Dahurelmusin A, a Hybrid Peptide-Polyketide from *Elymus dahuricus* Infected by the *Epichloë bromicola* Endophyte

Qiu-Yan Song,[†] Hai-Tao Yu,[‡] Xing-Xu Zhang,[†] Zhi-Biao Nan,^{*,†} and Kun Gao^{*,§}

[†] State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

[‡] Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China

[§] State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

^{*} Corresponding authors,

E-mail: zhibiao@lzu.edu.cn (Z. B. Nan), npchem@lzu.edu.cn (K. Gao).

Contents of supporting information:

Page

- **S3** MATERIALS AND METHODS
- S6 Crystal data and structure refinement for dahurelmusin A.
- **S7** ¹H NMR spectrum (400 MHz, $CDCl_3$) of dahurelmusin A.
- **S7** ¹³C NMR spectrum (100 MHz, CDCl₃) of dahurelmusin A.
- **S8** DEPT spectrum (400 MHz, CDCl₃) of dahurelmusin A.
- **S8** COSY spectrum (400 MHz, CDCl₃) of dahurelmusin A.
- **S9** HMQC spectrum (400 MHz, CDCl₃) of dahurelmusin A.
- **S9** HMBC spectrum (400 MHz, CDCl₃) of dahurelmusin A.
- **S10** NOESY spectrum (400 MHz, CDCl₃) of dahurelmusin A.
- **S10** HRESIMS of dahurelmusin A.
- **S11** UV and CD spectra of dahurelmusin A (in MeOH).
- **S11** IR spectrum of dahurelmusin A.

MATERIALS AND METHODS

General Experimental Procedures. X-ray crystallography was performed on a Bruker Smart CCD diffractometer (Bruker Ltd, Karlsruhe, Germany) using graphic-monochromated Cu K α radiation. Optical rotations were determined with a Perkin-Elmer 341 polarimeter (Perkin-Elmer Ltd, Waltham, MA). Circular dichroism was determined with an Olis DSM 1000 spectrometer (Olis, Atlanta). Column chromatography was performed with a macroporous resin (HP-20) (Mitsubishi Chemical Corporation, Tokyo, Japan), silica gel (200-300 mesh) (Qingdao Marine Chemical Factory, China), Sephadex LH-20 (Amersham Pharmacia Biotech, Tokyo, Japan), and RP-18 (Merck, Darmstadt, Germany). Thin-layer chromatography (TLC) was performed with silica gel GF₂₅₄ plates (10–40 μ m) (Qingdao Marine Chemical Factory, China). IR spectrum was obtained with a Nicolet FT-IR-360 spectrometer (Thermo Nicolet Inc., Waltham, MA). UV spectrum was obtained with a Shimadzu UV-260 spectrophotometer (Shimadzu Instruments Co., Ltd, Tokyo, Japan). ¹H and ¹³C NMR spectra were determined with a Bruker AM-400BB (400 MHz) spectrometer (Bruker Ltd, Karlsruhe, Germany); values of δ in ppm are relative to TMS; values of J are given in Hz. HRESIMS was performed with a Bruker APEX-II mass spectrometer (Bruker Ltd, Karlsruhe, Germany), and results are presented in terms of m/z.

Plant Materials. The endophyte in *Elymus dahuricus (E. dahuricus)* was first reported in China by Li et al. and was examined using the aniline blue coloring (0.1% aqueous) method.¹ The endophyte-infected *E. dahuricus* was further studied by our research group in 2007 and was determined as *Epichlo* \ddot{e} sp..² In 2015, the fungus was identified as *Epichlo* \ddot{e} *bromicola* (*E. bromicola*) by our laboratory.³ We sowed the seeds of *E. bromicola*-infected *E. dahuricus* (E+) in pots at the Yuzhong Campus of Lanzhou University, China. Thirty-two plots (2 treatments × 16 replicates) were randomly built. The area of the plot was 16 m² (4 × 4) with 6 lines of 10 listed (40 cm apart), consisting of 60 plants in each plot. A voucher specimen (no. 20130924-01) has been deposited at Grassland Protection Academy of State Key Laboratory of

Grassland Agro-ecosystems of Lanzhou University.

