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7 Supplementary Figures and Tables

s0 Saddlepoint Normal Exact
0 1.0E0 9.0E−1 1.0E0
1 8.5E−1 8.0E−1 8.4E−1
· · ·
10 1.8E−3 6.0E−5 5.0E−3
· · ·
200 4.6E−44 ∗ 4.1E−43
201 2.8E−44 ∗ 2.1E−43
202 NaN ∗ 9.8E−44
· · ·
206 2.2E−20 ∗ 3.9E−45
· · ·
223 4.5E−49 ∗ 3.8E−51
224 NaN ∗ 1.8E−51
· · ·
396 NaN ∗ 1.6E−86
397 ∞ ∗ 7.7E−87
398 ∞ ∗ 3.3E−87
399 NaN ∗ 1.1E−87
400 ∞ ∗ 2.2E−88

Table 1: The computation of P =
∑
s≥s0 p

L(s) for a variety of s0, via three methods: a saddlepoint approxi-

mation, a normal approximation and an exact method (NC). Here L = 4 and p(s) = A ·exp
[
50(s/100− 1)2

]

for s = 0, . . . , 100, where A guarantees p is a pmf, that is, ‖p‖1 = 1. As expected, the saddlepoint approach
offers a fairly good approximation of P on a considerably larger domain than the normal approach does
(the ∗ entries are all less than 1E−2000). Still, in terms of relative error, it badly fails for almost all values
s0 ≥ 202 and it does so inconsistently: underestimating P for some s0 values, overestimating it for others,
as well as suffering from numerical errors that produce non-usable results. For example, all s0 from 224
to 396 give P = NaN when computed via the saddlepoint approximation. We specifically implemented the
saddlepoint method with the second continuity correction in (Butler, 2007, Section 1.2.3).
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Figure 1: The values of the pmf p∗2 (solid line) as computed via FFT-C per (1), are compared with the
values computed via the accurate naive-convolution (dotted line). Here p(s) = A · exp

(
1
60s(10− s)

)
for

s = 0, 1, . . . , 127, where A guarantees p is a pmf. In this case, the p-value of s0 = 215, which is the sum
P =

∑
s≥s0 p

∗L(s) (the shaded region), is computed to be P̃ ≈ 3 · 10−16 when the convolution is performed

via FFT-C. However, the true value is P ≈ 6 · 10−154, hence FFT’s computed value is off by more than 138
orders of magnitude.
Note that the departure of the FFT-C computed pmf from the exact one is roughly at 10−16, the machine
precision, ε, of the binary64 type used in this computation. The binary64 type of the IEEE754-2008 (IEEE
Computer Society, 2008) was called double precision in previous versions of that standard, and still has that
name in some programming languages. It has ε = 2−53 ≈ 10−16. Note that the terms machine precision
and ε are often referring to the distance from 1 to the next largest floating point number and this distance
is exactly 2 times our ε.
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Figure 2: Illustrations of the sFFT algorithm computing an approximation P̃ to P =
∑
s≥s0 p

∗L(s) for
s0 = 215 and L = 2 with two different pmfs p. The first panel uses p from Supp. Figure 1, while the second
panel studies p(s) = A exp

(
1
60s(s− 256)

)
for s = 0, . . . , 127, with A such that ‖p‖1 = 1. Both panels show

the vectors computed at each stage of the algorithm: the dotted lines show exact values of the convolutions
(computed via NC), solid lines show the values computed by sFFT after filtering errors out (zeroing values
less than the error bound of Lemma 1), and the dashed green line shows the noise in the FFT-C computation
that was removed. As can be seen, the solid blue line matches the exact value of p ∗ p very closely around
s0 in the first panel, and, indeed in that case, rel(P̃ , P ) < 10−13. The second panel demonstrates how sFFT
can fail with non-log-concave pmfs: the region around s0, which contributes most to P , is still small in the
shifted pmf, and hence it is not calculated accurately by FFT-C. This results in P̃ ≈ 2 · 10−234 with the
true value P ≈ 1 · 10−225 many times larger. The dotted purple line in the first panel gives p∗Lθ0 where θ0

is computed for aFFT-C, designed to optimize the computation of the entire pmf p∗L. Note that aFFT-C’s
choice reduces the range of values compared to the shift chosen by sFFT (dotted green curve), as well as
the range of the unshifted pmf (blue curve). However, for computing P , it suffices to accurately recover the
pmf only for indices greater than s0, and on that region the sFFT chosen shift is producing a much smaller
range of values. In particular, recovering the entire pmf via aFFT-C requires accurately computing a much
larger range of values, placing an unnecessary burden of the FFT approach.
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Figure 3: An illustration of the process of sisFFT’s main pathway computing P =
∑
s≥s0 p

∗L(s) with p,
L = 2 and s0 = 215 as in the second panel of Supp. Figure 2. The plot indicates that sisFFT is able to
accurately compute the largest values of p∗L(s), indeed, it recovers all of them, thus giving an accurate
estimate of P . The plot also hints at the use of the lower bound: the two jagged regions are the consequence
of ignoring a few small values that are known to be unnecessary. Note that this plot is just for demonstrative
purposes: since L = 2 in this example sisFFT would accurately compute the p-value with no explicit
convolutions at all.
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8 Bounds

8.1 Lower bound

A lower bound P` on P = P (s0) allows us to ignore values that are sufficiently smaller than P`, where the
exact threshold is determined by the desired relative accuracy level. We begin with showing how to efficiently
compute a non-trivial lower bound.

