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• Foliar chemistry provides an insight into the quality of 
vegetation and nutrient cycles 
– Chlorophyll –> Levels of productivity 

– Nitrogen –>  Indicator of photosynthetic and growth rates 

– Lignin –> Rate of litter decomposition 

 

• Spectroscopy can reduce sample preparation and speed up 
analysis (Lawler et al., 2006) 

• Spectroscopy uses relationships derived between spectra and 
laboratory measured components to then predict unknown 
content of components 

Foliar Chemistry 
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• Most spectroscopy studies use the Visible Near Infrared/Short 
Wave Infrared (VSWIR) spectrum 

• Plant Biochemical:  
– Nitrogen (Bolster et al. 1996; Doughty et al. 2011; Ferwerda et al., 2005; Martin et al. 2008) 

– Lignin and Cellulose (Kokaly and Clark, 1992; Asner et al., 2011; Martin & Aber, 1997) 

– Chlorophyll (Ustin et al., 2009; Doughty et al 2009; Asner et al., 2011 ) 

• Plant Biophysical: Specific Leaf Area, Water Content 
– (Ceccato et al., 2001; Doughty et al., 2009; Martin et al., 2008; Asner et al., 2011) 

• VSWIR spectrum dominated by water and pigment absorption 
(Ribeiro da Luz and Crowley, 2010) 

 

VSWIR Spectroscopy  
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• Thermal Infrared (TIR) spectrum  

• Spectral features of water content, cellulose, cutin, xylan, 
silica, and oleanolic acid present  
– (Fabre et al., 2011; Ribeiro da Luz and Crowley 2007; Ullah et al., 2014) 

• TIR incorporation delayed by limited availability of sensors, 
subtle features of plants, low signal to noise ratio 
 

• Integrating VSWIR and TIR 
– Limited knowledge on synergies 

– Play on strengths and avoid problem areas of each spectrum  

 

 

TIR Spectroscopy 
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Research Questions 

1. What are the capability of VSWIR and/or TIR spectra to predict 
leaf levels of lignin, cellulose, nitrogen, water content, and leaf 
mass per area? 

2. How do these predictive relationships change seasonally and 
among plant functional types? 

3. Can these relationships between spectra and foliar chemistry 
be extended to the reduced spectral resolution available in 
airborne and space-borne sensors? 
– Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

– Hyperspectral Thermal Emission Spectrometer (HyTES)  

– Hyperspectral Infrared Imager (HyspIRI)  

 

 



Study Sites 

• Sierra Nevada Mountains Site: 
• Elevation: 1400m 
• Mixed conifer forest 

 
 

• Sedgwick Reserve Site: 
• Elevation: 382 & 400 m 
• Coastal sage scrub & oak 

woodland 
 
 

• Coastal Santa Barbara Site: 
• Elevation: 5, 515, & 1080m 
• Chaparral 
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Field Collection 

Species Common Name Abb. 

Adenostoma fasciculatum Chamise ADFA 

Arctostaphylos glandulosa Manzanita ARGL 

Baccharis pilularis Coyote brush BAPI 

Ceanothus cuneatus Buck-brush Ceanothus CECU 

Ceanothus megacarpus Big-pod Ceanothus CEME 

Ceanothus spinosus Green-bark Ceanothus CESP 

Heteromeles arbutifolia Toyon HEAR 

Umbellularia californica Bay laurel UMCA 

Abies concolor White Fir ABCO 

Pinus lambertiana Sugar Pine PILA 

Pinus ponderosa Ponderosa Pine PIPO 

Calocedrus decurrens Incense cedar CADE 

Quercus agrifolia Coast live oak QUAG 

Quercus douglasii Blue Oak QUDO 

Quercus lobata Valley Oak QULO 

Salvia leucophylla Purple Sage SALE 

• 16 Species 

• 3 Replications  

• Young and Old Leaf Sample 

• Spring: 

– Santa Barbara: 4/1/13 

– Sierra Nevada: 4/20/13 

– Sedgwick Reserve: 4/21/13 

• Summer: 

– Santa Barbara: 6/3/13 

– Sierra Nevada: 6/8/13 

– Sedgwick Reserve: 6/9/13 

• Fall: 

– Santa Barbara: 10/13/13 

– Sierra Nevada: 11/02/13 

– Sedgwick Reserve:11/03/13 
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Data Collected 

