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Summary

THIS dissertation proposes several numerical techniques for simulating laser

pulse propagation through biological tissue with implants for sensing ap-

plications. The purpose of these implants is to enhance and condition the optical

signals for better detection of the received signal. This work contributes to the de-

velopment of methods for sensing and characterization of tissue properties and

measuring concentrations of substances in blood or tissue fluid, thus making it

possible to monitor these concentrations and detect anomalies.

The research was carried out in three major stages. In stage 1, a technique for

simulating laser pulse propagation through tissue, which addresses some of the

drawbacks of existing methods, was developed. The outcome of this stage was

an efficient algorithm for solving the transient photon transport equation (PTE),

which governs light propagation through tissue. The proposed algorithm was

first implemented for the one-dimensional case and later extended for the two-

and three-dimensional cases. This algorithm was also extended to inhomoge-

neous media.

The one-dimensional PTE is an integro-differential equation of four variables:

distance, local zenith angle, local azimuthal angle and time. First, the original

PTE was mapped to a moving reference frame co-moving with the incident pulse.

This transformation eliminated the partial derivative term with respect to time in

x



the original equation. The dependence on the local azimuthal angle was then re-

moved using the discrete ordinates method, which resulted in a set of coupled

three-variable integro-differential equations. A Laguerre expansion was then

used to represent the time dependency of this reduced PTE. With the Laguerre

expansion, any arbitrary input pulse shape can be represented using a few poly-

nomials, and also the causality is preserved. This step resulted in a two-variable

integro-differential equation for each Laguerre coefficient. The dependence on

the local zenith angle was removed by the use of the discrete ordinates method,

thus resulting in a set of single-variable uncoupled differential equations. The

Runge-Kutta-Fehlberg (RKF) method was then used to solve for the radiance.

In the proposed technique, all the sampling points in the time domain were

obtained in a single execution of the algorithm, rather than having repeated ex-

ecutions for each time step as in time marching techniques used in most of the

existing solution methods. This was made possible by expanding the time depen-

dence using a Laguerre basis, thus making the proposed algorithm much faster

when the intensity profile is required at a particular point or on a plane over

a time interval. Also, since the RKF method was used to solve the final reduced

equation, intensity profiles at several points and planes over the whole time spec-

trum were obtained in one execution of the algorithm. In addition, the causal-

ity of the system was implicitly imposed by the causal Laguerre polynomials.

The use of the Runge-Kutta-Fehlberg method with respect to the spatial variable

makes the extension to inhomogeneous media simple and straightforward. For

the multi-dimensional cases, the Laguerre expansion was used to represent the

time dependency as in the one-dimensional case. The discrete ordinates method

was then used to solve for the radiance using a finite volume approach.

In stage 2, a technique for mapping the photon transport equation to Maxwell’s

xi



equations was developed. No work has been reported to date which addresses

the problem of coupling the photon transport equation to Maxwell’s equations.

Since light propagation through tissue is modeled using the PTE and that through

implants is modeled using Maxwell’s equations, this mapping was required for

simulating light propagation through tissue with implanted structures. The PTE

solves for the radiance only. However, Maxwell’s equations require electric and

magnetic fields along with their phases. Therefore, the radiance profile obtained

by solving the PTE had to be converted to an electromagnetic field, which in-

volves constructing the phase from the radiance profile. For this purpose, the

transport-of-intensity equation was solved using the full multigrid algorithm.

In the final stage, the numerical simulation of laser pulse propagation through

biological tissue with implanted structures for sensing applications was carried

out. Even though implanted structures within biological tissue have very use-

ful and promising applications in the field of biomedical engineering, no work

on the theoretical analysis and simulation of such compound structures has been

reported in the research literature. In this dissertation, two examples, a metal

screen with a slit implanted in tissue and a photonic crystal structure implanted

in tissue, are considered. These simulations were carried out by integrating the

work carried out in stages 1 and 2. The algorithm developed in stage 1 for solv-

ing the PTE was applied to simulate pulse propagation through the tissue layers.

At the tissue-implant interface, the mapping of the PTE to Maxwell’s equations,

developed in stage 2, was applied. Electromagnetic propagation through the im-

planted structure was modeled using Maxwell’s equations.
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CHAPTER 1

Introduction

This chapter presents a concise account of some of the available optical diagnostic tech-

niques and introduces the research problem which has been investigated in this project and

presented in this dissertation.

THE application of optical methods for biomedical applications and clini-

cal therapeutics is emerging as a new technological paradigm [1]. Optical

techniques for tissue diagnosis that are currently being developed offer signifi-

cant advantages over standard biopsy and cytology techniques, in terms of both

patient care and medical costs [2]. A good understanding of the relationship be-

tween the biochemical and morphological structure of cells and light scattering

will assist the development of diagnostic applications [3]. Many light-based and

spectroscopic techniques are already being practised in medical and other health-

care fields. Photodynamic therapy, the use of light to treat cancer, is one example

[4].

There has been a rapid increase in the use of ultraviolet, visible and infrared

radiation in both diagnostic and therapeutic medicine, and this has created a need

to understand how this radiation propagates in tissue [5]. Such knowledge is

1
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necessary for the optimum development of therapeutic techniques and for the

quantitative analysis of diagnostic measurements [5]. For example, the local tis-

sue temperature is of prime importance in laser surgery and depends, in turn,

on the spatial distribution of the incident radiation. This variable is also of cen-

tral importance in the photodynamic therapy of cancer where the local biological

effect is directly related to the light fluence [5]. Diagnostic methods which use

fluorescent, scattered or transmitted light to measure parameters such as drug

concentration and blood oxygenation also require detailed information about the

propagation of the excitation and observed light [5].

Biophotonics integrates four major technologies, namely, lasers, photonics,

nanotechnology and biotechnology [4]. Light is an electromagnetic radiation

consisting of oscillating electric and magnetic fields, and biological systems are

molecular media [4]. Therefore, the interaction of biological media with light can

be described by the electronic polarization of a molecule subjected to an electric

field, which is called the electric dipole approximation [4]. The interaction of light

with biological media is complex and involves a chain of events. These interac-

tions can induce physical, thermal, mechanical and chemical effects from coupled

events [4].

Most light-induced processes that are used in optical diagnostics and light-

induced therapy are initiated by linear absorption of light. However, it is pos-

sible to induce nonlinear optical processes under an intense field using a short

laser pulse [4]. In minimally invasive medicine such as optical biopsy, functional

imaging and laser induced thermo-therapy, light in the range from 240 nm to

10,000 nm is used for diagnosis and therapy [6]. Lasers, which are the most

commonly used light source for biophotonics, are devices that produce highly

coherent, highly directional, monochromatic and intense beams of light [4]. The
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usage of lasers can be categorized into two parts; the first category utilizes lasers

as a highly concentrated source of photons and the second category utilizes the

highly coherent nature of the light beam [4].

The main challenge in optical diagnosis is to understand the changes in the

optical properties of tissues with abnormalities [6]. A change of physiological

parameters will always change the amount and distribution of scattered light [6].

The potential of diagnostic optical imaging has generated considerable interest

in the optical properties of tissues and cells at near infrared wavelengths where

scattering is dominant over absorption [3].

The development of diagnostic techniques such as optical coherence tomog-

raphy, confocal microscopy, light scattering spectroscopy and optical reflectance

microscopy requires a fundamental understanding of how light scatters from nor-

mal and pathological structures within tissue [1]. These techniques are used for

screening and diagnosis of epithelial precancerous tissues in various organs [1].

A concise account of some of the available optical diagnostic techniques is

provided in the following section.

1.1 Optical diagnostic techniques

Optical diagnostic techniques include optical coherence tomography, confocal

microscopy, light scattering spectroscopy, photodynamic therapy, laser-induced

interstitial thermotherapy and optical biopsy. In addition to these, lasers are used

in ophthalmology, gynaecology, urology and many other fields [3, 7–10]. Many

clinical applications require the use of an endoscope, and therefore, many optical

diagnostic methods employ fibre-optic probes. Hence, it is important to under-
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stand the effects of various optical parameters on the collected signal in order to

interpret these measurements appropriately [2].

Imaging techniques used for diagnostic purposes can be categorized as di-

rect and indirect. Direct imaging techniques, such as confocal microscopy and

optical coherence tomography (OCT), provide high resolution images of human

tissue by constructing a three-dimensional backscattering map [3]. Indirect tech-

niques such as near infrared spectroscopy relate changes in the amount of dif-

fusely backscattered light to the optical properties of tissue [3]. The main prob-

lem with optical imaging of tissue is that the random scattering of light in tissue

deteriorates the imaging resolution. Even early experiments had revealed that

multiple scattering causes the images to appear extremely blurred [11]. There is

a direct approach as well as an indirect approach to improve the performance of

transillumination, thus enhancing imaging. The direct approach involves gating

techniques which are used to isolate photons that are least scattered from the ma-

jority of multiply scattered photons. Some of these gating techniques rely on the

fact that weakly scattered photons retain their initial coherence or polarization

state. Others gate according to the lengths of the photon paths [11]. The indirect

approach to imaging assumes that for a given set of measurements of transmitted

light between two points there exists a unique three-dimensional distribution of

internal scatterers and absorbers. In this approach, imaging is a task of solving

an inverse problem using an appropriate model of photon transport [11].

Short light pulses can be used to enhance image resolution [12]. If a short

light pulse is transmitted through biological tissue, the tissue properties can be

extracted using various gating techniques such as time gating and polarization

gating. These gating techniques are used to filter the weakly scattered photons

from multiply scattered photons [12]. Time gating uses the fact that multiply
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Figure 1.1: Schematic of the OCT system [19].

scattered photons have longer path lengths than weakly scattered photons [13,

14]. Polarization gating uses the fact that weakly scattered light preserves its

original polarization better than multiply scattered light [15, 16]. Time-resolved

spectroscopy is expected to be developed for optical imaging of biological tissues

which strongly scatter and weakly absorb light [17]. This technique makes use

of low-energy visible or near infrared light to probe highly scattering media to

construct accurate qualitative or quantitative images of the optical properties of

these media [18].

Among the optical diagnostic techniques, optical coherence tomography (OCT)

is expected to be used in various fields such as medicine, physiology and biolog-

ical physics. OCT is a technique that has been developed for non-invasive cross-

sectional imaging of internal structures in biological tissues by measuring their

optical reflections. The wide application of OCT is due to its potential for pro-

viding information on the oxygenation state of biological tissue by non-invasive
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measurement [10, 17]. Figure 1.1 shows a schematic of the OCT system from refer-

ence [19]. The spectra of hemoglobin, myoglobin and some other chromophores

and spectroscopic oxygen concentration indicators change with the change in the

bonding state between the chromophores and oxygen. By using this change of

spectra it is possible to measure the oxygen concentration in biological tissues

non-invasively using spectroscopic methods [17]. OCT has great potential in di-

agnosis where conventional biopsy is either dangerous or ineffective [19]. Brezin-

ski et al. [19] list three general clinical applications of OCT. The first application

is in situations where conventional biopsy is difficult or impossible to perform,

such as biopsies of the brain, coronary artery and cartilage surface of joints. The

second application is in situations where biopsy is ineffective due to high “false

negative” rates, such as early diagnosis of uterine and esophageal cancers. The

third application is in guiding microsurgical procedures, such as the repair of pe-

ripheral nerves and blood vessels [19].

OCT uses low-coherence interferometry to produce a two-dimensional image

of optical scattering from internal tissue microstructures in a way that is analo-

gous to ultrasonic pulse-echo imaging [10]. Both low-coherence light and ultra-

short laser pulses can be used to map internal structures of biological systems.

An optical signal that is transmitted through or reflected from a biological tissue

will contain time-of-flight information, which in turn yields spatial information

about tissue microstructure [10]. Tomographic imaging has been demonstrated

in vitro in the peripapillary area of the retina and in the coronary artery, two clin-

ically relevant examples that are representative of transparent and turbid media,

respectively [10].

Confocal optical microscopy is a technique for increasing the contrast of mi-

croscope images, particularly in thick specimens [8]. Figure 1.2 shows a schematic
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Figure 1.2: A stage scanning confocal microscope [8].

of a stage scanning confocal microscope from reference [8]. A confocal micro-

scope is capable of imaging structures within thin optical sections beneath the

surface of a sample which is its primary advantage in many applications [20].

By restricting the observed volume, confocal microscopy prevents overlying or

nearby scatterers from contributing to the detected signal [8]. For the diagnosis

of skin melanomas in vivo, a confocal microscope capable of viewing tissue mi-

crostructure to depths of 1 mm or more would be of clinical value [20].

Laser light scattering spectroscopy, which is a precise and simple technique,

has emerged as a promising method for analysis of ciliary motion [9]. Figure 1.3

from reference [9] shows a set up for measuring ciliary activity by dynamic laser

light scattering. This technique is based on the evaluation of the frequency shift of

coherent light scattered by moving particles and uses the properties of monochro-

maticity, coherence and directionality of laser light [9]. Ciliary motion is mea-

sured as intensity fluctuations due to the interference of Doppler-shifted scattered

light [9].
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Figure 1.3: Set up for measuring ciliary activity by dynamic laser light
scattering [9].

Photodynamic therapy is the use of drugs (photosensitizers) that are activated

by visible or near infrared light to produce specific biological effects in cells or

tissues that can be exploited to achieve a particular clinical endpoint [1]. In this

technique, dyes are transferred to a toxic state by laser light and tumor cells can

be treated [7]. Laser-Induced Interstitial Thermotherapy (LITT) is another tech-

nique used for tumor treatment, which makes use of the possibility of localized

tissue coagulation [7]. LITT was recently introduced to treat tumors in the retina,

brain, prostate, liver and uterus. This technique has already become a well estab-

lished tool in minimally invasive surgery [7]. With optical biopsy it is possible

to detect cancerous tissues using optical methods [1]. The basic principle used

here is that the emission and scattering of light are strongly influenced by the

composition and the cellular structure of tissues [1]. Thus it is possible to de-

tect a cancerous tissue by non-invasive or minimally invasive in vivo methods [1].
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Lasers are also being used for diagnostic and therapeutic purposes in ophthal-

mology, where the conventional incoherent light sources fail [7]. Retinal glau-

coma and retinal detachment can be treated by using confocal laser microscopy

[7]. Another application of an optical diagnostic technique using lasers is to treat

cervical intraepithelial neoplasia (CIN), which might lead to cervical cancer if un-

treated [7].

A significant percentage of the population is diabetic and millions of diabetics

around the world are required to monitor their blood glucose level by measuring

the concentration several times a day [21, 22]. Research has shown that frequent

control of blood glucose in insulin-dependent diabetics reduces the severity of

long-term complications such as retinopathy and nephropathy [23]. All the mon-

itoring methods currently available for patients require blood samples obtained

by pricking a finger, and a drop of blood is placed on a test strip that undergoes

a colour change due to an enzymatic chemical reaction [21, 24]. This invasive

procedure is inconvenient and unpleasant for the patient and often leads to poor

compliance and inadequate blood glucose monitoring and control [23]. Small

children are especially reluctant to undergo constant finger pricks. The devel-

opment of non-invasive methods for monitoring blood glucose levels has been

under investigation for several years, and these proposed techniques to date in-

clude implants based on electrochemical sensors and non-invasive optical meth-

ods. These methods are based on photoacoustic, absorbance or Fourier transform

spectroscopy in the infrared region [22, 24]. A recently proposed method for this

purpose is based on the changes of the refractive index resulting from the dis-

solved glucose concentration [24].

The next section introduces the research problem investigated.
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1.2 Research problem

In many research studies of biomedical and photonic micro-structures and nano-

structures, optical software simulation and modeling tools are the only means

to obtain a deeper understanding of the underlying scientific issues [1]. Thus, a

good simulation model for laser pulse propagation in tissue is required to assist

further development of the treatment procedures outlined in Section 1.1.

A number of researchers have been working on modeling light propagation

through biological tissue, as well as through tissue with inhomogeneities. Of

the existing modeling techniques for optical diagnostic applications, many ap-

proximate the actual Gaussian pulse by a perfect square pulse. In addition, the

extension of existing techniques to multiple layers increases the computational

complexity quite considerably. Extension of these methods to multi-dimensions

is not easy and involves approximations to the governing equation. Thus, a better

numerical technique, which addresses these drawbacks of the existing methods,

is required for efficiently simulating light propagation through biological tissue.

The intensity of incident light used for optical diagnostic techniques is very

low because using a high intensity damages tissue. With this low incident in-

tensity, the detection techniques become inefficient. For example, spectroscopic

methods such as Raman spectroscopy are very inefficient when used with an in-

cident pulse of low intensity. However, an implant such as a photonic crystal

structure can be used inside the tissue layers in order to increase the efficiency of

these diagnostic techniques by producing enhanced optical signals for detection.

To the best of the author’s knowledge, a numerical technique for modeling tissue

with implanted structures has not been reported in the research literature. This

dissertation provides a comprehensive treatment of the numerical modeling of

light propagation through tissue with implanted structures.
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1.3 Research aims

This research has two main aims. The first is to develop a better method for

simulating laser pulse propagation through tissue. The second is to develop a

technique for numerically simulating laser pulse propagation through tissue with

implants, which has very promising applications in the field of biomedical engi-

neering.

The research conducted to achieve these aims was broken down into three ma-

jor stages. In stage 1, a technique for simulating laser pulse propagation through

tissue was developed. This involved first developing and implementing a numer-

ical technique for solving the one-dimensional transient photon transport equa-

tion. Extensions of this technique to be used in inhomogeneous tissue media and

in multi-dimensional geometries were then carried out. In stage 2, a technique

for mapping the photon transport equation to Maxwell’s equations was devel-

oped. In the final stage, numerical simulation of laser pulse propagation through

biological tissue with implanted foreign structures was carried out by combining

the techniques developed in stages 1 and 2. The main application of the research

presented in this dissertation is non-invasive or minimally invasive sensing of the

constituents of tissue fluid or blood, such as the glucose concentration in diabet-

ics.

1.4 Structure of the dissertation

This dissertation consists of nine chapters and three appendices. Chapter 2 pro-

vides a general literature review related to the research problem together with

some background information required in later chapters. Chapter 3 provides a

more detailed review of numerical simulation of light propagation through bio-
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logical tissue. It also contains detailed technical descriptions of several widely-

used models for this purpose. Chapters 4, 5 and 6 present the work carried

out in stage 1. Chapter 4 proposes an efficient algorithm for solving the one-

dimensional transient photon transport equation, and contains some results of a

numerical simulation of pulse propagation through a layer of tissue that were ob-

tained using this proposed algorithm. Chapter 5 shows how this technique can

be extended for use in inhomogeneous media. Chapter 6 presents a technique

for solving the three-dimensional transient photon transport equation. Chapter 7

presents the work carried out in stage 2. It proposes a technique for mapping the

photon transport equation to Maxwell’s equations. Chapter 8 and Appendix C

present the work carried out in the final stage. They contain detailed analyses of

simulating pulse propagation through tissue with implants. Chapter 8 provides

a numerical method to simulate light propagation through a slit in a metal screen

implanted in tissue. Chapter 9 concludes the research presented in this disser-

tation, highlighting the key contributions it makes to the biophotonics field. It

also contains some recommendations for further research which may be carried

out by extending the work presented in this dissertation. Appendix A provides

a discussion of the relationship between the electromagnetic theory and the pho-

ton transport theory. Appendix B provides an introduction to photonic crystals.

Appendix C proposes a numerical method to simulate light propagation through

tissue with an implanted photonic crystal structure.
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CHAPTER 2

Literature Review

This chapter presents a general literature review related to the research problem with some

background information required to discuss the research reported in this dissertation.

2.1 Introduction

IN order to discuss numerical modeling of light propagation through tissue

and tissue with implanted structures, it is necessary to have some background

knowledge of a number of basic topics such as optical properties of tissue, and

the theory and characterization of light propagation in tissue including the gov-

erning equations. This chapter provides a literature review for this purpose.

The literature review is presented in seven major sections. Section 2.2 dis-

cusses the optical properties of tissue and introduces the problem of modeling

tissue. Section 2.3 gives a brief overview of propagation of light in tissue. In

this section, the definitions of the scattering coefficient, absorption coefficient, the

albedo and the optical thickness are introduced, followed by a concise discussion

of light absorption and scattering in tissue. A brief account of the applicability

of the photon transport theory for modeling light propagation in tissue is also

16
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provided, as opposed to using Maxwell’s equations. In addition, a more detailed

discussion of the photon transport theory as applied to tissue optics is provided

in this section. The governing equation for modeling light propagation in tissue,

the photon transport equation (PTE), is also introduced in this section. A brief

account of statistical and deterministic methods for analyzing light propagation

through turbid media is presented along with a comparison of different existing

models used for this purpose. Detailed mathematical descriptions of the most

widely used models are provided in the next chapter.

Section 2.4 provides a very brief description of Maxwell’s equations, which

govern the modeling of light propagation through implanted structures. Sec-

tion 2.5 reviews phase retrieval techniques, which are necessary for mapping the

photon transport equation to Maxwell’s equations in modeling light propagation

through tissue with implanted structures. Section 2.6 concludes the chapter sum-

marizing the key information outlined in this chapter.

2.2 Optical properties of tissue

Tissue is a complicated medium, which is treated as an absorbing and scattering

medium, and many of the optical-thermal events produced by laser radiation are

interdependent [1]. However, methods have been proposed for calculating and

measuring light propagation in tissue [1]. Both scattering and absorption provide

important information about the physiological condition of tissue [2]. Figure 2.1

shows a cross-section of a skin specimen of a human shoulder. This figure shows

several constituents of the skin. The epidermis of the skin absorbs and propagates

light. The absorption property is mostly due to the natural pigment melanin [3].

When a biological cell is illuminated with laser light, the light is scattered in all

directions to form a light-scattering pattern, which is dependent on the size and
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Figure 2.1: A section through skin of human shoulder [1].

internal structure of the cell [4]. Therefore, appropriate measurements of this

light-scattering pattern can provide morphological information about the cell [4].

Light propagation in tissue depends on scattering and absorption properties

of its components such as cells, cell organelles and various fibre structures. The

size, shape, density and relative refractive index of these structures affects the

propagation of light [5]. Figure 2.2 from reference [5] shows major organelles and

inclusions of the cell. This figure depicts the wide variety of structures within a

cell that determine scattering of light in tissue.

Scattering of light in tissue is due to scattering centres such as cells, nuclei,

other organelles and structures within organelles [2]. Multiple scattering and ab-

sorption in tissue result in laser beam broadening and decay as it travels through

tissue [5]. Cells and tissue structure elements can be as small as a few tenths of

nanometers or as large as hundreds of micrometers [5].

Mammalian cells are typically in the order of 10 to 30 µm in diameter and the
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Figure 2.2: Major organelles and inclusions of the cell [5].

nuclei are in the order of 3 to 10 µm in diameter [2]. Mitochondria are 0.3 to 0.7 µm

in diameter and lysosomes and peroxisomes are 0.2 to 0.5 µm in diameter. These

structures are roughly spherical in shape, but other organelles such as Golgi ap-

paratus and endoplasmic reticulum, from which light scatter, have complicated

shapes [2]. A normal erythrocyte in plasma has the shape of a concave-concave

disk with a diameter varying from 7.1 to 9.2 µm, a thickness of 0.9 to 1.2 µm in the

centre and 1.7 to 2.4 µm on the periphery, and a volume of 90 µm3. Leukocytes

are spheres with a diameter of 8 to 22 µm. Platelets are biconvex disklike particles

with a diameter of 2 to 4 µm. Erythrocytes in blood are as many as 10 times the

number of platelets and about 300 times the number of leukocytes [5].

An exact assessment of light propagation in tissue would require a model that

characterizes the spatial and size distribution of tissue structures, their absorbing

properties and their refractive indices [1]. However, for real tissues, such as the

skin, the task of creating a precise representation, either as a tissue phantom or as

a computer simulation, is formidable if not totally impossible. Therefore, tissue is

represented as an absorbing bulk material with scatterers randomly distributed
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Figure 2.3: The four basic light-molecule interaction processes [6].

over the volume [1].

Even though this approximation does not provide any information about the

microscopic structure of tissue, it has provided accurate agreement with exper-

imental measurements [7, 8]. Two approaches are currently used for modeling

tissues [5]. The first approach is to model tissue as a medium with a continuous

random spatial distribution of optical parameters; and the second approach is to

consider tissue as a discrete ensemble of scatterers [5]. The choice of the appro-

priate model of these two depends on the structure of the tissue under study and

the kind of light scattering characteristics that are to be obtained.

At a microscopic level, the tissue can be described as a medium with a spa-

tially dependent refractive index. At this level, light interaction with tissue results

in reflection, refraction, absorption and diffraction processes [9]. On a macro-

scopic scale these processes are summarized as scattering [9]. On the macroscopic

level, mean optical values can be used instead of spatially dependent parameters
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to model light interaction with tissue. These mean values are the scattering coef-

ficient, absorption coefficient and the phase function [9].

The four basic light-molecule interaction processes are, absorption, sponta-

neous emission, stimulated emission and Raman scattering. The schematic di-

agram shown in Fig. 2.3, which is adopted from [6], shows these four interac-

tion processes. The absorption process describes the transition from a quantized

lower energy initial level to a higher energy level, with the energy gap between

them matching the photon energy [6]. The spontaneous emission process de-

scribes the return of the molecule from the excited state to its lower energy state

by emission of a photon of energy corresponding to the energy gap between the

two levels [6]. The stimulated emission is a process of emission triggered by

an incident photon of an energy corresponding to the energy gap between the

lower and higher energy levels [6]. Raman scattering describes a process that is a

single-step scattering of a photon of energy being scattered into another photon

of energy, the difference corresponding to the energy gap. The interaction of light

with tissue, which is a bulk matter, involves reflection, refraction and scattering

in addition to absorption [6].

Both cw and pulse lasers are available in the UV, visible, and IR ranges. Since

the absorption and scattering of any tissue varies with wavelength, there are dra-

matic differences in the penetration depth of the radiation from the various lasers

[1]. For example, light at either 193 nm or 2.96 µm is totally absorbed in the first

µm of tissue owing to amino acid absorption in the UV band and water absorp-

tion in the IR band. In contrast, light from 600 nm to 1.1 µm can penetrate several

millimeters in tissue. This is owing to the fact that within this red and near-IR

wavelength window there is a lack of strongly absorbing tissue chromophores

[1]. In general, in the UV and IR spectral regions light does not penetrate deep
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into tissue because of high absorption and low scattering. Short-wave visible

light penetrates as deep as 0.5 to 2.5 mm and light in wavelength range 600-1500

nm penetrates to a depth of 8 to 10 mm because scattering prevails over absorp-

tion [10].

Figure 2.4: The transmission spectrum of a 3 mm thick slab of female
breast tissue. A spectrometer with an integrating sphere was
used. The contributions of absorption bands of the tissue
components are marked: 1-hemoglobin; 2-fat; 3-water [5].

Figure 2.4 from reference [5] shows the transmission spectrum of a 3 mm thick

slab of female breast tissue. Figure 2.5 from reference [10] shows attenuation

spectra for several human skin pigments. These figures show that the absorption

spectrum depends on the type of predominant absorption centres and water con-

tent of tissue. Absolute values of absorption coefficients for typical tissues range

from 10-2 cm-1 to 104 cm-1 [10].

Propagation of the scattered light is described by the photon transport equa-

tion which examines the change in radiance with distance in a particular direc-

tion Ω, at position r = (x, y, z) [1]. The characteristics of photon propagation,
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Figure 2.5: Molar attenuation spectra for solutions of main human skin
pigments: 1- DOPA-melanin (H2O); 2 - oxyhemoglobin
(H2O), 3 - hemoglobin (H2O); 4 - bilirubin (CHCl3) [10].

Figure 2.6: Random paths of two photons from a laser beam that are ab-
sorbed by a target melanocyte at r [1].

which include scattering and absorption events within tissue, and reflection and

transmission at boundaries, govern the number of photons that will reach the

melanocyte at coordinate r [1]. Figure 2.6 shows random paths of two pho-

tons from a laser beam that are absorbed by a target melanocyte positioned at
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Figure 2.7: Random paths of most photons missing a target melanocyte
at r [1].

r, whereas Fig. 2.7 shows random paths of most of the photons missing a target

melanocyte.

According to Ashley et al. [1], tissue optics involves two major tasks. The

first task is finding the light energy per unit area per unit time that reaches a

target chromophore at some position r [1]. The second task, which has so far

been the most difficult one, is developing methods by which the absorbing and

scattering properties of tissue can be measured. Such properties are called the

optical properties of tissue and they are, (i) the absorption coefficient, (ii) the

scattering coefficient, (iii) the probability density function that scattering occurs

from a certain direction (with unit vector Ω′) into another direction (with unit

vector Ω, as shown in Fig. 2.8), sometimes also called the phase function of single

particle scattering, and (iv) the index of refraction of the tissue [1]. The ultimate

goal of the second task of tissue optics is to have methods available that can assess

all optical properties non-invasively in living tissues [1].
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Figure 2.8: Incident and scattered directions.

2.3 Propagation of light in tissue

In order to assist the development of optical treatment procedures in medical

fields such as optical tomography, it is necessary to understand the transmission

behavior of light impulses incident on tissue, which is a scattering and absorbing

media [11]. A medium in which both absorption and scattering occur simultane-

ously, such as biological tissue, is called a turbid medium [12]. Optical properties

of a turbid medium are characterized by the absorption coefficient, the scatter-

ing coefficient and the single-scattering phase function [13]. The reciprocal of the

absorption coefficient is defined as the average distance a photon travels before

being absorbed by the medium [13]. Similarly, the reciprocal of the scattering co-

efficient is defined as the average distance a photon travels before being scattered

by the medium [13]. Ashley et al. [1] have defined the absorption (σa) and the

scattering (σs) coefficients such that the probability of absorption in infinitesimal

distance ds is σads and the probability of scattering in infinitesimal distance ds is

σsds, respectively.

A collimated beam incident on a tissue specimen attenuates exponentially
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with tissue depth and the light scattered from the collimated beam becomes the

source for the resulting diffuse or scattered light in the tissue [1]. The scattering

coefficient and the absorption coefficient are wavelength dependent [1]; and the

absorption of light by blood is highly dependent upon wavelength and oxygena-

tion [1].

Two dimensionless quantities can be used to characterize light propagation in

a turbid medium. They are the albedo, α, and the optical thickness, τ, that are

defined as [13]:

α =
σs

σs + σa
, (2.1)

τ = (σs + σa)d, (2.2)

where d is the physical thickness of the slab [13].

Biological tissues are relatively transparent to light in the near infrared wave-

length range from 700 nm to 1 µm, and it is easier to detect the transmitted light

in this wavelength range than in other wavelengths [11]. Tissue components that

absorb light are called chromophores. Some of the most important chromophores

for visible wavelengths are blood and melanin; the latter are small (around 1 µm

in dimension) pigment granules in the skin and the eye [1].

Scattering is usually caused by spatial variations in tissue density, refractive

index and dielectric constant [1]. The larger the difference in the index of refrac-

tion between a cell component and its surrounding, the greater the scattering [14].

For isotropic scattering, absorption and scattering coefficients can be determined

by measuring diffuse reflection and diffuse transmission for a thin sample of tis-

sue [15]. However, biological tissue exhibits strong forward-peaked scattering,
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and the scattering albedo is usually higher than 0.9 [1, 11].

Scattering can cause the light intensity (irradiance) just below the surface of

the tissue to be greater than the incident irradiance. At wavelengths where tissue

absorption is low (600 nm - 1300 nm) and boundary conditions are matched, the

increase in irradiance may be a factor of two to three, with a maximum of 5 [1].

The degree of scattering depends upon the wavelength of the laser beam and the

optical properties of the tissue [15].

For wavelengths that are much longer than cell diameters (frequencies lower

than 300 GHz), where there is little scattering from the cellular structures, the

reflection, absorption and transmission are described best using electromagnetic

theory [15]. However, the electromagnetic spectrum of lasers lies in the infrared

to ultraviolet wavelength band; substantial multiple scattering in tissue occurs in

this band due to the comparable size of cells with respect to the irradiation wave-

length. For laser wavelengths, the photon transport theory provides a practical

description for the optical propagation of light in tissue [15].

Since the light scattered from a collimated beam undergoes multiple scattering

events as it propagates through tissue, a rigorous description of this propagation

in terms of Maxwell’s equations is not possible due to computational reasons. An

approach that has proven effective is the photon transport equation that describes

the transfer of energy through a turbid medium [16]. The theory is heuristic and

is based on a statistical approximation of photon particle transport in the mul-

tiple scattering medium. Ishimaru [16] points out that “although the transport

theory was developed on the addition of powers, it contains information about

the correlation of the fields” . Although polarization can be included in transport

theory, polarization of laser sources is neglected in most of the reported analyses
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[1]. The polarization of incident light is usually lost in highly scattering media

within a few millimeters from the surface [1].

