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ABSTRACT 

Rocking of rigid bodies induced by seismic events triggers a number of complex dynamic phenomena 

such as impacts, sliding, uplift, which can potentially result in disastrous outcomes. Typical structures that 

present a significant seismic vulnerability with respect to overturning are water tanks, electrical and hospital 

equipment, statues and art objects. Several methods have been investigated in the past years to prevent the 

overturning or damage, such as rigid anchorages or base isolation devices. 

This paper presents some numerical investigations about a novel on-off adaptive control strategy for 

rigid blocks subjected to rocking motion. In more detail, control algorithms were specifically conceived to 

regulate an adjustable stiffness of two restrainers placed at the lower corners of the block. The control’s laws 

and the anchorage devices exhibited good performance when excited by simple one-sine pulse excitation, as 

reported by the authors in a previous study. The present work will instead investigate the performance and 

the robustness of the controlled system with respect to amplitude modulated harmonic excitations. 
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1 INTRODUCTION 

The study of the rocking motion of rigid objects interested many authors due to its intrinsic 

complexity and non-linearity. A thriving research area is the study of control strategies to minimise 

damage caused by the rocking motion. Typically, four different strategies are found in literature [1]: 

(i) lowering the centre of gravity of the rigid body; (ii) adjusting the base-to-height ratio proportions 

of the bodies; (iii) fixing the objects to the floor/wall and (iv) separating the objects from the 

ground using base isolation devices. Nonetheless, with respect to the significant amount of 

theoretical research on the response of free-standing blocks, there is a lack of studies about the 

response of anchored objects. The in-plane behaviour of a rigid block on a rigid plane anchored 

with elastic-brittle restraints was studied by Dimentberg et al. [2] and by Makris et al. [3]. In 

particular Dimentberg et al. investigated the behaviour of anchored blocks excited by white noise, 

while Makris et al. studied the response of them to pulse-type ground motions showing that there is 

a finite frequency range where the conclusions drawn by Dimentberg et al. do not hold concerning 

the response. The study of Makris et al. about pulse-type excitations reached the conclusion that, in 

general, anchored blocks survive to higher acceleration than free-standing blocks. However, it 

exists a frequency range where the opposite happens.  
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This paper aims to expand a previous work of the same authors about a novel control strategy 

[4] for the dynamics of rigid blocks. The control strategies regulates the stiffness of the anchorages 

restraining two lower corners of a block. The control’s laws and the anchorage devices exhibited 

good performance when excited by simple one-sine pulse excitation in the previous study. This 

article mainly investigates the performance of the control law when subject to quasi-harmonic 

excitation. At first, the analytical model used for computing the results is described. Successively, 

the two types of control laws are defined (i.e. a feedback and a feedback-feedforward control 

strategy). The performance of the two control strategies are assessed using an “ad hoc” utility 

index. Finally, the effect of amplitude modulated harmonic excitations and the influence of timing 

on the efficiency of the control laws are taken into consideration and quantified. 

 

2 ANALYTICAL MODEL OF THE CONTROLLED BLOCK 

The governing equations of rocking motion of unanchored (Figure 1a) and anchored (Figure 1b) 

rigid blocks are well known in literature. Housner [5] was the first to define the governing 

equations of the rocking motion of a rigid block subject to horizontal and vertical base excitations, 

taking into account the nonlinear effects. These equations were then modified by Makris et al. [6] in 

order to consider the presence of unilateral restraints placed at the corners of the rigid block. 

 

 

Figure 1 - A rigid rocking block, subjected to horizontal and vertical excitation  

(a) unanchored (b) anchored 

 

The semi-active restraint system is presented starting from the block model investigated by 

Dimentberg et al. [2], Zhang et al.[7] and Makris et al.[3]. The governing equations of rocking 

motion of a rigid block anchored with the semi-active restraint system can be derived from a 

rotational equilibrium about the two pivoting corners 0 and 0’: 
 