The main component of our lower bound computation is motivated by sFFT: the largest values of an
iterated convolution can be computed efficiently and accurately via FFT-C. In general, however, just knowing
the largest values will not give a tight lower bound on P : we saw an example of this in Supp. Figure 2, where
sFFT computed an estimate, P̃ , many times smaller than the true one (second panel). This failure comes
from the combination of FFT-C and the exponential shift: FFT-C can only accurately compute the larger
values of the shifted pmf, p∗Lθ0 , leaving gaps that may become significant when the shift is reversed.

We can fill in some of those gaps by trivially noting that p∗Lθ0 = p
∗(L−1)
θ0

∗pθ0 . Hence, rather than compute

p∗Lθ0 directly by FFT-C, we can compute the (L− 1)-fold convolution, p̃
∗(L−1)
θ0

in the manner of sFFT, and

then convolve it with pθ0 . This way, we utilize the largest values of p
∗(L−1)
θ0

combined with all the values of

pθ0 , thereby deriving a more effective bound than we can get using just the largest values of p∗Lθ0 computed
via FFT-C.

As detailed next, in practice, we do something equivalent to the above that instead computes p∗(L−1)

with a variant of sFFT (using θ0), and convolves the result with p using a variant of NC. A naive application
of NC to compute the latter pairwise convolution would have a runtime complexity of O(Ln2), which,
unfortunately, introduces a quadratic term. However, we are only interested in the tail sum, and as we will

see next, this can be computed with a variant of NC in O(Ln) time. Therefore, as computing p̃∗(L−1) with
sFFT takes only O(Ln logLn) time, this is also the total time required to compute our lower bound for P .

While the optimal lower bound is typically attained using the exponential shift of θ0, as determined by
(5), it is beneficial to leave ourselves the option of using an arbitrary value of θ. Our procedure, which

is summarized as Algorithm 1, starts with applying FFT-C (1) to pθ to compute ṽ := p̃
∗(L−1)
θ using a

Q-dimensional DFT, where Q = 2K ≥ NL−1 and Nk = k(n− 1) + 1 is the length of p∗k.
We then proceed to filter out the roundoff error noise in ṽ by defining

ṽ`(k) :=

{
ṽ(k)− E if ṽ(k) > E

0 otherwise,
(8)

where E := (L− 1) · cKε is the upper bound on the error per (2) of Lemma 1.

Note that ṽ` is an estimate of p
∗(L−1)
θ that in turn allows us to estimate p∗(L−1) as

p̃∗(L−1)(k) := ṽ`(k)e−kθ+(L−1)κ(θ). (9)

We next efficiently compute

p(k) :=
∑

j≥k

p(j), (10)

by noting that p(k) = p(k) + p(k + 1), and we use it to construct our lower bound of

P̃` :=
∑

k≥0

p̃∗(L−1)(k)p(s0 − k), (11)

where, for any vector x, we take x(i) = 0 when i < 0 or i ≥ length(x), which ensures the sums defining both

p and P̃` are finite.
The correctness, that is P̃` ≤ P , follows immediately from the following two claims.

Claim 4.

p̃∗(L−1)(k) ≤ p∗(L−1)(k).
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Before proving the claim we note that the LHS is considered to be precisely computed except for the
FFT-C induced errors, that is, the roundoff errors introduced in (9) are ignored. This is justified since these
errors are negligible compared with the errors introduced by FFT-C. It is straightforward to incorporate
those negligible errors into the calculation but we felt it adds an unnecessary complication.

Proof. By Lemma 1, we have ∥∥∥ṽ − p∗(L−1)
θ

∥∥∥
∞
≤ E,

and hence ṽ`(k) ≤ p∗(L−1)
θ (k) for all k. Multiplying both sides by e−kθ+(L−1)κ(θ) proves the claim.

Claim 5.
P =

∑

k≥s0

p∗L(k) =
∑

k≥0

p∗(L−1)(k)p(s0 − k).

Proof. Let q be a pmf of the N0-valued RV Y , which is independent of the N0-valued RV X with pmf p.
Then

P (X + Y ≥ s0) =
∑

k≥0

P (Y = k)P (X ≥ s0 − k) =
∑

k≥0

q(k)p(s0 − k).