When an ultrashort laser pulse hits a thin plane-parallel layer of a scatter-

ing medium such as tissue, the transmitted pulse consists of a ballistic (coherent)

component, a group of photons having zigzag trajectories, and a highly intensive

diffuse component [10]. The ballistic component is resulted from both unscat-

tered photons and photons undergoing forward-directed scattering, and is sub-

ject to exponential attenuation with increasing sample thickness. The group of

photons with zigzag trajectories experiences only a few collisions and slightly de-

viates from the direction of the incident beam. These form the first-arriving part

of the diffuse component. The diffuse component is broad and contains photons

that experience many scattering events [10].

For a laser beam incident normally on an interface, the total reflectance is pri-

marily due to backscattering, except when the absorption is much larger than

scattering. In the latter case, mainly Fresnel reflection occurs. In Fresnel reflec-

tion, usually about 5 percent of a normally incident laser beam is reflected from

the surface due to the mismatch in the refractive indices [15]. The remaining light,

which is transmitted at the interface, is attenuated in the tissue by absorption and

scattering according to Beer’s law [1, 17]:

I(z) = I0(1− rsc)e−(σa+σs)z, (2.3)

where I(z) [W/m2] is the intensity (irradiance) of collimated light at position z in

the tissue.

However, if scattering is substantial, the distribution of the laser light in tissue

cannot be predicted by Beer’s law and neither absorption nor scattering can be
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individually estimated from attenuation measurements of the laser beam [13, 15].

Since scattering is usually caused by random spatial variations in tissue density,

refractive index and dielectric constant, actual light distributions can be substan-

tially different from distributions estimated by Beer’s law [1].

2.3.1 The electromagnetic theory and the photon transport the-
ory

The electromagnetic theory provides exact expressions for the absorption and

scattering parameters of a uniform, non-scattering medium with ensembles of

random scatterers. These scatterers consist of discrete scattering and absorbing

“particles”, possibly of different sizes, that are distributed randomly [1]. How-

ever, because of the inhomogeneity of biological tissue, analytic approaches us-

ing Maxwell’s equations do not lead to solvable equations for any case of practi-

cal interest in tissue [17]. Also, there has been little progress in developing even

approximate solutions which are applicable to optical propagation in biological

media [1]. While the description of light propagation in tissue in terms of electro-

magnetic fields is intractable, the application of photon transport (radiative trans-

fer) theory has proven to be a considerable success [1]; and most recent advances

in describing the transfer of laser energy in tissue are based upon transport the-

ory [17].

Fante [18] studied the relationship between Maxwell’s equations and the pho-

ton transport theory for isotropic, nondispersive media that have arbitrary per-

mittivity variations. A brief outline of how the electromagnetic theory compares

with the postulates of the photon transport theory is provided in this section,

based on Fante’s [18] work.

Using the electromagnetic theory it can be shown that for an isotropic, non-
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dispersive medium the ensemble-averaged electromagnetic energy density can

be written as [18]

〈U(r)〉 =
∫

Q(r, s)dΩ, (2.4)

where Q is the angular component of the average energy density in the direction

s (see Appendix A for the derivation). The energy dW which is transported across

a surface element dA onto the solid angle dΩ centered about s in a time interval

dt is given by [18]

dW = (R · n)dAdΩdt, (2.5)

where R is the angular component in the direction of s of the Poynting vector and

n is the unit normal to the element dA. The derivation of Eq. (2.5) is presented in

Appendix A. In the photon transport theory it is postulated that the energy dW

which is transported across a surface element dA onto the solid angle dΩ centered

about s in a time interval dt is given by

dW = I(r, s)(s · n)dAdΩdt, (2.6)

where n is the unit normal to dA and I is the radiance. The radiance, I, is postu-

lated to be related to the average energy density through [18]

〈U(r)〉 =
1
v

∫
I(r, s)dΩ, (2.7)

where v is the propagation speed in the medium. By comparing Eq. (2.7) and

Eq. (2.4) it can be seen that these two expressions are consistent when

I(r, s) = vQ(r, s). (2.8)

A more detailed analysis of the relationship between the photon transport theory

and Maxwell’s equations can be found in reference [18].
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2.3.2 The photon transport theory

In the photon transport (PT) formalism, light propagation is considered equiva-

lent to the flow of discrete photons which may be locally absorbed or scattered by

the medium. The scattering is usually energy conserving (although effects such

as fluorecence or Raman scattering which involves wavelength and hence energy

shift can be incorporated). The photon-tissue interactions are described in terms

of absorption and (elastic) scattering cross-sections (or equivalent linear interac-

tion coefficients) and the scattering angular distribution by phase functions [1].

The PT theory is a heuristic model which lacks the physical rigor of multiple

scattering electromagnetic theory. For example, it does not in itself include ef-

fects such as diffraction or interference, even though the absorption and scatter-

ing properties of the individual constituent particles may do so. It is fundamental

to PT theory that there should be no correlation between the radiation fields. Only

quantities such as power or intensity are considered, and the method ignores the

behavior of the component wave amplitudes and phases [1]. However, PT has

provided a self-consistent framework for studies of light propagation in tissues

[1].

If the absorption and scattering properties of tissue are determined accord-

ing to the conditions of the PT theory (i.e., only radiometric quantities, not wave

amplitudes and phases are measured) and, subsequently, these data are used as

inputs to a PT model to calculate the spatial distribution of irradiance within a

tissue volume for given incident irradiation and boundary conditions, then it is

found in general that such distributions agree with experimental values (again

measured ignoring light wave properties), although this has never been demon-

strated rigorously [1].
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In past years, a number of investigators have reported values for the total

attenuation coefficient, the effective attenuation coefficient, the effective penetra-

tion depth, the absorption and scattering coefficients, and the scattering anisotropy

factor for a variety of tissues at a variety of light wavelengths. The majority of

these results are based upon approximations to the photon transport theory [17].

However, there are some indications that the PT theory may break down in the

case of highly structured tissues such as muscle, where the alignment of fibres

may cause measurable wave interference effects and the scattering cannot be con-

sidered random [1].

The propagation of visible or IR photons in a turbid medium, without change

in energy (i.e. neglecting Raman scattering and fluorescence), is described by the

photon transport equation, Eq.(2.9) [19].

The transport equation relates the gradient of radiance, I, at position r in the

direction Ω to losses owing to absorption and scattering and to a gain owing to

light scattered from all other directions Ω′ into the direction Ω [1, 17, 20, 21]. The

equation has the form

1
v

∂

∂t
I(r, Ω, t) + Ω · ∇r I(r, Ω, t)− σs

∫

4π
P(Ω′, Ω)I(r, Ω′, t) dΩ′

+ σt I(r, Ω, t) = F(r, Ω, t), (2.9)

where I [W/m2.sr] is the radiance, σt [1/m] is the extinction coefficient, σs [1/m]

is the scattering coefficient, P [1/sr] is the phase (scattering) function, and F

[W/m3.sr] is the source of power generated at r in direction Ω. The speed of

light in the medium is v.
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2.3.3 Research on light propagation in turbid media

The ratio of scattering to absorption in tissue varies from nearly zero in both

the UV (due to protein absorption) and mid-infrared (due to water absorption)

ranges to large values in the therapeutic window in the red and near-infrared

ranges. Tissue scattering tends to be strongly forward-peaked with an anisotropy

factor in the range 0.7–0.99 [1]. Thus, an accurate model for simulating light

propagation in tissue should not have restrictions on the ratio of scattering to

absorption and on the scattering anisotropy [1]. When any wave phenomenon

associated with light, such as diffraction and interference, is neglected, the mod-

eling of light propagation in tissue is essentially equivalent to solving the full

time-dependent photon transport equation [1].

Methods used to analyze the propagation of light in strongly scattering me-

dia are divided into two main types; statistical and deterministic [11]. Monte

Carlo and random walk are examples of statistical methods. Deterministic meth-

ods are based on the photon transport equation. Statistical methods require very

long computation times in order to obtain statistically meaningful results. These

methods are carried out by tracing the paths of photon bundles with simulation

of the scattering and absorbing pattern of light. Therefore, it is almost impossible

to obtain solutions within practical limits of computation time when the media

are large in size and complex in configuration [11]. On the other hand, determin-

istic methods are based on the photon transport equation, which is in the form of

an integro-differential equation and is difficult to solve [11].

The Monte Carlo method is a stochastic (or statistical) method. It is sufficiently

flexible to handle complex geometrical shapes, anisotropic scattering and nonho-

mogeneous properties, but the results obtained by this method always have un-

avoidable random errors due to practical finite sampling. In contrast, determinis-
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tic methods do not suffer from this defect [22]. Among the popular deterministic

methods, the adding-doubling method has been proposed to solve the transient

response of a medium with a unit-step external source [22].

Most previous studies of photon transport through scattering-absorbing me-

dia assume the photon transport to be steady state (i.e. independent of time) [23].

With the advent of short pulse lasers and their rapid deployment in a variety of

engineering applications such as ocean and atmosphere remote sensing, optical

tomography, laser surgery, combustion product characterization and combustion

diagnostics, the traditional steady-state photon transport formulations cannot be

used to analyze their interaction with participating media [23].

The transient solution for photon transport in one-dimensional geometry for

the case of laser incidence on a surface and propagating at speed v inside a

scattering-absorbing medium has been developed and reported [23]. Yamada and

Hasegawa [11] employed the finite element method (FEM) to solve the parabolic

diffuse approximation equation to analyze the transient photon transport in two-

and three-dimensional cylindrical media with light impulses [22]. They used a

commercially available FEM software package that was developed for solving

the heat conduction problem [11]. Even though the finite element method (FEM)

can be used to solve any diffusion equation such as that for heat, mass and pho-

tons, this method does not necessarily produce correct solutions if the sizes of

the elements are not appropriate and if the time steps are too large in a time-

dependent calculation [11]. In particular, a very sharp gradient of the fluence rate

may produce unreasonable temporal and spatial fluctuations [11].

Mitra et al. [22] applied the hyperbolic P1 approximation to the transient pho-

ton transport within a two-dimensional rectangular medium. Wu [24] developed
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an integral equation of transient photon transport in an isotropically scattering

planar medium, and it was shown that the integral equation can be solved accu-

rately by a quadrature method [22].

Many models have been developed to solve the one-dimensional PTE, which

assumes horizontally-uniform plane-parallel media. However, in order to model

three-dimensional inhomogeneous media, the three-dimensional PTE should be

used [25]. Many diverse methods for solving the multi-dimensional steady state

photon transport problem for atmospheric sciences have been reported [25, 26].

However, most of the work related to this problem has generally focused on

the problem of the transfer of non-uniform sources of radiation through a spa-

tially uniform media [26]. The most common type of model used to study three-

dimensional cloud effects has been the Monte Carlo method; but this method is

rather slow for results with good accuracy [25].

Among the methods proposed for solving the three-dimensional steady state

PTE are the Monte Carlo simulations [12], the interaction principle [26], the Fourier-

Riccati method [27], the spherical harmonics discrete ordinate method [25] and

the diffusive approximation [28]. Stephens [26] used a general transform method

to model media with vertically and horizontally varying optical properties.

For applications in which ultrashort pulses are used as the incident source,

the medium can be treated as cold because the emission from the medium is neg-

ligible [29]. This is because the small amount of energy deposited per pulse is

not sufficient to raise the temperature significantly, and hence any emission can

be neglected when compared to the intensity of the scattered incident pulse [29].

In addition, any emission from the medium will be at higher wavelengths due

to the low temperature in the medium and therefore need not be included in the
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monochromatic analysis which is conducted at the wavelength of the laser [29].

When the radiation propagates at the speed of light, the time is in the order of

1 ns or less. With such a time scale, the medium can be generally treated as cold

because the heat-diffusion and heat-capacity effects are negligible [30].

Common approximations to light propagation in tissue-like media, such as

the diffusion equation, random walk models, the Kubelka-Munk method, the

seven-flux model and Chandrasekhar’s X and Y functions place restrictions on

one or more of the basic tissue properties [1]. In the X and Y functions tech-

nique, the radiance at the entrance and exit surfaces of a slab is expressed in

terms of X and Y functions [31]. These X and Y functions are solutions of non-

linear integral equations [31]. The two methods, the discrete ordinates and the

adding-doubling, allow accurate solution of the PTE for anisotropic scattering

and mismatched boundaries [1]. The adding-doubling method works naturally

with layered media and yields reflection and transmission readily, while the dis-

crete ordinates method generates internal fluences easily [1].

Methods based on the diffusion approximation or a similar approximation

(e.g., uniform radiances over the forward and backward hemispheres) tend to

be more accurate than the Kubelka-Munk method [13]. However, the diffusion

approximation assumes that the internal radiance is nearly isotropic and conse-

quently, it is inaccurate when scattering is comparable with absorption [13, 32].

Concise mathematical descriptions of some of the very commonly used mod-

els are presented in Chapter 3.
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2.4 Maxwell’s equations

An electromagnetic field, which is represented by two vectors, the electric vector

(E) and magnetic induction (B), is created by the state of excitation which is

established in space by the presence of electric charges [33]. The three vectors,

the electric current density (J), the electric displacement (D) and the magnetic

vector (H), are necessary in order to describe the effect of the electromagnetic

field on material objects [33]. The following Maxwell’s equations relate the space

and time derivatives of these five vectors, that hold at every point in a continuous

medium [33].

∇×H− ∂D
∂t

= J, (2.10)

∇× E +
∂B
∂t

= 0, (2.11)

∇ ·D = ρ, (2.12)

∇ · B = 0, (2.13)

where ρ is the electric charge density. Equation (2.10) is the Ampère’s circuit

law with Maxwell’s correction. Equation (2.11) is the Maxwell-Faraday equation.

Equations (2.12) and (2.13) are Gauss’ law and Gauss’ law for magnetism, respec-

tively. For dielectric media without free charges or currents, J = 0 and ρ = 0 in

the above set of equations [34].

In order to uniquely determine the field vectors from a given distribution of

currents and charges, the four Maxwell’s equations should be supplemented by

relations which describe the behaviour of substances under the influence of the

field. These relations, that are known as constitution relations, are complicated

in general. However, if the field is time-harmonic, and if the bodies are at rest, or

very slowly moving relative to each other, and if the material is isotropic, these



2.5 Phase retrieval techniques 38

material equations take the relatively simple form [33]

J = σE, (2.14)

D = εE, (2.15)

B = µH, (2.16)

where σ is the specific conductivity, ε is the dielectric constant, which is also

known as the permittivity, and µ is the magnetic permeability.

2.5 Phase retrieval techniques

The visualization of the information imprinted by a weakly absorbing object into

the phase of a transmitted electromagnetic wave, which is called phase imag-

ing, has been studied in optics [35]. However, more recently, various techniques

have been developed for retrieving the phase by numerical processing of data

obtained by non-interferometric measurements of optical intensity, rather than

visualizing the phase directly [35]. The optical phase-retrieval problem, which

is to deduce optical phase from minimal irradiance measurements by using non-

interferometric techniques, has been studied extensively in recent years [36]. Op-

tical phase retrieval from intensity measurements has been an important issue

in many fields including optics, electron and x-ray microscopy, crystallography

and diffraction tomography [37]. Phase recovery is used in these disciplines as

an essential component of the imaging technique, which enables the acquisition

of important additional information about a sample [37]. Further, phase retrieval

has been used in adaptive optical systems being developed in disciplines such as

astronomy, synchrotron x-ray optics and ophthalmology. The recovered aberra-

tions of the wave front are compensated with the help of a flexible mirror, which

results in a significant improvement in the imaging quality of the optical system
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[37]. Phase retrieval offers the advantage of recovering the phase in digital form,

thus making it useful in quantitative analysis of samples [35].

Non-interferometric methods of phase retrieval, which attempt to recover the

phase of an electromagnetic wave on the basis of direct measurements of its in-

tensity, can be divided into two categories depending on the conditions of the

intensity measurements [37]. In one category, the intensity of the wave field is

measured in the far zone, and therefore, the complex amplitude of the scalar wave

can be considered as a Fourier transform of the amplitude distribution in the ob-

ject plane. When this amplitude distribution in the object plane is bounded by a

finite aperture, its Fourier transform will be an analytic function whose phase and

intensity depend on each other [37, 38]. Thus, the phase can be recovered in this

case if the intensity data are known. In the other category, which was originally

proposed by Teague [36, 39] and later developed by Roddier [40, 41], the intensity

is measured in the Fresnel zone at two adjacent planes orthogonal to the optical

axis and then the phase on the first plane is recovered by use of the information

about the evolution of the intensity distribution [37].

Starting from the Schrödinger equation, an equation for the phase can be ob-

tained, which expresses conservation of flux in a paraxial approximation [42].

This equation is referred to as the transport of intensity equation (TIE):

∇xy ·
[
I (r⊥, z)∇xyφ (r⊥, z)

]
= −k∂z I (r⊥, z) , (2.17)

where ∇xy is the gradient operator in the x-y plane, I is the irradiance, φ is the

phase, k is the wave number and ∂z I (r⊥, z) is the intensity derivative along the

direction of propagation at an image plane [42].

Teague [36] derived equations for the propagation of phase and irradiance,
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and a Green’s function solution for the phase in terms of irradiance and perime-

ter phase values has been presented. In this method the phase is given directly

in terms of the measured irradiance data and hence it is a deterministic phase-

retrieval scheme. However, the phase uniqueness question does not arise here as

it does in methods based on iterative algorithms [36].

Gurevey et al. [37] proposed a method for phase recovery in the case of non-

uniform illumination, which is based on the orthogonal series expansion. They

claim that this method does not require any separate boundary conditions and

that it can be more easily adjusted for apertures of various shapes. Gureyev et

al. [35] proposed another method for digital phase imaging which requires the

measurement of intensity in two adjacent planes orthogonal to the optical axis.

The phase was proposed to be recovered by a Fast Fourier Transform of the TIE,

and the phase was reconstructed as a sum of its Fourier components [35]. Their

method assumed the Fresnel approximation. They claimed that their method

was non-iterative and could cope with non-uniform intensity distributions in

the plane in which the phase was reconstructed. Further, they stated that their

method did not require separate boundary conditions for phase recovery [35].

Paganin et al. [43] proposed an algorithm that started from Teague’s approx-

imation which required the use of the calculus of pseudo-differential operators

[42]. Allen et al. [42] developed and compared three different methods of phase

retrieval from series of image measurements obtained at different defocus values.

The first method was an approximate solution to the transport of intensity equa-

tion (TIE) based on Fourier transforms, the second method was an exact solution

of the TIE based on multigrid methods and the third method was an iterative ap-

proach, that used the free space propagator between image planes [42]. In their

first method, Allen et al. [42] presented an approximate solution to the TIE, start-
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ing out by making an approximation to obtain an equation of the Poisson type

for an auxiliary function. They showed that by differentiation, a second Poisson

equation can be obtained for the phase itself [42] as opposed to Teague’s approach

based on Green functions [36]. They claimed that all the steps in their approach

could be cast in terms of Fourier transforms [42].

2.6 Conclusions

This chapter has provided brief discussions of some of the basic topics which

are required to understand the content of this dissertation. The way researchers

model tissue was discussed very briefly, stating the assumptions they made. The

propagation of light in tissue was discussed, along with the introduction of the

definitions of absorption and scattering coefficients, albedo and optical thickness.

A brief account of the applicability of the photon transport theory was provided

as opposed to using Maxwell’s equations for modeling light propagation in tis-

sue, along with the introduction of the photon transport equation. The photon

transport equation is used to model light propagation through biological tissue.

A concise comparison of existing models for light propagation in turbid media

was also presented.Maxwell’s equations were introduced, followed by a discus-

sion of phase retrieval techniques using intensity profiles.
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CHAPTER 3

Modeling Light Propagation in Tissue

This chapter presents the problem of numerical modeling of light propagation through

tissue with detailed mathematical descriptions.

3.1 Introduction

NUMERICAL modeling of light propagation through tissue involves nu-

merically solving the governing photon transport equation. As outlined

in the previous chapter, many numerical techniques have been introduced by re-

searchers in the field over the past decades. Most of these techniques developed

in the last few decades have concentrated on solving the steady-state (i.e. time-

independent) PTE, mainly focusing in the fields of astrophysical and atmospheric

sciences. Only recently have researchers started developing models for the time-

dependent PTE to be used in tissue optics. However, each of these techniques has

relative advantages and disadvantages.

This chapter provides the basic mathematical descriptions required to discuss

the techniques proposed in this dissertation in later chapters, and is divided into

eight major sections. Section 3.2 provides some basic radiometric definitions of

47
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radiance, irradiance and net flux vector. Section 3.3 provides a detailed math-

ematical description of the photon transport equation along with a description

of the phase function of scattering. This section includes a discussion of how

the complicated angular dependence of the phase function is simplified in most

of the existing techniques that are used to analyze the PTE. Section 3.4 provides

detailed descriptions of some of the widely-used existing models for simulat-

ing light propagation in turbid media. Section 3.5 provides a review of research

on modeling light propagation through tissue with inhomogeneities to identify

anomalies in tissue. Section 3.6 presents a brief account of the use of modeling

light propagation through tissue with implanted structures for optical sensing of

substances in blood or tissue fluid. This problem has not been discussed in the

literature and a novel technique for this purpose is proposed in this dissertation.

Section 3.7 concludes the chapter by summarizing the main points discussed in

this chapter.

3.2 Radiometric definitions

Figure 3.1 shows the flow of radiative energy carried by a beam in the direction

Ω through a transparent surface element dA. n is the surface normal such that

cos θ = n ·Ω [1].

RADIANCE (I)

Radiance is defined as the “radiant power per unit of solid angle about unit

vector Ω and per unit area perpendicular to Ω” [2]. That is, at a point on a sur-

face and in a given direction, the radiant intensity of an element on the surface,

divided by the area of the orthogonal projection of this element on a plane per-

pendicular to the given direction is defined as the radiance. Thus, the radiance,
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n

Ω

θ dΩ

r

dA

Figure 3.1: The flow of radiative energy carried by a beam in the direc-
tion Ω through surface element dA [1].

I, can be expressed as

I(r, Ω) =
dP(r, Ω)

dAcosθdΩ

[
W.m-2.sr-1

]
, (3.1)

where dP(r, Ω) [W] is the power flowing through an infinitesimal area dA, lo-

cated at r, in the direction of the unit vector Ω (perpendicular to dA), within the

infinitesimal solid angle dΩ [2].

NET FLUX VECTOR

Flux is a description of photon energy transfer per unit area. The net flux

vector, F(r), is the vector sum of elemental flux vectors I(r, Ω)ΩdΩ [2]. That is,

F(r) =
∫

4π
I(r, Ω)Ω dΩ. (3.2)
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Hemispherical fluxes are defined as the energy flux through dA in either the

forward direction n, or the backward direction−n. The hemispherical flux Fn+(r)

is an integral over the solid angle of 2π (0 < θ ≤ π/2) and Fn−(r) is an integral

over the solid angle of 2π (−π/2 < θ ≤ 0) [2]. Thus,

Fn+(r) =
∫

2π
I(r, Ω)(Ω · n) dΩ (3.3)

and

Fn−(r) =
∫

2π
I(r, Ω)(Ω · −n) dΩ,

= −
∫

2π
I(r, Ω)(Ω · n) dΩ. (3.4)

From these forward and backward hemispherical fluxes, Eq. (3.3) and Eq. (3.4),

and the basic definition of the net flux vector, Eq. (3.2), the net flux vector is re-

lated to the hemispherical fluxes as [2]

F(r) · n = Fn+(r)− Fn−(r). (3.5)

IRRADIANCE ( Ĩ)

Consider the flow of radiative energy across a surface element dA, located at

a specific position, and having a unit normal n (as shown in Fig. 3.1). The net rate

of radiative energy flow, or power per unit area within a small spectral range, is

called the spectral net flux or irradiance [1] and can be expressed as

Ĩ =
d3E

dAdtdv
[W.m-2.Hz-1]. (3.6)

The irradiance (net flux) through a surface element dA depends upon the cu-

mulative effect of all the angular beams crossing it in different directions. This

quantity conveys little information about the directional dependence of the en-
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ergy flow [1]. However, an absorbing chromophore at location r inside the tissue

can absorb photons irrespective of their direction of propagation, and therefore,

the integral of the radiance over all directions, (i.e. the irradiance), has more prac-

tical significance than the radiance itself [2].

z

x

y

R

P

irradiance 

at point P

local direction

of propagation

forward hemisphere 

centred on the 

propagation direction

Figure 3.2: An illustration of the strategy used for mapping radiance to
irradiance.

The radiance and irradiance can be related by [1]

Ĩ =
∫

4π
I cos θ dΩ, (3.7)

and this idea is graphically illustrated in Fig. 3.2.

3.3 The Photon Transport Equation

As mentioned in the previous chapter, the modeling of light propagation in tissue

is governed by the photon transport equation, Eq. (2.9). Until recently, most tissue
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optics studies considered only the steady-state (time-independent) transport of

light [3]. The radiance in the transient PTE is dependent on the position, local

solid angle as well as on time. The solid angle Ω can be written in terms of the

azimuthal angle, φ, and the zenith angle, θ, as

dΩ = sin θ dθ dφ. (3.8)

x

y

z

r

dθ

dφ

rdθ

rsinθdφ

area = r2dΩ

        = r2sinθdφdθ

O

θ

φ

dΩ

Figure 3.3: The relationship of the solid angle with the zenith and az-
imuthal angles.

The relationship given by Eq. (3.8) is graphically illustrated in Fig. 3.3. Thus,

Eq. (2.9) can be written in terms of θ and φ [4]:

1
v

∂

∂t
I(x, y, z, u, φ, t) + ξ

∂

∂x
I(x, y, z, u, φ, t) + η

∂

∂y
I(x, y, z, u, φ, t)

+ u
∂

∂z
I(x, y, z, u, φ, t)− σs

4π

∫ 2π

0

∫ 1

−1
P(u′, φ′; u, φ)I(x, y, z, u′, φ′, t) du′ dφ′

+ σt I(x, y, z, u, φ, t) = F(x, y, z, u, φ, t), (3.9)

where (x, y, z, θ, φ) are the standard coordinates, u, ξ and η are direction cosines

such that u = cos θ, ξ = sin θ cos φ, η = sin θ sin φ and t is time.
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Equation (3.9) can be reduced to the two-dimensional transient PTE, where

the radiance is considered to be a function of (y, z, u, φ, t):

1
v

∂

∂t
I(y, z, u, φ, t) + η

∂

∂y
I(y, z, u, φ, t) + u

∂

∂z
I(y, z, u, φ, t) + σt I(y, z, u, φ, t)

− σs

4π

∫ 2π

0

∫ 1

−1
P(u′, φ′; u, φ)I(y, z, u′, φ′, t) du′ dφ′ = F(y, z, u, φ, t). (3.10)

This can be reduced to the one-dimensional transient PTE, where the radiance is

considered to be a function of only (z, u, φ, t):

1
v

∂

∂t
I(z, u, φ, t) + u

∂

∂z
I(z, u, φ, t) + σt I(z, u, φ, t)

− σs

4π

∫ 2π

0

∫ 1

−1
P(u′, φ′; u, φ)I(z, u′, φ′, t) du′ dφ′ = F(z, u, φ, t). (3.11)

The source term, F(r, Ω, t), can incorporate the irradiance, but can also be used

to represent fluorescence light generated within tissue or the internal light source

during interstitial laser therapy [2].

Calculations of light distribution based on the photon transport equation re-

quire knowledge of the absorption and scattering coefficients and the phase func-

tion. Yet to arrive at these parameters, one must first have a solution of the photon

transport equation [3]. Typical optical properties are obtained by using solutions

of the PTE that express the optical properties in terms of readily measurable quan-

tities [5].

In most existing methods for solving the PTE, first the phase function is ex-

panded using Legendre polynomials [6]. With this expansion, the phase function

is expressed as [6]

P
(
u′, φ′; u, φ

)
=

2N−1

∑
m=0

(2− δ0m) pm (
u′, u

)
cos

(
m(φ′ − φ)

)
, (3.12)
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where δ0m is Kronecker’s delta defined as

δ0m =

{
1, for m = 0 (3.13a)

0, for m 6= 0. (3.13b)

The radiance is then expanded in Fourier cosine series:

I(x, y, z, u, φ, t) =
2N−1

∑
m=0

Im(x, y, z, u, t) cos(m(φ− φ0)). (3.14)

Use of Eq. (3.12) and Eq. (3.14) in the one-dimensional PTE removes the az-

imuthal dependence resulting in a set of 2N equations, one for each Fourier com-

ponent. Thus, for the one-dimensional case, the PTE reduces to [7]

1
v

∂

∂t
I(z, u, t) + u

∂

∂z
I(z, u, t) + σt I(z, u, t)− σs

2

∫ 1

−1
P(u′; u)I(z, u′, t) du′

= F(z, u, t). (3.15)

However, this approach cannot be used to remove the azimuthal dependence

in two-dimensional and three-dimensional PTE, because the direction cosines ξ

and η in these cases are functions of the azimuthal angle, φ.

3.3.1 Phase function of scattering

The single-scattering phase function describes the amount of light scattered at an

angle Θ from the incoming direction [5]. We assume that the scattering depends

only on the angle Θ between unit vector directions Ω and Ω′. Therefore, we as-

sume that tissue is isotropic in terms of physical properties (such as refractive

index and density) [2]. The phase function is normalized such that its integral

over all directions is unity [5]. Figure 3.4 shows the incident and scattered direc-

tions and the scattering angle.
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z

x

y

direction of the

scattered ray

direction of the

incident ray

Ω

Ω/

Θ

Figure 3.4: Illustration of the incident direction, scattered direction and
the scattering angle.

Several phase functions, such as the Henyey-Greenstein, the modified Henyey-

Greenstein, the Eddington, the delta-Eddington, the isotropic, the delta-isotropic

and a combination of the Rayleigh phase function and the Henyey-Greenstein

phase function [8] have been postulated to represent single scattering phase func-

tions for tissue [2, 3]. Among these, the Henyey-Greenstein phase function can

be used to model dermal and aortic tissues [3] and this phase function has been

used widely in modeling light propagation in tissue.

Isotropic scattering implies that the phase function is unity [1]; i.e. P(Ω′, Ω) =

1. Light scattering in tissue is not isotropic but strongly forward-directed [2]. A

measure of the degree of anisotropy in scattering is the anisotropy factor g. Total

forward scattering means g = 1 and isotropic scattering means g = 0; but for

in vitro tissues at the visible and near-infrared wavelengths, g is found to be be-

tween about 0.7 and 0.99 [2].

Mathematically, g is defined as the expectation value of the cosine of the scat-
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tering angle Θ [2]. That is

g =

∫
4π P(Ω′, Ω)(Ω′ ·Ω) dΩ′

∫
4π P(Ω′, Ω) dΩ′ . (3.16)

The phase function is normalized such that [2]

∫

4π
P(Ω′, Ω) dΩ′ = 1. (3.17)

Therefore, Eq. (3.16) reduces to

g =
∫

4π
P(Ω′, Ω)(Ω′ ·Ω) dΩ′. (3.18)

x

y

z

Ω

Ω
y
=Ωsinθsinφ 

θ

φ

Ω x
=Ω

sinθ
cosφ 

Ω
z
=
Ω

co
sθ

 

i

j

k

Figure 3.5: Relationship between the Cartesian and spherical coordi-
nates.

In most of the models that have been proposed to solve the photon transport

equation, the phase function is not used as it is, but rather as its expansion in

Legendre polynomials [1]. The direction of the incident ray, Ω, and the direction

of the scattered ray, Ω′, can be expressed in terms of unit vectors i, j, k along the
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axes x, y, z, respectively. As shown in Fig. 3.5,

Ω = Ωxi + Ωyj + Ωzk, (3.19)

Ω′ = Ω′
xi + Ω′

yj + Ω′
zk. (3.20)

The dot product of Ω and Ω′ results in,

Ω ·Ω′ = ΩΩ′ cos Θ = ΩxΩ′
x + ΩyΩ′

y + ΩzΩ′
z. (3.21)

Thus, Eq. (3.21) can be expressed in spherical coordinates as

ΩΩ′ cos Θ = ΩΩ′ sin θ cos φ sin θ′ cos φ′+ ΩΩ′ sin θ sin φ sin θ′ sin φ′+ ΩΩ′ cos θ cos θ′,

(3.22)

where θ is the zenith angle and φ is the azimuthal angle. Equation 3.22 reduces

to,

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ′ − φ). (3.23)

The phase function can be expanded using Legendre polynomials of degree l,

given by P̃l(cos Θ), as

P(cos Θ) ≈
2N−1

∑
l=0

(2l + 1)χl P̃l(cos Θ), (3.24)

where

χl =
1
2

∫ 1

−1
P̃l(cos Θ)P(cos Θ) d(cos Θ). (3.25)

Using the spherical harmonic addition theorem, the phase function can be written

in terms of the azimuthal and zenith angles as [6]

P
(
u′, φ′; u, φ

)
=

2N−1

∑
m=0

(2− δ0m)pm (
u′, u

)
cos(m(φ′ − φ)), (3.26)
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where

pm(u′, u) =
2N−1

∑
l=m

(2l + 1)χlΛ
m
l (u′)Λm

l (u), (3.27)

Λm
l (u) =

√
(l −m)!
(l + m)!