𝜃̈(𝑡) +
1

𝐼0
{𝑀𝑔(𝜃) + 𝑀𝑒𝑥(𝜃) +  𝑀𝐾,𝑇𝑂𝑇(𝜃, 𝐾) + 𝑀𝐷,𝑇𝑂𝑇(𝜃)} = 0 (1) 

where  𝑀𝑔(𝜃) and  𝑀𝑒𝑥(𝜃) are the moment due to the block self-weight and the external 

excitation while 𝑀𝐾,𝑇𝑂𝑇 (𝜃, 𝐾) and 𝑀𝐷,𝑇𝑂𝑇(𝜃) are the restoring moment exerted by the working 

spring and damper of the restraint system. The four moment terms read respectively: 
 

 𝑀𝑔(𝜃) = 𝑚𝑔𝑅sin(sgn[𝜃(𝑡)]𝛼 − 𝜃(𝑡)) (2) 
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 𝑀𝑒𝑥(𝜃) = 𝑚𝑋̈𝑔(𝑡)𝑅cos(sgn[𝜃(𝑡)] 𝛼 − 𝜃(𝑡)) + 𝑚𝑌̈𝑔(𝑡)𝑅sin(sgn[𝜃(𝑡)]𝛼 − 𝜃(𝑡)) (3) 

 𝑀𝐾,𝑇𝑂𝑇 (𝜃, 𝐾) =  𝑀𝐾 (𝜃, 𝐾)𝑓𝐾,𝑅(𝜃𝑚𝑖𝑛(𝑡))𝑓𝑊,𝑅(𝜃𝑚𝑖𝑛(𝑡)) + 

 𝑀𝐾 (𝜃, 𝐾)𝑓𝐾,𝐿(𝜃𝑚𝑖𝑛(𝑡))𝑓𝑊,𝐿(𝜃𝑚𝑖𝑛(𝑡)) 
(4) 

 𝑀𝐷,𝑇𝑂𝑇 (𝜃, 𝐾) =  𝑀𝐷 (𝜃, 𝐾)𝑓𝐷,𝑅(𝜃𝑚𝑖𝑛(𝑡))𝑓𝑊,𝑅(𝜃𝑚𝑖𝑛(𝑡)) + 

 𝑀𝐷 (𝜃, 𝐾)𝑓𝐷,𝐿(𝜃𝑚𝑖𝑛(𝑡))𝑓𝑊,𝐿(𝜃𝑚𝑖𝑛(𝑡)) 
(5) 

 

 𝑀𝐾 (𝜃, 𝐾) and 𝑀𝐷(𝜃) are themselves defined as: 
 

 𝑀𝐾 (𝜃, 𝐾) = [𝐾(𝑡) ∙ 4𝑏 sin |
𝜃(𝑡)

2
| ∙ 2𝑏 cos |

𝜃(𝑡)

2
|] ∙ 

= 𝐾(𝑡)  ∙ 4𝑅2sin2𝛼 ∙ sin|𝜃(𝑡)| 

(6) 

𝑀𝐷(𝜃) = 𝐷 (2𝑏 cos |
𝜃(𝑡)

2
| 𝜃̇(𝑡)) (2𝑏 cos |

𝜃(𝑡)

2
|) = 𝐷 4𝑏2 cos2 |

𝜃(𝑡)

2
| 𝜃̇(𝑡) (7) 

  

Other unknown terms in Eqs. (4) and (5) are the fracture functions, i.e. the functions used to 

establish which of the two anchorages is working during the rocking motion. Assuming either zero 

or one values, these functions either nullify or activate the restoring moment contribution of the 

different elements of the restraint system.  There are four fracture functions, one for each spring and 

damper elements. They require the knowledge of the block rotation associated to springs and 

dampers failure (𝜃𝐾,𝑢 and  𝜃𝐷,𝑢 respectively). Consequently, the fracture functions of the right and 

left adjustable springs, named respectively 𝑓𝐾,𝑅(𝜃𝑚𝑖𝑛(𝑡)) and 𝑓𝐾,𝐿(𝜃𝑚𝑎𝑥(𝑡)), assume value 0 or 1 

according to the following relationships: 
 

𝑓𝐾,𝑅(𝜃𝑚𝑖𝑛(𝑡)) = {
   1 𝑖𝑓 𝜃𝑚𝑖𝑛(∆𝑡) > −𝜃𝐾,𝑢  

   0 𝑖𝑓 𝜃𝑚𝑖𝑛(∆𝑡) ≤ −𝜃𝐾,𝑢 
 (8) 

