Supporting Information

Photocurrent Switching of Monolayer MoS2 using Metal-Insulator Transition

Jin H. Lee,^{1,2,€} Hamza Z. Gul,^{1,2,€} Hyun Kim,^{1,2} Byoung H. Moon,² Subash Adhikari,^{1,2} Jung H. Kim,^{1,2} Homin Choi,^{1,2} Young H. Lee^{1,2,*} and Seong C. Lim^{1,2,*}

¹Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

²Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.

1. Growth conditions for MoS₂

In order to synthesize MoS₂, a promoter for the growth seed was first prepared by dissolving sodium cholate (SC) hydrate (Sigma-Aldrich, C6445) into DI water (0.1 g of SC in 10 ml of DI water). We also separately prepared ammonium molybdate tetrahydrate (11.5 mM, Sigma-aldrich, 431346) as a Mo precursor, and mixed it with the promoter. A droplet of the mixture solution was dropped onto a SiO₂/Si wafer and spin-casted at 2800 rpm for 1 min. A total of 150 mg of sulfur chip on the substrate was placed in the growth system with two separate heating zones. The preheating zone temperature was increased to 210 °C at a rate of 42 °C/min for the sublimation of S. The growth zone was heated to 780 °C. The entire process was carried out under 500 sccm N₂ for 16 min. The as-grown monolayer MoS₂ flakes are shown in Fig. S1(a). The length of each side of the triangular MoS₂ flake (indicated by an

^{*} Correspondence should be addressed to: leeyoung@skku.edu, seonglim@skku.edu

arrow) is approximately 50 μ m. To confirm the crystallinity, the flakes were studied via Raman spectroscopy using laser light with a wavelength of 532 nm. Spectroscopy reveals fingerprint-like peaks of E_{2g}^1 and A_{1g} at 383.1 cm⁻¹ and 402.5 cm⁻¹, respectively. The peak separation between E_{2g}^1 and A_{1g} is used to signify the monolayer of MoS₂. In Fig. S1(b), the peak separation is approximately 19.4 cm⁻¹, which is consistent with the monolayer.

Figure S1. (a) Optical image and (b) Raman spectroscopy of CVD-grown MoS_2 mon olayer flakes.

2. Carrier concentration of MoS₂ in parallel capacitor model

We can obtain the carrier concentration of MoS_2 induced by the gate bias by using a parallel capacitor model. By drawing a linear tangential line (red line) in the electric transport graph (black line) at V_{gs} giving the transconductance peak, the threshold voltage ($V_{th} \sim 19 \text{ V}$) is extracted. At the onset of the threshold voltage point, the channel changes from nonconducting to conducting, and the number of electrons in the channel increases. This increase in the number of induced electrons n_g caused by the gate bias can be calculated using a parallel capacitor model (eq. 1).

$$n_{g} = \frac{C_{ox}(V_{gs} - V_{th})}{q}$$
 (eq. 1)

where q is the electric charge of an electron, and C_{ox} is the capacitance of the gate oxide. In our samples, 300-nm-thick silicon oxide is used as the gate oxide (the dielectric constant is 3.9). Using these parameters, the number of induced electrons is indicated by the blue line. From our calculations near $V_{gs} = 60$ V, the carrier concentration reaches approximately n = $1.0 \times 10^{13}/\text{cm}^2$.

Figure S2. Drain current I_{ds} (Y1 axis) and channel carrier density n_g (Y2 axis) as functions of backgate bias V_{gs} .

3. Extraction of SBH of MoS₂ FET

We now characterize the SBH of our devices. MoS_2 FETs on SiO₂ and h-BN substrates are fabricated with four electrodes, as shown in Figs. S3(a) and 3(b). The fabrication of a fourelectrode device is intended to probe the series resistance or channel resistance in order to evaluate an accurate SBH. Thus, we study the total resistance (R_{total}), contact resistance ($R_{contact}$), and channel resistance ($R_{channel}$) of our devices. $R_{channel}$ is obtained by running current between electrodes 1 and 4 and measuring the voltage between electrodes 2 and 3 in Fig. S3(a) [1]. The resistance between electrodes 2 and 3 measured with two probes gives R_{total} of the device. Then, $R_{contact}$ is extracted by subtracting $R_{channel}$ from R_{total} . These three different types of device resistance on the SiO₂ substrate are plotted as a function of $V_{gs} > V_{th}$, as shown in Fig. S5(a). V_{ds} of the device on the SiO₂ substrate is 0.3 V. $R_{contact}$ is always larger than $R_{channel}$. The gap between $R_{contact}$ and $R_{channel}$ grows larger as V_{gs} increases.