P̃m
l (u), (3.28)

Λm
l (u) are the normalized associate Legendre functions and P̃m

l (u) are the asso-

ciate Legendre functions [6].

3.4 Existing models for simulating light propagation
in turbid media

In this section, some of the widely used models for light propagation in turbid

media are described in detail with an evaluation of the relative advantages and

disadvantages of each method.

THE MONTE CARLO METHOD

Monte Carlo simulations of photon propagation offer a flexible but rigorous

approach to photon transport in tissues [2]. The principal idea of Monte Carlo

simulations applied to absorption and scattering phenomena is to follow the op-

tical path of a photon through the turbid medium. In this method, the rules of

photon propagation are expressed as probability distributions for the incremen-

tal steps of photon movement between sites of photon-tissue interaction, for the

angles of deflection in a photon’s trajectory when a scattering event occurs, and

for the probability of transmittance or reflectance at boundaries [2].

This method simulates the “random walk” of photons in a medium that con-

tains absorption and scattering. It is based on a set of rules that govern the move-

ment of a photon in tissue. The two key decisions are the mean free path for a
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scattering or absorption event and the scattering angle [2].

The five principal steps of Monte Carlo simulations of absorption and scatter-

ing as described in [9] are given below.

1. Source photon generation: Photons are generated at a surface of the con-

sidered medium. Their spatial and angular distributions can be fitted to a

given light source (e.g. a Gaussian beam).

2. Pathway generation: After generating a photon, the distance to the first

collision is determined. Absorbing and scattering particles in the turbid

medium are assumed to be randomly distributed. Thus, the mean free

path is 1/$σs, where $ is the density of particles and σs is their scattering

cross-section. A random number ξ1, such that 0 < ξ1 < 1, is generated

by the computer, and the distance L(ξ1) to the next collision is calculated

from

L(ξ1) = − ln(ξ1)
$σs

. (3.29)

Since ∫ 1

0
ln(ξ1) dξ1 = −1 (3.30)

the average value of L(ξ1) is indeed 1/$σs. Hence, a scattering point has

been obtained. The scattering angle is determined by a second random

number, ξ2, in accordance with a certain phase function. The correspond-

ing azimuth angle φ is chosen as φ = 2πξ3 where ξ3 is a third random

number between 0 and 1.

3. Absorption: To account for absorption, a weight is attributed to each pho-

ton. When entering a turbid medium, the weight of the photon is unity.

Due to absorption (in a more accurate program also due to reflection), the

weight is reduced by exp(−αL(ξ1)), where α is the absorption coefficient.

As an alternative to implementing a weight, a fourth random number ξ4
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between 0 and 1 can be drawn. Instead of assuming only scattering events

in step 2, scattering takes place if ξ4 < a, where a is the albedo. For ξ4 > a,

on the other hand, the photon is absorbed, which then is equivalent to step

4.

4. Elimination: This step only applies if a weight has been attributed to each

photon. When this weight reaches a certain cutoff value, the photon is

eliminated. A new photon is then launched, and the program proceeds

with step 1.

5. Detection: After having repeated steps 1-4 for a sufficient number of pho-

tons, a map of pathways is calculated and stored in the computer. Thus,

statistical statements can be made about the fraction of incident photons

being absorbed by the medium as well as the spatial and angular distribu-

tions of photons having escaped from it.

In summary, the distance between two collisions is selected from a logarithmic

distribution, using a random number generated by a computer. The absorption

is accounted for by implementing a weight to each photon and permanently re-

ducing this weight during propagation. If scattering is to occur, a new direction

of propagation is chosen according to a given phase function and another ran-

dom number is generated [9]. The whole procedure continues until the photon

escapes from the considered volume or its weight reaches a given cutoff value [9].

Even though the Monte Carlo method is rigorous, it is computationally in-

tense. This method is basically statistical in nature and requires a computer to

calculate the propagation of a large number of photons [2]. This is because the

error bound of the Monte Carlo method is inversely proportional to the square

root of the number of statistical samplings and hence it requires a large number

of samples to reach the satisfactory accuracy [10].
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Various variance reduction techniques are used to increase the efficiency of

Monte Carlo simulations [11]. The most fundamental of these is a technique in

which absorption is modeled by reducing photon weights rather than by pho-

ton termination [11]. Other techniques include photon splitting, electron history

repetition, Russian roulette and the use of quasi-random numbers [12]. Variance

reduction techniques are used to decrease the statistical fluctuations of Monte

Carlo calculations without increasing the number of particle histories [12].

Sawetprawichkul et al. [10] implemented a three-dimensional transient radia-

tive transport model using Monte Carlo method on a parallel computer system.

Their coding was based on a single program multiple data model and a message

passing interface was used to achieve parallelization. A single program multiple

data model uses the same program in all nodes, but these nodes may produce

different data depending on the given input [10]. Sawetprawichkul et al. [10]

showed that the Monte Carlo method is very adaptable to parallel computing,

despite being computationally intensive.

Graphics processing units (GPUs) can be used to dramatically increase the

speed of Monte Carlo simulations of photon transport applications [11]. Aler-

stam et al. [11] showed that a simulation of a standard time-resolved photon mi-

gration problem in a semi-infinite geometry on a low-cost GPU was 1000 times

faster than on a single standard processor. On a GPU, a single program multiple

data model works by launching thousands of threads running the same program,

which is called the kernel, working on different data [11]. Alerstam et al. [11]

compared central processing unit (CPU) and GPU speeds by executing the same

Monte Carlo code of photon migration. They showed that the GPU implementa-

tion was about 1080 times faster than the conventional CPU implementation.
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Even though the use of GPUs for Monte Carlo simulations of photon migra-

tion has been suggested in literature, they have never been used for this purpose

[11]. However, GPUs have been used for Monte Carlo simulations in other fields

[11]. The choice of the method of random number generation is a very important

aspect of executing Monte Carlo simulations in parallel. This is due to the fact

that the same random number generator with the same seed (e.g. when a times-

tamp is used as the seed) would most likely result in many threads performing

exactly the same computations [11]. Therefore, when Monte Carlo codes are exe-

cuted in parallel different threads should be properly and differently seeded [11].

THE ADDING-DOUBLING METHOD

The adding-doubling method is a general numerical solution of the photon

transport equation [5, 13]. This method works naturally with layered media and

yields reflection and transmission information readily. Reflectance is important

for diagnostic applications using light. For measuring the optical properties of

a sample, the only values needed are the total reflection and transmission of the

sample [2]. The doubling method was introduced by Van de Hulst to solve the

photon transport equation in a slab geometry [2].

The adding-doubling method involves obtaining the reflection and the trans-

mission matrices. Here, doubling refers to how one finds the reflection and trans-

mission matrices of two layers with identical optical properties from those of the

individual layers [1]. Thus, the doubling method assumes knowledge of the re-

flection and transmission properties of a single thin homogeneous layer. The

reflection and transmission of a slab twice as thick is found by juxtaposing two

identical slabs, and summing the contributions from each slab [2, 5]. To start the
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Figure 3.6: Illustration of the doubling concept [1].

doubling procedure the initial layer is frequently taken to be thin enough that

its reflection and transmission properties can be computed from single scattering

[1]. The reflection and transmission from an arbitrarily thick slab are obtained by

repeatedly doubling until the desired thickness is reached [1, 2].

The adding method refers to the combination of two or more layers with dif-

ferent optical properties [1]. That is, the adding method extends the doubling

method to dissimilar slabs, thus making it possible to simulate media with differ-

ent layers and/or internal reflection at boundaries [2].

The solution technique for the adding-doubling method proceeds by first ap-

plying doubling to find the reflection and transmission matrices for each of the

homogeneous layers, whereupon adding is subsequently used to find the solu-

tion for all the different layers combined [1].

Figure 3.6 shows an illustration of the doubling concept. Basically, the dou-

bling concept starts with the notion that the emergent intensities I+(0) (the backscat-

tered intensity at z = 0) and I−(d) (the forward intensity at z = d) are determined
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by a reflection matrix, ρ, and a transmission matrix, τ, through the relations [1]

I−(d) = τI−(0) + ρI+(d), (3.31)

I+(0) = ρI−(0) + τI+(d), (3.32)

for a homogeneous slab of thickness d.

Equation (3.31) and Eq. (3.32) can be written in matrix form as


 I−(d)

I+(d)


 =


 τ − ρτ−1ρ ρτ−1

−τ−1ρ τ−1





 I−(0)

I+(0)


 . (3.33)

If τ1 = τ(d), ρ1 = ρ(d), τ2 = τ(2d) and ρ2 = ρ(2d), then comparing Eq. (3.33)

with the re-arranged steady-state PTE in matrix form, it can be shown that [1]


 τ2 − ρ2τ−1

2 ρ2 ρ2τ−1
2

−τ−1
2 ρ2 τ−1

2


 =


 τ1 − ρ1τ−1

1 ρ1 ρ1τ−1
1

−τ−1
1 ρ1 τ−1

1




2

. (3.34)

Solutions for τ2 and ρ2 are obtained by,

τ2 = τ1(I− ρ2
1)
−1τ1, (3.35)

ρ2 = ρ1 + τ1ρ1(I− ρ2
1)
−1τ1, (3.36)

where I is the identity matrix [1]. Equation (3.35) and Eq. (3.36) constitute the ba-

sic doubling rules from which the reflection and transmission matrices for a layer

of thickness 2d are obtained from those of half the thickness, d [1].

The adding-doubling method is based on the numerical integration of func-
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tions with quadrature [5]:

∫ 1

0
f (v, v′) dv′ =

N

∑
k=1

Hk f (xk). (3.37)

The quadrature points, xk, and weights, Hk, are chosen so that the integral is ap-

proximated exactly for a polynomial of order 2N − 1 [5]. Use of N quadrature

points (Gaussian quadrature) is equivalent to the spherical harmonic method of

order PN−1 [5].

The adding-doubling method is sufficiently fast that iterated solutions are

possible on microcomputers [5]. This method is also sufficiently flexible that

anisotropic scattering and internal reflection at the boundaries may be included

[5]. Internal reflection at the boundaries (caused by mismatched indices of refrac-

tion) can be included in the calculation by adding an additional layer for each

mismatched boundary. The reflection and transmission of this layer is equal to

the Fresnel reflection and transmission for unpolarized light incident on a plane

boundary between two transparent media with the same indices of refraction [5].

For a medium characterized by any phase function adding-doubling method

can be used for any tissue optical thickness [2]. This method is accurate for any

ratio of scattering to absorption and the adding method can be used to obtain

the reflection and transmission of inhomogeneous layered media with different

optical properties [2]. The adding method is a powerful technique for computing

the radiance at the entrance and exit surfaces of a slab [14].

The adding-doubling method assumes that the distribution of light is inde-

pendent of time, samples have homogeneous optical properties, the sample ge-

ometry is an infinite plane-parallel slab of finite thickness, the tissue has a uni-
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form index of refraction, internal reflection at boundaries is governed by Fres-

nel’s law, the light is unpolarized and the slab has no internal sources [2, 5]. The

adding-doubling method has several advantages over most other techniques, be-

cause it permits asymmetric scattering, arbitrarily thick samples, Fresnel bound-

ary conditions and relatively fast computations [15]. In addition, in this method

only integrations over angle are required and physical interpretation of results

can be made at each step. This method is equivalent for isotropic and anisotropic

scattering and the results are obtained for all angles of incidence used in the in-

tegration [2, 5]. Two disadvantages of the adding-doubling method are that it is

restricted to layered geometries with uniform irradiation and it is necessary that

each layer has homogeneous optical properties [2, 5].

When a one-dimensional geometry is a reasonable representation, then the

adding-doubling method provides an accurate solution of the photon transport

equation for any phase function [3]. However, since it is incapable of providing

the radiance at arbitrary positions within the slab, its application to tissue optics

is limited [14].

THE DIFFUSION APPROXIMATION

The diffusion equation is derived as an approximate solution of the photon

transport equation [2]. It combines the scattering and the phase function in one

parameter, called the reduced scattering coefficient [15]. The photon diffusion

approximation is often employed to simplify the photon transport equation into

a partial differential equation with respect to space and time. However, the pho-

ton diffusion equation involves some errors due to the approximation used in its

derivation [16].
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In this theory, light is principally described by particles with energy hν and

velocity c [2]. These particles are scattered or absorbed by structures in turbid

media, and reflected at boundaries. These reflections can be determined by equa-

tions of Fresnel reflection [2].

In diffusion theory, the radiance in the steady-state PTE is separated into un-

scattered, Ic(r, Ω), and scattered, Id(r, Ω), components [3];

I(r, Ω) = Ic(r, Ω) + Id(r, Ω). (3.38)

The unscattered portion contains all the light that has not interacted with tissue

and it satisfies Beer’s law [3]. The scattered portion contains all the light that has

been scattered at least once and can be expressed exactly with an infinite sum of

Legendre polynomials. However, the diffusion approximation truncates this sum

to the first two terms (an isotropic and a slightly forward- directed term) [3]. This

approximation simplifies the photon transport equation to the diffusion equation

given by (
∇2 − κ2

)
Φ(r) = −Q0(r), (3.39)

where the constant κ is an approximation of the actual measured effective atten-

uation coefficient when absorption is dominated by scattering, the source term

Q0(r) is generated by scattering of collimated normal irradiation and the total

scattered fluence rate Φ(r) is given by [3]

Φ(r) =
∫

4π
Id(r, Ω) dΩ. (3.40)

The diffusion model is approximately valid if the optical mean free path (1/σt)

is much smaller than the typical dimensions of the problem considered and if a

photon is scattered many times before it is absorbed or leaves a medium [2]. Un-
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der these conditions, the density of photons at a given position is nearly uniform

in all directions [2]. The accuracy of the diffusion equation is affected by the ra-

tio of scattering and absorption, the scattering anisotropy, and the distance from

light sources and boundaries [3]. When absorption is small compared to scatter-

ing, scattering is not very anisotropic and the irradiance is not needed close to

the source or a strong absorber or boundary, then diffusion theory may be used

[17]. Despite these assumptions, the fact that a three-dimensional problem can be

solved at all is a clear advantage of the diffusion theory [2].

When the absorption coefficient is not significantly smaller than the scatter-

ing coefficient, the diffusion approximation provides a poor approximation of

the photon transport equation. It is worth noting that the human skin is char-

acterized by the presence of pigments, such as melanin particles, which have a

significant absorption cross-section [15]. In addition, the diffusion approxima-

tion is not applicable when scattering is mostly forward-peaked, which is the

usual case in tissue [15]. Diffusion theory can be derived from general principles

using only macroscopic tissue properties and is therefore expected to hold with

the restrictions involved in the approximation [2]. The time-dependent photon

diffusion equation is believed to give inaccurate solutions at early times and in

the vicinity of boundaries. In addition, there is controversy about how the diffu-

sion coefficient should be specified [16].

THE KUBELKA-MUNK THEORY

The Kubelka-Munk (K-M) theory describes the propagation of a uniform, dif-

fuse irradiance through a one-dimensional isotropic slab with no reflection at the

boundaries [3, 18, 19]. This theory is a special case of the so-called many flux the-

ory, where the PTE is converted into a matrix differential equation by considering
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the radiance at many discrete angles [9]. The original K-M theory is considered

to be a two-flux theory, which involves only two types of diffuse irradiance, for-

ward irradiance and backward irradiance [15]. However, this theory has been

recently extended to the many flux theory, hence improving its applicability to

tissue optics [15].

The Kubelka-Munk expressions for reflection (R) and transmission (T) of dif-

fuse irradiance on a slab of thickness t are [3];

R =
sinh(SKMyt)

x cosh(SKMyt) + y sinh(SKMyt)
, (3.41)

T =
y

x cosh(SKMyt) + y sinh(SKMyt)
, (3.42)

where AKM and SKM are the Kubelka-Munk absorption and scattering coeffi-

cients, respectively, and have units of inverse length (m−1). The parameters x

and y are found using the equations given below [3].

AKM = (x− 1)SKM, (3.43)

SKM =
1
yt

ln
[

1− R(x− y)
T

]
, (3.44)

x =
1 + R2 − T2

2R
, (3.45)

y = +
√

x2 − 1. (3.46)

With these parameters two differential equations can be formed [9]:

dJ1

dz
= −SKM J1 − AKM J1 + SKM J2, (3.47)

dJ2

dz
= −SKM J2 − AKM J2 + SKM J1, (3.48)

where J1 is the flux in the direction of the incident radiation, J2 is the backscat-

tered flux in the opposite direction and z denotes the mean direction of incident
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radiation. The general solutions to Eq. (3.47) and Eq. (3.48) can be expressed by

[9]:

J1(z) = c11e−γz + c12e+γz, (3.49)

J2(z) = c21e−γz + c22e+γz, (3.50)

where γ =
√

A2
KM + 2AKMSKM.

One advantage of the Kubelka-Munk model is that the scattering and absorp-

tion coefficients may be directly expressed in terms of the measured reflection

and transmission [3]. The simplicity of the Kubelka-Munk model has made it a

popular method for measuring the optical properties of tissue. Unfortunately, the

assumptions of isotropic scattering, matched boundaries and diffuse irradiance

are atypical of the interaction of laser light with tissue [3].

K-M model is not a thorough model of photon transport [15]. Even though

this model allows rapid determination of the optical parameters of tissue, its rel-

ative simplicity and the speed are achieved at the expense of the accuracy [15].

Despite attempts to extend the Kubelka-Munk model to collimated irradiance

and anisotropic scattering, this method remains a poor approximation for laser

light propagation in tissue [3].

THE DISCRETE ORDINATES METHOD

The discrete ordinates method (DOM) is a numerical technique in which the

angular distribution as well as the spatial distribution are defined by a finite num-

ber of coordinates (cosines of the angle or dimensions of volume cells) rather than

continuously [17]. The essence of this technique is the conversion of the photon

transport equation to a system of linear algebraic equations suitable for numerical
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solution. The DOM can be carried out to any arbitrary order and accuracy [20].

To do this, the radiance is represented only by its value at discrete values of the

independent variables. A solution of the transport problem is found by solving

the PTE for a set of discrete directions spanning the total solid angle range of 4π

[20]. In addition, the operations of differentiation and integration are replaced by

their discrete counterparts, finite differences and summation (or quadrature) [14].

The idea of discretizing the radiance was first proposed by Schuster [21] who con-

sidered only the forward and backward fluxes. Chandrasekhar later generalized

this scheme by using the Gaussian quadrature technique [22].

The discrete ordinate approximation to the photon transport equation is ob-

tained by replacing the integrals by quadrature sums and thus transforming the

integro-differential equation into a system of coupled differential equations [1]

given by

1
v

∂

∂t
I(r, Ωi, t) + Ωi · ∇r I(r, Ωi, t) + σt I(r, Ωi, t)− σs

N

∑
j=1

P(Ωj, Ωi)I(r, Ωj, t)

= F(r, Ωi, t). (3.51)

For the discrete ordinate approximation many quadrature rules, such as Gaus-

sian, Lobatto, Chebyshev or Fiveland [7] can be used. However, the use of the

Gaussian quadrature is preferred because it ensures the correct normalization of

the phase function, implying that the energy is conserved in the computation [1].

The main advantage of the discrete ordinates model over stochastic approaches

using Monte Carlo methods is the speed, which is sustained using precomputa-

tion and compressing schemes [15].

The two main drawbacks of the discrete ordinates method are false scattering

and the ray effect [20, 23]. False scattering is due to spatial discretization errors.
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When a single collimated beam is traced through an enclosure by the discrete or-

dinates method, the beam will gradually widen as it moves farther away from

its point of origin; this unphysical effect, even in the absence of real scattering, is

called false scattering [20]. False scattering can be reduced by using finer meshes

[20]. The ray effect is due to the errors in angular discretization and can be re-

duced by increasing the sizes of the meshes [20]. Therefore, if a finer spatial mesh

is used to reduce the false scattering, a finer angular quadrature scheme should

be used to reduce the ray effect [20].

FUNCTIONAL EXPANSION METHODS

As in the discrete ordinates method, the goal of this technique is to reduce the

integro-differential equation of photon transport to a set of coupled differential

equations which can be solved by standard techniques [14]. As opposed to the

discrete ordinates method, where a number of discrete directions of the radiance

are considered, the angular, spatial or temporal dependence of the radiance is

here approximated by a finite series expansion of orthogonal functions [14].

For example, Kim et al. [24] expanded the spatial dependence using Cheby-

shev polynomials. In their work, after representing the azimuthal dependence

of the radiance in Fourier series, the spatial dependence is approximated by the

Chebyshev spectral expansion as

In(z, u, t) ∼=
N

∑
k=0

ak(u, t)Tk(z), (3.52)

where In(z, u, t) is the nth Fourier coefficient of the radiance and Tk(z) are the or-

thogonal Chebyshev polynomials [24].
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In the novel technique for solving the transient PTE proposed in the next chap-

ter, the temporal dependence is approximated by Laguerre polynomials as

I (z, u, t) =
N

∑
k=0

Bk (z, u) Lk (t) , (3.53)

where I (z, u, t) is the radiance and Lk (t) are the orthogonal Laguerre polynomi-

als.

THE TWO-FLUX MODEL

In the two-flux method the scattered intensity is considered to be constant

over the forward- and backward-facing hemispheres [7]:

I(z, u, t) =

{
I+(z, t), for u > 0 (3.54a)

I−(z, t), for u < 0. (3.54b)

and thus the dependence on u is removed.

This model is used to simplify the integral in the PTE, which is then integrated

separately over the backward- and forward-facing hemispheres [7]. If the one-

dimensional PTE is considered, the resultant equations are:

1
v

∂

∂t
I+ +

1
2

∂

∂z
I+ + (σt + σsB)I+ − σsBI− =

∫ 1

0
F du, (3.55)

and

1
v

∂

∂t
I− − 1

2
∂

∂z
I− + (σt + σsB)I− − σsBI+ =

∫ 0

−1
F du, (3.56)
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where

B =
1
2

∫ 1

0

∫ 0

−1
P(u′; u) du′ du.

THE P1 MODEL

The P1 model can be used when the scattered intensity is a linear function of

u [7]. In this model

I(z, u, t) = u(z, t) +
3

4π
q(z, t)u, (3.57)

u(z, t) =
1

4π

∫

4π
I(z, u, t) dΩ =

1
2

∫ 1

−1
I(z, u, t) du, (3.58)

q(z, t) =
∫

4π
I(z, u, t)u dΩ = 2π

∫ 1

−1
I(z, u, t)u du, (3.59)

where u(z, t) is the average intensity over all angles, q(z, t) is the heat flux and Ω

is the solid angle.

Equation (3.57) is then substituted in the transient photon transport equation

and two equations are obtained; the first by integrating the resulting equation

with respect to Ω and the second by multiplying the resulting equation by u and

then integrating with respect to Ω [7]. Those two equations are then combined,

which yields a hyperbolic equation which indicates that the propagation speed

of u along the z direction is v/
√

3 [7].

Mitra et al. [25] used the P1 approximation to analyze the two-dimensional

effects in a scattering-absorbing medium having a rectangular geometry. Steady-

state studies have shown that the P1 approximation for the intensity distribution

is not as accurate as more sophisticated approximations and that the P1 approxi-

mation fails to match the correct propagation speed [25].
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THE PN MODEL

The general PN method models the intensity by expanding it as a series of

Legendre polynomials of u [26]:

I(z, u, t) =
N

∑
m=0

Im(z, t)pm(u), (3.60)

which is then substituted into the photon transport equation. The PTE is subse-

quently multiplied by a Legendre polynomial Pk of order k less than or equal to

N and integrated with respect to u [7]. Use of the orthogonality property of the

Legendre polynomials results in [7]:

1
v

∂Ik
∂t

+
k + 1

2k + 3
∂Ik+1

∂z
+

k
2k− 1

∂Ik−1

∂z
+

(
σt − σs

ak
2k + 1

)
Ik =

2k + 1
2

∫ 1

−1
SPk du,

(3.61)

for intensity coefficient Ik where 0 ≤ k ≤ N. In Eq. (3.61), ak are the Legendre

coefficients of the phase function. Thus, N + 1 coupled hyperbolic equations are

obtained, one for each k [7].

THE DISCRETE DIPOLE APPROXIMATION

The discrete dipole approximation (DDA) is a flexible and powerful technique

used to model scattering and absorption of electromagnetic waves by particles

having arbitrary geometry and composition [27, 28]. DDA was initially proposed

by Purcell and Pennypacker [27, 28]. The DDA is an approximate method used

to solve Maxwell’s equations for which exact solutions are known only for spe-

cial geometries [28]. In DDA, the scatterer is replaced by a finite array of point

dipoles (or polarizable points) [27, 28]. They interact with the incident field as
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well as each other. These interactions can be represented by a system of linear

equations which can be solved to obtain dipole polarizations [27]. The scattering

quantities such as the extinction, scattering and absorption coefficients, can be

obtained from these dipole polarizations [27].

The geometry of the DDA array has a minimum length scale that is equal to

the interdipole spacing. Therefore, the principal limitation of the DDA involves

handling target boundaries [28]. When the refractive index of the target is large,

the accuracy of the DDA is less [28]. In order to increase the accuracy the number

of dipoles should be increased, but as this number increases the computational

efficiency decreases [28]. In DDA, the continuum target is replaced by an array

of N-point dipoles for which the location, rj (j = 1, . . . , N) and the dipole polar-

izabilities, αj are defined [28].

The Clausius-Mossotti polarizabilities given below can be used in DDA [28].

αj =
3d3

4π

εj − 1
εj + 2

, (3.62)

where εj is the dielectric function of the target material at location rj and d is the

interdipole spacing. Each dipole has a polarization given by

Pj = αjEj, (3.63)

where Ej is the electric field at rj due to the incident wave and the contribution of

other N − 1 dipoles. The incident wave is expressed as [28]

Einc,j = E0ejk·rj−jωt. (3.64)
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The electric field Ej can be expressed as [28]

Ej = Einc,j − ∑
k 6=j

AjkPk, (3.65)

where AjkPk is the electric field at rj that is due to dipole Pk located at rk. Ajk is

given by

Ajk =
ejkrjk

rjk
×

[
k2(rjkrjk − I) +

jkrjk − 1

r2
jk

(3rjkrjk − I)

]
, j 6= k, (3.66)

where rjk ≡ |rj − rk|, rjk ≡ (rj − rk)/rjk, I is the 3 × 3 identity matrix and k is the

wave number. Ajj is defined to be α−1
j . Thus, the scattering problem reduces to

finding Pj that satisfies the set of equations

N

∑
k=1

AjkPk = Einc,j. (3.67)

The attenuation (extinction) cross section, Ct, and the absorption cross section,

Ca, can be obtained using [28]

Ct =
4πk
|E0|2

N

∑
j=1

Im(E∗inc,j · Pj) (3.68)

Ca =
4πk
|E0|2

N

∑
j=1

[
Im

[
Pj · (α−1

j )∗P∗j
]
− 2

3
k3|Pj|2

]
. (3.69)

In the above expressions, the attenuation cross section is computed from the

forward-scattering amplitude and the absorption cross section is obtained by

summing over the rate of energy dissipation by each of the dipoles [29]. The

scattering cross section is given by Cs = Ct − Ca.

Of the existing techniques for solving the PTE, the Monte Carlo method is
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time consuming, requires high computer memory and its results are subject to

statistical errors [23, 30]. The diffusion theory presumes that the scattering pre-

dominates and that the medium is optically diffuse so that the angle-dependent

radiant intensity can be replaced by an angle-independent photon flux and the

photon transport equation is approximated by the diffusion equation [30]. In ad-

dition, the diffusion approximation cannot be applied to heterogeneous media

with non-scattering or low-scattering regions, and it has been shown that it fails

to match experimental data when the medium is not optically diffuse [30]. How-

ever, the discrete ordinates method (DOM) can be accomplished to high-order

accuracy. Also, the derivation of DOM schemes is relatively simple and the DOM

is compatible with the finite-difference or finite-element schemes for specular or

diffuse phenomena [30]. Drawbacks of the discrete ordinates method include the

ray effect, false scattering and the large memory requirement [23].

In general, the incident laser beam has a Gaussian profile in both time and

spatial domains [7, 30]. However, most existing models for pulse propagation

use square pulses as an approximation to the real Gaussian pulse [7], which is

not very accurate. Another problem with the existing models is that extend-

ing the single layer model to multiple layers increases the complexity (sizes of

the matrices etc.) quite considerably. Also, extension of these methods to multi-

dimensional cases is not easy and requires approximations to the PTE. Thus, there

is a need for the development of a better model which overcomes these problems.

3.5 Models for light propagation through tissue with
inhomogeneities

An understanding of the properties of light scattering caused by an anomaly in

tissue is essential to develop methods to locate and identify anomalies such as
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tumors. Therefore, light propagation in tissue with obstacle scattering is an im-

portant problem for analysis [31]. The direct imaging of an object placed in a

highly scattering medium is not possible [32]. In order to overcome this problem,

the multiple scattering contribution to the image should be reduced, either by

making the media absorb or by filtering out the lowest order of scattering with

the help of femtosecond light pulses and ultrafast detection methods [32].

A large number of researchers are working on developing non-invasive op-

tical methods for imaging breast lesions using time and frequency-domain tech-

niques [33]. Manoharan et al. [33] developed optical methods based on near

infrared Raman spectroscopy and fluorescence photon migration for diagnosis

and localization of breast cancer. They showed that photon migration imag-

ing can be used to accurately localize small fluorescent objects embedded in a

thick turbid medium [33]. Scientists have carried out experiments on using mi-

crowaves for breast cancer detection. A breast tumor exhibits electrical properties

that are significantly different from those of healthy breast tissues when exposed

to microwaves [34]. Microwave breast imaging is preferred to X-ray imaging,

because both ionizing radiation and breast compressions are avoided [35]. Also,

microwave breast tumor detection has the potential to detect small tumors and

is less expensive than other methods such as magnetic resonance imaging (MRI)

and nuclear medicine [35]. Plewes et al. [36] proposed a quasistatic magnetic res-

onance elastography (MRE) method for the evaluation of breast cancer.

Most solutions to the problem of modeling light propagation through tissue

with an embedded obstacle have used the diffusion approximation to the photon

transport equation [31]. The accuracy of the techniques based on diffusion ap-

proximation is valid only for optically thick media with weak absorption [31].
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Pulsed, continuous-wave and amplitude-modulated sources of near-infrared

light are used to detect tumors and hematomas in tissue [37]. An intensity-

modulated source of light produces a wave of light energy density, which is called

a diffuse photon density wave, and this intensity wave can be used to detect op-

tical inhomogeneities [37]. Diffuse photon flux at a tissue surface can be used to

obtain information about the location and size of foreign objects and growths in

human tissue [38].

Theoretical results for obstacle scattering in biological tissues are limited [31].

Kim [31] studied light propagation in tissue containing an absorbing plate. He

considered a perfectly absorbing plate of vanishing thickness placed inside a tis-

sue specimen [31]. Since biological tissues scatter light with a sharp forward peak,

Kim used the Fokker-Plank equation instead of the photon transport equation as

the former is easier to solve than the latter [31]. Although a validation of results

from the Fokker-Plank equation with experimental data for biological tissues has

not been carried out, Kim used this approach as it does not limit the analysis to

weak absorption and optically thick media. Another reason for his using this ap-

proach is that it does not assume that the radiance is independent of the direction

[31]. In his analysis Kim assumed a sharply forward-peaked phase function with

Ω ·Ω′ ≈ 1 [31].

Feng et al. [39] presented an analytical perturbation analysis for studying the

sensitivity of diffusive photon flux to the addition of a small spherical defect ob-

ject in multiple-scattering media such as human tissues. They based their pertur-

bation analysis on the diffusion theory for photon migration in tissue [39]. In their

study they first analytically derived the photon migration path distributions and

the shapes of the regions in which the photon migration paths are concentrated

(the so-called banana regions). The sensitivity of detected photon flux densities



3.6 Models for light propagation through tissue with implanted structures 81

to the inclusion of small spherical defects was then analyzed [39].