𝑓𝐾,𝐿(𝜃𝑚𝑎𝑥(𝑡)) = {
   1 𝑖𝑓 𝜃𝑚𝑎𝑥(∆𝑡) < 𝜃𝐾,𝑢  

   0 𝑖𝑓 𝜃𝑚𝑎𝑥(∆𝑡) ≥ 𝜃𝐾,𝑢 
 (9) 

 

where ∆𝑡 is the time period elapsed from the beginning of the motion and the generic time 𝑡. 
Similarly, the fracture functions of the right and left damper devices, named respectively 

𝑓𝐷,𝑅(𝜃𝑚𝑖𝑛(𝑡)) and 𝑓𝐷,𝐿(𝜃𝑚𝑎𝑥(𝑡)), are defined by the relationships: 
 

𝑓𝐷,𝑅(𝜃𝑚𝑖𝑛(𝑡)) = {
   1 𝑖𝑓 𝜃𝑚𝑖𝑛(∆𝑡) > −𝜃𝐷,𝑢  

   0 𝑖𝑓 𝜃𝑚𝑖𝑛(∆𝑡) ≤ −𝜃𝐷,𝑢 
 (10) 

𝑓𝐷,𝐿(𝜃𝑚𝑎𝑥(𝑡)) = {
   1 𝑖𝑓 𝜃𝑚𝑎𝑥(∆𝑡) < 𝜃𝐷,𝑢  

   0 𝑖𝑓 𝜃𝑚𝑎𝑥(∆𝑡) ≥ 𝜃𝐷,𝑢 
 (11) 

 

The functions used to establish which of the two anchorages is working during the motion are 

two, like the positions of the restraint elements (the two corners of the body), and read: 
 

𝑓𝑊,𝑅(𝜃(𝑡)) = (
1 − 𝑠𝑔𝑛[𝜃(𝑡)]

2
) (12) 
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𝑓𝑊,𝐿(𝜃(𝑡)) = (
1 + 𝑠𝑔𝑛[𝜃(𝑡)]

2
) (13) 

 

where Eqs. (12) and (13) regulate the activation of the elements located at the right and left 

corner, respectively. An additional equation, connecting the angular velocities, immediately before 

and after the impact, must be coupled with Eq. (1) to determine the motion of a rigid block 

subjected a generic external excitation. Housner proposed for a free standing block a model to 

calculate the angular velocity of the rigid body immediately after the impact[5]. This model uses the 

following assumptions: (i) the impact is punctual; (ii) the impact time ∆𝑡I is very short; (iii) the 

block remains in the same position during the impact time. Under these assumptions, the 

relationship between the two angular velocities 𝜃̇(𝑡I
−) and 𝜃̇(𝑡I

+),  immediately before and after the 

impact, respectively, can be derived from the conservation of the angular momentum and reads: 
 

 𝜃̇(𝑡I
+) 

𝜃̇(𝑡I
−) 

= 1 −
3

2
sin2α = 𝑒 (14) 

 

In the literature 𝑒 is referred to as coefficient of restitution. Excluding bouncing motion, the 

value of 𝑒 varies in the range 0 ÷ 1.  Indeed, negative values of 𝑒,  for ℎ 𝑏 < 1 √2⁄⁄  indicate that the 

angular velocity changes its sign after the impact, this resulting into bouncing of the block [8].  A 

unitary value for e corresponds to very slender blocks while 0 value refers to blocks with ℎ 𝑏⁄ =

1 √2⁄ .  Several experimental tests have shown that the definition of 𝑒 based only on body's critical 

angle does not describe the real impact mechanism [9][10][11][12]. Nevertheless the value 

provided by Eq. (14) reflects approximately the mean value of the 𝑒 reported by experimental 

studies [12] [13]. 

