Supplemental Data

Characterization of the Aurantimycin Biosynthetic Gene Cluster and Enhancing Its Production by Manipulating Two Pathway-specific Activators in *Streptomyces aurantiacus* JA 4570

Houyuan Zhao,¹ Liang Wang,¹ Dan Wan,¹ Jianzhao Qi,¹ Rong Gong,¹ Zixin Deng,^{1,2} Wenqing Chen^{1*}

¹Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China

²State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China

*Address correspondence to: **Wenqing Chen,** Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. **Tel**: +86-27-68756713, **E-mail**: wqchen@whu.edu.cn.

Contents of Supplemental Data

1. Supplemental Tables	3
Table S1: Strains, plasmids, and cosmid used in this study	3
Table S2: PCR primers used in this study	5
Table S3: ATM-A Yields of related strains after culturing for 5 days in shake-flask for regulatory genes inactivation	.6
Table S4: ATM-A Yields of related strains after culturing for 5 days in shake-flask for	
regulatory genes overexpression	.6
2. Supplemental Methods	7
2.1 Construction of target gene disruption plasmids	.7
2.2 Generation of artB, artX, and artB & artX overexpression vectors	7
3. Supplemental Figures	.8
Figure S1: HPLC analysis of aurantimycin A	.8
Figure S2: Alignment of ArtB and other regulators from <i>Streptomyces</i>	Э
Figure S3: Construction of WL-02 mutant	10
Figure S4: Alignment of ArtX with other TetR regulators1	11
Figure S5: Construction of WL-03 mutants	12
Figure S6: Identification of target gene overexpression strains	13
Figure S7: SDS-PAGE analysis of four purified A domains	14
Figure S8: Alignment of four KS domains in PKSs of the art cluster	15
Figure S9: Alignment of A domains activating piperazic acid	16
4. Supplemental References	17

1. Supplemental Tables

Table S1 Strains, plasmids, and cosmid used in this study

Strain, plasmids	Relevant genotype or description	Source/Reference	
Streptomyces			
S. aurantiacus			
JA 4570	Wide-type strain producing aurantimycins	DMSZ [1]	
WL01	artG mutant with insertion of tsr	This study	
WL02	artB mutant with insertion of tsr	This study	
WL03	artX mutant with insertion of tsr	This study	
WT::artB	artB overexpression strain of S. aurantiacus JA4570	This study	
WT::artX	artX overexpression strain of S. aurantiacus JA4570	This study	
WT::artB & artX	A JA4570 derivative with artX and artX tandemly overexpressed	This study	
ΔartB::artB	artB retro-complementation strains from WL02	This Study	
ΔartB::plB139	WL02 with introduction of vector pIB139	This Study	
ΔartX::artX	artX retro-complementation strains from WL03	This Study	
ΔartX::pIB139	WL03 with introduction of vector pIB139	This Study	
E. coli			
DH10B	F- $mcrA$ $\Delta(mrr-hsdRMS-mcrBC)$ $\phi80d$ $lacZ\DeltaM15$ $\Delta lacX74$ $deoR$ $recA1endA1ara\Delta139$ $D(ara, leu)7697$ $galU$ $galK$ $\lambda^ rpsL$ $nupG$	GIBCO BRL	
ET12567(pUZ8002)	dam dcm hsdS pUZ8002	[2]	
Rosetta(DE3)	F ⁻ ompT hsdS _B (r _B ⁻ m _B ⁻) gal dcm (DE3) pRARE ² (Cam ^R)	Novagen	
Plasmids			
pOJ446	aa(3)IV, SCP2, rep ^{puc} , attΦC31, oriT	[3]	
plB139	int, attp, aac(3)IV, PermE*	[4]	
pJTU968	pRSET-B derivative, bla , PermE *	[5]	
pWHU1143-L	pOJ446 derivative carrying Xbal-BamHI engineered PCR fragment containing left arm of <i>artG</i> disruption vector	This study	
pWHU1143-R	pWHU1143-L derivative carrying BamHI-EcoRI engineered PCR fragment containing right arm of <i>artG</i> disruption vector	This study	
pWHU1143	pWHU1143-R derivative bearing BamHI engineered tsr fragment from pJTU2180 for artG mutation	This study	
pWHU1144-L	pOJ446 derivative carrying Xbal-BamHI engineered PCR fragment containing left arm of <i>artB</i> disruption vector	This study	
pWHU1144-R	pWHU1144-L derivative carrying BamHI-EcoRI	This study	