Since all vectors are non-negative it follows immediately that

P̃` =
∑

k≥0

p̃∗(L−1)(k)p(s0 − k) ≤
∑

k≥0

p∗(L−1)(k)p(s0 − k) = P. (12)

Again, the comment after Supp. Claim 4 about ignoring negligible roundoff errors applies here in computing
p in (10), and P̃` in (11).

8.2 Upper bound

It is not difficult to see that in cases where the previously published sFFT is deemed sufficiently accurate,
our lower bound P` will also not deviate significantly from P . In such cases we can save a significant amount
of computation by avoiding the main pathway of our new algorithm.

Below we introduce Pu, an upper bound analogous to P`. Combined, the two bounds allow us to efficiently
identify those cases where we can “short-circuit” our main algorithm because the bounds are already tight
enough. In such cases, we interpolate the bounds to produce an estimate P̃ that satisfies the required
accuracy.

Define
ṽu(k) := ṽ(k) + E, (13)

where E is the same bound on the error in computing ṽ := p̃
∗(L−1)
θ using FFT that we defined just after (8).

Note that ṽu(k) ≥ p∗(L−1)
θ (k) for all k, and therefore with

q̃∗(L−1)(k) := ṽu(k)e−kθ+(L−1)κ(θ), (14)

similarly to Supp. Claim 4 we have

q̃∗(L−1)(k) ≥ p∗(L−1)(k).

Thus, we can define the upper bound

P̃u :=
∑

k≥0

q̃∗(L−1)(k)p(s0 − k), (15)

and, again from Supp. Claim 5, we indeed have

P̃` ≤ P ≤ P̃u. (16)
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8.3 Complexity of computing the bounds

As mentioned, the runtime complexity of Algorithm 1 is O(Ln logLn), which can be seen as follows:

• Computing ṽ takes O(Ln logLn), followed by O(Ln) steps to compute ṽ`, ṽu, p̃∗(L−1), and q̃∗(L−1).

• Using the relation p(k) = p(k) + p(k + 1), the vector p can be computed in O(n).

• Finally, computing P̃` through (11) and P̃u via (15) takes another O(NL−1 − s0) = O(Ln) steps.

9 Error analysis of sisFFT’s main pathway

We showed that aFFT-C controls the relative error in convolving the pair of non-negative vectors v and
w (Wilson and Keich, 2016). That is, with aFFT-C(v,w, α) denoting ṽ ∗w computed using aFFT-C with
accuracy parameter α ≥ 2,

(
1− 1

α

)
(v ∗w)(k) ≤ aFFT-C(v,w, α)(k) ≤

(
1 +

1

α

)
(v ∗w)(k), (17)

for all k.
Let

Cα,∆(v,w) = trim-aFFT-C(v,w, α,∆),

where the RHS denotes the application of trim-aFFT-C (Algorithm 3), with accuracy parameter α ≥ 2 and
trim level ∆ ≥ 0, to the non-negative vectors v and w. It follows from (17) and non-negativity that

(
1− 1

α

)
(v≥∆ ∗w≥∆)(k) ≤ Cα,∆(v,w)(k) ≤

(
1 +

1

α

)
(v ∗w)(k), (18)

for all k.
The following theorem provides bounds on the accumulation of errors in computing the convolution q̃∗L

using Squaring-C implemented with trim-aFFT-C. Note that the theorem applies just as well to any pairwise
convolution algorithm that satisfies (18). Our assumption on the convolved input pmf q is that it can be
perfectly represented as an n-dimensional floating-point vector, that is, q̃ = q.

Theorem 6. Suppose q is a pmf such that q̃ = q. Let L ≥ 2 be the convolution order, and let its binary
representation be L =

∑
i bi2

i. Let ` =
∑
i bi, and let 0 < i1 < . . . < i` = blog2 Lc be the indices i such

that bi = 1. Let α ≥ 2 be the accuracy parameter, and let ∆ ∈ [0, 1) be the trimming parameter of Cα,∆
(trim-aFFT-C with accuracy α and trimming ∆). Finally, with β = 1/α, the accuracy level, define

Lj =

j∑

k=1

bik2ik (19)

ri = (1 + β)2i−1 − 1 (20)

r̄j = (1 + β)Lj−1 − 1 (21)

δi = ∆

i−1∑

k=0

2i−k(1 + rk) (22)

δ̄j =

j∑

k=1

δik + ∆

j−1∑

k=1

(
2 + r̄k + rik+1

)
. (23)

If q̃∗L is computed via Squaring-C with C(α,∆), then

−r̄`q∗L(k)− δ̄` ≤ q̃∗L(k)− q∗L(k) ≤ r̄`q∗L(k) (24)

for all k.
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Corollary 7. Given a pmf q with q̃ = q, a convolution order L ≥ 2 with the above binary expansion, an
accuracy parameter α0 ≥ 2 and a lower bound ∆0 ∈ [0, 1), choose

α ≥
[(

1 +
1

α0

)1/(L−1)

− 1

]−1

, (25)

and with β = 1/α, and rj and r̄k defined as in (20) and (21) above, let

M =
∑̀

k=1

ik−1∑

j=0

2ik−j(1 + rj) +

`−1∑

k=1

(
2 + r̄k + rik+1

)
. (26)

Finally, choose

∆ ≤ ∆0

M
. (27)

Then, with q̃∗L computed using Squaring-C with Cα,∆ we have

− 1

α0
q∗L(k)−∆0 ≤ q̃∗L(k)− q∗L(k) ≤ 1

α0
q∗L(k) (28)

for each k.