Zhu et al. [38] analyzed the sensitivity of a diffuse photon density wave in

a homogeneous multiple-scattering medium to the presence of a small spheri-

cal object. Outer et al. [32] used the stationary diffusion equation to derive the

disturbance in the transmitted and backscattered light intensity when a small ob-

ject is placed in a multiple-scattering medium. They showed that with the use

of continuous light sources, it may be possible to recover the location of objects

accurately inside a diffusive scattering medium [32]. Furutsu [37] established a

basic theory for the detection of a fixed scatterer embedded in a turbid medium

by obtaining several diffuse expressions for a scattered wave both reflected and

transmitted through a turbid layer, and also within the layer [37].

All of these analyses are based on an approximation to the photon transport

equation, such as the diffusion approximation or the Fokker-Plank approxima-

tion. These analyses aim to detect and locate anomalies in biological tissue. How-

ever, the next section focuses on light propagation through tissue with implanted

structures for optical sensing of substances in blood or tissue fluid.

3.6 Models for light propagation through tissue with
implanted structures

Optical techniques such as near-infrared spectroscopy and mid-infrared spec-

troscopy (which use absorption of light to determine the concentration of sub-

stances), Raman spectroscopy (which uses Raman scattering of laser light by tar-

get molecules) and photoacoustic spectroscopy (which uses laser excitation of

fluids to generate an acoustic response and a spectrum as the laser is tuned) are

preferable to invasive techniques, such as the fingerstick test, for detecting and
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determining the concentration of substances in blood [40].

A glucose sensor which can be implanted in tissue has been recognized as

a critical component for the optimal control of blood glucose concentrations in

diabetics [41]. Most such glucose sensors currently being developed, which are

intended for in vivo implantation, are electroenzymatic [41]. Johnson et al. [41]

carried out a study to assess the feasibility of safely and accurately monitoring

blood glucose levels continuously for 72 hours via a glucose sensor implanted in

the subcutaneous tissue of the abdomen of humans. Moatti-Sirat et al. [42] eval-

uated a miniaturized amperometric, enzymatic glucose sensor implanted in the

subcutaneous tissue of normal rats.

For safety reasons, the incident intensity used in these optical detection tech-

niques should not be more than 0.1 J/cm2 per laser light pulse and if continuous

exposure is used, it should be less than 1 W/cm2 [43]. With this limitation it is

difficult to obtain a detectable signal or spectrum of the concentration of blood.

However, structures such as photonic crystals, can be implanted within tissue,

by which the scattered signal can be enhanced, thus providing a detectable spec-

trum [44, 45]. The probability of spontaneous photon scattering for a given fre-

quency is directly proportional to the photon density of states (i.e. the density of

electromagnetic modes) [45]. Hence an enhancement of the spontaneous photon

scattering can be achieved by engineering the photon density of states of the pho-

tonic crystal. Thus, if, for example, the detection technique being used is Raman

spectroscopy, further enhancement of the Raman scattered signal can be achieved

by having gold or silver clusters within the implanted photonic crystal structure.

Having such metallic clusters results in an enhancement of up to 106 times due

to surface-enhanced Raman scattering (SERS) [46, 47].
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Despite these very useful and promising applications of implanted structures

within biological tissue, to the author’s best knowledge no work on the theo-

retical analysis and simulation of such compound structures has been reported.

This dissertation proposes a numerical technique for this purpose by mapping the

photon transport equation to Maxwell’s equations. The photon transport equa-

tion models light propagation using only the magnitude of the intensity (radi-

ance), whereas Maxwell’s equations require both the magnitude and the phase of

the electric and magnetic fields. Thus, for the mapping of these two sets of equa-

tions, a phase retrieval technique should be used in order to retrieve the phase

information from the intensity profile.

Beuthan et al. [48] used computer aided phase microscope to study the varia-

tion of refraction of living cells due to strong alterations of surrounding param-

eters. They showed that the phase shift, ∆φ, of a wave with wavelength λ after

passing through a sample with diameter d is given by

∆φ = 2πd∆n/λ, (3.70)

where ∆n is the difference of the refractive index of the sample and the surround-

ing [48]. Eq.(3.70) may be used to determine the phase shift of a pulse propagat-

ing through a thin tissue sample when the refractive index difference are taken

into account. However, the work presented in this dissertation uses a different

phase retrieval approach. This approach solves the transport of intensity equa-

tion [49] to retrieve the phase profile using two intensity profiles.
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3.7 Conclusions

This chapter has discussed in detail the problem of numerical modeling of light

propagation through tissue. There are a number of widely used numerical meth-

ods for solving the time-independent photon transport equation. However, the

number of existing methods for solving the transient PTE, which is used for

biomedical simulations, is limited. These existing methods each have relative

advantages and disadvantages. Most existing methods for modeling transient

photon transport approximate the actual Gaussian input pulse by a square pulse.

Another problem with many of the existing methods is the difficulty of extend-

ing them to multi-dimensional photon transport and to inhomogeneous media.

Thus, there is a need for a better numerical technique which can overcome these

problems.

Modeling of light propagation through tissue with inhomogeneities can be

found in the research literature. However, the problem of numerically simu-

lating light propagation through tissue with implanted structures has not been

addressed to date. This idea of having implanted structures in tissue has very

promising biomedical applications. Thus, a good numerical technique for simu-

lating light propagation through tissue with implants is needed for the develop-

ment of relevant optical diagnostic procedures. Development of such a technique

is the main aim of this research. The other aim is to develop a better model for

simulating laser pulse propagation through tissue.
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CHAPTER 4

A Numerical Technique for Simulating
One-dimensional Transient Photon
Transport in Biological Tissue

This chapter presents an efficient algorithm for solving the transient photon transport

equation for laser pulse propagation in biological tissue. The original one-dimensional PTE is

mapped to a moving reference frame with the incident pulse. This transformation eliminates

the partial derivative term with respect to time in the original equation. The dependence on

the local azimuthal angle is then removed using the discrete ordinates method. A Laguerre

expansion is used to represent the time dependency of this reduced PTE. This step results in

a two-variable integro-differential equation for each Laguerre coefficient. The dependence on

the local zenith angle is removed by using the discrete ordinates method, thus resulting in

a set of single-variable uncoupled differential equations. The Runge-Kutta-Fehlberg (RKF)

method is then used to solve for the radiance.

90
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4.1 Introduction

INVESTIGATIONS of short laser pulse propagation in biological media have

attracted the attention of researchers over the last two decades [1], in partic-

ular, for light-based diagnostic and imaging purposes [1] such as optical tomog-

raphy for cancer detection [2] and non-invasive detection of diabetes mellitus [3].

There has been growing interest in these optical techniques of late due to the fact

that they are non-invasive and non-ionizing [4].

Photon transport through scattering and absorbing media, such as biological

tissue, can be described by the photon transport equation (PTE) [5–7]. Biological

tissue is a highly forward-scattering medium with moderate amounts of photon

attenuation. In soft tissue, scattering is much greater than absorption [8]. The

scattering and absorption coefficients are wavelength-dependent. Troy et al. [9]

provide measured values for the absorption coefficient and the isotropic scatter-

ing coefficient for 22 human skin samples, in the near infrared wavelength range

of 1000 nm to 2200 nm. The average value of the absorption coefficient for hu-

man skin at 1600 nm is around 5.5 cm-1 [9]. The average value of the isotropic

scattering coefficient for human skin at the same wavelength is around 8.0 cm-1

according to these data [9].

For the application of pulsed light interaction with biological tissue, the time-

dependent PTE can be used. A number of models for solving the steady state PTE

has been developed over the past four decades [10–16], ignoring the time depen-

dency of the intensity profile. Some of these models include the discrete ordinates

method [10], integral transformation techniques and the FN method [13]. Siew-

ert [14] and Larsen et al. [16] worked on the inverse-source problem where the

source term is determined from the known angular distribution of radiation that

exits the surface. Pomraning et al. [15] coupled the diffusion approximation and
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photon transport equation for boundary treatment for the steady state case.

The work reported in this chapter deals with short pulse propagation in a

tissue medium and hence the focus is on developing efficient and accurate tech-

niques for time integration of the PTE. In the past, Dorn [17] used the inverse

problem of the time-dependent transport equation for modeling optical tomog-

raphy; Larsen et al. [18] carried out asymptotic analysis of photon transport prob-

lems and Tarvainen et al. [19] worked on finite element modeling of the coupled

photon transport equation and diffusion approximation considering the time de-

pendency.

However, only recently have researchers started developing models for pulse

propagation in biological tissue [20]. Existing methods for modeling short pulse

propagation through tissue include numerical methods [21–23] and semi-analytical

methods [24, 25]. Mitra and Kumar [6] compared several models for solving the

transient PTE. Also, Tan and Hsu [20] developed an integral equation formula-

tion to treat the general transient PTE and Fleck used the Monte Carlo simula-

tions [26]. Even though the Monte Carlo method is a flexible technique, due to

its statistical nature, it requires tracing a large number of photon paths to obtain

accurate and statistically confident results [21].

Kim, Ishimaru and Moscoso applied Chebyshev collocation techniques to solve

the PTE [22, 23]. Kim [23] used the Chebyshev expansion for the spatial dis-

cretization and the Crank-Nicholson method for time marching. In many of the

existing techniques, the short pulse is approximated by a square pulse [6, 21],

which is not very accurate.

The work reported in this chapter addresses some of the deficiencies in ex-
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isting methods and a better algorithm for solving the one-dimensional transient

photon transport equation is developed. This work is not limited to a particular

pulse shape (e.g. square). The fact that any pulse shape can be represented as a

superposition of Laguerre orthogonal polynomials is used. The main advantage

of the proposed algorithm is that an arbitrary pulse shape can be represented us-

ing only a few Laguerre polynomials, considerably reducing the subsequent com-

putational overhead. The resulting equations are then solved using the Runge-

Kutta-Fehlberg method. Extension of the model to inhomogeneous media can be

carried out without considerable increase in computational power. The work pre-

sented in this chapter has been published in the IEEE Journal of Selected Topics

in Quantum Electronics [27].

This chapter is divided into five sections. Section 4.2 introduces the formula-

tion of the proposed method. It provides an overview of the technique and con-

tains three subsections with a detailed description and derivation of each step.

Section 4.3 provides a discussion with some numerical results obtained using

this algorithm. This section is further divided into six sections. Separate sections

on the normalization of the units, computational complexity and validation of

the method are provided. Discussions of extending the proposed technique to

more complex systems are also provided in this section. Section 4.4 concludes

the chapter highlighting key features and relative advantages of the proposed

method over existing methods.
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4.2 Formulation

Light propagation through biological tissue can be modeled by the photon trans-

port equation given below [23]:

1
v

∂

∂t
I (z, u, φ, t) + u

∂

∂z
I (z, u, φ, t) + σt I (z, u, φ, t)

− σs

4π

∫ 2π

0

∫ 1

−1
P

(
u′, φ′; u, φ

)
I
(
z, u′, φ′, t

)
du′ dφ′ = F (z, u, φ, t) , (4.1)

where I (z, u, φ, t) is the light intensity (radiance), (z, θ, φ) are the standard spher-

ical coordinates as shown in Fig. 4.1 below, u = cos θ, t represents time, σt and σs

are attenuation and scattering coefficients, respectively, and σt = σs + σa where

σa is the absorption coefficient. The speed of light in the medium is denoted by v,

P (u′, φ′; u, φ) is the phase function and F (z, u, φ, t) refers to the source term. For

applications where there is no source present inside the medium, F (z, u, φ, t) = 0.

Without loss of generality, this source free condition is considered in the current

work to highlight important aspects of the algorithm.

Figure 4.1 shows a short pulse incident on a tissue specimen from the left. In

general, due to the index mismatch at the interface, radiation is reflected. Even

though the method proposed in this chapter can handle such reflections at inter-

faces, due to the increased mathematical complexity in formulation which masks

the main points of the proposed algorithm, this analysis is limited to an index-

matched surrounding. This is because the focus of this work is on presenting the

main aspects of the proposed numerical solution technique. However, a short

discussion of index-mismatched cases is provided in Section 4.3.6.

The incident pulse is taken to be a source incident at z = 0, u = u0 and φ = φ0.
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Figure 4.1: Short light pulse incident on the biological tissue.

Thus, the boundary condition can be written as

I (z = 0, u, φ, t) = f (t) δ (u− u0) δ (φ− φ0) , (4.2)

where δ(x) is the Dirac’s delta function [28] and f (t) is the temporal profile of

the pulse. Before proceeding to solve the PTE, the following substitution is used

to map Eq. (4.1) to a moving reference frame with the pulse:

τ = t− z
vu

, (4.3)

ξ = z. (4.4)

It is interesting to note that by using the transformation given by Eq. (4.3) the

delay in the pulse in a particular u direction is calculated by using its projection

in the z direction (i.e. z/u gives the actual propagation distance along the u di-
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rection). Use of the chain rule on Eq. (4.3) and Eq. (4.4) results in,

∂

∂t
=

∂

∂τ

∂τ

∂t
+

∂

∂ξ

∂ξ

∂t

=
∂

∂τ
(1) +

∂

∂ξ
(0)

=
∂

∂τ
(4.5)

∂

∂z
=

∂

∂τ

∂τ

∂z
+

∂

∂ξ

∂ξ

∂z

=
∂

∂τ
(− 1

vu
) +

∂

∂ξ
(1)

= (− 1
vu

)
∂

∂τ
+

∂

∂ξ
(4.6)

Use of Eq. (4.5) and Eq. (4.6) in Eq. (4.1) results in,

u
∂

∂ξ
I (ξ, u, φ, τ) + σt I (ξ, u, φ, τ)− σs

4π

∫ 2π

0

∫ 1

−1
P

(
u′, φ′; u, φ

)
I
(
ξ, u′, φ′0, τ

)
du′ dφ′

= 0. (4.7)

This transformed PTE is then solved numerically.

Figure 4.2 below shows a flow chart of the proposed method and Fig. 4.3 be-

low shows the zenith and azimuthal angles graphically. In the proposed algo-

rithm, first, the azimuthal angle is discretized using the discrete ordinates method

[10, 29, 30]. This results in a set of uncoupled three-variable integro-differential

equations, one for each quadrature point, φr. A Laguerre expansion [31] is then

used to remove the time dependence in the main integro-differential equation.

This results in a two-variable integro-differential equation for each Laguerre co-

efficient at each φr. Discretization of the zenith angle, θ, is then performed using
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Transient RTE

A 4-variable integro-di�erential equation

Discrete ordinates

method

An integro-di�erential eqn with 3 variables

Laguerre expansion

An integro-di�erential equation with

2 variables for each Laguerre coe!cient

Discrete ordinates

method

A set of uncoupled di�erential equations

with 1 variable for each Laguerre coe!cient

RKF method

Final Solution

Remove azimuthal 

dependence

Remove time 

dependence

Remove zenith 

dependence

Figure 4.2: A flow chart of the proposed method.
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Figure 4.3: The zenith and azimuthal angles.

the discrete ordinates method [10, 29, 30]. This action results in a set of uncoupled

single variable differential equations for each Laguerre coefficient. The reduced

form of the PTE, subject to the boundary conditions given by Eq. (4.2) can thus

be solved using the Runge-Kutta-Fehlberg method [32]. A detailed description of

each stage is given below.

4.2.1 Discretization of the azimuthal dependence

First, the azimuthal angle, φ, is discretized using the discrete ordinates method

[10, 29, 30] by applying the Gaussian quadrature rule [33] for the integral that

corresponds to φ.

Gaussian quadrature is used to approximate an integral of the form
∫ b

a W (x) f (x) dx

by a summation [33] as shown below.

∫ b

a
W (x) f (x) dx ≈

N−1

∑
j=0

wj f
(
xj

)
, (4.8)
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where W(x) is the weight function and f (x) is any arbitrary function. Weight-

ing coefficients, wj, and abscissas, xj, can be chosen so that the approximation in

Eq. (4.8) is exact when f (x) is a polynomial [33]. Even though one can generate

his/her own abscissas and weights for a given integral [33], it is often conve-

nient to use the well-known orthogonal polynomials [34], such as the Legendre,

Chebyshev or Laguerre [33]. In the present work, the Gauss-Legendre quadrature

[10] formula is used. In the Gaussian quadrature technique the weight function,

W(x), is 1 and the domain of the independent variable, x, is (−1, 1). The follow-

ing mapping is used to set the domain of θ and φ to (−1, 1). Consider the general

integral ∫ 1

0
f (µ) dµ. (4.9)

This integral can be mapped to the interval [−1, 1] by using the transformation

µ =
u + 1

2
. (4.10)

Use of Eq. (4.10) in Eq. (4.9) results in

∫ 1

0
f (µ) dµ =

1
2

∫ 1

−1
f
(

u + 1
2

)
du. (4.11)

Then, Gaussian quadrature can be applied for N points to obtain

∫ 1

0
f (µ) dµ =

1
2

N

∑
j=1

w̃j f
(

uj + 1
2

)
, (4.12)

where uj are the discrete ordinates and w̃j are the corresponding weights. Defin-

ing

wj =
1
2

w̃j, (4.13)

and

µj =
uj + 1

2
, (4.14)
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Eq. (4.12) can be written as

∫ 1

0
f (µ) dµ =

N

∑
j=1

wj f (µj). (4.15)

The discrete ordinates method is a technique used to replace an integro-differential

equation by a system of ordinary differential equations [30]. Once the integral is

approximated by Gaussian quadrature, the integro-differential equation may be

written as a set of uncoupled ordinary differential equations, where each equa-

tion corresponds to each abscissa [10, 29, 30].

Application of the discrete ordinates method to Eq. (4.7) results in a set of

uncoupled equations, one for each quadrature point. That is,

u
∂

∂ξ
I (ξ, u, φr, τ) + σt I (ξ, u, φr, τ)− σs

4π

L

∑
j=1

wφ
j

∫ 1

−1
P

(
u′, φj; u, φr

)
I
(
ξ, u′, φj, τ

)
du′

= 0, (4.16)

where r = 1, . . . , L. The integral with respect to φ in Eq. (4.7) has been replaced

by a summation in Eq. (4.16). The original four variable PTE has therefore been

reduced to a three-variable integro-differential equation, but with only a simple

integral instead of the double integral in the original equation. In Eq. (4.16), φr is

the rth quadrature point and wφ
j is the corresponding Gaussian weight.

The removal of the time dependence is then performed using a Laguerre ex-

pansion.
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4.2.2 Removal of the time dependence

The time dependence is represented using a Laguerre expansion. Laguerre poly-

nomials are the canonical solutions of the differential equation

xy′′ + (1− x)y′ + ny = 0, (4.17)

which is also known as Laguerre’s equation [31]. These solutions are a sequence

of orthogonal polynomials which can be generated by Rodrigues’ formula [31]

Ln(x) =
ex

n!
dn

dxn

(
e−xxn)

. (4.18)

These polynomials satisfy the orthogonality property

∫ ∞

0
Ln(x)Lm(x)e−x dx = δnm, (4.19)

where δnm is Kronecker’s delta [35]. Laguerre polynomials are causal [36] (i.e.

they are defined in the domain (0, ∞)). The time is also defined in the same

domain. Therefore, the use of Laguerre polynomials to represent the time de-

pendency implicitly imposes the causality constraint of the system. Any causal

compact continuous function can be expanded using a Laguerre basis because it

forms a complete orthogonal basis in real space [34]. Since such expansions are

a linear superposition of causal Laguerre polynomials, the causality property of

the original system is implicitly retained.

Using relatively a few number of Laguerre polynomials it is possible to ac-

curately represent the actual Gaussian time profile of the incident pulse. Chap-

ter 6 presents a more detailed discussion of how a Laguerre expansion can be

used to represent broad as well as very narrow Gaussian pulses. Due to these

advantages a Laguerre expansion is used to represent the time dependence in
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the proposed algorithm. In addition, the use of Laguerre expansion avoids time

marching techniques. Therefore, this analytical approach of representing time

eliminates numerical artefacts which would be introduced if time marching was

used instead.

A Laguerre expansion will be accurate only if the function is continuous and

compact. Hence, it is not possible to represent an impulse or a square pulse

shaped input using a Laguerre expansion. However, the Gaussian shaped pulse,

which can be represented accurately using a Laguerre basis, is the most com-

monly used input in practice.

In this proposed algorithm, the radiance is expanded as a summation of N

Laguerre polynomials;

I (ξ, u, τ) =
N

∑
k=0

Bk (ξ, u) Lk (τ) , (4.20)

where ∫ ∞

0
Ln (τ) Lm (τ) e−τ dτ = δmn. (4.21)

By using Eq. (4.20) in Eq. (4.16) and taking moments (i.e. multiplying by Ln (τ) e−τ

and integrating over [0, ∞)), Eq. (4.22) is obtained.

∫ ∞

0
u

∂

∂ξ

N

∑
k=0

Bk (ξ, u, φr) Lk (τ) Ln (τ) e−τ dτ +
∫ ∞

0
σt

N

∑
k=0

Bk (ξ, u, φr) Lk (τ) Ln (τ) e−τ dτ

−
∫ ∞

0

σs

4π

L

∑
j=1

wφ
j

∫ 1

−1
P

(
u′, φj; u, φr

) N

∑
k=0

Bk
(
ξ, u′, φr

)
Lk (τ) Ln (τ) e−τ dτ du′ = 0,

(4.22)
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Re-arranging, Eq. (4.22) can be written as

u
∂

∂ξ

N

∑
k=0

Bk (ξ, u, φr)
∫ ∞

0
Lk (τ) Ln (τ) e−τ dτ + σt

N

∑
k=0

Bk (ξ, u, φr)
∫ ∞

0
Lk (τ) Ln (τ) e−τ dτ

− σs

4π

L

∑
j=1

wφ
j

∫ 1

−1
P

(
u′, φj; u, φr

) N

∑
k=0

Bk
(
ξ, u′, φr

) ∫ ∞

0
Lk (τ) Ln (τ) e−τ dτ du′ = 0.

(4.23)

Using the property given in Eq. (4.21), Eq. (4.23) can be written as,

u
∂

∂ξ

N

∑
k=0

Bk (ξ, u, φr) δkn + σt

N

∑
k=0

Bk (ξ, u, φr) δkn

− σs

4π

L

∑
j=1

wφ
j

∫ 1

−1
P

(
u′, φj; u, φr

) N

∑
k=0

Bk
(
ξ, u′, φr

)
δkn du′ = 0. (4.24)

Therefore, the time dependence of Eq. (4.16) can be removed as shown below:

u
∂

∂ξ
Bn (ξ, u, φr) + σtBn (ξ, u, φr)− σs

4π

L

∑
j=1

wφ
j

∫ 1

−1
P

(
u′, φj; u, φr

)
Bn

(
ξ, u′, φr

)
du′ = 0.

(4.25)

Similar operations should be carried out on the boundary condition. The bound-

ary condition given by Eq. (4.2) can be written using the new variables as,

I (ξ = 0, u, φ, τ) = f
(

τ +
ξ

uv

)
δ (u− u0) δ (φ− φ0) . (4.26)

Since ξ = 0 at the boundary

I (ξ = 0, u, φ, τ) = f (τ) δ (u− u0) δ (φ− φ0) . (4.27)

Expanding f (τ) using Laguerre polynomials and using Eq. (4.20) in Eq. (4.27)
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and taking moments results in

∫ ∞

0

N

∑
k=0

Bk(ξ = 0, u, φ)Lk(τ)Ln(τ)e−τ dτ =
∫ ∞

0

N

∑
k=0

Ckδ(u−u0)δ(φ−φ0)Lk(τ)Ln(τ)e−τ dτ.

(4.28)

Re-arranging, Eq. (4.28) can be written as

N

∑
k=0

Bk(ξ = 0, u, φ)
∫ ∞

0
Lk(τ)Ln(τ)e−τ dτ =

N

∑
k=0

Ckδ(u−u0)δ(φ−φ0)
∫ ∞

0
Lk(τ)Ln(τ)e−τ dτ.

(4.29)

Using the property given in Eq. (4.21) in Eq. (4.29) results in

N

∑
k=0

Bk(ξ = 0, u, φ)δkn =
N

∑
k=0

Ckδ(u− u0)δ(φ− φ0)δkn. (4.30)

Thus for each φr the boundary condition becomes

Bn (ξ = 0, u, φr) = Cnδ (u− u0) δ (φr − φ0) , (4.31)

where,

Cn ≈
q

∑
j=1

wj f
(
τj

)
Ln

(
τj

)
. (4.32)

The reduced PTE, Eq. (4.25), remains an integro-differential equation, but with

only two independent variables, ξ and u. The next step is to replace the integral

term by a summation using the discrete ordinates method for u.

4.2.3 Discretization of the zenith angle

The discrete ordinates method [10, 29, 30] is used for this purpose as for the az-

imuthal discretization. Thus, the integral term in Eq. (4.25) is approximated by a

summation using the Gaussian quadrature [10, 33]. It is then followed by replac-
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ing Eq. (4.25) by the set of equations

ui
∂

∂ξ
Bn (ξ, ui, φr) + σtBn (ξ, ui, φr)− σs

4π

L

∑
j=1

wφ
j

K

∑
k=1

wu
k P

(
uk, φj; uiφr

)
Bn (ξ, uk, φr) = 0,

(4.33)

where i = 0, . . . , K, r = 0, . . . , L and n = 0, . . . , N.

In Eq. (4.33), ui is the ith quadrature point and wu
i is the corresponding Gaus-

sian weight. There are K number of uncoupled equations corresponding to each

quadrature point of the azimuthal angle, φr. Considering all the quadrature

points for the azimuthal angle, there is a set of L equations similar to Eq. (4.33),

which represents the rth equation of this set. Therefore, it is possible to combine

this set and write it in the matrix format as shown below:

∂

∂ξ
ΛBn + σtBn − σs

4π
PWBn = 0, (4.34)

where n = 0, . . . , N, Bn = [Bn (ξ, ui, φr)](K×L),1, P =
[
P

(
uk, φj; ui, φr

)]
(K×L),1 and

Λ is a (K× L) by (K× L) diagonal matrix with diagonal elements u1 to uK re-

peating L times. The matrix W is also a (K× L) by (K× L) diagonal matrix with

diagonal elements wφ
r ×wu

k with the pattern wφ
1 ×wu

1 , wφ
1 ×wu

2 , . . . , wφ
1 ×wu

K, wφ
2 ×

wu
1 , . . . , wφ

L × wu
K.

Rearranging, Eq. (4.34) can be written as

∂

∂ξ
Bn = ΓBn, (4.35)

where

Γ = Λ−1
[ σs

4π
PW− σtI

]
. (4.36)
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Hence, the original PTE is reduced to a one-variable ordinary differential equa-

tion. The boundary condition given by Eq. (4.31) is simplified in a similar fashion,

which results in

Bn (ξ = 0) =

{
Cn, for u = u0 and φ = φ0’ (4.37a)

0, for u 6= u0 or φ 6= φ0. (4.37b)

Thus, Eq. (4.35), subject to the above boundary condition, can be solved using the

4th order Runge-Kutta-Fehlberg(RKF) method [32]. The 4th order RKF method

is chosen for the simulations because a compromise should be made between

the accuracy and the execution time of the algorithm. However, for applications

where very high precision is essential, a higher-order RKF method may be used.

The RKF method can be used to find the solution to an ordinary differential equa-

tion numerically, at a given value of the independent variable, provided that the

initial condition is given. This method uses adaptive step sizes and the error at

each step is estimated as the difference between the fifth and fourth order esti-

mates [32].

The next section presents some results obtained using this algorithm and a

discussion of relative advantages of the proposed algorithm.

4.3 Numerical results and discussion

Matlab
TM

was used to implement the proposed solution strategy for the PTE. It

is interesting to make the following note about the phase function used in the

numerical simulations. Even though the proposed algorithm does not depend on

the specific nature of the phase function, it has significant influence on the inter-

pretation of results. The most suitable phase function for biological tissue is still a

research issue [37]. In the past, the Henyey-Greenstein phase function was widely
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used for modeling photon transport in many applications [37, 38]. However, due

to some discrepancies, recently, researchers have combined a highly anisotropic

phase function (eg. the Henyey-Greenstein phase function (HGPF)), and a low

anisotropic phase function (eg. the Rayleigh phase function (RLPF)) [39] to ap-

proximate the phase function in biological tissue [39]. The HGPF represents large

particles and the RLPF represents small particles compared to the wavelength of

the incident light [39]. Bevilacqua et al. [39] used the following phase function to

model biological tissue:

Ptissue (cos Θ) = (1− α) PHG (cos Θ) + αPRL (cos Θ) , (4.38)

where

PHG (cos Θ) =
1− g2

2 (1 + g2 − 2g cos Θ)3/2 , (4.39)

is the Henyey-Greenstein phase function where g is the asymmetry factor and

PRL (cos Θ) =
3
8

(
1 + cos2 Θ

)
, (4.40)

is the Rayleigh phase function [38, 39]. In Eq. (4.38) the value of α depends on the

properties of the tissue specimen [39]. Figure 4.4 is a plot of Henyey-Greenstein

phase function versus scattering angle for different values of the asymmetry fac-

tor (g). Figure 4.5 is a plot of Rayleigh phase function versus scattering angle

and Fig. 4.6 shows the phase function used by Bevilacqua et al. [39] to model

biological tissue. In this figure α = 0.2 and g = 0.9. The solution technique pro-

posed in the present work is independent of the selection of the phase function.

To illustrate this independence, simulation results for all of the above three phase

functions are presented in this section.
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Figure 4.4: Henyey-Greenstein phase function versus scattering angle
for different g values.
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Figure 4.5: Rayleigh phase function versus scattering angle.
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Figure 4.6: Phase function used to model tissue.

In the simulations, the input pulse was taken to be a Gaussian pulse given by

f (t) = I0e
−

(
(t−t0)

T

)2

, (4.41)

where I0 is the magnitude of the input radiance, t0 is the initial time shift of the

Gaussian pulse (which determines the time at which pulse attains its peak value),

T is the factor determining the width of the pulse and t is time.
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4.3.1 Normalization of the units

The PTE, Eq. (4.1), is linear in intensity, I, and thus representing I as I/I0 does not

change the equation. Therefore, the scale I/I0 was used for the radiance through-

out the present work. The time units were normalized by Ts, spatial units by Zs

and scattering and absorption coefficients by 1/Zs, unless specified otherwise.

With this normalization Eq. (4.1) can be written as

∂

∂t̃
Ĩ
(
z̃, u, φ, t̃

)
+ u

∂

∂z̃
Ĩ
(
z̃, u, φ, t̃

)
+ σ̃t Ĩ

(
z̃, u, φ, t̃

)

− σ̃s

4π

∫ 2π

0

∫ 1

−1
P

(
u′, φ′; u, φ

)
Ĩ
(
z̃, u′, φ′, t̃

)
du′ dφ′ = 0, (4.42)

In the present study, Ts = T/Tn f , where T is the factor determining the width

of the input pulse and Tn f is a factor that was chosen to obtain a good Laguerre

fit. Tn f is recommended to be 1 or 1.5. For the simulations presented in this chap-

ter Tn f was taken to be 1. This normalization factor was chosen due to the fact

that the Laguerre approximation of the Gaussian pulse is very accurate for pulses

with T = 1 or greater. Therefore, with this scaling it was possible to obtain very

accurate results even for very narrow pulses, which are used in many biomed-

ical applications. (A more detailed discussion of Laguerre fitting and choosing

a scaling factor can be found in Section 6.3 of Chapter 6). For pulses with other

shapes, it is recommended that a least square error fit is used to obtain a Gaussian

approximation and then Ts is set to be the width of that Gaussian pulse divided

by Tn f .

In addition, Zs was set to Zs = v× T. Here, T can be chosen to suit the par-

ticular application. However, these scaling factors should be chosen carefully

so that the matrices remain well-conditioned. For the simulations presented in

the present work, without loss of generality, the normalization was set such that

T/T = 1 and Zs = v× T.
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The classical Laguerre polynomials given in Eq. (4.18) tend to infinity at a

very high rate for x > 10. Thus, the approximation of a pulse at z̃ = 0 will be

accurate only in the domain [0, 10]. However, since in the proposed algorithm

the Laguerre polynomials are propagated with the pulse, the approximation is

always accurate in the domain [0, a] where a = 10 + z̃/(vu) (i.e. the domain

in which the Laguerre fit is accurate extends by up to 10 time units beyond the

required observation point).

4.3.2 Computational complexity

The proposed algorithm involves only one matrix inversion, which is a diagonal

matrix. The sizes of this matrix and other matrices depend on the product of the

number of quadrature points for φ and u. These numbers should be chosen ac-

cording to the required resolution of the application. One matrix multiplication

and one matrix addition are involved in the present algorithm. The RKF method

involves only six function evaluations in each step. If Γ in Eq. (4.35) is made a

scalar (i.e. if the number of quadrature points for φ and u is set to 1), the RKF

routine takes around 100 steps to solve for a unit distance along the z axis (i.e. for

z̃ = 1). Doubling the distance requires only 20 additional steps. If Γ in Eq. (4.35)

is set to a 16× 16 matrix (by taking 4 quadrature points for each angle), the num-

ber of steps required would be around 200. Doubling the distance in this case

requires only 60 additional steps.