The absence of a preload in the spring elements involves that the conditions to start and stop 

rocking motion of the anchored block are the same of the unanchored one. More specifically, the 

conditions to initiate a pure rocking motion are the same defined by Shenton et al. [14]  and 

Tamiguchi [15]. In order to evaluate whether after the impact the object will rest or will undergo 

uplift on the other corner, the absolute values of overturning moment 𝑀O and restoring moment 𝑀𝑅 

should be compared. The object will rest if the following inequality is satisfied:  

|𝑀𝑅| > |𝑀O| (15) 

 

3 CONTROL STRATEGIES 

The restoring moment exerted by the semi-active restraint system, described by Eq. (6), varies 

over time. The time variant feature of 𝑀𝐾,𝑇𝑂𝑇 must be ascribed to its dependence on the amplitude 

of the block rotation and on the value assumed at the generic time t  by the adjustable stiffness, K. 

Two control strategies, based on a bang-bang control law, to set the value of 𝐾 at the generic time 𝑡, 
have been investigated and compared.  

 

3.1 Feedback control strategy  

The first control strategy investigated, named CS01, is a feedback control and uses a bang-

bang strategy to set the stiffness of the semi-active restraint system. The aim of this strategy is to 

preserve the positive effect of the elastic-brittle anchorages on the stability of rocking body and 

minimise/overcome the negative one. Comparing the behaviour of anchored bodies and free 

standing ones Makris et al.[3] and Dimitrakopoulos et al. [16] found that not only do the anchorages 

increase the minimum acceleration required to overturn a block, but also increase its tendency to 

overturn after the impact. The working anchorage, as a matter of fact, pulls the block at the upright 
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position and propels it at higher angular velocity in the other direction. As a consequence, the 

collapse occurs after the impact and it is characterized by lower acceleration levels.  

In order to reduce/overcome the negative effect of the pull force and preserve the positive 

one, the first control strategy sets the value of K so that the magnitude of pull force is maximised 

when the block diverges from the upright position, and minimized in the opposite case. 

Consequently, the value of the adjustable stiffness K, at the generic time 𝑡, is set in accordance with 

the following law: 
 

𝐾(𝑡) = {
𝐾𝑚𝑎𝑥 𝑖𝑓 𝜃(𝑡) ∙ 𝜃̇(𝑡) ≥ 0

𝐾𝑚𝑖𝑛 𝑖𝑓 𝜃(𝑡) ∙ 𝜃̇(𝑡) < 0
 (16) 

 

The data required by control strategy CS01 are the signs of the angular velocity 𝜃̇(𝑡) and of 

the rotation 𝜃(𝑡). Figure 2  shows the value assumed by 𝐾 in accordance with this control strategy. 

 

 

Figure 2. First control strategy. Normalized time-history of ground motion, 

 rotation angle and  angular velocity of a block. 

 
 

3.2 Feedback-feedforward control strategy 

The second strategy under investigation, named CS02, is a case of feedback-feedforward 

control, i.e. where excitation is assumed to be available to the control algorithm. The stiffness of the 

semi-active anchorage is set using a bang-bang control law. The aim of the strategy is to adjust 

device parameters so as to reduce/nullify the magnitude of the destabilizing external action. As 

soon as the effects of the external force becomes zero and the body starts a free rocking motion, the 

working mode of control strategy CS02 switches to the working mode of control strategy CS01. 

Therefore, the stiffness of the anchorages is set using the following law: 
 

𝐾(𝑡) =

{
 
 

 
  𝑋̈𝑔(𝑡) = 0 {

𝐾𝑚𝑎𝑥 𝑖𝑓 𝜃(𝑡) ∙ 𝜃̇(𝑡) ≥ 0

𝐾𝑚𝑖𝑛 𝑖𝑓 𝜃(𝑡) ∙ 𝜃̇(𝑡) < 0

 𝑋̈𝑔(𝑡) ≠ 0    {
𝐾𝑚𝑎𝑥 𝑖𝑓  𝑋̈𝑔(𝑡) ∙ 𝜃(𝑡) ≤ 0

𝐾𝑚𝑖𝑛 𝑖𝑓  𝑋̈𝑔(𝑡) ∙ 𝜃(𝑡) > 0

 (17) 
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As said, this control strategy requires, in addition to the signs of the angular velocity 𝜃̇(𝑡) and 

of the rotation 𝜃(𝑡), also the direction of the external force. Figure 3 depicts the two working modes 

of the control strategy CS02. The block and the excitation are the same as in Figure 2. 

 

 

Figure 3 - Second control strategy. Normalized time-history of  ground motion,  rotation 

angle and angular velocity of a block. 
 