Again, while explicitly using trim-aFFT-C, the corollary holds for any pairwise convolution that satisfies
(18).

Proof of Supplementary Corollary 7. Note that L` = L and hence by (21) and (25)

r̄` = (1 + β)L−1 − 1 = (1 + 1/α)
L−1 − 1 ≤

[(
1 +

1

α0

)1/(L−1)
]L−1

− 1 =
1

α0
.

Similarly, using (23), (22), and (26)

δ̄` =
∑̀

k=1

δik + ∆

`−1∑

k=1

(
2 + r̄k + rik+1

)

=
∑̀

k=1


∆

ik−1∑

j=0

2ik−j(1 + rj)


+ ∆

`−1∑

k=1

(
2 + r̄k + rik+1

)

= ∆M

≤ ∆0.

Taken together, (28) now follows trivially from (24) of Supp. Theorem 6.

Proof of Supplementary Theorem 6. The proof progresses through three main steps.
The first step quantifies the cumulative error that C(α,∆) introduces if the input pmfs themselves have

already been computed using likewise approximation:

Lemma 8. Suppose v and w are pmfs and ṽ and w̃ are non-negative approximations such that, for each k,

(1− e1)v(k)− ε1 ≤ ṽ(k) ≤ (1 + e1)v(k)

(1− e2)w(k)− ε2 ≤ w̃(k) ≤ (1 + e2)w(k),
(29)

where ei, εi ∈ [0, 1). Then, with β = 1/α,

Cα,∆(ṽ, w̃)(k) ≤ (1 + β)(1 + e1)(1 + e2)(v ∗w)(k) (30)

Cα,∆(ṽ, w̃)(k) ≥ (1− β)(1− e1)(1− e2)(v ∗w)(k)− (ε1 + ε2 + ∆(2 + e1 + e2)) (31)

for all k.
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Proof of Supplementary Lemma 8. To prove the lemma we need the following claim, which bounds the dif-
ference between the exactly computed v≥∆ ∗w≥∆ and v ∗w.

Claim 9. Given non-negative vectors v and w, and a lower bound ∆ ≥ 0, we have

0 ≤ (v ∗w)(k)− (v≥∆ ∗w≥∆)(k) ≤ ∆(‖v‖1 + ‖w‖1) (32)

for all k.

Proof of Supplementary Claim 9. Since the vectors are non-negative and no element of the vectors v≥∆ and
w≥∆ is larger than the corresponding element of v and w respectively, the left hand inequality of (32) is
clear.

Let v<∆ = v − v≥∆ (and similarly for w<∆). Then

‖v ∗w − v≥∆ ∗w≥∆‖∞ = ‖v<∆ ∗w≥∆ + v≥∆ ∗w<∆ + v<∆ ∗w<∆‖∞
= ‖v<∆ ∗w + v≥∆ ∗w<∆‖∞
≤ ‖v<∆‖∞ ‖w‖1 + ‖v≥∆‖1 ‖w<∆‖∞
≤ ∆(‖v‖1 + ‖w‖1),

where we used ‖x ∗ y‖∞ ≤ ‖x‖∞ ‖y‖1. This proves the right hand side of (32).

Returning to the proof of the lemma, since the vectors v and w are non-negative, we have

Cα,∆(ṽ, w̃)(k) ≤ (1 + β)(ṽ ∗ w̃)(k) ≤ (1 + β)(1 + e1)(1 + e2)(v ∗w)(k)

for each k, proving (30).
As for the other inequality, define the vectors ε′1 and ε′2 as

ε′1(k) = min((1− e1)v(k), ε1)

ε′2(k) = min((1− e2)w(k), ε2).