The simulation results presented in this chapter were obtained using 63 La-

guerre modes, 15 quadrature points for the zenith angle, θ, and 20 quadrature

points for the azimuthal angle, φ.
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4.3.3 Validation of the proposed method
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Figure 4.7: Variation of radiance with time, along the incident angle, at
z̃ = 2 with no scattering or absorption.

For the simulations presented in this section, an input Gaussian pulse with T =

1.5 and t0 = 4 was used. The results of the simulations presented in Figures 4.7,

4.8 and 4.9 were used for validation of the proposed technique. These figures

were obtained for special cases for which the results are intuitive. For Fig. 4.7, the

tissue medium was assumed to be lossless, without any scattering or absorption.

That is, σs and σt in the PTE were set to zero. With this setup, there should be nei-

ther a decay in the intensity, nor scattering to other directions. Figure 4.7 shows

the variation of radiance with time, along the direction of incidence (ie. u = 1), at

z̃ = 2. As expected, at z̃ = 2, the same Gaussian pulse was obtained, without any

loss, but with the corresponding time delay.

For the simulation shown in Fig. 4.8, the medium was assumed to have a nor-

malized absorption coefficient, σ̃a, of 0.2 but without any scattering (hence, the
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Figure 4.8: Variation of radiance with time and u, at z̃ = 2 with absorp-
tion but no scattering.

normalized attenuation coefficient, σ̃t = 0.2 as well). The direction of incidence

for this simulation was taken to be at u = 0.5. Figure 4.8 shows the variation of

radiance with time and the cosine of the zenith angle, u, at z̃ = 2. As expected, a

decayed radiance profile existed along the incident direction, u = 0.5, but since

there was no scattering, no radiance values were seen along other directions.

For Fig. 4.9, the medium was assumed to have a normalized absorption co-

efficient, σ̃a, of 0.02 and a normalized scattering coefficient, σ̃s, of 0.98 (hence,

σ̃t = 1). The direction of incidence for this simulation was taken to be at u = 0.17.

Figure 4.9 shows the variation of radiance with time and u. In this figure, the

scattering to other directions is exhibited clearly. Thus, the simulation results

presented in Figures 4.7 to 4.9 validate the proposed algorithm by producing the

expected (or intuitive) results for the three special cases considered.
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Figure 4.9: Variation of radiance with time and u, at z̃ = 2 with scatter-
ing and absorption.
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Figure 4.10: Comparison: Variation of irradiance with time for 1D PTE.

In Figures 4.7 to 4.9, the radiance profile was shown so that it was possible to

explain the known results when there was no attenuation, when only absorption

was present, and when both absorption and scattering were present. However,
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an irradiance profile has more practical meaning than a radiance profile, as men-

tioned in Chapter 3. Therefore, in all the other figures presented in this section

irradiance profiles are presented.

Figure 4.10 shows a comparison of the proposed method (LRKF) with the

method proposed in reference [40] (Transient DOM), adopted for the one-dimensional

case. In [40], the transient discrete ordinate method was introduced for the three-

dimensional case. For the comparison shown in Fig. 4.10 Guo and Kumar’s

method was adopted for the one-dimensional case. It can be seen from Fig. 4.10

that the irradiance profile obtained using the method proposed in this chapter

very closely agrees with that obtained using the Transient DOM.

4.3.4 Other simulation results
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Figure 4.11: Variation of the irradiance with time at different locations
along the z-axis.

For the simulations presented in this section, an input Gaussian pulse with

T = 1 and t0 = 3 was used. Figure 4.11 shows the variation of the irradiance

with time taken at different locations along the z-axis. For this simulation the ab-
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sorption coefficient, σ̃a, was taken to be 0.002 and the scattering coefficient, σ̃s, was

kept at 0.988. As z̃ increased, the peak value of the irradiance dropped and the

pulse was shifted in time by the amount
(
t− t0 − z

vu
)
. The Henyey-Greenstein

phase function with g = 0.7 was used for this simulation.
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Figure 4.12: Variation of the irradiance with time at z̃ = 2 with different
values of the absorption coefficient.

Figure 4.12 shows the variation of the irradiance with time at z̃ = 2 for dif-

ferent values of σ̃a. It can be seen that, as σ̃a increases, the peak value of the irra-

diance drops. For this set of plots, σ̃s was kept constant at 0.9 and the Rayleigh

phase function was used. Figure 4.13 shows the variation of the irradiance with

time at z̃ = 2 for different values of σ̃s. It is evident that as σ̃s increases, the peak

value of the irradiance drops. For this case, σ̃a was kept constant at 0.02 and again

the Henyey-Greenstein phase function was used with g = 0.7. Figure 4.14 shows

the variation of the irradiance at different z̃ values for an arbitrary-shaped pulse

with the same phase function. This figure shows that the proposed algorithm is

capable of handling arbitrary-shaped input pulses.
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Figure 4.13: Variation of the irradiance with time at z̃ = 2 with different
values of the scattering coefficient.
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Figure 4.15: Variation of the irradiance with time for a human skin spec-
imen.

In the above figures the values for scattering and absorption coefficients were

arbitrarily selected in order to demonstrate different aspects of the proposed al-

gorithm. Figure 4.15 shows the variation of irradiance for a human skin specimen

with an incident pulse of the form given in Eq. (4.41) with T = 1 ps, with σa = 0.5
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Figure 4.14: Variation of the irradiance with z for an arbitrary input.

mm-1 and σs = 0.8 mm-1 [41]. For this simulation v = 0.215 mm/ps and the plot

was obtained at z = 1 mm. Time and spatial units or scattering and absorption

coefficients were not normalized in this simulation and data for a human skin

specimen were used. However, the irradiance has the same unit as that of the

input pulse, I0. For this simulation the combined phase function, Ptissue (cos Θ),

[39] was used.

The extension of the proposed technique for inhomogeneous media is straight-

forward as detailed in the next section. This method can also be used to solve the

two-dimensional and three-dimensional PTE with only slight modifications to

the formulation. Extension to multi-dimensions was carried out and is reported

in detail in Chapter 6.
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4.3.5 Extension to inhomogeneous media
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Figure 4.16: Variation of the irradiance with time and distance in an in-
homogeneous medium.

The proposed formulation can be easily extended for inhomogeneous media. In

an inhomogeneous medium, the scattering and absorption coefficients are a func-

tion of z. The PTE for this case is

1
v

∂

∂t
I (z, u, φ, t) + u

∂

∂z
I (z, u, φ, t) + σt(z)I (z, u, φ, t)

− σs(z)
4π

∫ 2π

0

∫ 1

−1
P

(
u′, φ′; u, φ

)
I
(
z, u′, φ′, t

)
du′ dφ′ = F (z, u, φ, t) . (4.43)

When all the steps in the proposed algorithm are followed, Eq. (4.43) reduces to

∂

∂ξ
Bn (ξ) = Γ (ξ) Bn (ξ) , (4.44)

where

Γ = Λ−1
[

σs(ξ)
4π

PW− σt(ξ)I
]

. (4.45)
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Thus, Eq. (4.44), subject to the boundary conditions, can be solved using the RKF

method as described previously.

A simulation was carried out for the inhomogeneous case by solving Eq.(4.44)

and the result is presented in Fig. 4.16. Figure 4.16 shows the irradiance vari-

ation with time and distance in an inhomogeneous medium with σ̃a = 0.05,

σ̃s = sin(z) × e−z/5 and Rayleigh scattering. As explained above, an extension

to inhomogeneous media is straightforward.

4.3.6 Refractive index-mismatched interfaces

If the refractive index-mismatch between the tissue and air interface is consid-

ered, the specular and diffuse reflectivities of the interface should be incorpo-

rated into the boundary conditions of the photon transport equation. The specu-

lar reflectivity at the interface can be calculated from Fresnel’s equations and the

diffuse reflectivity may assumed to be uniform [42]. The proposed method can in-

corporate such changes in boundary conditions easily. This is due to the fact that

the numerical integration strategy is independent of the format of the boundary

conditions because the zenith and azimuthal angle dependencies are removed by

the discrete ordinate method and a Laguerre series is used to represent the time

evolution.

4.4 Conclusions

This chapter has introduced a novel and efficient approach to solve the one-

dimensional transient photon transport equation. The proposed method uses a

Laguerre approximation to represent the time dependence and the discrete ordi-

nates method to discretize the azimuthal and zenith angles. This reduces the orig-
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inal integro-differential equation to a single-variable ordinary differential equa-

tion, which is then solved using the 4th order Runge-Kutta-Fehlberg method.

There are a number of advantages of this technique over most other existing

methods. Since the time dependence is expanded using a Laguerre basis, all the

sampling points in the time domain are obtained in a single execution, as op-

posed to the time marching techniques used in existing solution methods. This

makes the proposed algorithm much faster when the intensity profile is required

at a particular point or on a plane over a time interval. The incident pulse can

be approximated using a relatively small number of Laguerre polynomials. The

causality of the system is implicitly imposed by the causal Laguerre polynomi-

als. Any causal function can be expanded using Laguerre polynomials because

it forms a complete orthogonal basis in real space. Since such expansions are

a linear superposition of causal Laguerre polynomials, the causality property of

the original system is implicitly retained. The use of the Runge-Kutta-Fehlberg

method for the spatial variable z makes the extension to inhomogeneous media

simple and straightforward.
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CHAPTER 5

A Numerical Technique for
Characterizing Light Propagation
through Inhomogeneous Biological
Tissue

An approximate numerical technique for modeling light propagation through weakly scat-

tering biological tissue is developed by solving the photon transport equation in biological

tissue that includes a varying refractive index and varying scattering/absorption coefficients.

The proposed technique involves first tracing the ray paths defined by the refractive index

profile of the medium by solving the Eikonal equation using a Runge-Kutta integration algo-

rithm. The photon transport equation is solved only along these ray paths, minimizing the

overall computational burden of the resulting algorithm. The main advantage of the current

algorithm is that it enables discretization of the pulse propagation space adaptively by taking

the optical depth into account. Therefore, computational efficiency can be increased without

compromising the accuracy of the algorithm.

127
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5.1 Introduction

RESEARCHERS have been working on modeling biological tissue over the

last two decades [1, 2] and several numerical models have been developed

to solve the PTE over recent years [3–6]. These models include techniques for

solving the steady state PTE [3], as well as the transient PTE for short pulse prop-

agation [4–6].

Several different variations of PTE for inhomogeneous media have been pro-

posed in the research literature [7–12]. However, most of these variations are

not a result of fundamental errors or differences but due to different assump-

tions about the medium or wave field properties. For example, references [7],

[8] and [10] look at spatially slowly varying isotropic refractive index profiles in

their work. Interestingly, the approach given in [12] is formulated to accommo-

date geometric optics approximations but ignores the wavefront curvature in the

derivation. Wavefront curvature in the context of slowly varying refractive in-

dex approximation is considered in [7]. Numerical considerations necessary to

account for such slowly varying spatial refractive profiles are considered in [9]

and [11].

This chapter proposes a numerical technique for characterizing light propa-

gation through inhomogeneous tissue. In an inhomogeneous weakly scattering

medium the ray paths can be approximated by the Eikonal equation [13]. A set

of ray paths can be calculated depending on the refractive index profile of the

medium. There are several existing methods to do this [13–15]. The work re-

ported in this chapter adopts the ray tracing technique proposed by Sharma et

al. [13]. The next step is to solve the PTE written in terms of the path length [7]

on each of these paths. The Laguerre Runge-Kutta-Fehlberg method, proposed

in the previous chapter, can be used for this purpose. The work presented in this
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chapter has been published in the Journal of Biomedicine and Biotechnology [16].

This chapter is divided into five sections. Section 5.2 introduces the formu-

lation. It carries a detailed mathematical description of the proposed method.

Section 5.3 provides some simulation results with a discussion. Section 5.4 con-

cludes the chapter by summarizing key features of the method and includes a

discussion of its relative advantages.

5.2 Formulation

The photon transport equation for a medium with a spatially varying isotropic

refractive index in standard spherical coordinates is [7]

n(r)
c

∂

∂t
I (r, Ω, t) +

(
1

R1(s)
+

1
R2(s)

)
I (r, Ω, t) + n2(r)

∂

∂s

(
I (r, Ω, t)

n2(r)

)

+ σt(r)I (r, Ω, t) = σs(r)
∫

4π
P

(
Ω′, Ω

)
I
(
r, Ω′, t

)
dΩ′ + F (r, Ω, t) , (5.1)

where r is the position vector of a point on a path of a ray, s is the arc length

along a ray, Ω = dr
ds , t is time, I (r, Ω, t) is the radiance, n(r) is the refractive in-

dex profile, c is the speed of light in vacuum, R1(s) and R2(s) are the principal

radii of curvatures of the geometrical wave-fronts, σt is the attenuation coefficient

with σt = σa + σs, σa is the absorption coefficient and σs is the scattering coeffi-

cient, P (Ω′, Ω) is the phase function and F (r, Ω, t) represents sources inside the

medium.

The path of rays in a medium with a spatially varying refractive index is given
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by the Eikonal equation [13–15]

d
ds

(
n(r)

dr
ds

)
= ∇n(r), (5.2)

where r = xi + yj + zk, i, j and k are unit vectors along x, y and z axes, respec-

tively, and ∇ =
(

∂
∂x i + ∂

∂y j + ∂
∂z k

)
. Ray tracing is a valid and practically used

method for analyzing light propagation through biological tissue [17]. Ray pic-

ture of light derives from geometrical optics approximation [18]. The Eikonal

equation is the basic equation of geometrical optics (i.e. ray optics) [19]. This is

analogous to the wave equation for wave optics. The Eikonal equation is an ap-

proximation to the wave equation, which is very accurate when the wavelength

is small compared with the propagation distance [19]. Thus, this approximation

will be valid for modeling light propagation through inhomogeneous biologi-

cal tissue in which the properties vary very slowly compared to the wavelength

of the incident light. In addition, the geometrical optic techniques assume that

the field behaves locally as a plane wave and that the intensity does not change

rapidly [19].

The technique proposed is to first solve Eq. (5.2) to obtain a set of possible

ray paths and then solve the PTE, Eq. (5.1), for each of these paths. The main

advantage of the current algorithm is that it enables adaptive discretization of

the pulse propagation space by taking the optical depth into account. Therefore,

computational efficiency can be increased without compromising the accuracy of

the algorithm [20].

Several techniques have been introduced for solving the Eikonal equation by

various research groups [13–15]. The technique proposed by Sharma et al. [13]

is adopted for this study because it uses Runge-Kutta integration, which will be

used again later to solve the photon transport equation in the discrete ordinate

method setting. In this method, a new variable q is introduced such that dq = ds
n .
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Ray paths

Figure 5.1: A set of possible ray paths in a Maxwell’s fish-eye

Then, Eq. (5.2) can be written as

d2r
dq2 = n(r)∇n(r). (5.3)

The optical ray vector is defined as

Q =
dr
dq

= nξi + nηj + nuk, (5.4)

where ξ = sin θ cos φ, η = sin θ sin φ and u = cos θ. Equation (5.3) can be written

in matrix format as

d2R
dq2 = D(R), (5.5)
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where R =




x

y

z


, Q =




nξ

nη

nu


 and D = n




∂n
∂x
∂n
∂y
∂n
∂z


. Thus, Eq. (5.5) can be

solved using the Runge-Kutta algorithm starting from a known point (R0, Q0).

That is, Eq. (5.5), with the initial condition (R0, Q0) successively generates points

(R1, Q1), (R2, Q2), . . ., (Rn, Qn) along the path [13]. Therefore, if a set of start-

ing points and initial directions, Q0, is selected, a set of ray paths is obtained by

numerically integrating Eq. (5.5). For example, such ray tracing for Maxwell’s

fish-eye gives the paths as shown in Fig. 5.1 [21]. The Maxwell’s fish-eye is a

non-homogeneous lens invented by James Clerk Maxwell in 1860. This lens has

a refractive index given by [22]

n(r) =
2

1 + (r/R)2 , (5.6)

where R is the radius of the sphere and r is the radial distance from the centre of

the sphere. This lens will focus the rays coming from a point source located at the

rim of the sphere to another point on the rim at the opposite side [22].

The next step is to solve the PTE, Eq. (5.1), for a weakly scattering medium on

each of the above set of paths by numerically integrating Eq. (5.5). While tracing

the ray paths from the above algorithm, the PTE can be solved to find the inten-

sity at each point on the path.

First, the following transformation is used which maps the PTE to a moving

coordinate system on ray paths:

τ = t− s
v

, (5.7)
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where v is the speed of light inside the medium along the ray path. Using Eq. (5.7)

in Eq. (5.1) results in

n2(r)
∂

∂s

(
I (r, Ω, τ)

n2(r)

)
+

(
1

R1(s)
+

1
R2(s)

)
I (r, Ω, τ) + σt(r)I (r, Ω, τ)

= σs(r)
∫

4π
P

(
Ω′, Ω

)
I
(
r, Ω′, τ

)
dΩ′ + F (r, Ω, τ) , (5.8)

In the present work, plane waves are considered so that the second term on the

left hand side of Eq. (5.8) vanishes. That is,

n2(r)
∂

∂s

(
I (r, Ω, τ)

n2(r)

)
+ σt(r)I (r, Ω, τ)

= σs(r)
∫

4π
P

(
Ω′, Ω

)
I
(
r, Ω′, τ

)
dΩ′ + F (r, Ω, τ) . (5.9)

The Laguerre Runge-Kutta-Fehlberg (LRKF) method, proposed in Chapter 4, can

be used to solve Eq. (5.9) for radiance at selected points on each ray path. The

LRKF method is briefly described here. Since Eq. (5.9) is solved on a known ray

path at a known point, n(r), σt(r) and σs(r) are constants at that point. First,

Gaussian quadrature [23] is used to approximate the integral which results in

n2(r)
∂

∂s

(
I (r, Ω, τ)

n2(r)

)
+ σt(r)I (r, Ω, τ) = σs(r)

q

∑
j=1

wjP
(
Ωj, Ω

)
I
(
r, Ωj, τ

)
+ F (r, Ω, τ) ,

(5.10)

where Ωj is the jth quadrature point and wj is the corresponding Gaussian weight

[23]. Then, time dependence is represented using a Laguerre expansion [24]

I (r, Ω, τ) =
N

∑
k=0

Bk (r, Ω) Lk (τ) , (5.11)

F (r, Ω, τ) =
N

∑
k=0

Fk (r, Ω) Lk (τ) , (5.12)



5.2 Formulation 134

where Fn (r, Ω) is the Laguerre coefficient of the source term, F (r, Ω, τ). Using

Eq. (5.11) and Eq. (5.12) in Eq. (5.10) and taking moments results in

∫ ∞

0
n2(r)

∂

∂s

(
∑N

k=0 Bk (r, Ω) Lk(τ)
n2(r)

)
Ln(τ)e−τ dτ +

∫ ∞

0
σt(r)

N

∑
k=0

Bk (r, Ω) Lk(τ)Ln(τ)e−τ dτ

=
∫ ∞

0
σs(r)

q

∑
j=1

wjP
(
Ωj, Ω

) N

∑
k=0

Bk
(
r, Ωj

)
Lk(τ)Ln(τ)e−τ dτ

+
∫ ∞

0

N

∑
k=0

Fk (r, Ω) Lk(τ)Ln(τ)e−τ dτ. (5.13)

Re-arranging, Eq. (5.13) can be written as

n2(r)
∂

∂s

(
∑N

k=0 Bk (r, Ω)
∫ ∞

0 Lk(τ)Ln(τ)e−τ dτ

n2(r)

)
+ σt(r)

N

∑
k=0

Bk (r, Ω)
∫ ∞

0
Lk(τ)Ln(τ)e−τ dτ

= σs(r)
q

∑
j=1

wjP
(
Ωj, Ω

) N

∑
k=0

Bk
(
r, Ωj

) ∫ ∞

0
Lk(τ)Ln(τ)e−τ dτ

+
N

∑
k=0

Fk (r, Ω)
∫ ∞

0
Lk(τ)Ln(τ)e−τ dτ. (5.14)

Use of the property given in Eq. (4.21) in Eq. (5.14) results in

n2(r)
∂

∂s

(
∑N

k=0 Bk (r, Ω) δkn

n2(r)

)
+ σt(r)

N

∑
k=0

Bk (r, Ω) δkn

= σs(r)
q

∑
j=1

wjP
(
Ωj, Ω

) N

∑
k=0

Bk
(
r, Ωj

)
δkn +

N

∑
k=0

Fk (r, Ω) δkn. (5.15)

Thus, the time dependence of Eq. (5.10) is removed, which results in

n2(r)
∂

∂s

(
Bn (r, Ω)

n2(r)

)
+ σt(r)Bn (r, Ω) = σs(r)

q

∑
j=1

wjP
(
Ωj, Ω

)
Bn

(
r, Ωj

)
+ Fn (r, Ω) .

(5.16)

Since the ray paths have been previously traced, a set of r and Ω values is known.
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Thus, Eq. (5.16) can be solved using the Runge-Kutta-Fehlberg algorithm [25].

The next section presents some results obtained using this algorithm and a

discussion of relative advantages of the proposed algorithm.

5.3 Results and discussion
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Figure 5.2: Some ray paths for a medium with a refractive index profile
given by Eq. (5.17)

Figure 5.2 shows some ray paths for a medium with a refractive index profile

given by

n(x) = n0 e−x2
(5.17)

where n0 = 2. Figures 5.3 and 5.4 were obtained from the above algorithm. These

results were obtained for a pulse propagating through a single ray path. The

Henyey-Greenstein phase function [26] was used for the simulation where g is
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Figure 5.3: Variation of radiance with time at z = 1 mm for different
asymmetry factor (g) values

the asymmetry factor.

Figure 5.3 shows the variation of radiance with time at z = 1 mm with varying

g. The graphs corresponds to g = 0.8, g = 0.7, g = 0.6 and g = 0. Other param-

eters such as the scattering coefficient and the absorption coefficient were kept

constant for all four graphs. The condition g = 0 corresponds to the isotropic

scattering case while g = 0.8 represents forward scattering. This is illustrated by

the above four graphs.

Figure 5.4 shows the variation of the forward radiance at different locations,

that is, corresponding to different z values (in mm), with a constant asymmetry

factor, g = 0. It can be clearly seen from this figure that the intensity reduces with

increasing distance due to scattering and absorption. The pulse is also shifted in

time as shown.
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Figure 5.4: Forward radiance at different locations for isotropic (g = 0)
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5.4 Conclusions

This chapter has introduced a novel approximate numerical model to solve the

photon transport equation with inhomogeneous refractive index and inhomoge-

neous scattering and absorption cross-sections for weakly scattering biological

tissue. The proposed technique consists of two steps: first, the Eikonal equation

describing the geometric-optic ray paths is solved using an efficient Runge-Kutta

routine to construct a set of possible photon migration paths through the inhomo-

geneous tissue sample. Thereafter, the transient photon transport equation, writ-

ten in terms of the arc length, is solved along each ray path to construct the optical

intensity variation as time progresses. The main advantage of the current algo-

rithm is that it enables adaptive discretization of the pulse propagation space by

taking the optical depth into account. Therefore, computational efficiency can be

increased without compromising the accuracy of the algorithm. Computational
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efficiency becomes a bottle-neck when large, realistic simulations of optical pulse

propagation in tissue are required. Therefore, the current proposed method is

very suitable for extensive computation work in time-resolved photon-diffusion

tomography.
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CHAPTER 6

A Numerical Technique for Simulating
Multi-dimensional Transient Photon
Transport in Biological Tissue

A novel method for solving the multi-dimensional transient photon transport equation

for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used

to represent the time dependence of the incident short pulse. Owing to the intrinsic causal

nature of Laguerre functions, this technique automatically always preserves the causality

constraints of the transient signal. This expansion of the radiance using a Laguerre basis

transforms the transient photon transport equation to the steady state version. The resulting

equations are solved using the discrete ordinates method, using a finite volume approach.

Therefore, this method enables the handling of general anisotropic, inhomogeneous media

using a single formulation but with an added degree of flexibility owing to the ability to

invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared

with existing strategies, this method offers the advantage of representing the intensity with

high accuracy thus minimizing numerical dispersion and false propagation errors.

142
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6.1 Introduction

MANY models have been developed to solve the one-dimensional photon

transport equation (PTE), which assumes horizontally uniform plane-

parallel media. However, in order to model three-dimensional inhomogeneous

media, the three-dimensional PTE should be used [1]. The modeling of the three-

dimensional photon transport is usually considered difficult, even for the steady

state case, because it involves solving integro-differential equations of four or five

variables [2]. However, many diverse methods for solving the multi-dimensional

steady state photon transport problem can be found in the research literature

[1, 3], which discard the time-dependence complications of the transient problem

considered here.

The use of short pulse lasers in engineering and biomedical applications, such

as optical tomography and laser ablation has motivated research in transient pho-

ton transport through biological media [2]. Transient signals have the possibility

to probe specific resonances in biological media, which far exceed the capabili-

ties rendered by steady state methods. Most existing transient models have been

developed for the one-dimensional PTE, but some have been developed for the

two-dimensional PTE [4]. Only recently have researchers started to work on mod-

els for three-dimensional transient photon transport in scattering media such as

biological tissue. There has been renewed interest in having sensors implanted in

tissue for monitoring and characterization [5–10].

Many three-dimensional photon transport problems have been modeled by

reducing the three-dimensional propagation to equivalent one-dimensional mod-

els. However, such mapping inevitably discards the inhomogeneities and anisotropic

characteristics of such media. For example, realistic analysis of light propaga-

tion in biological tissue must be carried out in a framework which accounts for
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both weak anisotropy and inhomogeneity. Moreover, if sensors are implanted

in such scattering media, one-dimensional models in general have difficulty ac-

counting for both scattering and diffraction effects. Also, specific surface features

of a model problem may be more accurately incorporated into three-dimensional

photon transport. For these reasons, three-dimensional models can provide quan-

titatively superior realistic results compared with their one- or two-dimensional

counterparts.

Most recent developments on solving the three-dimensional transient PTE

rely on approximate methods such as diffusion approximation and spherical har-

monics approximation, which are used to simplify the PTE [4]. These approxi-

mate methods fail to predict the correct propagation speed within the medium

and the solution accuracy is not satisfactory except for specific cases that con-

sider optically thick media at asymptotically longer time scales [4]. Tan et al. [4]

proposed an integral equation technique to model the transient radiative transfer

in three-dimensional homogeneous as well as non-homogeneous participating

media. Guo et al. [2] formulated a complete transient three-dimensional dis-

crete ordinates method to solve the transient PTE in a nonhomogeneous turbid

medium with a rectangular enclosure. Guo et al. [11] modeled heterogeneous

biological tissues using the discrete ordinates method, incorporating the Fres-

nel specularly reflecting boundary condition. They treated the laser intensity as

having a diffuse part and a specular part. The reflectivity at the tissue-air inter-

face was calculated using Snell’s law and the Fresnel equations [11]. Chai et al.

[12] proposed a finite-volume method to calculate transient radiative transfer in a

three-dimensional enclosure, while Sawetprawichkul et al. [13] implemented the

Monte Carlo method for modeling three-dimensional transient photon transport

in a parallel computer system.
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Oliveira et al. [14] proposed a semi-analytical numerical method for solving

the one-dimensional transient PTE in slab geometry. They represented the time

dependence of the radiance and its time derivative using a truncated series of La-

guerre polynomials. This resulted in a set of time-independent equations which

were then solved recursively using a Laplace transform method in the space vari-

able with analytical inversion.

This chapter proposes a novel method to solve the three-dimensional tran-

sient PTE, which can also be easily adopted for solving one- and two-dimensional

cases. The current work uses a transformation which eliminates the partial deriva-

tive term with respect to time. The radiance is then expanded using a Laguerre

basis which transforms the transient PTE to the steady state version, which is

then solved using a finite volume approach with the discrete ordinates method

(DOM) [15]. With the use of a Laguerre basis, any arbitrary pulse shape can be

represented using only a few Laguerre polynomials, considerably reducing sub-

sequent computational overhead. The causality of the system is implicitly im-

posed by the Laguerre expansion. The use of the discrete ordinates method has

several advantages. It requires only a single formulation to invoke higher-order

approximations of discrete ordinate quadrature sets; also, the DOM is applicable

to the complete anisotropic scattering phase function and inhomogeneous media

[2]. The work presented in this chapter has been published in Optics Express [16].

This chapter is divided into five sections. Section 6.2 provides a detailed math-

ematical description of the proposed model. This section is further broken down

into three subsections. The first subsection carries a step-by-step derivation of

the proposed algorithm for the more general three-dimensional case. In the sec-

ond and third subsections, descriptions of how the model reduces to the two-

and the one-dimensional geometries are provided. Section 6.3 presents results
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obtained by numerically implementing the proposed algorithm. A comparison

of the results obtained using the proposed method is provided against the results

obtained using the algorithm proposed by Guo et al. in reference [2]. Section 6.4

concludes the chapter by highlighting the relative advantages of the proposed

technique.

6.2 Formulation

This section presents a Laguerre method developed to solve the multi-dimensional

PTE. In the first sub-section, a detailed mathematical description of the method as

applied for the three-dimensional PTE is presented. In the second sub-section, a

description of how this method can be adopted to solve the two-dimensional PTE

is provided. In the last sub-section, a description of how to adopt the proposed

method for the one-dimensional case is presented.

6.2.1 For the three-dimensional PTE

The three-dimensional transient photon transport equation (PTE) is given by [2]

1
v

∂

∂t
I(x, y, z, Ω, t) + ξ

∂

∂x
I(x, y, z, Ω, t) + η

∂

∂y
I(x, y, z, Ω, t) + u

∂

∂z
I(x, y, z, Ω, t)

− σs(x, y, z)
4π

∫

4π
P(Ω′; Ω)I(x, y, z, Ω′, t)dΩ′ + σt(x, y, z)I(x, y, z, Ω, t) = F(x, y, z, Ω, t),

(6.1)

where I(x, y, z, Ω, t) is the light intensity (radiance), (x, y, z) are the Cartesian co-

ordinates, Ω is the local solid angle, u, ξ and η are the direction cosines such that

u = cos θ, ξ = sin θ cos φ, η = sin θ sin φ and t is time. σt(x, y, z) and σs(x, y, z)

represent the position dependent attenuation and scattering coefficients, respec-

tively. The speed of light in the medium is v, P(Ω′; Ω) is the phase function and
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F(x, y, z, Ω, t) is the source term. Since a constant refractive index is considered,

the speed of light in the medium is a constant. This formulation assumes that

there are no internal sources inside the medium and hence F = 0.

Before proceeding to solve the PTE, the following substitution is used to map

Eq. (6.1) to a moving reference frame with the pulse:

τ = t− x
3vξ

− y
3vη

− z
3vu

. (6.2)

Use of Eq. (6.2) in Eq. (6.1) eliminates the partial derivative term with respect to

time in the original PTE, as shown below.

1
v

∂

∂τ
I(x, y, z, Ω, τ)− ξ

3vξ

∂

∂τ
I(x, y, z, Ω, τ) + ξ

∂

∂x
I(x, y, z, Ω, τ)− η

3vη

∂

∂τ
I(x, y, z, Ω, τ)

+ η
∂

∂y
I(x, y, z, Ω, τ)− u

3vu
∂

∂τ
I(x, y, z, Ω, τ) + u

∂

∂z
I(x, y, z, Ω, τ)

− σs(x, y, z)
4π

∫

4π
P(Ω′; Ω)I(x, y, z, Ω′, t)dΩ′ + σt(x, y, z)I(x, y, z, Ω, τ) = 0, (6.3)

which can be simplified to obtain,

ξ
∂

∂x
I(x, y, z, Ω, τ) + η

∂

∂y
I(x, y, z, Ω, τ) + u

∂

∂z
I(x, y, z, Ω, τ)

− σs(x, y, z)
4π

∫

4π
P(Ω′; Ω)I(x, y, z, Ω′, τ)dΩ′ + σt(x, y, z)I(x, y, z, Ω, τ) = 0. (6.4)

Time dependence is then represented using Laguerre polynomials. Laguerre

functions are used to expand I(x, y, z, Ω, τ) in the summation

I (x, y, z, Ω, τ) =
N

∑
k=0

Bk (x, y, z, Ω) Lk (τ) , (6.5)

where ∫ ∞

0
Ln (τ) Lm (τ) e−τdτ = δmn. (6.6)
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Using Eq. (6.5) in Eq. (6.4) and taking moments (i.e. multiplying by Ln (τ) e−τand

integrating over [0, ∞)), the time dependence can be removed, resulting in N

uncoupled equations, one for each Laguerre coefficient, Bn.

