Clustering of pairwise BLASTN alignments into cross-species orthologous RAD loci
Pairwise BLASTN alignments were clustered into cross-species orthologous RAD loci as follows.
1. Identify ‘best hits’ for each pairwise alignment.
2. Filter best hits to identify only unique top alignments (i.e., one-to-one alignments)
3. Filter best hits based on sequence similarity parameters:
a. Strict analysis, within salmonid species only
i. 95 % sequence similarity
ii. ≤ 2 base mismatch
iii. Minimum 50 bp alignment
b. Relaxed analysis, across all ten species
i. 85 % sequence similarity
ii. ≤ 10 base mismatch
iii. Minimum 45 bp alignment
4. Generate a concatenated file of all filtered pairwise alignments across all species.
5. Group pairwise alignments into putative RAD clusters. E.g. within salmonid species only, if Atlantic_salmon_RAD_1 significantly aligned to Sockeye_salmon_RAD_1, Chinook_salmon_RAD_1, Lake_whitefish_RAD_1 and Rainbow_trout_RAD_1, and these all aligned to each other respectively, then these were inferred as a single cluster. Python script written for this is given below.
6. Identify sequences assigned to more than one cluster. Remove all clusters containing these sequences.
7. Filter clusters to remove those with more than one sequence originating from a given species.
8. Filter clusters for a minimum number of species sequences (E.g. minimum of 7 of the 10 species must have sequence etc.).
9. [bookmark: _GoBack]In the across teleost sprecies analysis, identify and remove salmonid-specific clusters.
__author__ = 'Serap_Gonen'

START DATE: 07/05/14
END DATE: 07/05/14

SCRIPT DESCRIPTION
This script uses blastn one to one matches to
assign groups of loci to clusters, so that common # loci can be identified based on pairwise
alignments

INPUT FILE FORMAT:
two input files:
1) blastn onetoone match file
number of rows is irrelevant as long as first
and second column are query and subject ID
2) single column file of sequences aligning
to multiple(2/3/4 therefore present in 3/4/5)
populations

OUTPUT FILE FORMAT:
sequence_id\tcluster

HOW TO RUN SCRIPT:
Requirements: Python 2.6 and above.
: Not compatible with python3
: Libraries : argv only (sys)
Run on the command line as:
python identify_common_loci.py \
<blastn_file> <match_file> > <outfile>

##

SCRIPT
##

NECESSARY IMPORTS

from sys import argv
script, blastn_file, match_file = argv

##

PROCEDURAL CODE
file of sequence headers matching across multiple
pops
match_list = open(match_file, 'r').read().splitlines()
file of blastn one to one matches
blastn_list = open(blastn_file, 'r').read().splitlines()
dict for storing sequence id to the allocated cluster
sequence2cluster = {}
count = 0 # count to assign new cluster number
for line in blastn_list:
 elements = line.split("\t")
 if (elements[0] in match_list) and \
 (elements[1] in match_list):
 # elements[0]==query, elements[1]==sequence
 if elements[0] not in sequence2cluster:
 if elements[1] not in sequence2cluster:
 # new rad locus, assign new cluster
 sequence2cluster[elements[0]] = count
 sequence2cluster[elements[1]] = count
 count += 1 # increment for new cluster
 else:
 sequence2cluster[elements[0]] = \
 sequence2cluster[elements[1]]
 else:
 if elements[1] not in sequence2cluster:
 sequence2cluster[elements[1]] = \
 sequence2cluster[elements[0]]

print
for sequence, cluster in sequence2cluster.items():
 print sequence, "\t", cluster

DONE