Since ṽ is non-negative, we have ṽ(k) ≥ (1− e1)v(k)− ε′1(k) and similarly for w̃. Therefore,

(ṽ ∗ w̃)(k) ≥ (1− e1)(1− e2)(v ∗w)(k)− (1− e1)(v ∗ ε′2)(k)− (1− e2)(ε′1 ∗w)(k) + (ε′1 ∗ ε′2)(k)

≥ (1− e1)(1− e2)(v ∗w)(k)− (v ∗ ε′2)(k)− (ε′1 ∗w)(k).
(33)

Looking at the subtracted terms, we can bound them from above:

(v ∗ ε′2)(k) ≤ ‖v‖1 ‖ε′2‖∞ ≤ 1 · ε2

(ε′1 ∗w)(k) ≤ ‖ε′1‖∞ ‖w‖1 ≤ ε1 · 1

By (18),

Cα,∆(ṽ, w̃)(k) ≥ (1− β)(ṽ≥∆ ∗ w̃≥∆)(k) = (1− β)(ṽ ∗ w̃ + ṽ≥∆ ∗ w̃≥∆ − ṽ ∗ w̃︸ ︷︷ ︸
γ(k)

)(k) (34)

The term γ(k) can be bounded via Claim 9, which implies that

γ(k) = (ṽ≥∆ ∗ w̃≥∆ − ṽ ∗ w̃)(k) ≥ −∆(‖ṽ‖1 + ‖w̃‖1)

≥ −∆ [(1 + e1) ‖v‖1 + (1 + e2) ‖w‖1]

= −∆(2 + e1 + e2).

Bringing together this and (33) allows us to complete the reasoning of (34),

Cα,∆(ṽ, w̃)(k) ≥ (1− β) [(ṽ ∗ w̃)(k)−∆(2 + e1 + e2)]

≥ (1− β) [(1− e1)(1− e2)(v ∗w)(k)− (ε1 + ε2 + ∆(2 + e1 + e2))]

≥ (1− β)(1− e1)(1− e2)(v ∗w)(k)− [ε1 + ε2 + ∆(2 + e1 + e2)] ,

which is exactly (31).
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These bounds are almost in the form that allows iterated use of the result; the only problem is that the
lower and upper bound on Cα,∆(ṽ, w̃)(k) do not have matching coefficients. However, it is easy to see that

(1− β)(1− e1)(1− e2)− 1 ≥ 1− (1 + β)(1 + e1)(1 + e2),

giving the following result.

Corollary 10. Suppose v and w are pmfs with approximations ṽ and w̃ satisfying (29) as in Supp. Lemma 8.
Then with

e3 = (1 + β)(1 + e1)(1 + e2)− 1

ε3 = ε1 + ε2 + ∆(2 + e1 + e2)
(35)

for all k, we have
(1− e3)(v ∗w)(k)− ε3 ≤ Cα,∆(ṽ, w̃)(k) ≤ (1 + e3)(v ∗w)(k). (36)

Note that e3 and ε3 quantify the quality of Cα,∆(ṽ, w̃) as an approximation to v ∗w and that they are
in the form, (29), required to use as an input to this same corollary. This allows us to iteratively use the

corollary to bound the error in computing q∗2
i

, which bring us to the second main step of our proof.
As in Squaring-C (Algorithm 2), for the vector q define the sequence of convolutions

x̃0 = q̃ = q x̃i = Cα,∆(x̃i−1, x̃i−1). (37)

The x̃i are approximations to xi = q∗2
i

and the following lemma quantifies their quality:

Lemma 11. Let ri be as in (20), and let δi be as in (22), then, for each k,

−rixi(k)− δi ≤ x̃i(k)− xi(k) ≤ rixi(k) (38)

Proof. We prove the result by induction on i. The relation (38) is clearly true for i = 0 since we assumed
q = q̃.

Suppose the result is true for some i ≥ 0 and let v = w = xi (and so ṽ = w̃ = x̃i). By the inductive
hypothesis, ṽ and w̃ satisfy (29) with the accuracy coefficients e1 = e2 = ri and the lower bounds of
ε1 = ε2 = δi. Since v ∗w = xi+1 it follows from (36) that with e3 and ε3 defined in (35)

−e3xi+1(k)− ε3 ≤ x̃i+1(k)− xi+1(k) ≤ e3xi+1(k).

The induction is completed by recalling (20) to note that

e3 = (1 + β)(1 + ri)
2 − 1 = (1 + β)

[
(1 + β)2i−1

]2
− 1 = ri+1,

and similarly, from (22) we have

ε3 = δi + δi + ∆(2 + ri + ri)

= 2

[
∆

i−1∑

k=0

2i−k(1 + rk)

]
+ ∆ · 2(1 + ri)

= ∆

i∑

k=0

2i+1−k(1 + rk)

= δi+1.

Finally, in the third main step of our proof we combine our results from the first two steps to prove the
bounds on the accumulated errors.

Recall the binary expansion L =
∑
i bi2

i: we denoted the ` indices i for which bi = 1 by i1 < i2 < . . . < i`
and we defined Lk =

∑k
j=1 bij2ij . Using these and the approximations x̃i to xi = q∗2

i

defined in (37) we
define the sequence:

ṽ1 = x̃i1 ṽj = Cα,∆(x̃ij , ṽj−1). (39)

Clearly, each ṽj is the approximation to vj = q∗Lj , computed iteratively by Squaring-C using C(α,∆).