ξ
∂

∂x
Bn(x, y, z, Ω) + η

∂

∂y
Bn(x, y, z, Ω) + u

∂

∂z
Bn(x, y, z, Ω)

− σs(x, y, z)
4π

∫

4π
P(Ω′; Ω)Bn(x, y, z, Ω′)dΩ′ + σt(x, y, z)Bn(x, y, z, Ω) = 0, (6.7)

where n = 1, . . . , N. Thus, the transient photon transport equation has been

reduced to a set of uncoupled steady state photon transport equations. Equa-

tion (6.7) can be solved using the discrete ordinates method as detailed in refer-

ence [15], which is outlined below.

The solid angle dependence of Eq. (6.7) can be discretized using the discrete

ordinates method [17], resulting in L coupled equations for each Laguerre coeffi-

cient:

ξ i ∂

∂x
Bn(x, y, z, Ωi) + ηi ∂

∂y
Bn(x, y, z, Ωi) + ui ∂

∂z
Bn(x, y, z, Ωi)

− σs(x, y, z)
4π

L

∑
j=1

wjP(Ωj; Ωi)Bn(x, y, z, Ωj) + σt(x, y, z)Bn(x, y, z, Ωi) = 0, (6.8)

where wj are quadrature weights, i = 1, . . . , L and n = 1, . . . , N. The tissue

specimen is divided into infinitesimally small control volumes and the discrete

ordinates method is applied. Integrating Eq. (6.8) over a control volume results

in:

∫

V

∂Bi
n

∂x
dV = (Bi

n)xu Axu − (Bi
n)xd Axd, (6.9)

where V = ∆x∆y∆z is the volume of the control volume, (Bn)xu and (Bn)xd are

average values of Bn over the faces Axu and Axd of the control volume, respec-
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tively. Similarly,

∫

V

∂Bi
n

∂y
dV = (Bi

n)yu Ayu − (Bi
n)yd Ayd, (6.10)

and

∫

V

∂Bi
n

∂z
dV = (Bi

n)zu Azu − (Bi
n)zd Azd. (6.11)

Here, Bi
n = Bn(x, y, z, Ωi). Use of Eq. (6.9) to Eq. (6.11) in Eq. (6.8) results in

ξ i
(
(Bi

n)xu Axu − (Bi
n)xd Axd

)
+ ηi

(
(Bi

n)yu Ayu − (Bi
n)yd Ayd

)

+ ui
(
(Bi

n)zu Azu − (Bi
n)zd Azd

)
+ σt(x, y, z)V(Bi

n)p

− σs(x, y, z)
4π

V
L

∑
j=1

wjP(Ωj; Ωi)(Bj
n)p = 0, (6.12)

where (Bi
n)p is the Laguerre coefficient of the radiance at the centre of the control

volume. The average values of Bn on the faces of the control volume and that at

the centre are related by [15]:

(Bi
n)p = (γi)x(Bi

n)xd +
(

1− (γi)x

)
(Bi

n)xu, (6.13)

= (γi)y(Bi
n)yd +

(
1− (γi)y

)
(Bi

n)yu, (6.14)

= (γi)z(Bi
n)zd +

(
1− (γi)z

)
(Bi

n)zu. (6.15)

The weights γx, γy and γz can be determined using the scheme proposed by

Lathrop [2, 18]:

(γi)x = max
(

0.5, 1− |ξ i|/∆x
2 (|ηi|/∆y + |ui|/∆z) + σt

)
, (6.16)

(γi)y = max
(

0.5, 1− |ηi|/∆y
2 (|ξ i|/∆x + |ui|/∆z) + σt

)
, (6.17)
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(γi)z = max
(

0.5, 1− |ui|/∆z
2 (|ξ i|/∆x + |ηi|/∆y) + σt

)
. (6.18)

Using Eq. (6.13) to Eq. (6.15) in Eq. (6.12) and eliminating (Bi
n)xd, (Bi

n)yd and

(Bi
n)zd results in

(Bi
n)p =

V(Si)p + |ξ i|Axu
(γi)x

(Bi
n)xu + |ηi|Ayu

(γi)y
(Bi

n)yu + |ui|Azu
(γi)z

(Bi
n)zu

σtV + |ξ i|Axu/(γi)x + |ηi|Ayu/(γi)y + |ui|Azu/(γi)z
, (6.19)

where

(Si)p =
σs(x, y, z)

4π

L

∑
j=1

wjP(Ωj; Ωi)(Bj
n)p. (6.20)

Dividing the numerator and the denominator of the right hand side of Eq. (6.19)

by V, results in

(Bi
n)p =

(Si)p +
(

|ξ i|
((γi)x∆x)

)
(Bi

n)xu +
(

|ηi|
((γi)y∆y)

)
(Bi

n)yu +
(

|ui|
((γi)z∆z)

)
(Bi

n)zu

σt + |ξ i|/ ((γi)x∆x) + |ηi|/ (
(γi)y∆y

)
+ |ui|/ ((γi)z∆z)

.

(6.21)

In the present work, the spatial differencing scheme suggested by Fiveland [19]

is used to determine the step sizes ∆x, ∆y and ∆z. According to this scheme

∆x <
|ξ i|min

σt (1− (γi)x)
, (6.22)

∆y <
|ηi|min

σt
(
1− (γi)y

) , (6.23)

∆z <
|ui|min

σt (1− (γi)z)
. (6.24)

The algorithm of discrete ordinates for solving the PTE, which is reduced to the

steady state version given by Eq. (6.8), starts at corner control volumes. The

(Bi
n)xu, (Bi

n)yu and (Bi
n)zu values for each corner control volume are given by

the Laguerre coefficients of the boundary condition. Hence, the centre values,
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(Bi
n)p, are determined from Eq. (6.21). Once (Bi

n)p is calculated (Bi
n)xd, (Bi

n)yd

and (Bi
n)zd are determined using Eq. (6.13) to Eq. (6.15). (Si)p, which is initially

assumed to be equal to zero, is then updated using the calculated (Bi
n)p value

from Eq. (6.20). (Bi
n)xd, (Bi

n)yd and (Bi
n)zd of the current control volume are equal

to (Bi
n)xu, (Bi

n)yu and (Bi
n)zu of the adjacent control volumes, respectively. A more

detailed description of this method can be found in reference [15].

The overall algorithm proposed is summarized in ALGORITHM 1 below.

ALGORITHM 1

1. Use the transformation given by Eq. (6.2) in the transient PTE, Eq. (6.1).

2. Expand the radiance, I(x, y, z, Ω, t), using a Laguerre basis.

3. Expand the time-dependent boundary condition using a Laguerre basis.

4. Divide the specimen geometry into infinitesimally small control volumes

(finite volume approach).

5. Apply the discrete ordinates method to Eq. (6.7) in order to solve for each

Laguerre coefficient of the radiance iteratively until convergence is achieved.

6. Combine the Laguerre coefficients using Eq. (6.5) to obtain the radiance

values.

The main steps of the discrete ordinates method using the finite volume approach

are listed in ALGORITHM 2 below.

ALGORITHM 2

1. Start at a corner control volume. (Bi
n)xu, (Bi

n)yu and (Bi
n)zu for this control

volume are known from the boundary condition.

2. (Si)p is assumed to be zero initially for all control volumes.

3. Calculate (Bi
n)p of the current control volume from Eq. (6.21).
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4. Determine (Bi
n)xd, (Bi

n)yd and (Bi
n)zd using Eq. (6.13) to Eq. (6.15).

5. The quantities calculated in step 4 become (Bi
n)xu, (Bi

n)yu and (Bi
n)zu for

adjacent control volumes.

6. Repeat steps 3 to 5 until all control volumes are traversed.

7. Move to the next discrete ordinate (of the solid angle, Ω) in the currently

considered quadrant.

8. Repeat steps 2 to 7 until all discrete ordinates corresponding to the current

quadrant are covered.

9. Move to the next corner control volume.

10. Repeat steps 1 to 9 until all the corners are considered.

11. Update (Si)p for all discrete ordinates using Eq. (6.20).

12. Repeat steps 1 to 11 until (Si)p is converged.

13. Repeat steps 1 to 12 for all Laguerre coefficients of I.

6.2.2 For the two-dimensional PTE

The two-dimensional transient photon transport equation (PTE), for a medium

without any internal sources, is given by

1
v

∂

∂t
I(x, z, Ω, t) + ξ

∂

∂x
I(x, z, Ω, t) + u

∂

∂z
I(x, z, Ω, t)

− σs(x, z)
4π

∫

4π
P(Ω′; Ω)I(x, z, Ω′, t)dΩ′ + σt(x, z)I(x, z, Ω, t) = 0. (6.25)

Instead of the transformation given by Eq. (6.2), the transformation

τ = t− x
2vξ

− z
2vu

, (6.26)

must be used in order to make the partial derivative term with respect to time of

Eq. (6.25) vanish. After using Eq.(6.26) in Eq.(6.25) to eliminate the time deriva-

tive term, the radiance, I, is then expanded using a Laguerre basis using Eq. (6.5)
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and taking moments as for the three-dimensional case. This results in the two-

dimensional steady state PTE:

ξ
∂

∂x
Bn(x, z, Ω) + u

∂

∂z
Bn(x, z, Ω) + σt(x, z)Bn(x, z, Ω)

− σs(x, z)
4π

∫

4π
P(Ω′; Ω)Bn(x, z, Ω′)dΩ′ = 0. (6.27)

ALGORITHM 2 can then be used to solve Eq.(6.27)for Bn and using Eq. (6.5) the

radiance, I, can be determined. However, when applying ALGORITHM 2, in the

equations used for the three-dimensional case, terms corresponding to the vari-

able y vanish.

6.2.3 For the one-dimensional PTE

The one-dimensional transient photon transport equation (PTE), for a medium

without any internal sources, is given by

1
v

∂

∂t
I(z, Ω, t) + u

∂

∂z
I(z, Ω, t)− σs(z)

4π

∫

4π
P(Ω′; Ω)I(z, Ω′, t)dΩ′ + σt(z)I(z, Ω, t) = 0.

(6.28)

For this case, instead of the transformation given by Eq. (6.2), the following trans-

formation is used.

τ = t− z
vu

. (6.29)

Use of Eq.(6.29) in Eq.(6.28) eliminates the time derivative term in Eq.(6.28). Then,

expanding the transformed one-dimensional PTE using a Laguerre basis and tak-

ing moments results in,

u
∂

∂z
Bn(z, Ω)− σs(z)

4π

∫

4π
P(Ω′; Ω)Bn(z, Ω′)dΩ′ + σt(z)Bn(z, Ω) = 0, (6.30)
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where n = 1, . . . , N. Then the solid angle, Ω, of Eq. (6.30) is discretized using the

discrete ordinates method, which results in

ui ∂

∂z
Bn(z, Ωi)− σs(z)

4π

L

∑
j=1

wjP(Ωj; Ωi)Bn(z, Ωj) + σt(z)Bn(z, Ωi) = 0, (6.31)

where i = 1, . . . , L and n = 1, . . . , N. Thus, there are L coupled equations for each

Laguerre coefficient, Bn. They can be written in matrix form as:

∂

∂z
ABn + σtBn − σs

4π
PWBn = 0, (6.32)

where Bn =
[
Bn

(
z, Ωi)]

L,1, P =
[
P

(
Ωj; Ωi)]

L,L and A is a L by L diagonal matrix

with diagonal elements ui. The matrix W is also a L by L diagonal matrix with

diagonal elements wj.

Rearranging, Eq. (6.32) can be written as

∂

∂z
Bn = YBn, (6.33)

where

Y = A−1
[ σs

4π
PW− σtI

]
. (6.34)

Hence, the original transient PTE is reduced to a one-variable ordinary differ-

ential equation. The boundary condition should also be expanded using a La-

guerre basis as described for the three-dimensional case. Thus, Eq. (6.33), subject

to the given boundary condition, can be solved using the 4th order Runge-Kutta-

Fehlberg(RKF) method [20]. The technique is essentially the same as that de-

scribed for the one-dimensional PTE in Chapter 4, the only difference being the

matrix sizes. This difference is due to the fact that in Chapter 4 the radiance was

considered as a function of the zenith angle and the azimuthal angle, but in this
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chapter it is taken to be a function of the solid angle.

The next section presents some results obtained using this algorithm and a

discussion of relative advantages of the proposed algorithm.

6.3 Numerical results and discussion

Simulations of the proposed technique were carried out using MatlabTM. A com-

parison for the two- and three-dimensional problems are provided, with results

obtained from the technique proposed by Guo et al. [2]. In reference [2] these

researchers provided a complete transient three-dimensional discrete ordinates

method to solve the three-dimensional PTE in a rectangular enclosure. In that

paper, they extended the discrete ordinates algorithm described above in ALGO-

RITHM 2, to include the transient term. For the simulations presented in this sec-

tion, their method has been adopted for the two-dimensional case as well for the

purpose of comparison. In the figures, the label “Laguerre DOM” is assigned for

the method proposed in this chapter and the label “Transient DOM” is assigned

for the method proposed in reference [2].

6.3.1 Normalization of units

The PTE is linear in intensity, I, and thus arbitrary units for intensity can be used.

It is a first order, linear differential equation in time and thus time units can also

be selected to enhance the numerical accuracy. It is very clear that the input pulse

parameters influence the numerical accuracy and efficiency of the algorithm. The

input pulse was taken to be a Gaussian pulse described mathematically by

f (t) = I0e
−

(
(t−t0)

T

)2

, (6.35)
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Figure 6.1: Comparison of Laguerre fitting, without scaling, with the ex-
act plot of the corresponding Gaussian function.

where T is the factor determining the width of the input pulse while t0 deter-

mines the time at which the pulse attains its peak value. Thus, the intensity and

time units were set relative to major characteristics of the input pulse; its peak

intensity, I0 and its temporal width controlling parameter, T, which is related to

full-width half maximum value by 2
√

2 ln(2)T. The scale I/I0 was used for radi-

ance in the following simulations. The time units were normalized by a scaling

factor Ts, spatial units by Zs and scattering and absorption coefficients by 1/Zs.

In the present study the scaling factor Ts was set such that Ts = T/1.5. This
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Figure 6.2: Comparison of Laguerre fitting, after scaling with the factor
Ts, with the exact plot of the corresponding Gaussian func-
tion.
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normalization factor was chosen due to the fact that the Laguerre approximation

of the Gaussian pulse is very accurate for pulses with T = 1.5 or greater. This

effect is shown in Fig. 6.1 and Fig. 6.2. Figure 6.1 presents a comparison of direct

Laguerre approximation (i.e. without scaling with Ts) with the exact plot of the

Gaussian pulse, for four different pulse widths. This shows that the Laguerre

approximations for pulses with T = 1 and T = 1.5 are very accurate. However,

for the T = 1 case, a very small bump appears for 6.5 < x < 7.5 (see Fig. 6.1b).

Such inaccuracies can be eliminated by choosing a larger number of Laguerre co-

efficients. However, if computational efficiency is also of concern, better scaling

can be used to reduce the required number of Laguerre coefficients. Therefore,

in the simulations the T = 1.5 and t0 = 4 approximation was used. A pulse

with different T and t0 values should be scaled and shifted accordingly to obtain

T = 1.5 and t0 = 4 before the Laguerre fit is carried out. The results obtained by

the simulations were scaled and shifted back (reversing this process). This idea

is illustrated in Fig. 6.2. Four different Gaussian pulses with different T and t0

values were scaled and shifted (up or down) to obtain the Gaussian pulse with

T = 1.5 and t0 = 4 and a Laguerre fit was carried out. Then the scaling and

shifting was reversed and the resulting fit was plotted with the exact plot of the

corresponding pulse. It is clearly shown in Fig. 6.2 that this scaled Laguerre fit

produces very accurate approximations.

It is interesting to note that with this scaling, it is possible to obtain very ac-

curate results even for the very narrow pulses used in many biomedical applica-

tions. For pulses with other shapes, it is recommended that a least square error fit

is used to obtain a Gaussian approximation, subsequently setting Ts to the width

of that Gaussian pulse divided by 1.5. With the Laguerre fit it is not possible

to approximate any pulse shape to an arbitrary accuracy because of numerical

considerations. Therefore, in practice, there is a finite domain in which this ap-



6.3 Numerical results and discussion 159

proximation is valid. However, as can be seen in Fig. 6.2 this domain expands as

T is increased. However, since in the proposed algorithm the Laguerre polyno-

mials were propagated with the pulse, the approximation was always accurate

in the domain of interest (i.e. the domain in which the Laguerre fit is accurate

extends a few time units beyond the required observation point). A discussion of

the observation window in which the Laguerre approximation is accurate can be

found in Chapter 4.

In the simulations Zs = v × T was used. Here, T can be chosen to suit the

particular application. However, these scaling factors should be chosen carefully

so that the matrices that are used remain well-conditioned. For the simulations

presented in this section, without loss of generality, T/T = 1.5 was chosen so

that Zs = v× T
1.5 . In this section a line over the letters is used to denote quantities

with normalized units.

6.3.2 Computational complexity

For the simulations, an observation volume of −1 < x < +1, −1 < y < +1 and

0 < z < 2 was considered. However, refractive index-matched boundaries were

assumed in all three dimensions. Therefore, in order to minimize effects from in-

ternal reflections at the boundaries the simulation volume was taken to be larger

than the observation volume in all three dimensions (−5 < x < +5,−5 < y < +5

and 0 < z < 5). The total number of voxels used in the finite volume computa-

tions was 108000. The number of voxels considered in the observation volume

was 1728. The number of discrete ordinates taken for the simulations was 80.

The discrete ordinates for S8 approximation given in Table 16.1 of reference [15]

were used. The two main drawbacks of the discrete ordinates method are false

scattering and the ray effect [4, 15]. False scattering is due to spatial discretiza-
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tion errors. When a single collimated beam is traced through an enclosure by

the discrete ordinates method, the beam will gradually widen as it moves farther

away from its point of origin; this unphysical effect, even in the absence of real

scattering, is called false scattering [15]. False scattering can be reduced by using

finer meshes [15]. The ray effect is due to errors in angular discretization and can

be reduced by increasing the sizes of the meshes [15]. Therefore, if a finer spatial

mesh is used to reduce the false scattering, a finer angular quadrature scheme

should be used to reduce the ray effect [15]. Thus, if the Laguerre DOM method

proposed in this chapter is used with a finer mesh, it should be accompanied by

an increased number of discrete ordinates in order to minimize numerical errors.

The Gaussian pulse shape can be represented accurately using about 40 La-

guerre polynomials. Increasing the number of polynomials up to 63 enables fur-

ther refinement in the results. The incident Gaussian pulse in Fig. 6.4 can be

approximated by 20 Laguerre polynomials with a normalized root mean squared

deviation (NRMSD) of 8.07% in the observation window. A discussion of the ob-

servation window in which the Laguerre approximation is accurate can be found

in Chapter 4 and in reference [21]. The NRMSD can be reduced to 1.5% by us-

ing 40 polynomials. A further reduction up to 0.39% can be achieved by using

63 polynomials. However, increasing this number further does not improve the

approximation because machine accuracy limitations hinder further numerical

improvements.

The simulation presented in this section was carried out on a computer with

2 Intel CPUs at 2.5 GHz. For the three-dimensional simulation of the proposed

method (Laguerre DOM) shown in Fig. 6.7 to Fig. 6.10, with 63 Laguerre poly-

nomials, it took 9 minutes and 1 second. For simulating the same problem using

Transient DOM, the same machine took 34 minutes and 6 seconds. In reference
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[2] the authors state that their method may take several minutes to dozens of

hours for simulations, depending on the specified problem and the grid size. The

efficiency of the proposed Laguerre DOM might be even better for more complex

problems than that considered here.

tissue specimen

incident pulse

φ θ

z

x

y

Figure 6.3: Short laser pulse incident on the biological tissue layer.

Figure 6.3 shows a short laser pulse of Gaussian shape incident on a biological

tissue layer at (x = 0, y = 0, z = 0). This is the model used for the simulations

presented in this section. For all the simulations, T̃ = 1.5 and t̃0 = 4 for the input

pulse given by Eq. (4.41) as shown in Fig. 6.4. The normalized velocity ṽ = 1 and

the normalized thickness of the tissue layer at which the results were obtained

was z̃ = 2. The isotropic phase function (P(Ω′; Ω) = 1) was used in the simula-

tions. However, the proposed method is able to handle any other phase function.

For Figures 6.5 to 6.12, σ̃t = 1, σ̃s = 0.98 and the direction of incidence is u = 1.

Figures 6.5 and 6.6 show the variation of irradiance with time and along x-axis at
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Figure 6.4: Incident Gaussian pulse (with I0 = 1 in Eq. (4.41)).

0
2

4
6

8
10

12

−1.0

−0.5

0.0 

0.5 

1.0

0.00

0.02

0.04

0.06

0.08

Time (normalized)x−axis

Ir
ra

d
ia

n
c

e
 (

n
o

rm
a

li
z

e
d

)

Figure 6.5: Variation of irradiance with time and x coordinate for the
two-dimensional PTE, using Laguerre DOM.

z = 2, for the two-dimensional PTE using the two methods. Figure 6.5 indicates

that the time shift of the peak value of the irradiance profile increases as x moves
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Figure 6.6: Variation of irradiance with time and x coordinate for the
two-dimensional PTE, using Transient DOM.

away from x = 0. The reason for this is that light takes the shortest time to reach

(x = 0, z = 2) point and the time increases as the point moves away from x = 0

central axis. However, in the simulation obtained using Transient DOM shown

in Fig. 6.6 this physical phenomenon is not clearly visible.

Figures 6.7 to 6.10 show the variation of intensity with time, along x and y

axes, at z = 2, for the three-dimensional PTE using Laguerre DOM. In these

figures the value of the normalized irradiance (ranging from 0 to 16 × 10−4) is

represented by the color scale. Figures 6.7 to 6.10 were obtained using the same

data set. Figure 6.7 shows a slice plane at y = 0. Thus, in Fig. 6.7 the variation

of irradiance with time along the x-axis on (y = 0, z = 2) plane is shown. As

expected, the light reaches (x = 0, y = 0) point first as rays traveling at an angle

to the central axis (x = 0, y = 0) take longer to reach z = 2 plane (because the di-

agonal distance is more than the central axis distance and the speed is constant).

For the same reason, the irradiance profile decays first at (x = 0, y = 0) and later

at other points. The more a point moves away from the central axis, the longer it

takes the irradiance profile to decay.
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Figure 6.7: Variation of irradiance with time, x coordinate and y coordi-
nate at z = 2 for 3D PTE, using Laguerre DOM (Slice plane
at y = 0, z = 2).

Figure 6.8 shows the variation of irradiance along x and y axes on z = 2 plane

at t = 6. With isotropic scattering and normal incidence a circular spatial distri-

bution on the xy plane was obtained. From Fig. 6.7 it can be seen that at t = 6

points around (x = 0, y = 0) are receiving the second half of the Gaussian pulse

(i.e. the maximum irradiance has been reached earlier) and points further away

from the central axis are receiving light corresponding to the maximum or the

first half of the incident pulse. This phenomenon is reflected in Fig. 6.8. How-

ever, in the simulation result shown in Fig. 6.7 and Fig. 6.8, an uncharacteristi-

cally low number of photons can be seen along the central axis and the majority

of diffuse photons appear off axis resulting in a well-defined shape. The reason
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Figure 6.8: Variation of irradiance with time, x coordinate and y coordi-
nate at z = 2 for 3D PTE, using Laguerre DOM (Slice plane
at z = 2, t = 6).

for this phenomenon is not yet clear, and we intend to investigate this issue using

Monte-Carlo techniques in the future. Figures 6.9 and 6.10 show that the irradi-

ance profile at z = 2 is symmetrical along x and y axes due to isotropic scattering

and normal incidence.

Figures 6.11 and 6.12 show the variation of intensity with time, along x and y

axes, at z = 2, for the three-dimensional PTE using Transient DOM as proposed

in reference [2]. The temporal profile in Fig. 6.11 obtained using this method is

different to that in Fig. 6.7. Since a Gaussian-shaped input was used, the irradi-

ance profile should start decaying at (x = 0, y = 0, z = 2) before at other points.

The further away the observation point moves from the central axis, the longer it



6.3 Numerical results and discussion 166

Figure 6.9: Variation of irradiance with time, x coordinate and y coordi-
nate at z = 2 for 3D PTE, using Laguerre DOM.

should take for the decay to start. This difference in Fig. 6.7 and Fig. 6.11 may be

due to the strong numerical diffusion and false propagation in Transient DOM of

Guo and Kumar [2]. In reference [2] the authors state that an obvious disadvan-

tage of transient analysis using their method is that numerical diffusion and false

propagation are inevitable. In order to minimize numerical diffusion, the spatial

grid and the time step are required to be as fine as possible. The size of time step

affects the transient behavior. Figures 3 and 4 in reference [2] show influences of

time step and spatial grid on the temporal behavior, with a comparison to Monte

Carlo simulations. Figure 3 clearly shows that the Transient DOM cannot capture

the abrupt rise of transmittance in the early time period. In Laguerre DOM, how-

ever, there is no discretization in timescale. The entire time domain of the input

pulse is represented as a truncated series of Laguerre polynomials and then the
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Figure 6.10: Variation of irradiance with time, x coordinate and y coor-
dinate at z = 2 for 3D PTE, using Laguerre DOM.

PTE is solved for each Laguerre coefficient separately. Also, by using the substi-

tution in Eq. (6.2) the PTE is mapped to a moving reference frame with the pulse.

In reference [2], the authors have used Duhamel’s superposition theorem,

which can only be applied to linear systems, to incorporate the time-dependent

boundary conditions. This theorem relates the solution of the problem subject to

the time-dependent boundary condition to the solution subject to time-independent

unit step input. The Laguerre DOM represents the time-dependency of the bound-

ary condition using a Laguerre expansion. Then, a set of time-independent equa-

tions corresponding to each Laguerre coefficient is solved separately using DOM.

Thus, one possible explanation for the difference in temporal and spatial irradi-

ance profiles might be the strong numerical diffusion and false propagation in
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Figure 6.11: Variation of irradiance with time, x coordinate and y coordi-
nate at z = 2 for 3D PTE, using Transient DOM (Slice plane
at y = 0, z = 2).

Transient DOM of Guo and Kumar [2].

6.4 Conclusions

This chapter has introduced a novel technique for modeling multi-dimensional

transient photon transport for applications in bio-sensing and in short pulse prop-

agation through turbid media. The proposed method uses a transformation to

eliminate the transient term in the transient PTE. It then expands the radiance

using a Laguerre basis to automatically account for causality while providing an

efficient basis suitable for calculations. This reduces the original transient PTE to

a steady state version. Hence, the discrete ordinates method, using a finite vol-

ume approach can be used to solve for the radiance.
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Figure 6.12: Variation of irradiance with time, x coordinate and y coordi-
nate at z = 2 for 3D PTE, using Transient DOM (Slice plane
at z = 2, t = 6).

Since the time dependence is expanded using a Laguerre basis, all the sam-

pling points in the time domain are obtained in a single execution, as opposed to

the time marching techniques used in existing solution methods. This makes the

proposed algorithm much faster when the intensity profile is required at a par-

ticular point or a plane over a time interval. In addition, the use of the Laguerre

expansion to represent time dependency enables modeling the system with any

arbitrary input pulse shape, using only a few Laguerre polynomials. Specifically,

the Gaussian pulse shape used in many practical applications can be accurately

represented using a few Laguerre polynomials, as opposed to the discrete sam-

pling used in most existing models. Also, this expansion implicitly imposes the

causality of the system.
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CHAPTER 7

A Numerical Technique for Mapping
the Photon Transport Equation to
Maxwell’s Equations

This chapter presents a technique for mapping the photon transport equation to Maxwell’s

equations. The phase information required in Maxwell’s equations is retrieved from an in-

tensity profile obtained by solving the photon transport equation. The transport-of-intensity

equation is solved using the full multigrid algorithm for the purpose of phase retrieval.

7.1 Introduction

OPTICAL techniques in biomedical applications such as optical tomogra-

phy and light-aided sensing of substances have been the subject of in-

tense interest recently [1]. These techniques of sensing substances in tissue or

blood require foreign structures to be implanted (or embedded) in tissue in or-

der to condition the optical signals. Therefore, having a detailed understanding

of how light interacts with tissue is required. Owing to its ability to accurately

represent light propagation through tissue, wave propagation through biological

tissue is modeled using the photon transport equation (PTE) [2, 3]. However, the

173
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interaction of electromagnetic energy through implanted structures can be best

studied using Maxwell’s equations. Therefore, in order to model wave propaga-

tion through tissue with implanted foreign structures a mapping of the PTE to

Maxwell’s equations is required.

This chapter proposes a technique to map the photon transport equation to

Maxwell’s equations using phase-retrieval techniques. To the author’s best knowl-

edge no work has been reported to date which addresses the problem of coupling

these two sets of equations. The maximum safe exposure of laser light for the skin

is 0.1 J/cm2 per pulse or 1.0 W/cm2 for continuous exposure [4]. However, struc-

tures such as photonic crystals can be implanted to obtain enhanced signals by

properly engineering the photon density of states. The technique proposed in

this chapter can be used to model such foreign structures implanted in tissue.

The work presented in this chapter has been published in Optics Express [5].

This chapter is organized in five sections. Section 7.2 presents the derivation

of the transport of intensity equation for phase construction. Section 7.3 discusses

how the phase information is constructed from the irradiance profile. Section 7.4

concludes the chapter by summarizing the key features and advantages of the

proposed technique.

7.2 Derivation of the transport of intensity equation
for phase construction

The transport of intensity equation (TIE) relates phase and intensity and hence

can be used to construct the unknown phase from known intensity values. In

this section, the derivation of the TIE is presented.
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The following identities are used in this derivation:

∇× [∇× f] = ∇[∇ · f]−∇2f. (7.1)

∇× [gf] = g[∇× f] + [∇g]× f. (7.2)

∇2[ab] = a∇2b + b∇2a + 2∇a · ∇b. (7.3)

The derivation starts with Maxwell’s equations given below.

∇× E(x, y, z, t) +
∂

∂t
B(x, y, z, t) = 0, (7.4)

∇×H(x, y, z, t)− ∂

∂t
D(x, y, z, t) = J(x, y, z, t), (7.5)

∇ ·D(x, y, z, t) = ρ(x, y, z, t), (7.6)

∇ · B(x, y, z, t) = 0, (7.7)

where∇ =
(

∂
∂x i + ∂

∂y j + ∂
∂z k

)
, D is the electric flux density, B is the magnetic flux

density, E is the electric field, H is the magnetic field, ρ is the charge density, J is

the current density, (x, y, z) are Cartesian coordinates and t is time. For linear,

isotropic materials D = εE and B = µH where ε is the electrical permitivity

and µ is the magnetic permeability of the medium. For static materials ε and µ

are independent of time and for non-magnetic materials µ is a constant, which

is approximately equal to the magnetic permeability of free space (µ0) for most

materials. Therefore, for a static, non-magnetic material without any current or

charge densities (i.e. J = 0 and ρ = 0), Maxwell’s equations reduce to:

∇× E(x, y, z, t) + µ0
∂

∂t
H(x, y, z, t) = 0, (7.8)

∇×H(x, y, z, t)− ε(x, y, z)
∂

∂t
E(x, y, z, t) = 0, (7.9)

ε(x, y, z)∇ · E(x, y, z, t) = 0, (7.10)

µ0∇ ·H(x, y, z, t) = 0. (7.11)
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Taking curl on both sides of Eq. (7.8) results in

∇× [∇× E(x, y, z, t) + µ0
∂

∂t
H(x, y, z, t)] = ∇× 0,

∇× [∇× E(x, y, z, t)] + µ0∇× [
∂

∂t
H(x, y, z, t)] = 0. (7.12)

Use of the vector identity given by Eq. (7.1) in Eq. (7.12) results in

∇[∇ · E(x, y, z, t)]−∇2E(x, y, z, t) + µ0
∂

∂t
∇×H(x, y, z, t) = 0. (7.13)

Use of Eq. (7.10) in Eq. (7.13) results in

µ0
∂

∂t
∇×H(x, y, z, t)−∇2E(x, y, z, t) = 0. (7.14)

Taking curl on both sides of Eq. (7.9) results in

∇× [∇×H(x, y, z, t)− ε(x, y, z)
∂

∂t
E(x, y, z, t)] = ∇× 0

i.e. ∇× [∇×H(x, y, z, t)]− ∂

∂t
∇× [ε(x, y, z)E(x, y, z, t)] = 0. (7.15)

Use of the vector identity given by Eq. (7.1) in Eq. (7.15) results in

∇[∇ ·H(x, y, z, t)]−∇2H(x, y, z, t)− ∂

∂t
∇× [ε(x, y, z)E(x, y, z, t)] = 0. (7.16)

Use of Eq. (7.11) in Eq. (7.16) results in

∇2H(x, y, z, t) +
∂

∂t
∇× [ε(x, y, z)E(x, y, z, t)] = 0. (7.17)

Use of the vector identity given by Eq. (7.2) in Eq. (7.17) results in

∇2H(x, y, z, t) +
∂

∂t
[ε(x, y, z)∇× E(x, y, z, t) + [∇ε(x, y, z)]× E(x, y, z, t)] = 0.
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i.e. ∇2H(x, y, z, t) + ε(x, y, z)
∂

∂t
∇× E(x, y, z, t) + [∇ε(x, y, z)]× ∂

∂t
E(x, y, z, t) = 0.