Extraction, Isolation, and Purification Process. The air-dried and powdered leaves and stems of E+ (4.0 kg) was extracted three times (each time for 7 days) with methanol (MeOH) at room temperature and filtered to yield a filtrate, which were evaporated under reduced pressure, and partitioned with ethyl acetate (EtOAc) and *n*-BuOH, respectively. The EtOAc partition (25.0 g) was applied to macroporous resin column chromatography (HP-20, 2 L) and eluted with gradient mixtures of H₂O-EtOH (70:30, 50:50, 10:90) to give three fractions (labeled as Fr-A–Fr-C). Fr-B was purified by column chromatography on an RP-18 column (30 × 2 cm) (800 mL, H₂O/MeOH, 1:1) and underwent recrystallization from acetone to produce metabolite **1** (9.2 mg).

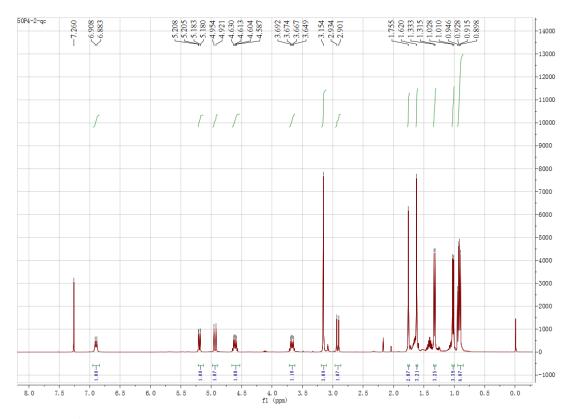
Dahurelmusin A, **1**, was a colorless crystal with $[\alpha]_D^{17}$ -15 (*c* 0.50 in MeOH). The melting point was 180-181 °C. HRESIMS indicated *m/z* 377.2047 [M + Na]⁺ (calculated for [C₁₈H₃₁O₅N₂Na] 377.2047). IR parameters (*v*KBr_{max}) were 3319, 1719, 1701, and 1687 cm⁻¹.

Insecticidal Assay. The insecticidal activities of compound **1** against *Rhopalosiphum padi* (*R. padi*) and *Brevicoryne brassicae* (*B. brassicae*) were evaluated by leaf-dip method using a previously reported procedure.⁴ The assay was repeated in an air-conditioned room at 25 ± 2 °C. Each tested sample was dissolved in acetone at a concentration of 2 g/L and diluted with distilled water containing TW-80 (0.1 mg/L) to obtain a required concentration. For comparative purposes, the positive control (imidacloprid) was tested under the same conditions. Water containing TW-80 (0.1 mg/L) was used as control. Leaf disks (5 cm × 3 cm) were cut from fresh corn leaves and then dipped into the test solution for 3 s. After air-drying the treated leaf disks and 30 *R. padi* and *B. brassicae* were placed individually into the disks. The mortalities were evaluated 3 days after treatment. All the assays were repeated in triplicate. The LC₅₀ values were obtained using the SPSS program (version 22.0). The insects, *R. padi* and *B. brassicae* were provided by Institute of Plant Protection, Gansu Academy of Agricultural Sciences.

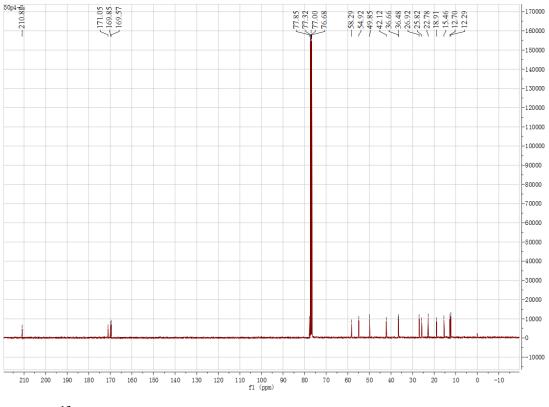
The LC₅₀ values of imidacloprid against R. padi and B. brassicae were 0.078 \pm

0.005 and 0.018 \pm 0.003 mM, respectively.

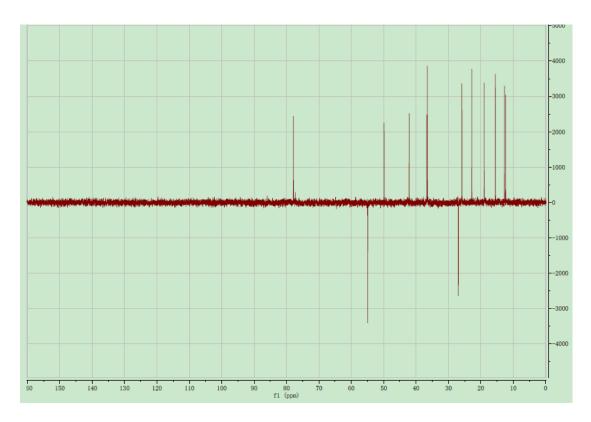
(1) Nan, Z. B.; Li, C. J. Roles of the grass-*Neotyphodium* association in pastoral agriculture systemsn. *Acta Ecol. Sin.* **2004**, *24*, 605-616.