	engineered PCR fragment containing right arm of <i>artB</i> disruption vector	
pWHU1144-tsr	pWHU1144-R derivative bearing BamHI engineered tsr fragment from pJTU2180 for artB mutation	This study
pWHU1145-L	pOJ446 derivative carrying Xbal-BamHI engineered PCR fragment containing left arm of <i>artX</i> disruption vector	This study
pWHU1145-R	pWHU1145-L derivative carrying BamHI-EcoRI engineered PCR fragment containing right arm of <i>artX</i> disruption vector	This study
pWHU1145-tsr	pWHU1145-R derivative bearing BamHI engineered tsr fragment from pJTU2180 for artX mutation	This study
pWHU1146	pIB139 derivative carrying Ndel-EcoRI digested PCR fragment containing <i>artB</i> from JA4570 genome for its overexpression	This study
pWHU1147	pIB139 derivative carrying Ndel-EcoRI digested PCR fragment containing <i>artX</i> from JA4570 genome for its overexpression	This study
pWHU1148	pJTU968 derivative bearing Ndel-EcoRI digested fragment containing <i>artX</i> from pWHU1147.	This study
pWHU1149	WHU1146 derivative carrying Mfel-EcoRI engineered fragment containing <i>PermE*</i> & <i>artX</i> from WHU1148 for <i>artB</i> & <i>artX</i> double overexpression	This study
pEASY-Blunt	lacZα, pUC ori, f1 ori, Amp ^r ,	TransGen Biotech
pEASY-Blunt pEASY-Blunt-artC	lacZα, pUC ori, f1 ori, Amp^r,pEASY-Blunt derivative carrying artC fragments amplified by PCR	TransGen Biotech This study
·	pEASY-Blunt derivative carrying artC fragments	
pEASY-Blunt- <i>artC</i>	pEASY-Blunt derivative carrying <i>artC</i> fragments amplified by PCR pEASY-Blunt derivative carrying <i>artF</i> -A2 fragments	This study
pEASY-Blunt- <i>artC</i> pEASY-Blunt- <i>artF</i> -A2	pEASY-Blunt derivative carrying <i>artC</i> fragments amplified by PCR pEASY-Blunt derivative carrying <i>artF</i> -A2 fragments amplified by PCR pEASY-Blunt derivative carrying <i>artG</i> -A1 fragments	This study This study
pEASY-Blunt- <i>artF</i> -A2 pEASY-Blunt- <i>artG</i> -A1	pEASY-Blunt derivative carrying <i>artC</i> fragments amplified by PCR pEASY-Blunt derivative carrying <i>artF</i> -A2 fragments amplified by PCR pEASY-Blunt derivative carrying <i>artG</i> -A1 fragments amplified by PCR pEASY-Blunt derivative carrying <i>artH</i> -A fragments	This study This study This study
pEASY-Blunt-artF-A2 pEASY-Blunt-artG-A1 pEASY-Blunt-artH-A	pEASY-Blunt derivative carrying <i>artC</i> fragments amplified by PCR pEASY-Blunt derivative carrying <i>artF</i> -A2 fragments amplified by PCR pEASY-Blunt derivative carrying <i>artG</i> -A1 fragments amplified by PCR pEASY-Blunt derivative carrying <i>artH</i> -A fragments amplified by PCR	This study This study This study This study
pEASY-Blunt-artC pEASY-Blunt-artF-A2 pEASY-Blunt-artG-A1 pEASY-Blunt-artH-A pET28a(+)	pEASY-Blunt derivative carrying artC fragments amplified by PCR pEASY-Blunt derivative carrying artF-A2 fragments amplified by PCR pEASY-Blunt derivative carrying artG-A1 fragments amplified by PCR pEASY-Blunt derivative carrying artH-A fragments amplified by PCR pEASY-Blunt derivative carrying artH-A fragments amplified by PCR Kan, lacl, BR322, ori pET28a(+) derivative carrying artC Ndel-EcoRI	This study This study This study This study Novagene
pEASY-Blunt-artC pEASY-Blunt-artF-A2 pEASY-Blunt-artG-A1 pEASY-Blunt-artH-A pET28a(+) pET28a-artC	pEASY-Blunt derivative carrying artC fragments amplified by PCR pEASY-Blunt derivative carrying artF-A2 fragments amplified by PCR pEASY-Blunt derivative carrying artG-A1 fragments amplified by PCR pEASY-Blunt derivative carrying artH-A fragments amplified by PCR pEASY-Blunt derivative carrying artH-A fragments amplified by PCR Kan, lacl, BR322, ori pET28a(+) derivative carrying artC Ndel-EcoRI engineered fragments from pEASY-Blunt-artC pET28a(+) derivative carrying artF-A1 Ndel-EcoRI	This study This study This study This study Novagene This study
pEASY-Blunt-artC pEASY-Blunt-artF-A2 pEASY-Blunt-artG-A1 pEASY-Blunt-artH-A pET28a(+) pET28a-artC pET28a-artF-A2	pEASY-Blunt derivative carrying artC fragments amplified by PCR pEASY-Blunt derivative carrying artF-A2 fragments amplified by PCR pEASY-Blunt derivative carrying artG-A1 fragments amplified by PCR pEASY-Blunt derivative carrying artH-A fragments amplified by PCR pEASY-Blunt derivative carrying artH-A fragments amplified by PCR Kan, lacl, BR322, ori pET28a(+) derivative carrying artC Ndel-EcoRI engineered fragments from pEASY-Blunt-artC pET28a(+) derivative carrying artF-A1 Ndel-EcoRI engineered fragments from pEASY-Blunt-artF-A2 pET28a(+) derivative carrying artG-A1 Ndel-EcoRI	This study This study This study This study Novagene This study This study

