mg}, 4.06 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(1.67 \mathrm{~g}, 5.13 \mathrm{mmol}, 2.50\right.$ equiv) in DMF $(10 \mathrm{~mL})$ was heated and stirred at $90^{\circ} \mathrm{C}$ for 2 h . After cooling to rt, the mixture was diluted with EtOAc (100 mL), washed with brine ($4 \times 30 \mathrm{~mL}$), dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether, 1:3) to afford the title compound ($537 \mathrm{mg}, 66$ \%) as a light yellow solid. LCMS (ESI) $m / z 395[\mathrm{M}+\mathrm{H}]^{+}$.1-[[2-(pent-4-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylic acid (8). To a solution of ethyl 1-[[2-(pent-4-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxylate ($\mathbf{4 7}, 537 \mathrm{mg}, 1.36 \mathrm{mmol}, 1.00$ equiv) in methanol (8 mL) was added sodium hydroxide ($108 \mathrm{mg}, 2.70 \mathrm{mmol}, 2.00$ equiv) in water (4 mL). The resulting mixture was heated and stirred at $50^{\circ} \mathrm{C}$ overnight. The reaction mixture was concentrated under vacuum to remove organic volatiles, water $(10 \mathrm{~mL})$ was then added, pH of the resulting solution was adjusted to $5-6$ by the addition of 2 N HCl aqueous solution. The mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers was washed with brine ($2 \times 30 \mathrm{~mL}$) and concentrated under vacuum. This gave the acid product ($426 \mathrm{mg}, 85 \%$) as a white solid. LC-MS (ESI) $m / z 367[\mathrm{M}+\mathrm{H}]^{+}$.

N-[[6-amino-4-(but-3-en-1-yloxy)-2-methylpyridin-3-yl]methyl]-1-[[2-(pent-4-en-1-yloxy)-4-(1H-pyrazol-1-ylmethyl)phenyl]methyl]-1H-pyrazole-4-carboxamide (5). The title compound was prepared from acid $\mathbf{8}$ and amine $\mathbf{9}$ according to the general procedure of amide coupling with HATU (Method A) (yellow solid, 59\%). LC-MS (ESI) m/z $556[\mathrm{M}+\mathrm{H}]^{+}$.

20-Amino-22-methyl-6-[(1H-pyrazol-1-yl)methyl]-9,17-dioxa-1,21,25,29-

tetraazatetracyclo[25.2.1.03, $\left.{ }^{8} .0^{18},{ }^{23}\right]$ triaconta-3,5,7,13,18(23),19,21,27(30),28-nonaen-26-one (cmpd 29). The title compound was prepared from 5 according to the general procedure of Grubbs RCM (Method B). The product ($37.9 \mathrm{mg}, 13 \%$) was obtained as a gray solid (mixture of cis- and transisomers). LCMS (ESI) $m / z 528[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{t}_{R}: 1.81 \mathrm{~min} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$ 528.2723 , found 528.2721; ${ }^{1} \mathrm{H}$ NMR (300MHz, DMSO- $\left.d_{6}, ~ p p m\right) ~ \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{br}, 2 \mathrm{H}), 6.27(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}$, $2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.84(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}$, $1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}$, $1 \mathrm{H}), 5.47-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 5 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Methanol- d_{4}) $\delta 167.30,163.32,157.78,157.61$, $139.98,139.11,138.69,131.92,131.49,130.31,127.16,121.65,118.86,117.22,110.37,110.01$, $109.99,105.56,88.80,68.96,65.81,54.72,51.98,34.09,31.42,28.27,28.04,17.66$.

Two single olefinic isomers (29a and 29b), (13E or 13Z)-20-amino-22-methyl-6-(1H-pyrazol-1-ylmethyl)-9,17-dioxa-1,21,25,29-tetraazatetracyclo[25.2.1. $\left.0^{3},{ }^{8} .0^{18},{ }^{23}\right]$ triaconta$3,5,7,13,18(23), 19,21,27(30), 28-n o n a e n-26-$ one and (13Z or 13E)-20-amino-22-methyl-6-(1H-pyrazol-1-ylmethyl)-9,17-dioxa-1,21,25,29-tetraazatetracyclo[25.2.1.0 $\left.{ }^{3},{ }^{8} .0^{18},{ }^{23}\right]$ triaconta-

3,5,7,13,18(23), 19,21,27(30),28-nonaen-26-one were obtained after HPLC purification following conditions described in general procedure B. From 120 mg of $\mathbf{2 9}, 60.4 \mathrm{mg}$ of $\mathbf{2 9} \mathbf{a}$ and 3.5 mg of $\mathbf{2 9 b}$ was recovered, respectively.