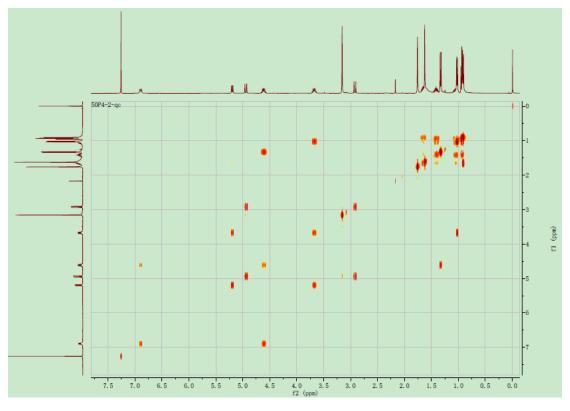

(2) Zhang, Y. P.; Nan, Z. B. Distribution of epichloe "endophytes in Chinese populations of *Elymus dahuricus* and variation in peramine levels. *Symbiosis* **2007**, *43*, 13-19.

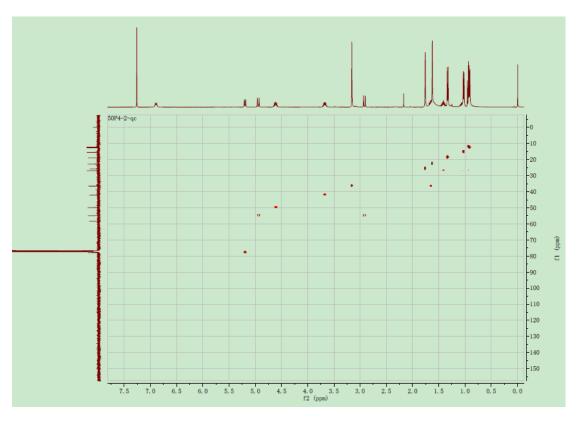
(3) Song, H.; Nan, Z. B. Origin, divergence, and phylogeny of asexual *Epichlo ë* endophyte in *Elymus* species from Western China. *Plos One* **2015**, *10*, e0127096/1-13.

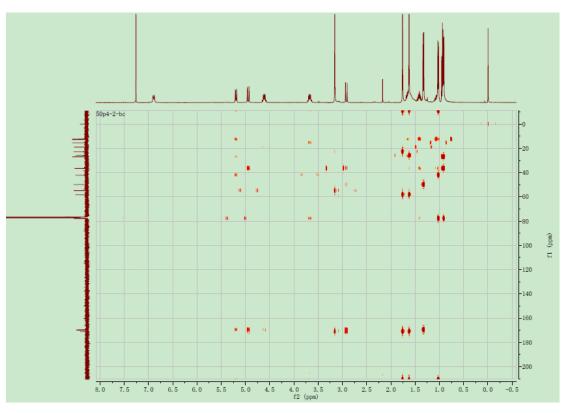

(4) Ma, Q. Q.; Liu, Y. X.; Zhang, P. X.; Li, Y. Q.; Xiong, L. X.; Wang, Q. M. Design, synthesis, and biological evaluation of various α -substituted benzylpyrroles based on the structures of insecticidal chlorfenapyr and natural pyrrolomycins. *J. Agric. Food Chem.* **2014**, *62*, 6072-6081.

