Curvature, metric and parametrization of origami tessellations: Theory and application to the eggbox pattern - Electronic Supplementary Material

H. Nassar ${ }^{\mathrm{a}, \mathrm{b}}$, A. Lebée ${ }^{\mathrm{a}, *}$, L. Monasse ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{a}$ Laboratoire Navier, Ecole des Ponts-ParisTech, IFSTTAR, CNRS, UPE, 6 et 8 Avenue Blaise Pascal, 77455 Marne-la-Vallée cedex 2
${ }^{b}$ Université Paris-Est, Cermics (ENPC), INRIA, F-77455 Marne-la-Vallée
${ }^{c}$ SERENA project-team, Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris cedex 12, France

1. Christoffel symbols of a diagonal metric

Let \mathscr{S} be a smooth surface of ϕ. Then the family $\left(\phi_{x}, \phi_{y}, N\right)$ is a basis of the space \mathbb{R}^{3} in which \mathscr{S} is embedded. Hence, the second derivatives $\phi_{x x}$, $\phi_{y y}$ and $\phi_{x y}$ can be expanded relatively to that basis. For instance, one has

$$
\phi_{x x}=\Gamma_{11}^{1} \phi_{x}+\Gamma_{11}^{2} \phi_{y}+L \hat{n}
$$

where the Γ coefficients are known as Christoffel symbols and L is the first coefficient of the second fundamental form $I I$.

It is known that the Christoffel symbols can be written in terms of the metric I of \mathscr{S} and of its first derivatives. When I is diagonal, i.e., ϕ_{x} and ϕ_{y} are orthogonal, these expressions are particularly simple. Here, we calculate Γ_{11}^{1} as an example. Indeed, one has

$$
\Gamma_{11}^{1}=\frac{\left\langle\phi_{x x}, \phi_{x}\right\rangle}{\left\langle\phi_{x}, \phi_{x}\right\rangle}=\frac{1}{2} \frac{\left\langle\phi_{x}, \phi_{x}\right\rangle_{x}}{\left\langle\phi_{x}, \phi_{x}\right\rangle} .
$$

As for the other Christoffel symbols, denoting

$$
I=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

[^0]one has
\[

$$
\begin{aligned}
\phi_{x x} & =\frac{a_{x}}{2 a} \phi_{x}-\frac{a_{y}}{2 b} \phi_{y}+L \hat{n} \\
\phi_{y y} & =-\frac{b_{x}}{2 a} \phi_{x}+\frac{b_{y}}{2 b} \phi_{y}+M \hat{n} \\
\phi_{x y} & =\frac{a_{y}}{2 a} \phi_{x}+\frac{b_{x}}{2 b} \phi_{y}+N \hat{n} .
\end{aligned}
$$
\]

These are sometimes referred to as the frame equations.
Finally, the in-plane and out-of-plane Poisson's ratios being equal and of opposite signs reads

$$
\frac{\mathrm{d} \sqrt{a} / \mathrm{d} \sqrt{b}}{\sqrt{a} / \sqrt{b}}=-\frac{L / a}{N / b},
$$

which, upon simplification, transforms into

$$
\frac{\mathrm{d} a}{\mathrm{~d} b}=-\frac{L}{N} .
$$

It is then remarkable that, due to the first two frame equations together with the chain rule, the above scalar equation translates into the vectorial partial differential equation

$$
\phi_{x x} / L-\phi_{y y} / N=0 .
$$

2. Out-of-plane Poisson's ratio

Consider the set of vertices depicted in Figure 1. Note that vertices O, A, B, C and D are equivalent so that we have

$$
\phi_{x x}=\frac{A+C-2 O}{r^{2}}+o(1) \quad \text { and } \quad \phi_{y y}=\frac{B+D-2 O}{r^{2}}+o(1) .
$$

Therein and hereafter dependency over M was dropped to simplify notations. These vertices being initially in a periodic state corresponding to S^{0}, the above relations transform into

$$
\phi_{x x}=\delta A+\delta C-2 \delta O \quad \text { and } \quad \phi_{y y}=\delta B+\delta D-2 \delta O,
$$

where the δ quantities are corrections to the location of vertices dictated by $\delta \theta, \delta u$ and δv. However, $\delta \theta$ having no impact on second derivatives, it

Figure 1. A set of vertices, depicted prior to perturbation, allowing to estimate the second derivatives of ϕ. Vectors u_{o} and v_{o} are unitary and here, along with vector w, they are scaled by a factor r.
is legitimate to assume that one of the 4 inspected pyramids, say $O C^{\prime} D D^{\prime}$, remains in its initial state. Correspondingly,

$$
\delta O=\delta D^{\prime}=\delta D=\delta C^{\prime}=0
$$

and

$$
\phi_{x x}=\delta A+\delta C \quad \text { and } \quad \phi_{y y}=\delta B
$$

Now let us calculate the following scalar products.