^{*}oriT, origin of transfer of plasmid RK2; tsr, thiostrepton resistance gene; aac(3)IV, apramycin resistance gene; DMSZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen.

Table S2. PCR primers used in this study

Primers	Sequence (5' - 3')
artG-LarmF	GCTCTAGAGAAGGACGCACCGACGAA
artG-LarmR	CGGGATCCGCGACGACCTGGATGGAA
<i>artG</i> -RarmF	CGGGATCCACCTGCTGCTCTACGC
artG-RarmR	GGAATTCGCTGTTGCCCGCCTGTT
<i>artG</i> -idF	GACAGCATCCGTTCCATCC
<i>artG</i> -idR	CACCGAGTTCAACGACACG
artB-LarmF	GGGAACAGGACGAGAAGACGG
artB-LarmR	CCACGAAGGACACCACAT
<i>artB</i> -RarmF	GGGTGACCCAGGTGCTCGAC
artB-RarmR	TCGGCAATCATCACAGTCCT
<i>artB</i> -idF	GAGCAGGTTGACCGAAGTGAA
<i>artB</i> -idR	CGACGAGCATGTCGATGGAGT
artB-expF	AGGACCGCGAGCAGTTACCG
artB-expR	CTAGGCGGTGCGCCCCTC
artX-LarmF	GCTCTAGACGTTGGAGTCCCAGTTGTTG
artX-LarmR	GAAGATCTCTTCGGGCTGCTCTTC
artX-RarmF	GAAGATCTGCCTGCTTCTCCTC
artX-RarmR	GGAATTCCTCCGACCAACGCCTTCT
<i>artX</i> -idF	TGAAGAGCCCGAAGA
<i>artX</i> -idR	CAGCACCTGAGGAGAACGAG
artX-expF	ATGACAGCACCTGAGGAGAACG
artX-expR	TCACCTGGCGCTCCCCGC
pIB139F	CGATGCTGTTGTGGGC
pIB139R	TGGCGATAAGTCGTGTCT
tsrF	TTGGACACCATCGCAAATC
tsrR	AAACCGAGGCGGAAGACG

CGCCATATGGTCCACCAGCAGTTC
GGAATTCACTATGCCGTGGCCGTGGT
CGCCATATGCTGGAACAGCTGATCGAG
GGAATTCAGCCGCGGGCGTACTCGCC
CGCCATATGGCCGTCGCCGAACCGGGC
GGAATTCAGTTCAGTTTCCCGTTCGG
CGCCATATGGTCGCCGACCCCGAC
GGAATTCACGCGGGCAGCGCCCGCTG

F stands the forward primers, and R indicates the reverse primer.