4 UTILITY INDEX 

The performance of the adjustable restraint system and of the control strategies to stabilise a 

rigid body has been evaluated through a utility index. The utility index is based on overturning 

spectra and requires the calculation, for each excitation frequency, of the minimum amplitude in 

acceleration, 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅, able to topple the block. The utility of a specific type of anchorage system 

can be defined at different excitation frequencies as percent increase of the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 with respect 

to a reference system (e.g. free standing block).  In the same respect, such a definition also requires 

to fix a maximum acceleration amplitude, namely 𝑎𝑚𝑎𝑥,0, with respect to which the system must be 

protected. From a practical point of view, 𝑎𝑚𝑎𝑥,0 can be assumed equal to the acceleration of 

gravity. If the minimum overturning acceleration of the reference system and of the investigated 

one are denoted by 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹 and  𝑎𝑚𝑖𝑛,𝑆𝑌𝑆, respectively, the benefit in terms of overturning 

acceleration produced by the anchorage system can be quantified by: 
 

∆𝑎𝑆𝑌𝑆(𝜔𝑝 𝑝⁄ ) =  𝑎𝑚𝑖𝑛,𝑆𝑌𝑆
∗ (𝜔𝑝 𝑝⁄ ) − 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹

∗ (𝜔𝑝 𝑝⁄ ) (18) 

 

where  𝑎𝑚𝑖𝑛,𝑆𝑌𝑆 
∗ and 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹

∗  read, respectively:  

𝑎𝑚𝑖𝑛,𝑆𝑌𝑆 
∗ (𝜔𝑝 𝑝⁄ ) = {

𝑎𝑚𝑖𝑛,𝑆𝑌𝑆(𝜔𝑝 𝑝⁄ )  𝑖𝑓 𝑎𝑚𝑖𝑛,𝑆𝑌𝑆(𝜔𝑝 𝑝⁄ ) < 𝑎𝑚𝑎𝑥,0

𝑎𝑚𝑎𝑥,0                  𝑖𝑓 𝑎𝑚𝑖𝑛,𝑆𝑌𝑆(𝜔𝑝 𝑝⁄ ) ≥ 𝑎𝑚𝑎𝑥,0
 (19) 

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

time (s)

 

 

1

2

3

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

time (s)

 

 

1

2

3

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

time (s)

 

 

1

2

3



 

7 

 

𝑎𝑚𝑖𝑛,𝑅𝐸𝐹 
∗ (𝜔𝑝 𝑝⁄ ) = {

𝑎𝑚𝑖𝑛,𝑅𝐸𝐹(𝜔𝑝 𝑝⁄ )  𝑖𝑓 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹(𝜔𝑝 𝑝⁄ ) < 𝑎𝑚𝑎𝑥,0

𝑎𝑚𝑎𝑥,0                  𝑖𝑓 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹(𝜔𝑝 𝑝⁄ ) ≥ 𝑎𝑚𝑎𝑥,0
 (20) 

 

The utility index 𝐽 𝑂𝑆 is then defined as:  
 

𝐽𝑂𝑆 = 100(
1

𝑁∗
∑

 ∆𝑎𝑆𝑌𝑆(𝜔𝑝 𝑝⁄ )

 ∆𝑎𝑅𝐸𝐹(𝜔𝑝 𝑝⁄ )

𝑁

𝑛=1

) (21) 

 

with: 
 

∆𝑎𝑅𝐸𝐹(𝜔𝑝 𝑝⁄ ) = {
𝑎𝑚𝑎𝑥,0 − 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹

∗ (𝜔𝑝 𝑝⁄ ) 

𝑎𝑚𝑖𝑛,𝑅𝐸𝐹
∗ (𝜔𝑝 𝑝⁄ )                 

 
 𝑖𝑓 𝑎𝑚𝑖𝑛,𝑆𝑌𝑆

∗ (𝜔𝑝 𝑝⁄ ) ≥ 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹
∗ (𝜔𝑝 𝑝⁄ ) 

𝑖𝑓   𝑎𝑚𝑖𝑛,𝑆𝑌𝑆
∗ (𝜔𝑝 𝑝⁄ ) < 𝑎𝑚𝑖𝑛,𝑅𝐸𝐹

∗ (𝜔𝑝 𝑝⁄ )
 (22) 