Therefore, the approximation q̃∗L which is the focus of Supp. Theorem 6 is exactly ṽ`.

10



Lemma 12. Let r̄j be as defined in (21) and let δ̄j as in (23), then, for each k,

−r̄jvj(k)− δ̄j ≤ ṽj(k)− vj(k) ≤ r̄jvj(k) (40)

Proof. This follows by induction on j using Supp. Corollary 10, in a similar manner to the proof of
Supp. Lemma 11.

For j = 1 we have v1 = xi1 by (39). At the same time, since 2i1 = L1, it follows that from (21) that

r̄1 = (1 + β)2i1−1 = ri1 ,

and similarly from (23), that δ̄1 = δi1 . Thus, Supp. Lemma 11 implies that (40) holds for j = 1.
Suppose the result is true for some j ≥ 0 and let v = vj and w = xj+1. By the inductive hypothesis, ṽ

satisfies (29) with the accuracy coefficient e1 = r̄j and the lower bound of ε1 = δ̄j . Using Supp. Lemma 11
again, we find that w̃ satisfies (29) with the accuracy coefficient e2 = ri and the lower bound of ε2 = δi.
Since v ∗w = vj+1, it follows from (36) of Supp. Corollary 10 that with e3 and ε3 defined in (35),

−e3vj+1(k)− ε3 ≤ ṽj+1(k)− vj+1(k) ≤ e3vj+1(k).

The inductive step is completed by noting that

e3 = (1 + β)(1 + r̄j)(1 + rij+1
)− 1 = (1 + β)(1 + β)Lj−1(1 + β)2ij+1−1 − 1 = (1 + β)Lj+2ij+1−1 − 1 = r̄j+1,

and similarly that

ε3 = δ̄j + δij+1 + ∆(2 + r̄j + rij+1)

=

[
j∑

k=1

δik + ∆

j−1∑

k=1

(
2 + r̄k + rik+1

)
]

+ δij+1
+ ∆(2 + r̄j + rij+1

)

=

j+1∑

k=1

δik + ∆

(j+1)−1∑

k=1

(
2 + r̄k + rik+1

)

= δ̄j+1.

This last lemma is precisely what is needed to complete the proof of the theorem: set j = ` in

Supp. Lemma 12, then ṽ` = q̃∗L and so (24) is exactly (40).

Theorem 13. If p = p̃ is a pmf of length n, then with P =
∑
s≥s0 p

∗L(s) and P̃ computed by sisFFT with
accuracy parameter γ ∈ (0, 1/2], we have

rel(P̃ , P ) ≤ γ.

Note that the comment after Supp. Claim 4 about ignoring negligible roundoff errors in computations
that involve only positive terms applies here as well.

Proof. The exact tail probability, P , can be written in terms of the shifted pmf pθ0 via (4):

P =
∑

s≥s0

p∗Lθ0 (s) · e−sθ0+Lκ(θ0),

and hence the difference P̃ − P can be expressed as

P̃ − P =
∑

s≥s0

[
p̃∗Lθ0 (s)− p∗Lθ0 (s)

]
e−sθ0+Lκ(θ0).

Therefore, with our choice of α0 = 2/γ and ∆0 = Bγ/2, applying Supp. Corollary 7 to q = pθ0 , we have,
for all k (

1− γ

2

)
p∗Lθ0 (k)− Bγ

2
≤ p̃∗Lθ0 (k) ≤

(
1 +

γ

2

)
p∗Lθ0 (k). (41)

11



It follows that
P̃ − P ≤

∑

s≥s0

γ

2
· p∗Lθ0 (s) · e−sθ0+Lκ(θ0) =

γ

2
P. (42)

At the same time, using the left hand inequality of (41), along with (12), and the definition of B in line 10
of Algorithm 4 we have

P̃ − P ≥
∑

s≥s0

[
−γ

2
· p∗Lθ0 (s)− γ

2
B
]
e−sθ0+Lκ(θ0)

= −γ
2

[
P +B

NL−1∑

s=s0

e−sθ0+Lκ(θ0)

]

= −γ
2

(
P + P̃`

)

≥ −γP.

(43)

Together, the last two inequalities, (42) and (43), establish rel(P̃ , P ) ≤ γ.

10 Supplementary Empirical Results

We generated a variety of tail sums
∑
s≥s0 p

L(s) with various values of s0, p and L. The pmfs p were taken
from the same classes as Wilson and Keich (2016) used to test aFFT-C: fix an integer n, and suppose each
pmf p(k) is a vector of length n. The values a(k), b(k), c(k) ∼ U(0, 1) are independent, and fixed for each

p(k) but vary between them, and u
(k)
i ∼ U(0, 1) are independent, for each entry p(k)(i). Finally, A(k) is the

normalizing constant such that
∥∥p(k)

∥∥
1

= 1.