Table S3 Yields of ATM-A for related strains after culturing for 5 days in shake-flask for regulatory genes inactivation

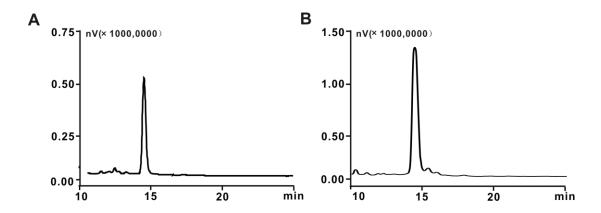
Strains	WT	∆artB	ΔartB:: pIB139	ΔartB::ar tB	ΔartX	ΔartX::pl B139	ΔartX::ar tX
ATM-A	38.4 ±	23.4 ±	22.0 ±	35.6 ±	3.8 ±	2.8 ±	30.9 ±
(μg/ml)	1.8	2.3	1.6	0.2	0.2	0.4	1.1

Table S4 Yields of ATM-A for related strains after culturing for 5 days in shake-flask for regulatory genes overexpression

Strains	WT	WT::pIB 139	WT::artB	WT::artB	WT::artB
ATM-A	100.3 ±	73.4 ±	190.9 ±	203.9 ±	248.1 ±
(μg/ml)	1.8	73.4 ± 5.2	9.4	10.4	3.0

2. Supplemental Methods

2.1 Construction of target gene disruption plasmids


For the construction of pWHU1143, the 2.2-kb homologous L- and R-arms for artG inactivation were amplified with primers artG-Larm-F/R and artG-Rarm-F/R. After treated by Xbal/BamHI, the left arm was cloned into the corresponding sites of pOJ446 to generate pWHU1143L, and then the BamHI/EcoRI right arm was cloned into the counterpart site of pWHU1143L to produce pWHU1143R. Subsequently, a thiostrepton resistance gene (tsr) was introduced to the BamHI site of this plasmid to give artG inactivation plasmid pWHU1143. Likewise, artB/artX inactivation plasmids pWHU1144/pWHU1145 were constructed using the methods and protocol as mentioned above.

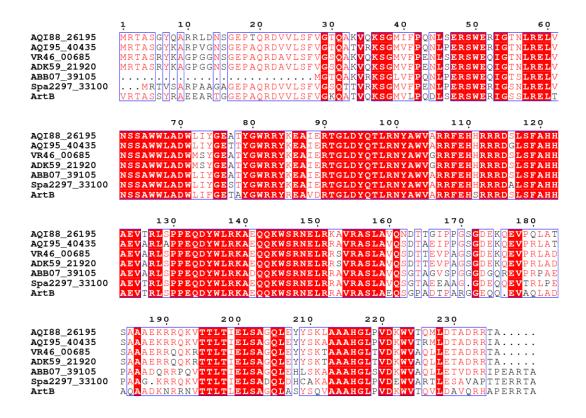
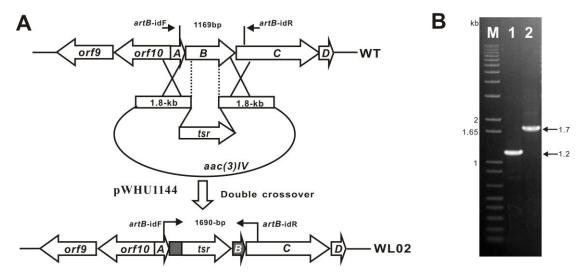
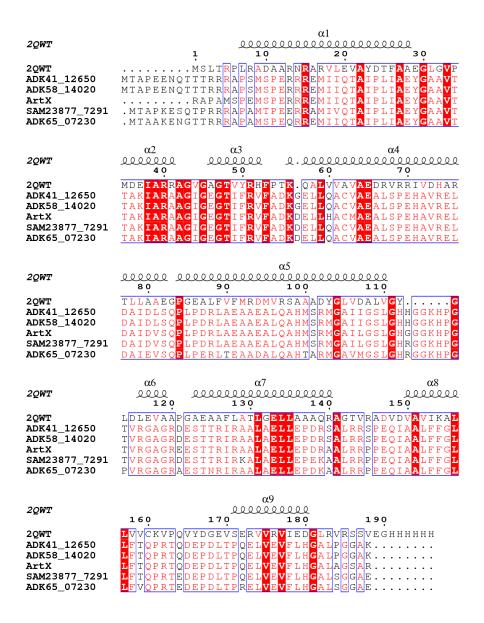
2.2 Generation of artB, artX, and artB & artX overexpression vectors.

To generate pWHU1146, the *artB* fragment was amplified with primers *artBexp*-F/R. After Ndel/EcoRI digestion, the fragment was inserted into the corresponding locus of plasmid pIB139 under the control of strong promoter *PermE** to give the *artB* overexpression plasmid pWHU1146. Similarly, pWHU1147 was constructed in consistence with the above method and protocol.