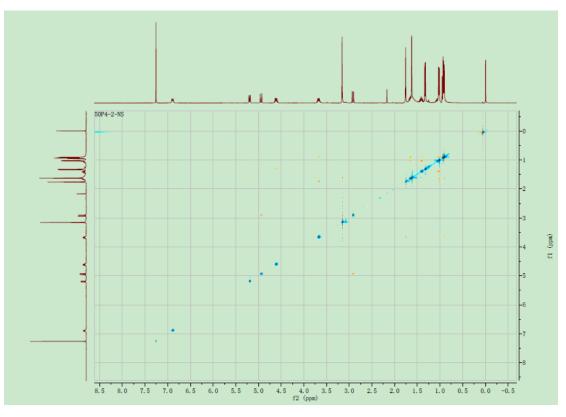
project	data
Empirical formula	$C_{18}H_{30}N_2O_5$
Formula weight	354.44
Temperature/K	273.77(10)
Crystal system	tetragonal
Space group	P4 ₃
a/Å	10.0307(16)
b/Å	10.0307(16)
c/Å	19.782(3)
<i>a</i> / °	90
β/ °	90
γ/ °	90
Volume/Å ³	1990.4(7)
Z	4
$\rho_{calc}g/cm^3$	1.183
μ/mm^{-1}	0.704
F(000)	768.0
Crystal size/mm ³	$0.12 \times 0.06 \times 0.04$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.816 to 139.07
Index ranges	$-12 \le h \le 9, -11 \le k \le 11, -23 \le l \le 12$
Reflections collected	3431
Independent reflections	2374 [$R_{int} = 0.0235$, $R_{sigma} = 0.0466$]
Data/restraints/parameters	2374/1/233
Goodness-of-fit on F ²	0.977
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0527, wR_2 = 0.1239$
Final R indexes [all data]	$R_1 = 0.0866, wR_2 = 0.1508$
Largest diff. peak/hole / e Å ⁻³	0.12/-0.16
Flack parameter	-0.1(3)

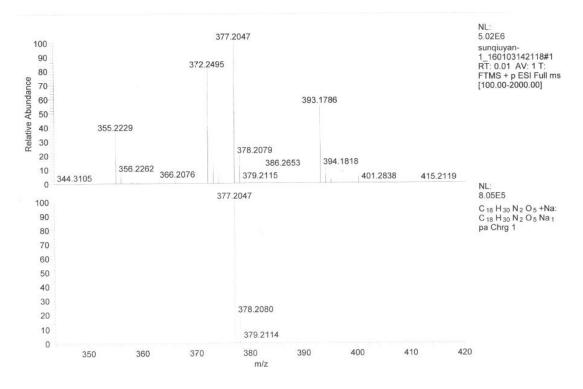

Crystal data and structure refinement for dahurelmusin A.

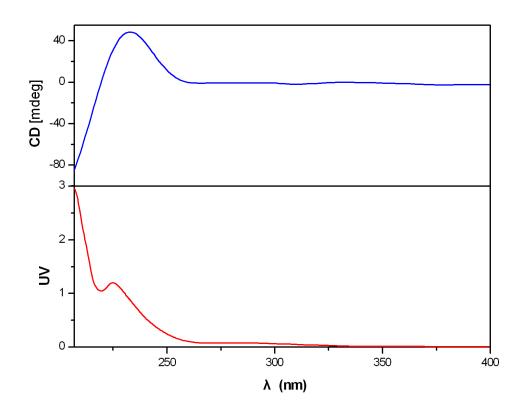

¹H NMR spectrum (400 MHz, CDCl₃) of dahurelmusin A.

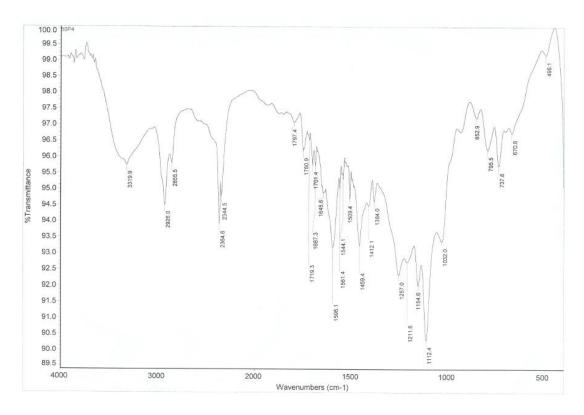

¹³C NMR spectrum (100 MHz, CDCl₃) of dahurelmusin A.

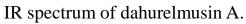

DEPT spectrum of dahurelmusin A.


COSY spectrum (400 MHz, CDCl₃) of dahurelmusin A.


HSQC spectrum (400 MHz, CDCl₃) of dahurelmusin A.


HMBC spectrum (400 MHz, CDCl₃) of dahurelmusin A.


NOESY spectrum (400 MHz, CDCl₃) of dahurelmusin A.



HRESIMS of dahurelmusin A.

UV and CD spectra of dahurelmusin A (in MeOH).