1. constant, p(k)(i) ≡ A(k)

2. random, p(k)(i) = A(k) exp(−40u
(k)
i ).

3. quadratic, p(k)(i) = A(k) exp(−30(a(k) + 1)xi
2 + 20(2b(k) − 1)xi + 20(2c(k) − 1)) where the xi are

sequenced evenly in [0, 1] (that is, the first element x0 = 0, and last xn = 1).

4. sinusoid, p(k)(i) = A exp(10(3a(k) +1) sin(xi+b(k)/10)+10(5c(k)−4)xi) where xi are sequenced evenly
from [0, 3π].

5. “multi-scaled I”, a random fifth (rounded down) of the p(k)(i) are of the form A(k) exp(−30u
(k)
i ) and

the remaining entries are of the form A(k) exp(−100(u
(k)
i + 1)).

6. “multi-scaled II”, a random third (rounded down) of the p(k)(i) are of the form A(k) exp(−15(2a(k) +

1)u
(k)
i ) and the remaining entries are of the form A(k) exp[−50((2a(k) + 1)u

(k)
i + 2b(k) + 1)].

For each tested length n, we generated 100 random examples of each class, except for the constant class,
where there is of course just one possible value. For each of these random vectors, we computed

∑
s≥s0 p

L(s)
to a variety of levels of accuracy γ, for

L ∈
{

2i
∣∣ i ∈ {0, . . . , 8}

}
∪
{
b1.5ic

∣∣ i ∈ {0, . . . , 13}
}
,

s0 ∈ {brNLc | r ∈ {0.6, 0.8, 0.7, 0.85, 0.9, 0.95, 0.99}} ,

where bxc is the largest integer not greater than x, and NL = L(n− 1) + 1 is the length of pL.
Supp. Table 2 below summarizes the results of this for the moderate accuracy levels of γ = 10−1 and

γ = 10−3, values on the order of what users would typically require, as well as the more demanding γ = 10−9,
to demonstrate the flexibility of the algorithm.
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γ = 10−9 γ = 10−3 γ = 10−1

n Median Maximum Median Maximum Median Maximum
8 7 · 10−14 9 · 10−10 2 · 10−13 9 · 10−4 2 · 10−13 9 · 10−2

16 1 · 10−13 9 · 10−10 1 · 10−13 9 · 10−4 1 · 10−13 9 · 10−2

32 1 · 10−13 9 · 10−10 1 · 10−13 9 · 10−4 1 · 10−13 9 · 10−2

64 5 · 10−14 9 · 10−10 8 · 10−14 9 · 10−4 9 · 10−14 9 · 10−2

128 5 · 10−14 9 · 10−10 5 · 10−14 9 · 10−4 5 · 10−14 9 · 10−2

256 5 · 10−14 9 · 10−10 5 · 10−14 9 · 10−4 5 · 10−14 9 · 10−2

512 5 · 10−14 9 · 10−10 4 · 10−14 9 · 10−4 4 · 10−14 8 · 10−2

1024 5 · 10−14 9 · 10−10 3 · 10−14 9 · 10−4 3 · 10−14 9 · 10−2

2048 8 · 10−14 5 · 10−10 3 · 10−14 5 · 10−4 3 · 10−14 9 · 10−2

4096 9 · 10−14 3 · 10−11 5 · 10−14 4 · 10−4 5 · 10−14 5 · 10−2

8192 1 · 10−13 2 · 10−11 5 · 10−14 8 · 10−4 5 · 10−14 8 · 10−4

Table 2: The maximum and median relative errors of P̃ (k,s0,L) =
∑
s≥s0 p

(k)∗L(s) as computed by sisFFT

where the p(k), s0 and L are selected as described in the text and n is the length of p(k). That is, the

third column is maxk,L,s0 rel(P̃
(k,s0,L)
sisFFT , P̃

(k,s0,L)
NC ) where P̃

(k,s0,L)
x is P̃ (k,s0,L) as computed by algorithm x

with x = NC, sisFFT with γ = 10−9. The second column is identical, just with median in place of the max.
The fourth and fifth use sisFFT with γ = 10−3, and the last two columns use sisFFT with γ = 10−1 The
same pmfs p(k) were used for every column.
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γ = 10−1 γ = 10−3
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Figure 4: A comparison of timings for computing an approximation to P =
∑
s≥s0 p