To construct pWHU1149, the *artX* fragment was amplified with primers *artXexp*-F/R and then it was cloned into pJTU968 under the control of *PermE** after the treatment by Ndel/EcoRI to generate pWHU1148. Subsequently, the Mfel-EcoRI engineered fragment containing *PermE** & *artX* was purified from pWHU1148 and it was inserted into the corresponding locus of pWHU1146 adjacent to *PermE** & *artB* region.

3. Supplemental Figures

Figure S1. HPLC analysis of aurantimycin A. A: HPLC analysis of aurantimycin A standard; B: HPLC analysis of aurantimycin A production from *S. aurantiacus* JA 4570 wild type.

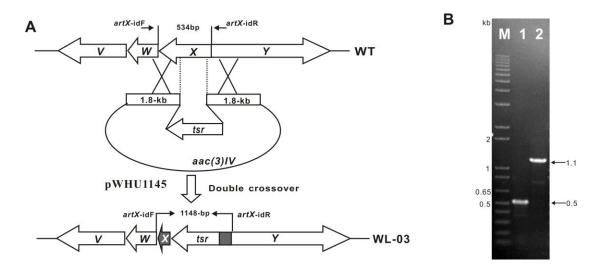
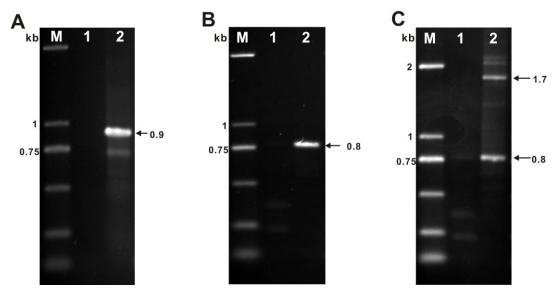
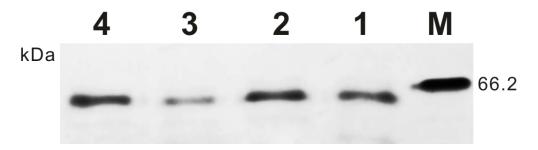
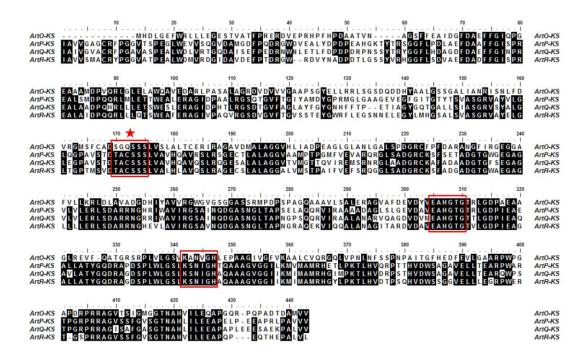

Figure S2. Alignment of ArtB and other regulators from *Streptomyces*. AQI88_26195: the amino acid sequence and secondary structure of AQI88_26195 from *Streptomyces resistomycificus* (Accession no. KUN90566); AQI95_40435: the amino acid sequence and secondary structure of AQI95_40435 from *Streptomyces yokosukanensis* (Accession no. KUM99164); VR46_00685: the amino acid sequence and secondary structure of VR46_00685 from *Streptomyces* sp. NRRL S-444 (Accession no. KJY47946); ADK59_21920: the amino acid sequence of ADK54_22460 ADK59_21920 from *Streptomyces sp.* XY332 (Accession no. KOY55936); ABB07_39105: the amino acid sequence of ABB07_39105 from *Streptomyces incarnatus* (Accession no. AKJ15893); Spa2297_33100: the amino acid sequence of Spa2297_33100 from *Streptomyces parvulus* (Accession no. ANJ11944).

Figure S3. Construction of WL-02 Mutant. **(A)** Schematic representation for construction of WL-02 mutants. **(B)** PCR identification of the WL-02 mutants. M: 1kb plus ladder, 1: Using genomic DNA of JA4570 wild type as template, 2: Using genomic DNA of WL-02 mutants as template.