(7.18)

Taking time derivative on both sides of Eq. (7.8) results in

∂

∂t
∇× E(x, y, z, t) + µ0

∂2

∂t2 H(x, y, z, t) = 0. (7.19)

Taking time derivative on both sides of Eq. (7.9) results in

∂

∂t
∇×H(x, y, z, t)− ε(x, y, z)

∂2

∂t2 E(x, y, z, t) = 0. (7.20)

Use of Eq. (7.9) and Eq. (7.19) in Eq. (7.18) results in

∇2H(x, y, z, t)− µ0ε(x, y, z)
∂2

∂t2 H(x, y, z, t) + [∇ε(x, y, z)]× 1
ε(x, y, z)

∇×H(x, y, z, t) = 0.

i.e.
[

ε(x, y, z)µ0
∂2

∂t2 −∇2
]

H(x, y, z, t) =
1

ε(x, y, z)
[∇ε(x, y, z)]×∇×H(x, y, z, t).

(7.21)

Use of Eq. (7.20) in Eq. (7.14) results in

ε(x, y, z)µ0
∂2

∂t2 E(x, y, z, t)−∇2E(x, y, z, t) = 0.

i.e.
[

ε(x, y, z)µ0
∂2

∂t2 −∇2
]

E(x, y, z, t) = 0. (7.22)

If the scatterers slowly vary over length scales comparable to the wavelength

of the incident radiation, the right hand side of Eq. (7.21) can be neglected [6].

Hence, for a static (i.e. the electrical permittivity and the magnetic permeability

are independent of time), non-magnetic (i.e. with constant permeability) medium

without any current or charge densities inside, and with scatterers which slowly

vary over length scales comparable to the wavelength of the incident radiation,
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the Maxwell’s equations can be reduced to

[
ε(x, y, z)µ0

∂2

∂t2 −∇2
]

E(x, y, z, t) = 0, (7.23)

and

[
ε(x, y, z)µ0

∂2

∂t2 −∇2
]

H(x, y, z, t) = 0. (7.24)

From Eq. (7.23) and Eq. (7.24), since there is no mixing between any of the com-

ponents of the electric and the magnetic field vectors, a scalar theory [6] can be

used. Thus,

[
ε(x, y, z)µ0

∂2

∂t2 −∇2
]

Ψ(x, y, z, t) = 0. (7.25)

In Eq. (7.25) Ψ(x, y, z, t) describes the electromagnetic field and it is a complex

quantity. Using the Fourier integral Ψ(x, y, z, t) can be expressed as [6]

Ψ(x, y, z, t) =
1√
2π

∫ ∞

0
ψω (x, y, z) e−jωt dω, (7.26)

where ω is the angular frequency. Use of Eq. (7.26) in Eq. (7.25) results in

[
∇2 + εω(x, y, z)µ0c2k2

0

]
ψω (x, y, z) = 0, (7.27)

where ∇2 =
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
, c is the speed of light in free space and k0 = ω/c

is the wave number in free space. Then, identifying εω(x, y, z)µ0c2 as the square

of the position-dependent refractive index, nω(x, y, z), of the medium, Eq. (7.27)

can be re-written as

[
∇2 + k0

2n2
ω(x, y, z)

]
ψω (x, y, z) = 0, (7.28)
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which is called the homogeneous Helmholtz equation [6].

In order to incorporate scattering, ψω (x, y, z) in Eq. (7.28) is expressed as a

perturbed plane wave [6]:

ψω (x, y, z) = ψ̃ω (x, y, z) ejkz, (7.29)

where ejkz represents the unscattered plane wave and ψ̃n (x, y, z) represents the

complex envelope [7]. That is, the paraxial condition is considered here where

the rays are not exactly parallel to each other; or in other words, a field with

perturbed wave fronts. Use of Eq. (7.29) in Eq. (7.28) results in

∇2
(

ψ̃ω (x, y, z) ejkz
)

+ k2
0n2

ω (x, y, z) ψ̃ω (x, y, z) ejkz = 0. (7.30)

Use of the identity given by Eq. (7.3) in Eq. (7.30) and simplifying results in [6]

[
∇2

xy+
∂2

∂z2 +2jk0
∂

∂z
+k2

0

(
n2

ω(x, y, z)−1
)]

ψ̃ω(x, y, z) = 0, (7.31)

where∇2
xy =

(
∂2

∂x2 + ∂2

∂y2

)
. With the paraxial approximation the envelope, ψ̃ω(x, y, z),

is considered to be “beam-like” so that its second derivative in the z direction is

much smaller in magnitude than its second derivative in the x and y directions.

Therefore, the ∂2

∂z2 ψ̃ω(x, y, z) term in Eq. (7.31) can be dropped. Then Eq. (7.31)

reduces to

[
∇2

xy+2jk0
∂

∂z
+k2

0

(
n2

ω(x, y, z)−1
)]

ψ̃ω(x, y, z) = 0. (7.32)

Let

ψ̃ω(x, y, z) =
√

Iejφ. (7.33)

Here, I represents the irradiance (units: W.m-2.Hz-1) and φ represents the phase.
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Using Eq. (7.33) in Eq. (7.32) and separating the imaginary part results in the

following relationship [6, 8]:

∇xy ·
(

I (x, y, z)∇xyφ (x, y, z)
)

= −k
∂I (x, y, z)

∂z
. (7.34)

Equation (7.34) is called the transport-of-intensity equation (TIE). It shows how

the intensity and the phase are related, and this forms the basis of the phase con-

struction. The next section discusses how to retrieve the phase information from

the intensity profile by solving Eq. (7.34).

7.3 Construction of phase information from the irra-
diance profile

To construct the phase the TIE in Eq. (7.34) is re-written as

I (x, y, z)∇2
xyφ (x, y, z)+

∂I (x, y, z)
∂x

∂φ (x, y, z)
∂x

+
∂I (x, y, z)

∂y
∂φ (x, y, z)

∂y
= −k

∂I (x, y, z)
∂z

.

(7.35)

Equation (7.35) can be solved for φ (x, y, z) numerically using a suitable technique

such as the full multigrid algorithm [9, 10], a Green-function method [8] or a fast-

Fourier-transform-based method [11, 12].

Of these techniques for solving the TIE, the full multigrid algorithm [9, 10, 13],

which solves the TIE exactly is adopted in the present work. Equation (7.35) is a

linear, elliptic partial differential equation of the second order and has a unique

solution if I (x, y, z) > 0 over a simply-connected planar region [14].

The full multigrid algorithm used in this work is briefly described below, as

explained in reference [13]. Further details of this algorithm can be obtained from
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reference [13]. Equation (7.35) can be expressed as

Γu = f , (7.36)

where Γ =
(

I (x, y, z)∇2
xy + ∂I(x,y,z)

∂x
∂

∂x + ∂I(x,y,z)
∂y

∂
∂y

)
, u = φ (x, y, z) and f = −k ∂I(x,y,z)

∂z .

In multigrid methods, the original equation is discretized on a uniform grid.

Equation (7.35) can be discretized as follows:

(
Ii+1,j − Ii−1,j

2∆

) (
φi+1,j − φi−1,j

2∆

)
+

(
Ii,j+1 − Ii,j−1

2∆

) (
φi,j+1 − φi,j−1

2∆

)

+ Ii,j

(
φi−1,j + φi,j−1 + φi+1,j + φi,j+1 − 4φi,j

∆2

)
= fi,j, (7.37)

where i = 1, . . . , M, j = 1, . . . , M for M× M grid points. Also, Ii,j = I
(

xi, yj, z
)
,

φi,j = φ
(
xi, yj, z

)
, ∆ = xi+1− xi = yj+1− yj and fi,j = −k

∂I(xi,yj,z)
∂z . By solving the

PTE on two closely separated planes z = z and z = z + δz, two intensity profiles

are obtained. Thus, the following approximations can be used in Eq. (7.37).

I (x, y, z) ≈ I (x, y, z + δz) + I (x, y, z)
2

, (7.38)

and
∂I (x, y, z)

∂z
≈ I (x, y, z + δz)− I (x, y, z)

δz
. (7.39)

In Eq. (7.38) and Eq. (7.39) I represents the irradiance. However, the PTE solves

for the radiance, IPTE. I and IPTE are related by

I =
∫

2π
IPTE cos θ dΩ, (7.40)

where θ is the zenith angle in a spherical coordinate system and dΩ is an infinites-

imal solid angle [15, 16]. This conversion of the intensity is required because in

the PTE the ray model of optics is used, but in Maxwell’s equations the wave

model is used; and these two models deal with different definitions of intensity,
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radiance and irradiance, respectively.

Since the intensity and its partial derivatives with respect to x, y and z can be

approximately calculated from the two intensity profiles, as shown in Eq. (7.38)

and Eq. (7.39), the only unknown in Eq. (7.37) is φi,j. Hence, the full multigrid al-

gorithm can be used to solve Eq. (7.37) for φi,j and thus the phase can be retrieved

on each grid point.

Equation (7.36) can be discretized on a uniform grid with mesh size h as

Γhuh = fh. (7.41)

If ũh denotes an approximate solution to Eq. (7.41), then the error in ũh is

vh = uh − ũh, (7.42)

and the residual or the defect is

dh = Γũh − fh. (7.43)

Since Γh is a linear operator, the error satisfies

Γhvh = −dh. (7.44)

In order to find the next approximate solution, Γh should be approximated in

order to find vh. Classical iteration methods, such as Jacobi or Gauss-Seidel can

be used to do this. The next approximation is generated by

ũnew
h = ũh + vh. (7.45)
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Next, an appropriate approximation ΓH of Γh is formed on a coarser grid with

mesh size H. Then the residual equation, Eq. (7.44), is approximated by

ΓHvH = −dH. (7.46)

Since ΓH has smaller dimensions, Eq. (7.46) is easier to solve than Eq. (7.44). In

the full multigrid algorithm, the first approximation is obtained by interpolating

from a coarse-grid solution and at the coarsest level the algorithm starts with the

exact solution [13]. Using the full multigrid algorithm as detailed above Eq. (7.36)

can be solved for u. Thus, the phase at each grid point, φi,j is retrieved.

Regarding the validity and accuracy of deterministic phase retrieval using

the transport-of-intensity equation, Eq. (7.34), the following three remarks can

be made.

1. The TIE has been widely employed for quantitative phase retrieval us-

ing monochromatic and polychromatic electromagnetic fields in both the

visible-light and X-ray region, given a series of defocused intensity im-

ages. The TIE has also been successfully solved for the phase using matter

waves such as electrons and neutrons. A review of this work can be found

in reference [17].

2. Since the TIE is the continuity equation associated with the paraxial equa-

tion [8], an exact solution to which is furnished by the Fresnel diffraction

integral [6], its regime of validity is restricted to paraxial beam-like fields.

Interestingly, it may be used with both coherent and partially-coherent

fields, a point which has been studied from both a theoretical [18] and an

experimental [19] perspective.

3. Errors in the phase retrieved using a TIE analysis are primarily due to two

sources: the finite-difference approximation to the right-hand-side of the



7.4 Conclusions 184

TIE (Eq. (7.34)) that is given in Eq. (7.39), together with the presence of

noise in the detected images. While the latter factor is irrelevant in the con-

text of the analysis presented in this chapter, errors in the retrieved phase

due to the former effect need to be considered. For an analysis of both fac-

tors, see reference [20]. The upshot of this analysis is that the error in the

TIE-retrieved phase, due to a non-infinitesimal spacing δz (cf. Eq. (7.39)),

leads to a blurring of the retrieved phase which becomes negligibly small

if δz tends to zero from above. Reference [20] develops an expression for

the optimal δz in the presence of a given level of noise, this optimal defo-

cus distance being proportional to the cube root of the standard deviation

of the noise.

Typical reconstruction accuracies from experiments involving TIE-based phase

retrieval are in the order of 1-5% [6, 19].

7.4 Conclusions

This chapter introduced a novel strategy by which Maxwell’s equations and the

photon transport equation can be seamlessly integrated to analyze electromag-

netic radiation in tissue-like media. In this technique, radiance profiles on two

planes that are separated by an infinitesimal distance, obtained by solving the

PTE, are first converted to two irradiance profiles. The phase information at the

tissue-implant interface is then retrieved using this information using a phase

retrieval technique. This retrieved phase information and the irradiance profile

on one of the planes are then combined to determine the electric and magnetic

fields at the interface. Light propagation through the implant can then be mod-

eled using Maxwell’s equations. By using this technique it is possible to analyze

diffraction effects within the framework of photon transport theory.
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The proposed technique can be used to assist the development of biomedical

instruments that can be used for non-invasive diagnosis of diseases. Moreover,

it enables the calculation of the light energy distribution within tissue structures

with surgically-implanted foreign structures.
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CHAPTER 8

Modeling Pulse Propagation through
a Metal Screen with a Slit Implanted in
Tissue

This chapter contains theoretical analysis and numerical simulation of pulse propagation

through a slit in a metal screen implanted in tissue. This simulation uses the coupling tech-

nique proposed in the previous chapter.

8.1 Introduction

THIS chapter presents an analysis of laser pulse propagation through a slit

in a metal screen implanted in tissue. The mapping technique proposed

in Chapter 7 to simulate light propagation through structures implanted in tis-

sue can be used for several useful applications. One application of this method

is simulating light propagation through photonic crystal structures implanted in

tissue. Photonic crystal structures can be used to enhance the efficiency of Raman

spectroscopy for detecting concentrations of various molecules in blood or tissue

fluid. Another application of the technique proposed in the previous chapter is

simulating light propagation through gold nanoshells or nanoneedles embedded

188
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in tissue. These embedded nano-structures are used to treat cancer [1, 2].

In order to demonstrate the applicability and accuracy of the proposed method,

a much simpler structure, a metal screen with a slit, is used in this chapter. Even

though this example might not have a useful application in terms of medical

diagnosis, it helps to present the proposed technique without involving addi-

tional complexity that might mask the important aspects of this technique. A

detailed analysis of the application of this proposed technique to a more useful

and more complicated structure (i.e. a photonic crystal structure) is provided in

Appendix B. However, simulation of light propagation through a photonic crys-

tal structure involves extensive work and requires a significant amount of time.

Simulation of light propagation through tissue having implanted photonic crys-

tal structures, with gold clusters embedded in them, is recommended as further

research in Chapter 9. The analysis presented in this chapter will lead to analyses

of more useful and complex implants.

Light propagation in scattering and absorbing media such as biological tis-

sue is modeled by the photon transport equation (PTE) [3, 4] which is written

in terms of the magnitude of the intensity but not the phase. Light propagation

through a slit in a metal screen is described by Maxwell’s equations [5–7], which

take into consideration both the magnitude and the phase of the electric and mag-

netic fields, together with the vectorial character of these fields.

The mapping technique developed in Chapter 7 is used for the simulations

here. The work presented in this chapter has been published in Optics Express

[8].

This chapter is organized as follows. Section 8.2 carries the theoretical analy-
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sis of modeling wave propagation through a metal screen with a slit implanted

in tissue. Section 8.3 provides the simulation results for the composite slab of

tissue layer and the metal screen with a slit, a discussion of those results and pos-

sible extensions of the proposed technique. Section 8.4 concludes the chapter by

summarizing the key features and advantages of the proposed technique.

8.2 Theoretical analysis

In this section, the mapping technique proposed in Chapter 7 is applied for ana-

lyzing wave propagation through tissue with an implanted metal screen with a

slit.

tissue layer

incident pulse

metal screen with

a slit

E
0
ej(kz-wt)

E
0

tissue layer

φ
θ

z

x

y

Figure 8.1: Metal screen implanted in biological tissue.
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Figure 8.2: End elevation of the tissue-metal screen model.

Figure 8.1 shows a composite object composed of a layer of biological tissue

and a layer of a metal screen with a slit, and Fig. 8.2 shows the end elevation of

Fig. 8.1. A short laser pulse is incident on the tissue layer as shown. In general,

due to the index mismatch at the interface, radiation is reflected. Even though

the proposed method can easily handle such reflections at interfaces, due to the

increased mathematical complexity in formulation which masks the main points

of the proposed algorithm, the analysis is limited to an index-matched surround-

ing at the left boundary of the tissue layer. A brief discussion of handling index-

mismatches is provided in Chapter 4. However, the reflections at the tissue-metal

screen interface and metal screen-tissue interface will be taken into consideration

with a detailed formulation.

This example focuses on obtaining the magnitude and the phase of the field

from the intensity profile at z = zA and then converting these to the correspond-
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ing electric and magnetic fields, so that the field due to the slit in the metal screen

can be modeled. Then, at the exit of the metal screen, the electric and magnetic

fields can be converted back to the intensity profile so that the tissue layer beyond

this plane can be modeled by solving the PTE.

For modeling light propagation through biological tissue, (i.e. up to the tissue-

metal screen interface), the PTE, given by Eq. (6.1), is used. Without loss of gener-

ality, it is considered that there is no source contained inside the medium which

results in F (z, u, φ, t) = 0 in Eq. (6.1).

The solution method proposed in Chapter 6 can be used to solve the PTE

from z = 0 to z = zA− . Thus, the radiance profile at the plane just before the

tissue-metal screen interface (i.e. at z = zA−) is obtained. However, in order to

model the propagation of the laser pulse beyond this plane, Maxwell’s equations

should be used. Maxwell’s equations require the phase of the field in addition

to the magnitude. Thus, the phase information of the field at z = zA− should

be retrieved in order to model the light propagation through the slit in the metal

screen.

In order to apply the phase retrieval technique presented in the previous chap-

ter, first the radiance profile, IPTE obtained by solving Eq. (6.1) should be con-

verted to an irradiance profile I, using the relationship given in Eq. (7.40). Thus,

the irradiance at z = zA− , IA− , and at z = zA−−δz, IA−−δz, can be obtained by

solving the PTE for radiance and integrating over the hemisphere. Then, the ap-

proximations given in Eq. (7.38) and Eq. (7.39) are used in order to solve the TIE.

That is,

I ≈ IA− + IA−−δz
2

, (8.1)
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and
∂I
∂z
≈ IA− − IA−−δz

δz
. (8.2)

The full multigrid algorithm [9, 10] is then used to solve the TIE, given by Eq. (7.34),

for the phase, φ (x, y, z). Thus, the phase at the tissue-metal screen interface is re-

trieved using the intensity values at two infinitesimally separated planes.

Once the phase is retrieved, if the incident electric field is known, the field

at the tissue-metal screen interface can be obtained. If the incident polarization

vector is E0, as shown in Fig. 8.1, the electric field at z = z+
A can thus be written as

EA =
√

IA−ejφA ej(kz−ωt)E0. (8.3)

Then, the corresponding magnetic field at z = z+
A can be obtained from

HA = j
1
ω
∇× EA. (8.4)

Thus, the incident electric and magnetic fields at the interface have been obtained.

In order to calculate the field distribution just after the metal screen with the

slit, the technique introduced by Neerhoff and Mur [5] is adopted in the present

work. However, a time-dependent incident profile is considered, as opposed to

the time-independent profile used by Neerhoff and Mur. Since the time variation

is very slow, the technique introduced by Neerhoff et al.[5] can be applied for the

case discussed here, as outlined below.

TM polarization is considered here and the magnetic field is assumed to be

approximately time harmonic and constant in y direction as shown in Fig. 8.3.

Thus
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Figure 8.3: Propagation of an incident wave through a slit in a thick
metal screen.

Hy (x, y, z, t) = U (x, z, t) e−jωtey, (8.5)

where ey is the unit vector in y direction. Since the time variation of U (x, z, t) is

very slow, it approximately satisfies the Helmholtz equation. Hence,

(
∇2 + k2

j

)
Uj (x, z, t) = 0, (8.6)

where j = 1, 2, 3 and k j is the wave number in region j. The field in region 1 can

be decomposed into three components:

U1 (x, z, t) = Ui (x, z, t) + Ur (x, z, t) + Ud (x, z, t) , (8.7)

where Ui represents the incident field, Ur represents the field that would be re-

flected if there were no slit in the screen and Ud represents the diffracted field in

region 1 due to the presence of the slit [6]. Each term on the right hand side of

Eq. (8.7) approximately satisfies the Helmholtz equation. Also, it can be shown
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that [5, 6],

Ui (x, z, t) = e−jk1z, (8.8)

and

Ur (x, z, t) = Ui (x, 2b− z, t) . (8.9)

With the above set of equations and standard boundary conditions for a perfectly

conducting screen, there exists a unique solution for the diffraction problem [6].

Thus, the field in region 3, close to the metal screen can be obtained using the

two-dimensional Green’s theorem as discussed in [5] and [6].

Once the electric field values
(
Ed2

)
just after the metal screen is obtained, these

can be combined to obtain the intensity (i.e. the irradiance) using the relationship

I =
1
2

vε|E|2, (8.10)

where v and ε are the propagation speed and the permittivity in the medium,

respectively. Once the irradiance profile on the plane z = d2 is obtained, it should

be converted back to a radiance profile so that the PTE can be used to model the

light propagation beyond this plane. Figure 8.4 shows a strategy that can be used

for mapping the irradiance profile to the radiance profile, as required for solv-

ing the PTE. In Fig. 8.4 , the axes (x, y, z) represent the global coordinate system

used in solving the PTE; also shown is the ray-centred spherical coordinate sys-

tem used to describe the irradiance-to-radiance mapping forward hemisphere.

Based on the work of Ramamoorthi et al. [11], this strategy uses a hemisphere

positioned centrally at the ray propagation direction and uses the relationship
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Figure 8.4: An illustration of the strategy used for mapping radiance to
irradiance.

between radiance and irradiance given by Eq. (7.40), and spherical harmonic rep-

resentation to achieve this task. These authors have shown that the irradiance can

be represented as a simple convolution of the incident illumination [11]. There-

fore, the radiance can be obtained by a deconvolution operation. Ramamoorthi et

al. [11] have derived a simple closed-form formula for the irradiance in terms of

spherical harmonic coefficients of the incident illumination [11].

Once the irradiance profile on the plane z = d2 is converted back to a radiance

profile at each point, in the forward hemisphere at the interface, the technique

introduced in Chapter 6 can be used to model the light propagation through the

remaining layers of tissue.

8.3 Numerical results and discussion

The simulation of the proposed technique was carried out using Matlab
TM

. In the

simulations, all the units were normalized as detailed in Chapter 4. The input
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pulse was taken to be a Gaussian pulse (see Fig. 8.5) given by Eq. (4.41).
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Figure 8.5: The incident radiance profile on the tissue layer (with arbi-
trary units).

Figure 8.5 shows the irradiance profile, in a particular direction, incident on

the centre of the tissue layer from the left hand side on Fig. 8.1. The proposed

technique does not depend on the type of input source. Therefore, in order to

minimize the additional mathematical complexity which might mask the main

idea of the proposed technique, the input source is assumed to have the same ra-

diance profile in all directions in the forward hemisphere, as depicted in Fig. 8.5.

However, the proposed technique can be applied to other kinds of input sources;

for example, one may use the technique proposed by Ramamoorthi et al. [11], to

construct an input radiance profile with a non-uniform profile.

Figure 8.6 shows the irradiance profile at z = 2, on a plane just before the

tissue-metal screen interface, obtained by solving the PTE using the technique

proposed in Chapter 6. Here, a tissue layer with a normalized scattering coeffi-
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Figure 8.6: The irradiance profile on a plane just before the tissue-metal
screen interface (with arbitrary units).

cient of 0.3, normalized absorption coefficient of 0.5 and the Henyey-Greenstein

phase function [12] with an asymmetry factor of 0.7 was used. The normalized

velocity was taken to be 1 while the refractive index of the tissue layer was as-

sumed to be 1.37. Figure 8.6 shows how the irradiance profile on the (x, y) grid

at z = 2 varies with time.

Using the same technique, the irradiance profile at z = 1.95 was obtained, and

these two profiles were used to retrieve the phase of the field at z = 2. For phase

retrieval, first, the code given in reference [13] for the full multigrid algorithm

was translated to Matlab scripting, and then modified to solve the TIE, which in-

volved slight modifications to some subroutines. Then, the irradiance values and

the phase values were combined according to Eq. (8.3) to construct the electric

field at z = 2, which is shown in Fig. 8.7.
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Figure 8.7: The electric field distribution on a plane just before the tissue-
metal screen interface (with arbitrary units).

Figure 8.10: The electric field component in the x-direction on a plane
just after the tissue-metal screen interface (with arbitrary
units).
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Figure 8.8: The magnetic field distribution on a plane just before the
tissue-metal screen interface (with arbitrary units).

Figure 8.11: The electric field component in the z-direction on a plane
just after the tissue-metal screen interface (with arbitrary
units).
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Figure 8.9: The magnetic field distribution on a plane just after the
tissue-metal screen interface (with arbitrary units).

Figure 8.12: The irradiance profile on a plane just after the tissue-metal
screen interface (with arbitrary units).
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Equation (8.4) was used to calculate the magnetic field distribution on a plane

just before the metal screen, using the electric field distribution. This result is

shown in Fig. 8.8. Then, the field distribution on a plane just after the screen

was obtained using the technique introduced by Neerhoff and Mur [5], as dis-

cussed in the previous section. The magnetic and electric fields thus obtained are

shown in Figures 8.9, 8.10 and 8.11. The irradiance profile constructed according

to Eq. (8.10) is shown in Fig. 8.12.

8.4 Conclusions

This chapter has presented the theoretical analysis of wave propagation through

tissue with an implanted metal screen with a slit, which uses the technique of

mapping the photon transport equation to Maxwell’s equations proposed in the

previous chapter. This work includes a technique for analyzing diffraction effects

within the framework of photon transport theory. The proposed technique was

implemented and some simulation results were presented.

In modeling wave propagation through biological tissue with the metal screen

implanted, the PTE models wave propagation through the tissue layer. At the

interface, the phase is retrieved from the irradiance profile and thus the electro-

magnetic field is determined. The wave propagation through the slit of the metal

screen is modeled using Maxwell’s equations. Then, the electromagnetic field is

converted back to an irradiance profile at the exit of the metal screen.
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CHAPTER 9

Conclusions and Recommendations
for Further Research

This chapter concludes the dissertation with an account of the contributions made. It also

provides some recommendations for future work which are based on the current research.

9.1 Summary of contributions

THE research reported in this dissertation provides four major contributions

to the field of numerical simulation of pulse propagation through biolog-

ical tissue for sensing applications. First, a technique for simulating laser pulse

propagation through tissue is proposed, addressing some drawbacks of exist-

ing techniques. This was done by solving the one-dimensional photon trans-

port equation (PTE). An implicitly causality-enforced solution method for multi-

dimensional photon transport was then developed. Another contribution is the

development of an approximate numerical technique for modeling optical pulse

propagation through weakly scattering biological tissue with a varying refractive

index and varying scattering and absorption coefficients. A technique for simu-

lating laser pulse propagation through tissue with implanted foreign structures
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is then proposed, by mapping the photon transport equation to Maxwell’s equa-

tions. More details of each of these contributions are provided in this section.

9.1.1 A numerical technique for simulating one-dimensional tran-
sient photon transport in biological tissue

The Laguerre Runge-Kutta-Fehlberg method proposed in Chapter 4 of this dis-

sertation is used for solving the time dependent PTE. This numerical technique

makes it possible to efficiently simulate laser pulse propagation through biologi-

cal tissue.

This method has several advantages over other existing techniques that are

used to solve the one-dimensional transient PTE. In this proposed solution tech-

nique the zenith and azimuthal angle dependencies are removed using the dis-

crete ordinates method, and the final reduced set of equations is solved using the

Runge-Kutta-Fehlberg (RKF) method. Therefore, intensity profiles at several grid

points (or planes) over the whole time spectrum can be obtained in a single exe-

cution of the algorithm, as opposed to having several executions either for each

spatial point (or plane) or for each instance of time. This makes the proposed

technique more efficient and faster than most existing techniques.

Many biomedical applications use ultra-short laser pulses of a Gaussian pro-

file. However, existing methods for solving the time-dependent PTE approxi-

mate the actual Gaussian profile by some other shape, mostly a square pulse. The

method proposed in this dissertation uses a Laguerre expansion to represent the

time dependency. This makes it possible to represent the actual input pulse very

accurately. In addition, any arbitrary shape can be represented accurately using

only a few Laguerre polynomials, which makes this technique useful if any other

pulse shape is to be used for a particular application. Another advantage of this



9.1 Summary of contributions 207

proposed method is that the causality of the system is implicitly imposed since

Laguerre polynomials are causal.

The proposed technique can be easily extended to higher dimensions (i.e. to

solve the two-dimensional and three-dimensional PTE) and to inhomogeneous

media in which the scattering and absorption coefficients as well as the refractive

index change from point to point. Detailed descriptions of these cases were pre-

sented in Chapters 5 and 6.

This work has been reported in the IEEE Journal of Selected Topics in Quan-

tum Electronics.

9.1.2 A numerical technique for characterizing light propagation
through inhomogeneous tissue

An approximate numerical technique for simulating optical pulse propagation

through weakly scattering biological tissue was developed in Chapter 5. This was

carried out by solving the transient PTE in biological tissue that includes varying

refractive index and varying scattering and absorption coefficients. The proposed

technique involves first tracing the ray paths defined by the refractive index pro-

file of the medium. This ray tracing is carried out by solving the Eikonal equation

using a Runge-Kutta integration algorithm. The one-dimensional transient PTE is

solved only along these ray paths, minimizing the overall computational burden

of the resulting algorithm. The main advantage of this proposed algorithm is that

it enables the discretization of the pulse propagation space adaptively by taking

optical depth into account. Therefore, computational efficiency can be increased

without compromising the accuracy of the algorithm. In addition, the causality

of the system is implicitly imposed. Another advantage is that the whole time

spectrum is spanned in a single execution of the algorithm.
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This work has been reported in the Journal of Biomedicine and Biotechnology.

9.1.3 A numerical technique for simulating multi-dimensional
transient photon transport in biological tissue

A novel method for solving the multi-dimensional transient photon transport

equation for laser pulse propagation in biological tissue was proposed in Chap-

ter 6. In this technique a Laguerre expansion is used to represent the time-dependency

of the incident short pulse. Owing to the intrinsic causal nature of Laguerre func-

tions, this technique automatically preserves the causality constrains of the tran-

sient signal. This expansion of the radiance using a Laguerre basis transforms

the transient photon transport equation to the steady state version. The result-

ing equations are then solved using the discrete ordinates method, using a finite

volume approach. This method offers the advantage of representing the intensity

with a high accuracy using only a few Laguerre polynomials. In addition, the

whole time spectrum is spanned in a single execution of the algorithm making it

a very efficient technique. With this proposed method any arbitrary input pulse

shape can be handled.

This work has been reported in Optics Express.

9.1.4 A numerical technique for mapping the photon transport
equation to Maxwell’s equations

A numerical technique for mapping the photon transport equation, which gov-

erns light propagation through tissue, to Maxwell’s equations, which govern light

propagation through implanted structures, was proposed in Chapter 7. This tech-

nique can be used to simulate light propagation through biological tissue with
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implanted foreign structures. This problem has not been addressed in the re-

search literature to date, despite the very promising applications in optical diag-

nostic procedures.

The proposed technique involves obtaining the electric and magnetic fields to

be used in Maxwell’s equations from the irradiance profile produced by the pho-

ton transport equation. The phase information required for this purpose can be

obtained using a phase retrieval technique such as the full multigrid algorithm.

This work has been reported in Optics Express.

The major contribution of this research as a whole is the development of a

numerical technique to simulate light pulse propagation through biological tissue

with implants. Despite the very useful potential applications, this problem has

not been addressed in the research literature to date.

9.2 Recommendations for further research

This section provides a number of suggestions for further research to extend or

modify the work presented in this dissertation.