The same comparative study is carried out using h-BN as a substrate. Remarkably, a MoS₂ FET on an h-BN substrate has $R_{contact}$ that is much larger than $R_{channel}$, as shown in Fig. S5(c). In addition, $R_{channel}$ of a MoS₂ FET on h-BN substrate is much lower than that on SiO₂. It is expected that the lower $R_{channel}$ for h-BN substrates results from a reduced scattering of carriers by ionic impurities that populate less on h-BN than SiO₂ substrates. It is possible that the inner metal contacts from van der Pauw method can perturb the electronic structure. In order to avoid such an artifact from the measurement, transfer line [2,3] or Hall bar measurement [4,5] is recommended.

Figure S3. Optical images of four-electrode MoS_2 devices on (a) SiO_2 substrate and (b) h-BN layer.

In order to compare the SBHs for different substrates, devices are characterized by sweeping V_{ds} (-1.0 to 1.0 V) and V_{gs} (0 to 50 V), as shown in the insets of Figs. S4(a) and 4(b). The temperature of the device changes from 300 to 80 K in decrements of 20 K. Prior to the estimation of the SBH, ideality factor *n*, which measures the deviation from thermionic emissions by considering the effect of traps, is calculated. For *n*, the thermionic I-V relationship of a Schottky barrier is given as $I_{ds} = I_s e^{qV/n\kappa_BT} (1 - e^{-qV/\kappa_BT})$, where I_s is the saturation current, which can be further expressed as $I_s = AA^*T^2e^{-q\phi_B/\kappa_BT}$, where A is the junction area and A* is the Richardson constant [6]. The slope of $\ln\left[\frac{I_{ds}}{1 - e^{-qV/\kappa_BT}}\right]$ vs. $V_{contact}$

is equal to $\frac{q}{n\kappa_B T}$. Using this, we estimated the value of *n* for our device. $V_{contact}$ is shown in Figs. S4(a) and 4(b) for both devices.

Figure S4. $\ln\left[\frac{I_{ds}}{1-e^{-qV/\kappa_BT}}\right]$ vs. $V_{contact}$ at various V_{gs} of MoS₂ FET on (a) SiO₂ and (b) h-BN substrates. The inset shows I_{ds}-V_{ds} curves at various V_{gs} on the former and the latter. Richardson plots at different V_{gs} of MoS₂ FET on (c) SiO₂ and (d) h-BN substrate. The inset shows I_{ds}-V_{gs} curves at various temperatures on the former and the latter.

A comparison of *n* for two- and four-terminal devices exhibits the same value of 2.3 for the SiO₂ substrate. Using the same process for the h-BN device, we obtained a slightly lower ideality factor (n = 1.9) compared with that of SiO₂ gate dielectrics. A higher ideality factor for SiO₂ compared with h-BN results from the increased effect of trap sites in the channel in SiO₂.

The SBH of MoS_2 FETs on SiO_2 and h-BN substrates is estimated using an I-T relation shown in inset of Figs. S4(c) and 4(d), also known as the *Richardson plot*:

$$\ln(\frac{I_{ds}}{T^{3/2}}) = \ln(AA^*) - q(\phi_B - V/n)/\kappa_B T \text{ shown in Figs. S4(c) and 4(d). At a given V_{ds}, \text{ from}$$

the slope of $\ln(\frac{I_{ds}}{T^{3/2}})$ vs. 1000/T, we calculate the Schottky barrier height. When $V_{ds} = 0.3$ V, SBH depending on V_{gs} - V_{th} is plotted in Fig. S5(b) for the device on a SiO₂ dielectric. The SBH near the flat band voltage ranges roughly from 165 to 135 meV, and no remarkable difference in SBH is observed with or without series resistance. This implies that $R_{contact}$ is much more dominant over $R_{channel}$ near the flat band voltage. The SBH of the device on an h-BN layer is found to be much lower (ranging approximately from 70 to 60 meV) than that of the device on SiO₂. Again, the difference of the SBH in the two- and four-electrode measurements is approximately 10 meV. Thus, the effect of $R_{channel}$ becomes more significant compared with that of the device on SiO₂. This is a result of a lower SBH for the MoS₂ FET on an h-BN layer. From Figs. S5(b) and 5(d), it is confirmed again that the SBH is much lower on h-BN than on SiO₂ substrate.

Figure S5. (a) R_{total} , $R_{channel}$, and $R_{contact}$ and (b) SBH of MoS₂ device on SiO₂ substrate. (c) R_{total} , $R_{channel}$, and $R_{contact}$ and (d) SBH of MoS₂ device on h-BN substrate.