For 29a: LCMS (ESI) $m / z 528[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{t}_{R}: 1.78 \mathrm{~min}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 528.2723$, found 528.2722; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H})$, $7.62(\mathrm{br}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-$ 6.27 (m, 3 H), 5.97 (s, 1H), 5.41 (s, 2H), 5.32 (s, 2H), 5.15 (s, 2H), 4.20 (d, J=4.2 Hz, 2H), 3.95 (br, 2H), $3.83(\mathrm{br}, 2 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.80$ (dd, $J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{td}, J=4.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.57$ (ddt, J $=27.2,9.7,5.6 \mathrm{~Hz}, 4 \mathrm{H}){ }^{1} \mathrm{H}$ NMR (400 MHz , Methanol- d_{4}) $\delta 7.84(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (dd, $J=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.45-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~s}$, $2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $1.63(\mathrm{t}, J=3.7 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , Methanol- d_{4}) $\delta 167.15$, 163.31, 157.93, 157.61, 139.97, $139.11,138.69,131.92,131.46,130.32,130.30,127.19,121.65,118.86,117.23,110.22,110.00,105.56$, $88.74,68.86,65.82,54.72,51.98,34.12,31.44,28.27,28.04,17.77 ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ $165.83,161.91,158.76,157.50,140.51,139.44,139.20,132.41,131.55,130.78,130.74,127.51,122.53$, $119.25,117.96,110.82,109.62,105.91,88.69,68.15,66.70,54.97,52.27,34.47,31.62,28.88,28.57$, 20.37.

For 29b: LCMS (ESI) $m / z 528[\mathrm{M}+\mathrm{H}]^{+}$; $\mathrm{t}_{R}: 1.77 \mathrm{~min}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 528.2723$, found 528.2718; ${ }^{1} \mathrm{H}$ NMR (300MHz, DMSO- d_{6}): $\delta 7.94$ (s, 1H), $7.83(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (s, 1H), 7.51-7.38 (m, $3 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}), 5.47-5.31(\mathrm{~m}, 4 \mathrm{H}), 5.17$ $(\mathrm{s}, 2 \mathrm{H}), 4.19(\mathrm{br}, 2 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 5 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H})$.

Scheme 6. Synthesis of Macrocycle $\mathbf{3 0}^{\boldsymbol{a}}$

${ }^{a}$ Reagents and conditions: (a) HATU, DIPEA, DM, rt, $12 \mathrm{~h}, 37 \%$; (b) Grubbs' catalyst (II), DCE, $70{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 15 \%$.

1-(4-((1H-pyrazol-1-yl)methyl)-2-(but-3-enyloxy)benzyl)-N-((6-amino-2-methyl-4-(pent-4-

 enyloxy)pyridin-3-yl)methyl)-1H-pyrazole-4-carboxamide (6). The title compound was prepared from acid $\mathbf{7}$ and amine $\mathbf{1 0}$ according to the general procedure of amide coupling with HATU (Method A) (yellow solid, 37\%). LCMS (ESI) $m / z 556[\mathrm{M}+\mathrm{H}]^{+}$.
20-Amino-22-methyl-6-(1H-pyrazol-1-ylmethyl)-9,17-dioxa-1,21,25,29-

tetraazatetracyclo[25.2.1.0 $\left.{ }^{3},{ }^{8} .0^{18},{ }^{23}\right]$ triaconta-3,5,7,12,18(23),19,21,27(30),28-nonaen-26-one (cmpd30). The title compound was prepared from $\mathbf{6}$ according to the general procedure of Grubbs RCM (Method B). The product ($41.7 \mathrm{mg}, 15 \%$) was obtained as a gray solid (mixture of cis- and transisomers). LCMS (ESI) $m / z 528[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right) 528.2723$, found 528.2731; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $d 6$) $\delta 7.94$ (s, 1H), 7.84 (s, 1H), 7.75-7.67 (m, 2H), 7.45-7.34 $(\mathrm{m}, 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.36-5.28(\mathrm{~m}, 3 \mathrm{H}), 5.14-$ $5.06(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.96-3.78(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.18(\mathrm{~m}, 5 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.64(\mathrm{~m}, 2 \mathrm{H})$.

Crystallography: Proteins used for the studies contain the catalytic protease domain (PD) of pKal, containing three deglycosylation mutations (N396E, N453E, and N494E) as well as two cysteine mutations (C383S and C503S) was recombinantly expressed in insect cells and purified by Beryllium (Bedford, MA).