 

where 𝑁∗ is the number of investigated frequencies that present   𝑎𝑚𝑖𝑛,𝑆𝑌𝑆  or   𝑎𝑚𝑖𝑛,𝑅𝐸𝐹 smaller 

than  𝑎𝑚𝑎𝑥,0. The aim of this assumption is to evaluate the mean utility of the control and therefore 

of the adaptive restraint system in the range of interest for seismic excitations. 𝐽𝑂𝑆, expressed as 

percentage, can assume zero, positive or negative values. More specifically, a zero value implies no 

benefit in terms of block stability; a positive value reflects an increase of 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 of the 

investigated system compared with the reference one; while a negative value of  𝐽 𝑂𝑆 indicates a 

reduction of the block stability. 

 

5 ROBUSTENESS OF THE CONTROL STRATEGY WITH RESPECT TO NOISE 

In order to understand the importance of noise components for the performance of the 

adaptive restraint system, a benchmark block has been investigated (B=0.40 m, H=1.60 m, By=0.47 

m, R=0.82 m, λ=4 and p=3 rad/s). The results presented in this study are limited to this type of 

block, even though the authors investigated several blocks with different B/H ratios. The block was 

subjected modulated harmonic excitations (see Figure 4a) of the following form: 
 

𝑋̈𝑔(𝑡) =
90𝑡2 ∙ (𝑡 − 𝑇𝑑)

6

𝑇𝑑
8 ∙ 𝑎𝑝 ∙ 𝑠𝑖𝑛 (𝜔𝑝 ∙ (𝑡 − 𝑇𝑑)) (23) 

 

where 𝑇𝑑 is the duration of the intense part of the strong motion and is assumed equal to five times 

the period defined as 2𝜋 𝜔𝑝⁄ . To this baseline harmonic excitation three different levels of noise, 

respectively set equal to 1%, 5% and 10% of the excitation energy, have been added (see Figure 

4b).  
 

  

Figure 4 – (a) Baseline harmonic excitation with variable amplitude (b) amplitude-modulated 

harmonic excitation contaminated with noise (with correspondence in term of energy content and 

PGA value). 
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The harmonic excitations, with time-varying amplitude and contaminated with noise (SVN 

from this point on) were generated without altering the energy content and the Peak Ground 

Acceleration (PGA) value of the excitations, independently from the levels of noise. Indeed, in 

accordance with previous studies, the values assumed by these two quantities are known to be 

crucial for the body stability[5] [8][17][18][19]. 

 

5.1 Influence of high frequency components on the stability of a free-standing block  

The degradation of the control strategies due to noise components was investigated, studying 

the dynamic behaviour of a free standing (FS) block and controlled one (CS01 and CS02), in terms 

of minimum acceleration required for the body overturning. For instance, Figure 5(a) depicts the 

lower threshold of the unsafe region for amplitude-modulated harmonic excitations contaminated 

with two different noise realisations, whilst Figure 5(b) compares the block rotation time-history 

evaluated for the main frequency and amplitude, labelled with “Ex01” in Figure 5(a). 

 

  

Figure 5 - (a) Lower threshold of the overturning area evaluated for two different realisations of 

Gaussian white noise (N°1 and N°2); (b) Comparison of BLC06 rotation time-history for excitation 

“Ex01” in Figure 5(a). 
 

To overcome the variability of the minimum acceleration, an appropriate number of noise 

realisations must be considered. Increasing progressively the number of noise realisations it was 

observed that the minimum number of contaminated signals to be taken into account to define a 

stable 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 was in the range of 40. In fact, as shown in Figure 6(a) for a FS block subjected to 

contaminated-amplitude-modulated harmonic excitations, the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 tends to converge to a 

stable threshold for the aforementioned numbers of noise realisations. Therefore, from this point on 

the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 of SVN excitations will be assumed to coincide with the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 determined 

considering 40 noise realizations. Figure 6(b-c-d) reflects the different sensitivity of the 

uncontrolled and controlled blocks to noise (R001, R005, R010). In more detail, the discrepancy 