4. Experimental setup

To better understand the photocurrent mechanism in our sample, we utilized a custom-made photocurrent scanning system, as shown in Fig. S6(a). The scanning system has a CW laser with a wavelength of 532 nm and an objective lens with a numerical aperture of 0.60. Using a mirror scanning system, the laser light was rastered on the surface of the sample [inset of Fig. S6(a)], which was located inside a mini-cryostat. The scanning area was approximately $80 \times 80 \ \mu\text{m}^2$. In order to characterize the samples, we employed DC and AC photocurrent measurement systems whose schematics are shown in Figs. S6(b) and S6(c), respectively.

Figure S6. (a) Custom-made photocurrent scanning system mounted with a mini-cryostat. Schematic diagram of (b) DC and (c) AC photocurrent measurement setups. Inset is the optical image of our sample located inside the mini-cryostat.

5. Photoinduced gating (Photogating)

The effect of photoinduced gating on threshold voltage V_{th} is investigated for the devices with different substrates (SiO₂ and h-BN). For this study, the $J_{ds-pg}-V_{gs}$ curves of each device were measured as a function of power and irradiation time, as shown in Fig. S7. To characterize the photogating effect, a DC measurement is conducted. This is shown in Fig. S6(b). Semilogarithmic plots of $J_{ds-pg}-V_{gs}$ are drawn to manifest the photogating effect, since liner plots of $J_{ds-pg}-V_{gs}$ do not clearly distinguish variations in J_{ds-pg} near V_{th} . A liner plot of $J_{ds-pg}-V_{gs}$ is shown in Fig. S7(e), with a linear extrapolation for the fit of V_{th} .

For the device on SiO₂ substrate, we first measure $J_{ds-pg}-V_{gs}$ with zero optical intensity. This is marked as "before illumination" in Fig. S7(a). Then, $J_{ds-pg}-V_{gs}$ is measured under various

optical intensities in Fig. S7(a). J_{ds} shifts toward the negative voltage proportionally to the illumination power from 5 pW/ μ m² to 500 pW/ μ m². The effect of photoinduced gating on the device with the h-BN substrate is more severe, as shown in Fig. S7(b). Under a power density of 60 pW/ μ m², J_{ds-pg} exceeds our sweep range such that no off-state is observed in Fig. S7(b). This is the result of a lower SBH of the MoS₂ FET on h-BN than on SiO₂ substrate, which is shown in Figs. S5(b) and S5(d). On the SiO₂ substrate, once photogating occurs, it takes approximately 2 days for V_{th} to return to the initial value probed before the illumination. Such temporal variations in J_{ds-pg} and V_{th} are presented in Figs. S7(c) and 7(d).

In Fig. S7(c), variations in $J_{ds-pg}-V_{gs}$ of the MoS₂ FET on the SiO₂ substrate are obtained before and after the device is exposed to the light. Our laser is shone on the device for 1 h. The laser power is 2.5 pW/ μ m². During the exposure, $J_{ds-pg}-V_{gs}$ of the device is frequently characterized in order to examine changes in V_{th} that progressively shift toward the negative voltage until we turn off the laser. The change in V_{th} of the device during the experiment is shown in Fig. S7(d). The initial V_{th} of the device was 21 V, as shown in Fig. S7(e). During the illumination, it decreased to 15.75 V [Fig. S7(d)]. Immediately after turning off the laser, V_{th} recovered to some degree [Fig. S7(d)]. However, after the laser was off for 20 min, the recovery slowed [Fig. S7(d)].

Figure S7. Shift of J_{ds} of MoS₂ FET on (a) SiO₂ and (b) h-BN substrates under various optical input powers. Temporal shifts of (c) J_{ds} and (d) of V_{th} of MoS₂ FET on SiO₂ substrate under optical input power of 2.5 pW/ μ m². (e) V_{th} of device tested in Figs. S7(c) and 7(d).

References

- 1. L. J. van der Pauw, Phil. Res. Rep. 1958, 13, 1-9.
- 2. B. W. Baugher, H. O. Churchill, P. Jarillp-Herrero, Nano Lett. 2013, 13, 4212-4216.
- 3. ASTM Standard F76-86, "Standard test methods for measuring resistivity and Hall coefficient and determining Hall mobility in single-crystal semiconductors"
- R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, M. Chhowalla, Nat. Mater. 2014, 13, 1128-1134.
- 5. D. K. Schroder "Semiconductor materials and device characterization" 3rd edition, Wiley Interscience, p. 146-149, 2005.
- D. K. Schroder "Semiconductor materials and device characterization" 3rd edition, Wiley Interscience, p. 157-161, 2005.