1. The correction δA is orthogonal to u_{o} so that

$$
\left\langle\phi_{x x}, u_{o}\right\rangle=\left\langle\delta C, u_{o}\right\rangle
$$

Also,

$$
\left\langle\phi_{x x}, v_{o}\right\rangle=\left\langle\delta A, v_{o}\right\rangle
$$

2. The correction $\delta B-\delta B^{\prime}$ is orthogonal to $\overrightarrow{B^{\prime} B}$ which is collinear to u_{o} by periodicity of the initial state. Hence,

$$
\left\langle\phi_{y y}, u_{o}\right\rangle=\left\langle\delta B, u_{o}\right\rangle=\left\langle\delta B^{\prime}, u_{o}\right\rangle
$$

Also,

$$
\left\langle\phi_{y y}, v_{o}\right\rangle=\left\langle\delta B, v_{o}\right\rangle=\left\langle\delta A^{\prime}, v_{o}\right\rangle
$$

3. We already know that vector w can be written in terms of u_{o} and v_{o}. Furthermore, by symmetry, w is a linear combination of $u_{o}+v_{o}$ and $u_{o} \wedge v_{o}$. Therefore, there exist two functions a and b satisfying

$$
\begin{aligned}
w=w\left(u_{o}, v_{o}\right) & =a\left(\left\langle u_{o}, v_{o}\right\rangle\right)\left(u_{o}+v_{o}\right)+b\left(\left\langle u_{o}, v_{o}\right\rangle\right) u_{o} \wedge v_{o} \\
& =a(\cos \theta)\left(u_{o}+v_{o}\right)+b(\cos \theta) u_{o} \wedge v_{o} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left\langle\delta A^{\prime}, v_{o}\right\rangle & =\left\langle\frac{w\left(u_{o}+r \delta A, v_{o}\right)-w\left(u_{o}, v_{o}\right)}{r}, v_{o}\right\rangle+o(1) \\
& =\left\langle a(\cos \theta) \delta A+a^{\prime}(\cos \theta)\left\langle\delta A, v_{o}\right\rangle\left(u_{o}+v_{o}\right), v_{o}\right\rangle \\
& =\left[a(\cos \theta)+a^{\prime}(\cos \theta)(1+\cos \theta)\right]\left\langle\delta A, v_{o}\right\rangle,
\end{aligned}
$$

with $a^{\prime}=\mathrm{d} a / \mathrm{d} \cos \theta$. Similarly,

$$
\left\langle\delta B^{\prime}, u_{o}\right\rangle=\left[a(\cos \theta)+a^{\prime}(\cos \theta)(1+\cos \theta)\right]\left\langle\delta C, u_{o}\right\rangle
$$

Recalling the definition of θ^{*}, it is easy to check that both

$$
a(\cos \theta)=\frac{\left\langle w\left(u_{o}, v_{o}\right), u_{o}+v_{o}\right\rangle}{\left\langle u_{o}+v_{o}, u_{o}+v_{o}\right\rangle}=\sin ^{2}\left(\theta^{*}\right)
$$

and

$$
a(\cos \theta)+a^{\prime}(\cos \theta)(1+\cos \theta)=\frac{\cos ^{2}\left(\theta^{*} / 2\right)}{\cos ^{2}(\theta / 2)}
$$

hold. Consequently, we have proven the identity

$$
\left\langle\phi_{y y}, u_{o}+v_{o}\right\rangle=\frac{\cos ^{2}\left(\theta^{*} / 2\right)}{\cos ^{2}(\theta / 2)}\left\langle\phi_{x x}, u_{o}+v_{o}\right\rangle .
$$

Decomposing $u_{o}+v_{o}$ into tangential and normal components, we finally derive the compatibility relation

$$
\left\langle\phi_{y y}, \hat{n}\right\rangle=\frac{\cos ^{2}\left(\theta^{*} / 2\right)}{\cos ^{2}(\theta / 2)}\left\langle\phi_{x x}, \hat{n}\right\rangle
$$

implying the equality between the in-plane and out-of-plane Poisson's ratios:

$$
\nu_{\mathrm{out}}=-\frac{\tan ^{2}\left(\theta^{*} / 2\right)}{\tan ^{2}(\theta / 2)}=-\nu
$$

The other 4 compatibility relations involving the tangential components can be derived directly from the metric. The first two are obtained by differentiating

$$
\left\langle\phi_{x}, \phi_{y}\right\rangle=0
$$

with respect to x and y and respectively read

$$
\begin{aligned}
\left\langle\phi_{x x}, \phi_{y}\right\rangle+\left\langle\phi_{x}, \phi_{x y}\right\rangle & =0, \\
\left\langle\phi_{x y}, \phi_{y}\right\rangle+\left\langle\phi_{x}, \phi_{y y}\right\rangle & =0 .
\end{aligned}
$$

The second two are obtained by differentiating Equation (2.3), i.e.,

$$
4\left(1-\left\langle\phi_{x}, \phi_{x}\right\rangle / 4\right)\left(1-\left\langle\phi_{y}, \phi_{y}\right\rangle / 4\right)=1
$$

with respect to x and y and respectively read

$$
\begin{aligned}
& -c^{* 2}\left\langle\phi_{x x}, \phi_{x}\right\rangle-c^{2}\left\langle\phi_{x y}, \phi_{y}\right\rangle=0, \\
& -c^{* 2}\left\langle\phi_{x y}, \phi_{x}\right\rangle-c^{2}\left\langle\phi_{y y}, \phi_{y}\right\rangle=0 .
\end{aligned}
$$

[^0]: *Corresponding author (arthur.lebee@enpc.fr)

