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1. Christoffel symbols of a diagonal metric

Let S be a smooth surface of φ. Then the family (φx, φy, N) is a basis
of the space R3 in which S is embedded. Hence, the second derivatives φxx,
φyy and φxy can be expanded relatively to that basis. For instance, one has

φxx = Γ1
11φx + Γ2

11φy + Ln̂

where the Γ coefficients are known as Christoffel symbols and L is the first
coefficient of the second fundamental form II.

It is known that the Christoffel symbols can be written in terms of the
metric I of S and of its first derivatives. When I is diagonal, i.e., φx and φy

are orthogonal, these expressions are particularly simple. Here, we calculate
Γ1

11 as an example. Indeed, one has

Γ1
11 = 〈φxx, φx〉

〈φx, φx〉
= 1

2
〈φx, φx〉x
〈φx, φx〉

.

As for the other Christoffel symbols, denoting

I =
[
a 0
0 b

]
,
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one has

φxx = ax

2aφx −
ay

2bφy + Ln̂

φyy = − bx

2aφx + by

2bφy +Mn̂

φxy = ay

2aφx + bx

2bφy +Nn̂.

These are sometimes referred to as the frame equations.
Finally, the in-plane and out-of-plane Poisson’s ratios being equal and of

opposite signs reads
d
√
a/ d
√
b

√
a/
√
b

= −L/a
N/b

,

which, upon simplification, transforms into

da
db = − L

N
.

It is then remarkable that, due to the first two frame equations together with
the chain rule, the above scalar equation translates into the vectorial partial
differential equation

φxx/L− φyy/N = 0.

2. Out-of-plane Poisson’s ratio

Consider the set of vertices depicted in Figure 1. Note that vertices O, A,
B, C and D are equivalent so that we have

φxx = A+ C − 2O
r2 + o(1) and φyy = B +D − 2O

r2 + o(1).

Therein and hereafter dependency over M was dropped to simplify notations.
These vertices being initially in a periodic state corresponding to S0, the
above relations transform into

φxx = δA+ δC − 2δO and φyy = δB + δD − 2δO,

where the δ quantities are corrections to the location of vertices dictated
by δθ, δu and δv. However, δθ having no impact on second derivatives, it
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Figure 1. A set of vertices, depicted prior to perturbation, allowing to estimate
the second derivatives of φ. Vectors uo and vo are unitary and here, along with
vector w, they are scaled by a factor r.

is legitimate to assume that one of the 4 inspected pyramids, say OC ′DD′,
remains in its initial state. Correspondingly,

δO = δD′ = δD = δC ′ = 0,

and
φxx = δA+ δC and φyy = δB.

Now let us calculate the following scalar products.
1. The correction δA is orthogonal to uo so that

〈φxx, uo〉 = 〈δC, uo〉 .

Also,
〈φxx, vo〉 = 〈δA, vo〉 .

2. The correction δB − δB′ is orthogonal to
−−→
B′B which is collinear to uo

by periodicity of the initial state. Hence,

〈φyy, uo〉 = 〈δB, uo〉 = 〈δB′, uo〉 .

Also,
〈φyy, vo〉 = 〈δB, vo〉 = 〈δA′, vo〉 .
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3. We already know that vector w can be written in terms of uo and vo.
Furthermore, by symmetry, w is a linear combination of uo + vo and
uo ∧ vo. Therefore, there exist two functions a and b satisfying

w = w(uo, vo) = a(〈uo, vo〉)(uo + vo) + b(〈uo, vo〉)uo ∧ vo

= a(cos θ)(uo + vo) + b(cos θ)uo ∧ vo.

Thus,

〈δA′, vo〉 =
〈
w(uo + rδA, vo)− w(uo, vo)

r
, vo

〉
+ o(1)

= 〈a(cos θ)δA+ a′(cos θ) 〈δA, vo〉 (uo + vo), vo〉
= [a(cos θ) + a′(cos θ)(1 + cos θ)] 〈δA, vo〉 ,

with a′ = da/dcos θ. Similarly,

〈δB′, uo〉 = [a(cos θ) + a′(cos θ)(1 + cos θ)] 〈δC, uo〉 .

Recalling the definition of θ∗, it is easy to check that both

a(cos θ) = 〈w(uo, vo), uo + vo〉
〈uo + vo, uo + vo〉

= sin2(θ∗)

and
a(cos θ) + a′(cos θ)(1 + cos θ) = cos2(θ∗/2)

cos2(θ/2)
hold. Consequently, we have proven the identity

〈φyy, uo + vo〉 = cos2(θ∗/2)
cos2(θ/2) 〈φxx, uo + vo〉 .

Decomposing uo +vo into tangential and normal components, we finally derive
the compatibility relation

〈φyy, n̂〉 = cos2(θ∗/2)
cos2(θ/2) 〈φxx, n̂〉

implying the equality between the in-plane and out-of-plane Poisson’s ratios:

νout = −tan2(θ∗/2)
tan2(θ/2) = −ν.
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The other 4 compatibility relations involving the tangential components
can be derived directly from the metric. The first two are obtained by
differentiating

〈φx, φy〉 = 0

with respect to x and y and respectively read

〈φxx, φy〉+ 〈φx, φxy〉 = 0,
〈φxy, φy〉+ 〈φx, φyy〉 = 0.

The second two are obtained by differentiating Equation (2.3), i.e.,

4(1− 〈φx, φx〉 /4)(1− 〈φy, φy〉 /4) = 1,

with respect to x and y and respectively read

−c∗2 〈φxx, φx〉 − c2 〈φxy, φy〉 = 0,
−c∗2 〈φxy, φx〉 − c2 〈φyy, φy〉 = 0.
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