Figure S4. Alignment of TetR regulators and the prediction of ArtX secondary structure. 2QWT: the amino acid sequence and secondary structure of 2QWT from *Mycobacterium vanbaalenii* (Accession no. WP_011778037); ADK41_12650: the amino acid sequence of ADK41_12650 from *Streptomyces caelestis* (Accession no. KOT40573); ADK58_14020: the amino acid sequence of ADK58_14020 from *Streptomyces sp.* XY152 (Accession no. KOV26843). SAM23877_7291: the amino acid sequence of SAM23877_7291 from *Streptomyces ambofaciens* ATCC 23877 (Accession no. AKZ60334); ADK65_07230: the amino acid sequence of ADK65_07230 from *Streptomyces sp.* NRRL B-1140 (Accession no. KOX03342).

Figure S5. Construction of WL-03 mutants. (A) Schematic representation for construction of WL-03 mutants. **(B)** PCR identification of the WL-03 mutants. M: 1kb plus ladder, 1: Using genomic DNA of JA4570 wild type as template, 2: Using genomic DNA of WL-03 mutants as template.

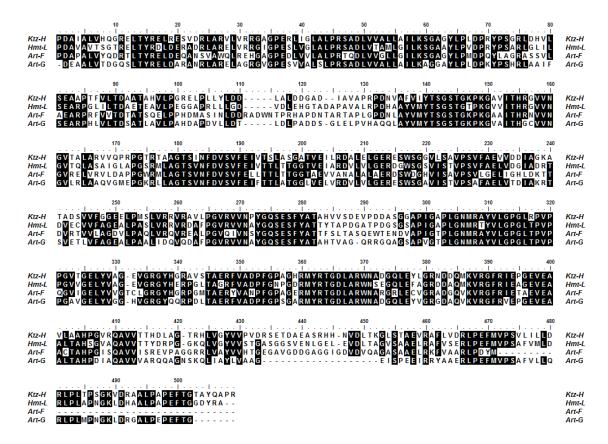

Figure S6. Identification of target gene overexpression strains. (A) PCR identification of the *artB* overexpression strains WL-04. M: DM2000, 1, Using genomic DNA of JA4570 wild type as template, 2 Using genomic DNA of WL-04 mutants as template; (B) PCR identification of the *artX* overexpression strains WL-05. M: DM2000, 1, Using genomic DNA of JA4570 wild type as template, 2 Using genomic DNA of WL-05 mutants as template; (A) PCR identification of the *artB&artX* overexpression strains WL-06. M: DM2000, 1, Using genomic DNA of JA4570 wild type as template, 2 Using genomic DNA of WL-06 mutants as template.

Figure S7. SDS-PAGE analysis of four A domains. M: protein ladder, Unstained Protein Molecular Weight Marker; 1: purified His6-tagged ArtC, 56.9kDa; 2: purified His6-tagged ArtF-A2, 59.6kDa; 3: purified His6-tagged ArtG-A1, 57.3kDa; 4: purified His6-tagged ArtH-A, 57.9kDa.

Figure S8. Alignment of four KS domains in PKSs of the *art* **cluster.** The sequences in rectangular signify the conserved sites for KS domains. The star demonstrates the substitution of the transthioesterification site Cys (C) of ArtP-KS.

Figure S9. Alignment of A domains activating piperazic acid. Ktz-H: the amino acid sequence of A domain of Ktz-H from *Kutzneria* sp. 744 (Accession no. EU074211); Hmt-L: the amino acid sequence of A domain of Hmt-L from *Streptomyces himastatinicus* ATCC 53653 (Accession no. FR823394).

4. Supplemental References

- Grafe U, Schlegel R, Ritzau M, Ihn W, Dornberger K, Stengel C, Fleck WF, Gutsche W, Hartl A, Paulus EF: Aurantimycins, new depsipeptide antibiotics from *Streptomyces aurantiacus* IMET 43917. Production, isolation, structure elucidation, and biological activity. *J Antibiot* (*Tokyo*) 1995, 48:119-125.
- 2. Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ: Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in *Streptomyces coelicolor* A3(2). *J Bacteriol* 1999, 181:204-211.
- 3. Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE: **Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to** *Streptomyces* **spp.** *Gene* 1992, **116:**43-49.
- 4. Del Vecchio F, Petkovic H, Kendrew SG, Low L, Wilkinson B, Lill R, Cortes J, Rudd BA, Staunton J, Leadlay PF: Active-site residue, domain and module swaps in modular polyketide synthases. *J Ind Microbiol Biotechnol* 2003, **30**:489-494.
- 5. Xu H, Zhang Y, Yang J, Mahmud T, Bai L, Deng Z: Alternative epimerization in C(7)N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily. Chem Biol 2009, 16:567-576.