For crystallography screening we used a mosquito liquid handling robot (TTP Lab Tech) and three commercially available deep well screening blocks: JCSG+ and Protein Complex Suite (Qiagen) as well as the Index HT screen (Hampton Research). Initial crystallization conditions for the pKal PD protein were based of the manuscript detailing the structure of pKal bound to benzamidine (0.2 M potassium dihydrogen phosphate, 20% (v / v) PEG3350. Using a protein concentration of $15-20 \mathrm{mg} / \mathrm{ml}$ the final crystallization condition for pKal PD was refined to 0.2 M potassium di-hydrogen phosphate, $23 \%(\mathrm{v} / \mathrm{v})$ PEG3350 using the hanging drop vapor diffusion method at $23^{\circ} \mathrm{C}$. Crystals were transferred to solution containing the same mother liquor plus 2 mM concentration of compound at $23^{\circ} \mathrm{C}$. Crystals were cryoprotected by adding glycerol (10-12\% (v/v) final concentration) to the reservoir solution containing 2 mM compound before flash-freezing in liquid nitrogen. Crystal screening and final data collection was carried out at beamline 8.3.1 at the Advanced Light Source (ALS).

Structure Determination: Data reduction was carried out using iMOSFLM and the CCP4 software suite (Battye et al., 2011; Winn et al., 2011). Data was solved using molecular replacement methods in the PHENIX program suite (Adams et al., 2010). The structures were solved with molecular replacement using the structure of human plasma kallikrein bound to benzamidine (PDB code 2ANW)
(Tang, 2005). All models were built using COOT and further refinement was carried out using the latest builds of the PHENIX suite (Adams et al., 2010) Supplemental Table below. A majority of the secondary structural elements have been built. Some loops have been omitted due to poor electron density and very high B-factors. The final model has been deposited with the RCSB and the assigned the PDB code. ${ }^{1}$ Figures were made using PyMOL (Schrodinger, 2016).

pKal protease domain macrocycle 32	
Data Collection	
Wavelength	1.11
Space group	$\mathrm{P} 2{ }_{1} 2_{1}{ }_{1}$
Cell dimensions:	
a,b,c (A)	$55.66,59.62,77.11$
β (${ }^{\circ}$)	90.00
Resolution (A)	40.0-1.4 (1.46-1.41)
$\mathrm{R}_{\text {sym }}{ }^{\text {a }}$	0.057 (0.372)
$\mathrm{R}_{\mathrm{p} \text {.i.m. }}$	0.031 (0.194)
Completeness	97.2 (95.8)
Redundancy	4.3 (4.2)
I/ σ	13.2 (3.8)
Wilson B factor (A^{2})	12.86
Refinement	
Resolution (\AA)	27.8-1.4
Reflections	48,771
Nonhydrogen Atoms	2210
Water Molecules	368
$\mathrm{R}_{\text {work }}{ }^{\text {b }}$	16.25
Rfree ${ }^{\text {c }}$	18.6
R.m.s. deviations	
Bond lengths (A)	0.006
Bond angles (${ }^{\circ}$)	1.067
B factors (\AA^{2})	
Protein	17.2
Ligands	14.8
Water	31.9
Coordinate error (A)	0.11
Ramachandran plot ${ }^{\text {d }}$	
Most favored (\%)	98
Allowed (\%)	2
Disallowed (\%)	0

Highest resolution shell is shown in parenthesis.
${ }^{\text {a }} \mathrm{R}_{\text {sym }}=\sum\left|I_{\mathrm{i}}-\left\langle I_{\mathrm{i}}\right\rangle\right| / \sum I_{\mathrm{i}}$, where I_{i} is the intensity of the i th observation and $\left.<I_{\mathrm{i}}\right\rangle$ is the mean intensity of the reflection.
${ }^{\mathrm{b}} \mathrm{R}_{\mathrm{p} . \mathrm{i} . \mathrm{m} .}=\sum_{h k l}[1 /(N-1)]^{1 / 2} \sum_{\mathrm{i}} \mid I_{\mathrm{i}}(h k l)-\langle I(h k l)>| / \sum_{h k l} \sum_{\mathrm{i}} I_{i}(h k l)$, where $I_{i}(h k l)$ is the observed intensity and $\langle I(h k l)\rangle$ is the average intensity of multiple observations of symmetry-related reflections.
${ }^{\mathrm{c}} \mathrm{R}_{\text {work }}=\sum\left(| | \mathrm{F}_{\text {obs }}\left|-\left|\mathrm{F}_{\text {calc }} \| / \sum\right|\right.\right.$ Fobs $\left.|\right)$
${ }^{d} R_{\text {free }}=R$ value for a randomly selected subset (5\%) of the data that were not used for minimization of the crystallographic residual.
${ }^{\mathrm{e}}$ Calculated with the program PROCHECK (32).

