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1. Christoffel symbols of a diagonal metric

Let . be a smooth surface of ¢. Then the family (¢, ¢y, N) is a basis
of the space R? in which .7 is embedded. Hence, the second derivatives ¢,
¢yy and ¢, can be expanded relatively to that basis. For instance, one has

where the I' coefficients are known as Christoffel symbols and L is the first
coefficient of the second fundamental form II.

It is known that the Christoffel symbols can be written in terms of the
metric I of % and of its first derivatives. When I is diagonal, i.e., ¢, and ¢,
are orthogonal, these expressions are particularly simple. Here, we calculate
I'l, as an example. Indeed, one has
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As for the other Christoffel symbols, denoting
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one has
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These are sometimes referred to as the frame equations.
Finally, the in-plane and out-of-plane Poisson’s ratios being equal and of
opposite signs reads
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which, upon simplification, transforms into
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It is then remarkable that, due to the first two frame equations together with
the chain rule, the above scalar equation translates into the vectorial partial
differential equation

Gzz/L — ¢yy/N = 0.

2. Out-of-plane Poisson’s ratio

Consider the set of vertices depicted in Figure 1. Note that vertices O, A,
B, C and D are equivalent so that we have
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Paa 5 o(1).
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Therein and hereafter dependency over M was dropped to simplify notations.
These vertices being initially in a periodic state corresponding to S°, the
above relations transform into

oo = 0A+6C =260 and ¢y, = 6B + 6D — 260,

where the 0 quantities are corrections to the location of vertices dictated
by 06, éu and dv. However, 66 having no impact on second derivatives, it



Figure 1. A set of vertices, depicted prior to perturbation, allowing to estimate
the second derivatives of ¢. Vectors u, and v, are unitary and here, along with
vector w, they are scaled by a factor r.

is legitimate to assume that one of the 4 inspected pyramids, say OC'DD’,
remains in its initial state. Correspondingly,

00 =6D"=6D = 6C" =0,
and
(b:r:p =0A+6C and (byy =0B5.
Now let us calculate the following scalar products.

1. The correction d A is orthogonal to u, so that

<¢xxa uo> = <5C, UO> .

Also,

(Dra, Vo) = (0A, v,) .
—
2. The correction 6 B — § B’ is orthogonal to B’B which is collinear to u,

by periodicity of the initial state. Hence,

(Dyys Uo) = (0B, u,) = (6B’ u,) .

Also,
<¢yy> Uo) - <5B7 Uo) - <5A/, Uo> :
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3. We already know that vector w can be written in terms of u, and v,.
Furthermore, by symmetry, w is a linear combination of w, + v, and
u, A v,. Therefore, there exist two functions a and b satisfying

((to, Vo) ) (g + Vo) + b({Uo, Vo) ) A Vg

w = w(uy,v,) = a
= a(cos 0)(u, + v,) + b(cos 0)u, A v,.
Thus,

w(uy + 1T0A, V) — W (U, Vo)

(0A" v,) = < . ,vo> +o(1)

= (a(cos0)0 A + a'(cos0) (0 A, v,) (uy + V,), Vo)
= [a(cosf) + a'(cos 0)(1 + cos 0)] (0 A, v,) ,

with o' = da/dcos 6. Similarly,
(6B’ u,) = [a(cos8) + a'(cos 0)(1 + cos 6)] (6C, u,) -
Recalling the definition of 8*, it is easy to check that both

<w(u0a UO)7 Uo + 'Uo>

— a2/ p*
a(cosf) = (ot 00 0 T 00 sin”(0")
and 2(6/2)
cos”(0*
/ 1 = -
a(cos @) + a'(cosB)(1 + cosb) o2(0)2)

hold. Consequently, we have proven the identity

cos?(6%/2)

W (G2 Uo + Vo) -

<¢yya Up + Uo> =
Decomposing u, + v, into tangential and normal components, we finally derive

the compatibility relation

o cos?(0*/2) A
<¢yy7n> - COSQ(Q/Q) <¢mz, >

implying the equality between the in-plane and out-of-plane Poisson’s ratios:

C tan2(07/2)
out = Tan?(0/2)
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The other 4 compatibility relations involving the tangential components
can be derived directly from the metric. The first two are obtained by
differentiating

<¢IE7 be) =0

with respect to x and y and respectively read

<¢zx7 ¢y> + <¢x, ¢xy> = 0,
<¢xy> ¢y> + <¢x> ¢yy> - 0

The second two are obtained by differentiating Equation (2.3), i.e.,

with respect to x and y and respectively read

_6*2 <¢:m:7 ¢m> - C2 <¢xya ¢y> = 07
_0*2 <¢a:y7 gbx) - 02 <¢yy7 ¢y> = 0.



	Christoffel symbols of a diagonal metric
	Out-of-plane Poisson's ratio