• VSWIR Spectra: Analytical Spectra Devices (ASD) measuring 0.35 to 2.5 µm 

• Thermal Spectra: Nicolet measuring 2.5 to 15.4 µm 

• Nitrogen: combustion method using NA 1500 Nitrogen and Carbon Analyzer 

• Lignin and Cellulose: sequential acid digestion using Ankom Fiber Analyzer 

• Water Content: 100*((wet leaf mass – dry leaf mass)/ wet leaf mass) 

• Leaf Mass per Area (LMA) 

• Leaf Thickness  
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• Partial Least Squares Regression (PLSR) 

• Similar to traditional regression models but is able to 
analyze many, noisy, correlated variables in both X and Y  

 

• Determined number of factors using leave-one-out cross 
validation and fulfilling these requirements:  
– Smallest Number of Factors 

– Smallest RMSE  

– Highest Percent Variation Explained 

• Models were validated by holding out 10% of the data during 
each iteration, until all samples had been removed once 

 

 

 

 

 

PLS Regression 
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PLS Regression 

• All Samples 

• Seasons: 

 

 

 

 

 
 

• Plant Functional Types 
Broadleaf Deciduous Broadleaf Evergreen Needleleaf Evergreen 

Blue Oak (QUDO) Manzanita (ARGL) Coyote brush (BAPI) White Fir (ABCO) 
Valley Oak (QULO) Buck-brush Ceanothus (CECU) Toyon (HEAR) Sugar Pine (PILA) 
Purple Sage (SALE) Big-pod Ceanothus (CEME) Coast Live Oak (QUAG) Ponderosa Pine (PIPO) 

Green-bark Ceanothus (CESP) Bay Laurel (UMCA) Incense Cedar (CADE) 

Chamise (ADFA) 

Introduction     |     Methods     |     Results     |     Discussion     |     Conclusion    

Spring Summer Fall 



PLS Regression 
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Spectra 
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Biochemistry 



All Water Content Models 

Water Content R² Values 
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– Majority of models used:  

» TIR or full spectrum for Laboratory spectra  

» HyspIRI for sensor simulated spectra 

– While all samples models decreased R² still appropriate for predicting: 

» R² = 0.88 and RMSE = 6.25% using HyspIRI 

 

 

 

 

Nitrogen 
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– Majority of models used:  

» TIR for laboratory spectra  

» HyspIRI for sensor simulated spectra 

– All samples models had lower R² but still appropriate for predicting: 

» R² = 0.91 and RMSE = 4.67% using HyspIRI 

 

 

 

Water Content 
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– LMA: 

» Top model results: R² = 0.68 to 0.98 

» Majority spectra used TIR and HyspIRI  

» Top model: Broadleaf deciduous plant functional type using HyTES 

– Lignin: 

» Top model results: R² = 0.68 to 0.93 

» Majority spectra used Full and HyTES 

» Top model: Spring R² = 0.91 and RMSE = 6.91% using HyTES 

– Cellulose:  

» Top model results: R² = 0.75 to 0.98 

» Majority spectra used Full, VSWIR, and AVIRIS  

» All samples models: R² = 0.82 and RMSE = 7.95% using AVIRIS 

 

 

 

 

Other  
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1. What are the capability of VSWIR and/or TIR spectra to predict leaf 
levels of lignin, cellulose, nitrogen, water content, and leaf mass per 
area? 

– Top models showed high precision and accuracy for all biochemicals 

– Majority of models used TIR or full spectrum for Laboratory spectra  

– Majority of models used HyspIRI for sensor simulated spectra 

2. How do these predictive relationships change seasonally and among 
plant functional types? 

– Model precision varied by season and across plant functional types 

– For Cellulose, Nitrogen, and Water Content all samples model 
appropriate for prediction 

– Lignin and LMA best predicted if divided into subset 

 

Research Questions Revisited 
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3. Can these relationships between spectra and foliar chemistry be 
extended to the reduced spectral resolution available in airborne 
and space-borne sensors? 

» Simulated sensor spectra models had high precision & accuracy 

» Next step apply to the aerial imagery for real atmosphere effects 

» In summary, the TIR spectrum could augment the VSWIR in advancing 
identification of leaf biochemical and physical properties even at 
reduced spectral resolutions 

 

 
 

 

Questions? 

Research Questions Revisited 
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