Molecular Modeling. MOE (Molecular Operating Environment) ${ }^{2}$ from the Chemical Computing

 Group (Montreal, Canada) was used for this work. Structure of the active domain of plasma kallikrein (PDB ID: 5TJX) was prepared by using the LigX module in MOE2014. Default program settings and Amber10 EHT force field were applied. The prepared structure was used for all modeling and design work.
References

1) Partridge, J.; Choy, R., Li, Z. Manuscript in preparation.
2) Molecular Operating Environment (MOE), 2014.09; Chemical Computing Group Inc., 1010

Sherbooke St. West, Suite \#910, Montreal, QC, Canada, H3A 2R7, 2014.

Compound 29a (cis- or trans- isomer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.21(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{td}, J=4.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{ddt}, J=27.2,9.7,5.6 \mathrm{~Hz}, 4 \mathrm{H})$

Compound 29a (cis- or trans- isomer)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.21(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{td}, J=4.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{ddt}, J=27.2,9.7,5.6 \mathrm{~Hz}, 4 \mathrm{H})$.

Compound 29a (cis- or trans- isomer) gCOSY

Parameter	Value [F1,F2]
Title:	gCOSY_01
Data File Name:	I:/NMR/compound 29a/gCOSY_01.fid/fid
Comment:	
Spectrometer.	vnmrs
Solvent:	dmso
Temperature:	25
Number of Scans:	1
Relaxation	1s
Delay:	
Acquistion	0.1501s
Time:	
Acquisition Date:	2016-11-09T09:09:32
Spectrom. Freq.:	[399.80, 399.80]MHz
Spectral Wdth:	[3765.1, 3765.1]
Nucleus:	$[1 \mathrm{H}, 1 \mathrm{H}]$
Acquired Size:	[256, 565]
F2 Processing	
Spectral Size:	1024
DC:	0.05
Apodization:	
FT:	Hyper Invert Quadrature
Phas:	Magnitude
Baseline	None
Correction:	
F1 Processing	
SI:	1024
Apodization:	
FT:	Hyper Invert Quadrature

Compound 29a (cis- or trans- isomer) NOESY_01

Compound 29a (cis- or trans- isomer) CARBON-13

${ }^{13} \mathrm{C}$ NMR (101 MHz, dmso) $\delta 165.83,161.91,158.76,157.50,140.51,139.44,139.20,132.41,131.55,130.78,130.74,127.51,122.53,119.25,117.96,110.82,109.62,105.91,88.69,68.15$, 66.70, 54.97, 52.27, 34.47, 31.62, 28.88, 28.57, 20.37.

Compound 29a (cis- or trans- isomer) HSQCAD_01

Cmpd3a

H-NMR04-PH-GBT-ZL-FT-296-0-1(53122-016A1)1T,2014111511 DMSO

Cmpd3b

H-NMR04-PH-GBT-ZL-FT-296-0C-1(53122-017A1)1T,2014111565 DMSO

Cmpd29a

H-NMR09-PH-GBT-ZL-FT-382-OA-3(53134-139E1)1T,H2015031358
DMSO

Cmpd29b

H-NMR09-PH-GBT-ZL-FT-382-0-3(53134-139E1)1T,H2015030712 DMSO

Cmpd32a

H-NMR04-PH-GBT-ZL-FT-297-0-1(53122-019A1)1T,2014120906

 DMSO

Cmpd32b

H－NMR04－PH－GBT－ZL－FT－297－0A－1（53122－018A1）1T，2014120905

DMSO
ナ்ナ்ウ் ウ் $0 乙 \varepsilon \cdot \varepsilon$

Current Data Parameters
1412

NAME	1412
EXPNO	905
PROCNO	1

F2－Acquisition Parameters
Date＿ 20141215
Time
INSTRUM spect
PROBHD 5 mm PABBO BB－ PULPROG 5 mm PABBO TD $65536{ }^{\text {zg3 }}$ SOLVENT 8 DMSO $\begin{array}{ll}\text { NS } & 8 \\ \text { DS } & 0\end{array}$ DS SWH
FIDRES FIDRES AQ
RG
DW $\begin{array}{ll}\text { DW } & 80.800 \mathrm{usec} \\ \text { DE } & 6.50 \mathrm{usec} \\ \text { DE } & 297.1 \mathrm{~K}\end{array}$ D1 $\quad 1.00000000 \mathrm{sec}$
$========$
CHANNEL $f 1======$
NUC1 $\quad 1 \mathrm{H}$
P1 13.90 usec

\[

\]