between the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 of the contaminated in  and pure amplitude-modulated harmonic excitations 

decreases when moving from the uncontrolled free standing block to the controlled one. In fact, in 

the presence of noise 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 of the controlled block becomes more smoothed and spikes tend to 

disappear. Furthermore, reducing the level of noise, the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 of the free standing block 

decreases while the 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 of the controlled block increases. The different trends of 𝑎𝑚𝑖𝑛,𝑂𝑉𝐸𝑅 

with the level of noise value can be appreciated also by the values of the utility index 𝐽𝑂𝑆 reported 

in Table 1. The value of  𝐽𝑂𝑆 of the free standing block decreases with increasing the level of noise, 

whilst the opposite happens for the controlled body. Reducing the level of noise, the discrepancy in 

the performances of the two control strategies decreases. In spite of this, the block controlled 
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through the feedback strategy (CS01) results to be more stable than the block controlled by the 

feedback-feedforward strategy (CS02). 

 

  

  

Figure 6 - Lower threshold of the overturning regions of BLC06 evaluated for (a) increasing 

number of noise realisations (b) FS block; (c) block controlled, CS01 strategy; (d) block controlled, 

CS02 strategy. 

 

Table 1:  Utility index 𝐽𝑂𝑆  associated to different noise levels (R001, R005, R010). The two 

columns report the percent obtained by assuming as a reference threshold respectively: the noise 

free one (R000); and the threshold of the FS system with the same noise level. 

Control 

strategy 

𝑱𝑶𝑺 with ref. no noise 𝑱𝑶𝑺  with ref. FS with noise 

R001 R005 R010 R001 R005 R010 

FS -2.01% -5.43% -6.28% - - - 

CS01 -2.88% -1.61% -0.26% +28.02% +30.51% +32.44% 

CS02 +1.18% +2.13% +8.09% +16.55% +19.65% +23.52% 

 

5.2 Influence of timing on the stability of the controlled block  

The thresholds of the overturning regions can be affected by the sampling ratio, whose 

influence was studied in the range 2.5 ms to 0.20 s, where it was found that the feedback strategy 

CS01 was still the more stable, in fact appreciable difference was found only for the largest 

sampling time of 0.20 s. As shown in Figure 7, control strategy CS02 deteriorates its performance 

for sampling time as low as 0.10 s.  

Successively, simulations regarded the joint effect of sampling and delay (e.g. due to 

actuation). The influence of the delay, ∆𝜏, on the threshold for the two control strategies is shown in 
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Figure 8. The graphs in Figure 8 show that realistic values for the actuation delay, in the range of 

0.06 ms, do not affect significantly the performance of the control, except for some local effects.  
 

  

Figure 7 - Overlapping of the lower thresholds of the overturning spectra of the block 

controlled through the control strategy CS01 (a) and CS02(b) subjected to harmonic excitations 

with amplitude modulation and different value of  𝑇𝑠 and noise  RMS of 5%.   
 

  

Figure 8 - Overlapping of the lower thresholds of the overturning spectra of the block 

controlled through the control strategy CS01 (a) and CS02(b) subjected to harmonic excitations 

with amplitude modulation and different value of   ∆𝜏 and noise  RMS of 5% . 𝑇𝑠 is assumed 

constant and equal to 100 ms. 

 

6 CONCLUSIONS 

This paper has presented a few numerical investigations about the performance and the 

robustness of on-off adaptive control strategies against rocking motion. The efficiency of this semi-

active control was tested with respect to quasi-harmonic excitations. The influence of noise on the 

stability of a free-standing and of a controlled block was quantified. In particular, a feedback 

control law (CS01) demonstrated to be more robust than a feedback-feedforward one (CS02). In 

fact, whilst the utility index for law CS01 was seen to be in the range +28% to +32% for noise up to 

the 10% of the harmonic input signal, for law CS02 the same index fell in the range +16% to +23%. 

For what concerns the influence of sampling rate, it was found that the feedback control strategy is 

less affected by sampling than the feedback-feedforward one. Finally, the effect of action actuation 

delay was considered for two values: 2.5 ms and 60 ms. It was concluded that both strategies 

perform well with respect to time-delay effects, as the threshold between overturning area and safe 

area remained substantially the same. 
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