∗L for various values
of L using p from the second panel of Supp. Figure 2. All computations used s0 = b0.95NLc where NL
is the length of p∗L, and each convolution was performed with three different algorithms: sisFFT, NC and
iterated aFFT-C (with no lower bound). The two distinct lines of sisFFT’s timings: generally, comparatively
slower for small L and comparatively faster for large L correspond to whether or not the sFFT shortcut is
taken. The last pair of panes further explores this, showing the timing for computing P for fixed L = 256
with s0 = b0.00NLc, b0.01NLc, . . . , b0.99NLc. A similar plot for smaller L have a larger proportion of the
sisFFT in the higher band, while larger L, such as L = 1024, have all sisFFT points in the lower band.
Unsurprisingly, the more relaxed accuracy bound of γ = 10−1 has fewer sisFFT points in the slower band
than γ = 10−3.
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γ = 10−1 γ = 10−3
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Figure 5: Same as Supp. Figure 4 but with p(s) = A exp(60 sin 3πs
127 − 10 3πs

127 ) with s = 0, . . . , 127. With this
pmf the sFFT shortcut always engages, allowing sisFFT to be uniformly significantly faster than both NC
and aFFT-C. Similarly, the sFFT shortcut is employed for almost all the convolutions in the last pair of
panes, which display the timings for fixed L = 256 with varying s0 in the manner of Supp. Figure 4. For
the s0 in the initial region of approximately s0 < 5000, sisFFT is able to use the FFT-C shortcut instead of
requiring sFFT.
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Figure 6: A comparison of sisFFT vs. sFFT vs. FFT-C for performing several computations P =∑
s≥s0 p

∗L(s) for three values of L. The left-hand column, Uniform, uses the uniform pmf p = (1/n, . . . , 1/n)
where n is the length of that pmf, with s0 = b0.5NLc, which means P ≈ 0.5 and thus FFT-C is able to
calculate it accurately. The right-hand column, Tilted, is designed to require a shift to compute accurately,
and thus has p(s) = A exp(−30s/(n− 1)) where A is a normalising constant, and s0 = b0.9NLc. As can be
seen, with L = 2, sisFFT is uniformly faster than both FFT-C and sFFT for n > 210, and, in the Uniform
case, for L = 4, sisFFT is sometimes faster in the same region. Note that the FFT-C computation for Tilted
is inaccurate for all displayed n and L, but both sFFT and sisFFT are accurate with only a small overhead
over it.
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11 Bounded aFFT-C

Algorithm 5 The Bounded aFFT-C algorithm, a version of aFFT-C that guarantees (18). It takes two
non-negative vectors p and q of length m and n respectively, an accuracy parameter α ≥ 2 and a lower
bound ∆ ≥ 0, and computes an approximation c = p̃ ∗ q, such that (18) holds with Cα,∆(p, q) = c. It
is very similar to the original aFFT-C, listed in Wilson and Keich (2016), with the notable removal of the
exponential shift. For more details, see Wilson (2016).

1: procedure Bounded aFFT-C(p, q, α, ∆)
2: Set N = m+ n− 1 and choose Q = 2K ≥ N .
3: Compute c1, I1 ← Bounded Checked FFT-C(p, q, α,∆).
4: if 2CQ logQ ≥ N |I1| then . Direct FFT-C is accurate for sufficiently many entries.
5: Recompute the entries c1(i) via NC, for each i ∈ I1.
6: return c1.

7: Compute the component boundaries [bp,i]
np

i=1 ← PITS(p≥∆, α) and [bq,j ]
nq

j=1 ← PITS(q≥∆, α). (See
(Wilson and Keich, 2016, Algorithm 2).)

8: if CnpnqQ logQ ≥ N |I2| then . NC estimated to be faster.
9: Recompute the entries c2(i) via NC, for each i ∈ I2.

10: return c2.
11: else
12: p̃ ∗ q = psFFT-C(0,p≥∆, [bp,i], q≥∆, [bq,j ], α). (See (Wilson and Keich, 2016, Algorithm 3).)
13: return p̃ ∗ q.

Algorithm 6 The Bounded Checked FFT-C algorithm that gives the (18) guarantee. Given non-negative
vectors p and q and scalars α ≥ 2 and ∆ ≥ 0, Bounded Checked FFT-C returns a vector c = p̃ ∗ q as
computed by FFT-C and a set I of indices such that (18) holds for Cα,∆(p, q) = c for all k /∈ I.

1: procedure Bounded Checked FFT-C(p, q, α, ∆)
2: Compute p̃ ∗ q via FFT-C, and note the Q = 2K of (Wilson and Keich, 2016, Lemma 2) that was

used.
3: Let I be the set of indices for which (Wilson and Keich, 2016, (23)) does not hold.
4: if I 6= ∅ and Q ≤ Qmax and p(i) < ∆ or q(i) < ∆ for some i then

5: Compute ṽ = ˜1p>0 ∗ 1q>0 via FFT-C, and zero anything less than 2cKε (where c is the same as
defined following Lemma 1).

6: Hence, by (Wilson and Keich, 2016, Corollary 2), deduce the support Isup = supp(p≥∆ ∗ q≥∆) =
supp(w̃)

7: Zero any entry (p̃ ∗ q)(i) with i /∈ Isup.
8: Set I ← I ∩ Isup.

9: return p̃ ∗ q, I.
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