9.2.1 Comparing simulation results obtained using the proposed
techniques to those obtained experimentally

The Laguerre-Runge-Kutta Fehlberg method proposed in Chapter 4 of this disser-

tation was validated for three special cases for which the results are intuitive. In

addition, simulation results obtained using this method were compared to those

obtained using an existing method. Simulation results obtained using the La-

guerre DOM proposed in Chapter 6 were also compared to those obtained using
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an existing method. A discussion of the validity and the accuracy of the tech-

nique proposed to map the PTE to Maxwell’s equations was provided in Chap-

ter 7. In addition, it is recommended that the numerical techniques proposed in

this dissertation be compared or validated against experimental results, as a topic

of further research.

9.2.2 Using surface enhanced Raman scattering to enhance Ra-
man scattering in tissue

Raman scattering results in inelastic scattering of light by molecules in the medium.

That is, the energy of the incident photon is either decreased (Stokes Raman scat-

tering) or increased (Anti-Stokes Raman scattering). Stokes Raman scattering oc-

curs when a molecule falls to a stable excited state by absorbing energy from

a photon, resulting in a decreased frequency of light. On the other hand, anti-

Stokes Raman scattering occurs when an excited molecule interacts with a pho-

ton and falls to a less energetic state, releasing some of the energy it possessed

before this interaction, resulting in an increase in the frequency of light [1].

The observed frequency shifts are independent of the excitation frequency

and provide specific information about the chemical structure of the sample [2].

Hence, the excitation frequency can be chosen to suit a particular sample [2]. Ra-

man spectroscopy has excellent fingerprinting capabilities when compared with

other optical techniques [3]. Therefore, Raman spectroscopy can be used to uniquely

detect substances in blood or tissue fluid, such as glucose. However, the small Ra-

man scattering cross-section results in very low signal levels, making the use of

this technique in biomedical applications inefficient [1, 3]. Since Raman scattering

is a non-linear process, a high intensity is required to initiate this process. How-

ever, for safety reasons, the incident intensity used in optical detection techniques

should be relatively low as reported in Chapter 3. Photonic crystal structures im-
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planted in tissue can be used to overcome this problem. The photon density of

states of a photonic crystal structure redistributes near the band gap frequencies

as explained in detail in Appendix B. This enhancement of the photon density of

states can be exploited to initiate and enhance Raman scattering with relatively

low power incident pulses.

It has been found recently that colloidal gold can be used to amplify the ef-

ficiency of Raman scattering of adsorbed molecules by 14 to 15 orders of mag-

nitude. This process is called surface-enhanced Raman scattering (SERS). The

ultra-high sensitivity of SERS allows spectroscopic detection of single molecules,

with very low concentrations, under ambient conditions [3, 4]. Colloidal gold

has been used safely in rheumatoid arthritis treatments for 50 years [4]. The very

high increase of the Raman signal resulting from SERS is primarily due to the

electromagnetic field enhancements associated with surface-plasmon resonance

[5].

Since microfluidic devices can dispense small volumes of samples, the capa-

bility of detecting low quantities of biomolecules has become more critical [5].

SERS can be used for this purpose which results in high sensitivity [5]. The SERS

technique, based on metallic nanostructures, has been applied to several fields

such as the detection of environmental pollutants and investigation of adsorp-

tion and reaction processes at electrochemical interfaces [6]. Using lasers, co-

herent anti-Stokes Raman scattering (CARS) can generate a stronger signal than

ordinary Raman scattering, but the sensitivity of CARS is not as high as that of

SERS and also the former has not reached the single-molecule level [5]. However,

by combining SERS and CARS, it is possible to obtain significant signal gain [5].

Having gold clusters inside photonic crystals implanted in tissue results in
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surface-enhanced Raman scattering (SERS). This phenomenon can be exploited

to enhance otherwise weak optical signals that are used in optical diagnostic pro-

cedures. Modeling of photonic crystals implanted in tissue with gold clusters

inside them can be carried out by extending the work presented in Chapter 7

and Appendix C. Appendix C proposes a method to determine the reflectance

and transmittance at the tissue-photonic crystal interface. However, modeling

of light propagation through the photonic crystals involves numerically solving

Maxwell’s equations in a periodic dielectric structure. This involves extensive

work which requires significant effort and time. Having gold clusters inside the

photonic crystal structure increases the complexity of the problem. However,

the numerical techniques proposed in this dissertation can be extended to model

light propagation through photonic crystals with gold clusters implanted in tis-

sue. This modeling would have very useful biomedical applications.

9.2.3 Modeling thermal ablation and considering temperature
changes in laser irradiated tissue

In laser surgery high power CO2 lasers are used to remove excessive tissue [7]. In

thermal laser ablation, the water contained in the tissue absorbs the energy of the

incident laser beam and vaporizes, leaving behind only the tissue debris [7]. De-

velopment of a model for thermal ablation of tissue is difficult because there is an

abrupt change in thermal behaviour at the water-steam phase transition temper-

ature and the heat flow and mass removal occur simultaneously [8]. In addition,

there are difficulties associated with incorporating scattering into such a model

[8]. However, some attempts to model thermal ablation of tissue can be found

in the research literature [8, 9]. It is recommended that the techniques developed

in this dissertation be extended or modified to improve the modeling of thermal

ablation of tissue.



9.2 Recommendations for further research 213

Visible and near-infrared lasers cause thermal destruction of tissue. The ex-

tent of this destruction is governed by heat deposition in tissue, heat transfer and

temperature-dependent rate reactions [10]. The extent and degree of tissue dam-

age depends on the magnitude, time duration and placement of the deposited

heat in tissue [10]. The heat deposition in tissue is due only to photons that are

absorbed [10]. Absorbed laser light results primarily in a rise in the tissue tem-

perature according to its specific heat. Heat is then diffused from the deposition

region by thermal conduction and other processes [11]. This phenomenon can be

modeled using the bioheat equation, which is a diffusion equation with cooling

and heating terms due to blood perfusion and boundary effects [11].

For applications in which ultrashort pulses are used, the medium is usually

treated as a cold medium. This is because when an ultrashort laser pulse is used

as the incident source, the emission from the media is negligible. Thus, the work

presented in this dissertation did not take temperature distribution into account.

However, it is recommended that the techniques developed in this dissertation

be extended to include temperature distributions which can be used in other ap-

plications where the medium cannot be treated as a cold medium.

9.2.4 Considering coherence and polarization effects of light prop-
agated through tissue

Sankaran et al. [12] have demonstrated significant differences in the propagation

of polarized light through biological tissue. They have measured the depolariza-

tion of linearly and circularly polarized light versus propagation distance. Their

results indicate that linearly polarized light survives through longer propagation

distances than circularly polarized light in biological tissue [12]. Wang et al. [13]

showed that the temporal distribution of the light transmittance through scatter-

ing media is independent of the incident polarization state.
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Filtering of weakly scattered photons from multiply scattered photons can

enhance the resolution and contrast in optical images of tissue [12]. As the dis-

crimination criterion, by which to reject multiply scattered photons, the degree

of polarization may be used [12]. Polarization discrimination will be effective for

imaging through less than about a centimeter of soft tissue [14].

Unscattered photons retain coherence and phase while multiple scattering

destroys these properties [14]. The performance of coherent methods requires

the existence of a transmitted coherent component [14]. In coherent gating light

transmitted through a medium is combined spatially and temporally with a ref-

erence beam [14]. Coherence properties of light are used in optical coherence

tomography (OCT), which is an optical imaging technique and has great poten-

tial in diagnosis where conventional biopsy is dangerous or ineffective [15]. OCT

uses the partial coherence properties of a light source to image structures in a tur-

bid medium such as tissue [16]. This technique uses a two-beam interferometer

with two arms, the sample arm and the reference arm. The sample is positioned

in the sample arm. The optical path length in the reference arm acts as a gate

on the detection, selecting only the light backscattered from the sample that has

traveled the same optical path length. Interference fringes are formed when the

optical path length of light backscattered from the sample matches that from the

reference [16].

The photon transport equation does not include coherence information and

coherence was not taken into account in the work presented in this dissertation.

Polarization effects have also not been considered. However, it is recommended

that the present work be extended to incorporate these effects for applications

such as optical imaging of tissue using polarization or coherent gating.
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9.2.5 Considering refractive index mismatches at interfaces

In photon transport theory, the effects of reflection and refraction on the bound-

ary are significant. The mismatch of the refractive indices at interfaces leads to

increasing photon flight time due to the internal reflections [17]. If there is a

refractive index mismatch at the tissue-external medium interface, light will be

internally reflected back into the tissue at the interface [18]. Therefore, calcula-

tions of internal fluence rates for photodynamic therapy dosimetry or estimates

of tissue optical properties based on reflectance require an understanding of, and

a treatment for, the index mismatch [18]. Specular reflection arising due to refrac-

tive index mismatch at the interface yields photons which have not “sampled”

the tissue interior. Hence, these photons do not yield information about the inter-

nal tissue absorption and scattering properties [19]. Therefore, estimates of tissue

properties based on reflectance require appropriate treatment of this issue.

Various approaches have been developed to include mismatched boundary

conditions [17]. When the diffusion approximation is used, the boundary con-

ditions at the interface are derived using Fresnel’s equations by balancing the

fluence rate and photon current crossing the interface [18]. Guo et al. [20] used

Snell’s law and the Fresnel coefficients to calculate reflectivity at the tissue-air

interface. They considered the effect of Fresnel boundary in modeling such in-

terfaces. Their results showed that the simulated transmitted signals were broad-

ened and amplified under specularly reflecting boundary conditions as compared

to those under diffusely reflecting boundary conditions. Guo et al. [20] used the

discrete ordinate method to simulate laser propagation in tissue. By using Snell’s

law and Fresnel coefficients, the specular reflectivity at each discrete angle direc-

tion can be calculated.

Churmakove et al. [17] simulated photon migration in a randomly inhomo-
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geneous, highly scattering and absorbing medium with a plane boundary, us-

ing the Monte Carlo method. In their study, they considered the spatial photon

sensitivity profile, spatially resolved diffuse reflectance and angular and spatial

photon detector weight distributions in terms of Fresnel’s reflection and refrac-

tion on the boundary. They predicted the effect of refractive index match, using

the Monte Carlo method and diffusion approximation [17]. Haskell et al. [21]

examined three boundary conditions commonly applied to the surface of a semi-

infinite turbid medium, using the method of images. They found that, when an

aluminium foil was placed on the surface of a tissue phantom, phase and modula-

tion data were closer to the results for an infinite-medium geometry. Haskell et al.

[21] concluded that non-invasive measurements of optically thick tissue require

a rigorous treatment of the tissue boundary, and they suggested a unified partial-

current-extrapolated boundary approach. They used the diffusion approxima-

tion in their work. The extrapolated boundary condition and the partial-current

boundary condition can be used to account for Fresnel reflections that arise from

the refractive-index mismatch at the tissue-air interface [21].

Lagendijk et al. [22] considered the effect of internal reflection of propagation

waves in strongly scattering media using a diffusion approach. They found that

the influence of internal reflection can be very strong when backscattering and

transmission through relatively thin slabs are considered. They further stated

that, when transmission through relatively thick slabs is considered, this effect

can be accounted for by renormalizing the diffusion coefficient with a length-

scale dependent reduction factor. Lagendijk et al. [22] used Green functions to

calculate the degree to which coherent backscattering and diffusive transport, in

reflection and transmission, are affected by internal reflection. They showed that

for experiments requiring backscattering geometries internal reflection modifies

the outcome significantly.
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Ripoll et al. [23] derived integral equations for diffuse photon density waves

at a refractive index mismatched interface, based on a surface-integral formal-

ism. They used the diffusion approximation and considered a diffuse-diffuse in-

terface with index mismatch. They presented numerical results by solving these

integral equations without any further approximations. Ripoll et al. [23] showed

that multiple-scattering contribution due to surface roughness can be neglected

even when an index mismatch is present. Zhu et al. [24] showed that the ef-

fect of internal reflection due to refractive index mismatch can be quantitatively

accounted for using a single parameter. They achieved this by incorporating a

reflection coefficient into the boundary condition of the diffuse light. Farrell et al.

[18] presented an experimental investigation of the effect of the refractive index

mismatch at the tissue interface on the internal light fluence rate. Presently, more

complete studies are being carried out to demonstrate the influence of refractive

index matching on image reconstruction of inhomogeneities in a medium [17].

In this dissertation it was assumed that the refractive index matched interfaces

at the input. However, this work can be easily extended to incorporate refractive

index-mismatches at interfaces. A brief account of how this could be done was

outlined in Chapter 4. It involves calculating the specular reflectivity from Fres-

nel’s equations. For applications based on reflectance profiles it would be better

to incorporate index mismatches.

9.2.6 Modeling light propagation through muscles

There are several types of human tissue, such as muscle fibres and white matter

of the brain, that have properties that depend not only on location but also on di-

rection [25, 26]. Experiments have been conducted to show that this anisotropy of
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tissue affects light propagation [25, 26]. There are some indications that photon

transport theory may break down in the case of muscle, which can be consid-

ered as highly structured tissue. This is because the alignment of fibres in muscle

may cause measurable wave interference effects and scattering cannot be con-

sidered random [27]. Muscles are made up of several different structures such

as fibre cells, blood vessels, nerves and lymphatic vessels. Prediction of exact

absorption and scattering coefficients for muscle tissue is impossible due to the

irregular forms and different sizes of these structures [28]. The scattering process

in muscular tissue is anisotropic [28]. Light absorption in muscles is mainly due

to myoglobin and the haemoglobin present in the red blood cells in the blood

vessels [28].

Heino et al. [25] considered in detail an anisotropic scattering and light prop-

agation model based on the photon transport equation. They provided a dis-

cussion of a possible model for anisotropic scattering applicable in the photon

transport framework and also derived the corresponding anisotropic diffusion

approximation. Heiskala et al. [26] proposed a Monte Carlo model that solves

the photon migration problem in an arbitrary voxel-based geometry and an ar-

bitrary form of tissue anisotropy. They derived the anisotropic diffusion equa-

tion from the anisotropic photon transport equation implemented by their Monte

Carlo model. Kienle et al. [29] carried out a study using a two-layered diffu-

sion model to determine non-invasively the haemodynamics of muscles in the

extremities. This study was based on their previous work of solving the diffusion

equation for a two-layered geometry having an infinitely thick second layer in

the steady state. In reference [29] the authors concentrated mainly on determin-

ing the absorption coefficient of the muscle layer.

It is recommended that the novel numerical techniques proposed in this dis-
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sertation be modified or extended to simulate light propagation through muscle

tissues.
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APPENDIX A

The electromagnetic theory and the
photon transport theory

This appendix provides a summary of how electromagnetic theory compares with postu-

lates of the photon transport theory based on Fante’s work.

In an isotropic, nondispersive medium with a permittivity ε + ε1(r) and a

permeability µ, if the electric and magnetic fields are monochromatic, the electric

field, E can be expressed as

E(r, t) =
1√
2

E(r)e−jωt +
1√
2

E∗(r)ejωt, (A.1)

where r represents the position and t is time. µ and ε represent a background. If ε1

is real the ensemble-averaged electromagnetic energy density within the medium

can be written as [1, 2]

〈U(r)〉 =
µ

2

〈
|H(r)|2

〉
+

ε

2

〈
|E(r)|2

〉
+

1
2
〈E∗ · P〉 , (A.2)

where H is the magnetic field strength and P(r) = ε1(r)E(r). E(r), H(r) and P(r)
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can be written in terms of their Fourier decomposition into plane waves as

E(r) =
∫ ∞

0

∫
k2e(k)ejk.rdΩdk (A.3)

H(r) =
∫ ∞

0

∫
k2h(k)ejk.rdΩdk (A.4)

P(r) =
∫ ∞

0

∫
k2p(k)ejk.rdΩdk (A.5)

Substituting Eq. (A.3) to Eq. (A.5) in Eq. (A.2) results in

〈U(r)〉 =
∫

Q(r, s)dΩ, (A.6)

where

Q(r, s) =
1
2

∫ ∞

0
k2ejks.r 〈µh(k) ·H∗(r) + [εe(k) + p(k)] · E∗(r)〉 dk, (A.7)

and s is a unit vector in the direction of k such that k = ks. Similarly, it can be

shown that the Poynting vector, S can be written as [2]

〈S(r)〉 =
∫

R(r, s)dΩ, (A.8)

where

R(r, s) =
1
2

∫ ∞

0
k2ejks.r 〈E∗(r)× h(k)−H∗(r)× e(k)〉 dk. (A.9)

It is evident from Eq. (A.6) and Eq. (A.8) that Q(r, s) and R(r, s) can be iden-

tified as the angular components in the direction s of the average energy density

and Poynting vector, respectively [2]. Thus, the energy dW which is transported

across a surface element dA onto the solid angle dΩ centered about s in a time

interval dt can be expressed as

dW = (R · n)dAdΩdt, (A.10)
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where n is the unit normal to the surface element dA.

In the photon transport theory it is postulated that the energy dW which is

transported across a surface element dA onto the solid angle dΩ centered about s

in a time interval dt is given by

dW = I(r, s)(s · n)dAdΩdt, (A.11)

where n is the unit normal to dA and I is the radiance. The radiance, I, is postu-

lated to be related to the average energy density through [2]

〈U(r)〉 =
1
v

∫
I(r, s)dΩ, (A.12)

where v is the propagation speed in the medium. By comparing Eq. (A.12) and

Eq. (A.6) it can be seen that these two expressions are consistent when

I(r, s) = vQ(r, s). (A.13)

A more detailed analysis of whether and when the postulates of the photon trans-

port theory are satisfied when I is expressed by Eq. (A.13) is presented in refer-

ence [2]. This reference also contains a more rigorous derivation of the photon

transport equation.
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APPENDIX B

Photonic crystals

This appendix provides a concise description of photonic crystals.

Figure B.1: Schematic illustration of one-dimensional, two-dimensional
and three-dimensional photonic crystals [1].

Photonic crystals are low-loss periodic dielectric structures, whose refractive

index periodically changes in space, along one direction (one-dimensional), along

two directions (two-dimensional) or along all three axes (three-dimensional) [2, 3]

as shown in Fig. B.1. The refractive index modulation is in a scale that can be com-

pared to the wavelength propagated in the device [4]. These photonic crystals re-

sult in band gaps for photons, which are analogous to band gaps for electrons in

semiconductors. Light with frequencies in the photonic band gap is forbidden to
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propagate inside the photonic crystal. Thus, if a light wave whose frequency lies

in the photonic band gap is sent onto a face of a photonic crystal, the amplitude of

this wave decays exponentially and thus extended propagation is prevented [2].

In photonic crystals, different topologies of the structure provide optical band

gaps for different polarizations of light [4].

Defects introduced into the photonic crystal structure can be useful in many

applications. Defects allow localizing of modes which belong to the band gap.

Point defects can be used as microcavities and linear defects can be used as wave

guides. Another application of photonic crystals is dielectric mirrors [2]. Influ-

ences of defects in photonic crystals can be computed using Wannier functions

[5].

Photonic crystals can be used to control the spontaneous emission of light

and to localize the photons [6]. Spontaneous emission arises from the intricate in-

terplay between a radiating system and its surrounding environment, and thus,

the spontaneous emission in a photonic crystal can be enhanced, attenuated or

suppressed by changing the density of electromagnetic states at the transition

frequency [7]. It is possible to engineer the photonic density of states in a pho-

tonic crystal and this in turn enables enhancement of nonlinear Raman process

without increasing the excitation intensity [8]. This is possible because the dip in

the photon density of states in the band gap coexists with enhanced density of

states just outside it [9]. That is, the photon density of states is increased near the

band edges [6]. Figures B.2 and B.3 from [9] show this phenomenon graphically.

Solid lines in these figures correspond to continuous media with various refrac-

tion indices and dashed lines show redistribution of density of states in photonic

band-gap structures.
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Figure B.2: Density of photon states in two-dimensional space [9].

Figure B.3: Density of photon states in three-dimensional space [9].

One of the most efficient Raman spectroscopic techniques is based on the

strongly surface-enhanced Raman scattering (SERS) effect [8]. The enhancement

of the Raman signal and the Raman scattering rate are facilitated by the strong

local enhancement of the electromagnetic field [8]. Hence, the possibility to en-

gineer the photon density of states of a photonic crystal structure in a desired

fashion can be exploited to strongly modify the Raman scattering of light from

active elements embedded in these structures [8]. Enoch et al. [6] have demon-

strated that it is possible to obtain an angular confinement of emission together
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with an enhancement of the emitted power when emitting dipoles are embedded

in a photonic crystal. Fan et al. [7] have shown that a thin slab of two-dimensional

photonic crystal significantly alters the radiation pattern of spontaneous emis-

sion. Also, by eliminating all guided modes at the transition frequencies, spon-

taneous emission can be coupled entirely to free space modes, which results in a

greatly enhanced extraction efficiency [7].

Light propagation through photonic crystals can be modeled using Maxwell’s

equations. The two curl equations of Maxwell’s equations can be combined to

obtain the master equation [2]

∇×
(

1
ε(r)

∇×H(r)
)

=
(ω

c

)2
H(r) (B.1)

which should then be solved for the modes, H(r), for a given frequency. Here,

the magnetic permeability, µ, is assumed to be unity, which is true for most of

the dielectric materials. There are two ways of describing the behaviour of light

in photonic crystals: the band structure and Bloch modes [10]. The band struc-

ture describes the allowed frequency bands in infinite photonic crystals, while the

corresponding Bloch modes describe electromagnetic field profiles in the crystals

[10]. The finite difference time domain (FDTD) method is used to compute nu-

merically the behaviour of light in finite crystals and this method does not make

any assumption about crystal periodicity [10].

Figure B.4 from reference [11] shows the band structure of a one-dimensional

photonic crystal composed of silicon and air. Figures B.5 and B.6 show a square

lattice of a two-dimensional photonic crystals, composed of dielectric cylinders

in air, and its band structure. There are two different sets of photonic band struc-

tures: the real band structure, which shows the dispersion relation of photons

with respect to the propagating Bloch modes, and the complex band structure,
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Figure B.4: Band structure of a one-dimensional photonic crystal com-
posed of silicon and air [11].

which shows the decay constants of the evanescent modes in addition to the wave

vectors of propagating modes [12].

Photonic crystals near photonic bandgap frequency behave as if they have

a certain effective refractive index which is not limited by the refractive index

of composing materials, but is determined by the photonic band structure [13].

Thus, the effective refractive index of a photonic crystal can be smaller than unity

or negative without absorption, and Snell’s law can still be used to describe the

light propagation [13]. The dispersion relation shows the relationship of the fre-

quency with the wave number. The group velocity of a radiational eigenmode is

given by the gradient of the dispersion curve [1]. That is,

vg =
∂ω

∂k
, (B.2)

where vg is the group velocity, ω is the angular frequency and k is the wave
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Figure B.5: A two-dimensional square lattice composed of circular cylin-
ders [1].

Figure B.6: Photonic band structure of a two-dimensional square lattice
composed of circular cylinders, of dielectric constant 9, in
air, and with a ratio of the lattice constant to the radius of
the cylinders 1:0.38 [1]
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number. Thus, the photonic crystal structure can be modeled using an effective

refractive index, ηe f f , which can be obtained using [1]

∇kω =
c

ηe f f
k̂, (B.3)

where∇k = ∂
∂kx

ux + ∂
∂ky

uy + ∂
∂kz

uz, k̂ is the unit vector parallel to k and ux, uy and

uz are unit vectors along x, y and z axes, respectively. Once the effective refrac-

tive index is calculated, the transmission coefficient of the photonic crystal can be

approximated by that of a uniform medium [1]. Transmission and reflection at

photonic crystal interfaces can also be computed by other methods [10]; for ex-

ample using transfer [14] or scattering matrices [15]. Istrate et al. [10] showed that

the band structure and Bloch modes can be used not only to give a generalized

description of light in infinite photonic crystals, but also to find the amplitude

and phase of light reflected and transmitted from interfaces in systems made us-

ing finite and semi-infinite photonic crystals. They obtained the equivalent of the

Fresnel coefficients for photonic crystals [10]. An interesting property of photonic

crystals is the focusing of light caused by negative effective refractive index in the

vicinity of the photonic band gap [13]. Thus, photonic crystals can be used as flat

lenses and to rectify the problem of divergence caused by scattering in different

directions [3, 13, 16].

Basic methods of modeling photonic crystals can be categorized as frequency

domain methods (such as the plane wave method) and time domain methods

(such as the finite difference time domain method) [4]. The most commonly used

methods are the plane wave method (PWM) and the finite difference time do-

main (FDTD) method [4].



233

References

[1] K. Sakoda, Optical Properties of Photonic Crystals. Germany: Springer, 2005.

[2] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow

of Light. Princeton University Press, 1995.

[3] A. Martinez, H. Miguez, A. Griol, and J. Marti, “Experimental and theoretical analy-

sis of the self-focusing of light by a photonic crystal lens,” Physical Review B, vol. 69,

p. 165119, 2004.

[4] D. Szymanski and S. Patela, “Modeling of photonic crystals,” International Students

and Young Scientists Workshop: Photonics and Microsystems. IEEE, 2005, pp. 79–

82.

[5] K. Busch, S. F. Mingaleev, A. G. Martin, M. Schillinger, and D. Hermann, “The Wan-

nier function approach to photonic crystal circuits,” Journal of Physics: Condensed

Matter, vol. 15, pp. R1233–R1256, 2003.

[6] S. Enoch, B. Gralak, and G. Tayeb, “Enhanced emission with angular confinement

from photonic crystals,” Applied Physics Letters, vol. 81, no. 9, pp. 1588–1590, 2002.

[7] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High extraction efficiency of spon-

taneous emission from slabs of photonic crystals,” Physical Review Letters, vol. 78,

no. 17, pp. 3294–3297, 1997.

[8] L. Florescu and X. Zhang, “Semiclassical model of stimulated Raman scattering in

photonic crystals,” Physical Review E, vol. 72, p. 016611, 2005.

[9] S. V. Gaponenko, “Effects of photon density of states on Raman scattering in meso-

scopic structures,” Physical Review B, vol. 65, p. 140303(R), 2002.

[10] E. Istrate, A. A. Green, and E. H. Sargent, “Behavior of light at photonic crystal

interfaces,” Physical Review B, vol. 71, p. 195122, 2005.

[11] K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications. Ger-

many: Springer, 2004.



234

[12] C. S. Feng, L. M. Mei, L. Z. Cai, X. L. Yang, S. S. Wei, and P. Li, “A plane-wave-based

approach for complex photonic band structure and its applications to semi-infinite

and finite system,” Journal of Physics D: Applied Physics, vol. 39, pp. 4316–4323, 2006.

[13] M. Notomi, “Negative refraction in photonic crystal,” Optical and Quantum Electron-

ics, vol. 34, pp. 133–143, 2002.

[14] P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculat-

ing photonic band structures and transmission coefficients of complex structures,”

Computer Physics Communications, vol. 85, no. 2, pp. 306–322, 1995.

[15] N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves

by periodic structures,” Journal of Physics: Condensed Matter, vol. 4, no. 36, pp. 7389–

7400, 1992.

[16] K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, “Spectral negative

refraction and focusing analysis of a two-dimensional left-handed photonic crystal

lens,” Physical Review B, vol. 70, p. 205125, 2004.



APPENDIX C

Modeling pulse propagation through
tissue with an implanted photonic
crystal structure

This appendix contains the theoretical analysis of pulse propagation through tissue with

an implanted photonic crystal structure. Photonic crystal structures implanted in biological

tissues can be used to non-invasively detect various substances inside the body using low

power laser light. A novel algorithm for modeling laser pulse propagation through a biolog-

ical tissue specimen with an implanted photonic crystal is proposed in this appendix. Light

propagation through biological tissue is modeled using the photon transport equation (PTE),

whereas light propagation through the photonic crystal structure is modeled using Maxwell’s

equations. The mapping technique proposed in Chapter 7 is used to couple these two sets of

equations.

Optical techniques in biomedical applications such as optical tomography and

non-invasive sensing of substances have been receiving tremendous interest re-

cently [1]. These imaging and sensing techniques use laser light sources and

spectroscopic techniques for detecting abnormalities. Among the spectroscopic

techniques for detection of substances inside the body using laser light, Raman

spectroscopy is very promising due to the uniqueness of the Raman spectrum of

a molecule. Raman scattering is a nonlinear process and hence requires a high
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photon density of states to excite it. However, the maximum safe exposure of

laser light for the skin is 0.1 J/cm2 per pulse or 1.0 W/cm2 for continuous expo-

sure [2]. In order to excite Raman scattering while keeping the power of the laser

source within the safe exposure limits, photonic crystal structures implanted in

tissue can be used.

The redistribution of the photon density of states in photonic crystals can

be exploited to excite and enhance Raman scattering for frequencies adjacent to

those in the photonic band-gap without increasing the excitation intensity [3, 4].

This is possible because the probability of Raman scattering is proportional to the

photon density of states [3]. The presence of surface-enhanced Raman scattering

(SERS) active metal clusters, such as silver and gold, inside the photonic crys-

tal structure results in drastic redistribution of the electromagnetic field in space

and the photon density of states also redistributes [3]. Thus, by using photonic

crystal structures with SERS active metal clusters, the weak Raman signal can be

enhanced by up to a million times [5, 6].

In this appendix, a technique to model light propagation through photonic

crystal structures implanted in biological tissue is developed. Light propaga-

tion in biological tissue is modeled by the photon transport equation [7, 8] which

is written in terms of the magnitude of the intensity but not the phase. Light

propagation in photonic crystal structures is described by Maxwell’s equations

[9] which take into consideration both the magnitude as well as the phase of

the electric and magnetic fields. Therefore, the mapping technique developed

in Chapter 7 is used to couple these two sets of equations at the tissue - photonic

crystal interface by retrieving the phase information from the intensity profile.

Figure C.1 shows a composite object composed of a layer of biological tissue
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Figure C.2: End elevation of the tissue-photonic crystal model

and a layer of a photonic crystal structure, and Fig. C.2 shows the end elevation of

Fig. C.1. A short laser pulse is incident on the tissue layer as shown. In general,
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due to the index mismatch at the interface, radiation is reflected. Even though

the proposed method can easily handle such reflections at interfaces, due to the

increased mathematical complexity in formulation which masks the main points

of proposed algorithm, the analysis is limited to an index-matched surrounding

at the left boundary of the tissue layer as well as at the right boundary of the

photonic crystal layer. However, the reflections at the tissue-photonic crystal in-

terface and photonic crystal-tissue interface will be taken into consideration with

a detailed formulation.

Modeling pulse propagation up to the tissue-photonic crystal interface is the

same as that for the metal screen example discussed in Chapter 8. The phase at

this interface can be obtained by solving the TIE using the full multigrid algo-

rithm, and the electric and magnetic fields can be obtained using Eq. (8.3) and

Eq. (8.4).

Once the incident electric and magnetic fields at the interface have been ob-

tained, in order to calculate the field distribution inside the photonic crystal struc-

ture, the reflectance and transmittance at the tissue-photonic crystal interface

should be known.

The photonic crystal structure can be modeled using an effective refractive

index, ηe f f , which can be obtained using [11]

∇kω =
c

ηe f f
k̂, (C.1)

where ∇k = ∂
∂kx

ux + ∂
∂ky

uy + ∂
∂kz

uz, ω is the angular frequency, k is the wave

vector, k̂ is the unit vector parallel to k and ux, uy and uz are unit vectors along

x, y and z axes, respectively. The relationship between the angular frequency,
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Figure C.3: Band diagram of a square lattice composed of cylindrical di-
electric rods, with a relative permittivity of 9 and a radius of
0.2 times the period of the lattice, in air [10].

ω, and the wave number, k, is given by the dispersion relation of the photonic

crystal [11]. This relationship can be calculated and plotted in a band diagram.

Figure C.3 shows the band diagram of a square lattice composed of cylindrical

dielectric rods, with a relative permittivity of 9 and a radius of 0.2 times the pe-

riod of the lattice, in air, from reference [10]. It is evident from Eq. (C.1) that

the effective refractive index of the photonic crystal structure, corresponding to a

particular wave number, can be found using the gradient of its band diagram.

Once the effective refractive index is calculated, the transmission coefficient

can be approximated by that of a uniform medium [11]. Let the amplitude of the

incident electric vector be E and E‖ and E⊥ be the components parallel and per-

pendicular to the plane of incidence, respectively. Then, from Fresnel formulae
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and using Snell’s law, the transmitted electric vector can be obtained by [12]

T‖ =
2ηTηe f f cos θi

η2
e f f cos θi + ηT

√
η2

e f f − η2
T sin2 θi

E‖, (C.2)

and

T⊥ =
2ηT cos θi

ηT cos θi +
√

η2
e f f − η2

T sin2 θi

E⊥, (C.3)

where ηe f f is the effective refractive index of the photonic crystal, ηT is the refrac-

tive index of the tissue and θi is the angle of incidence of the wave. Hence, in

order to find the transmission coefficients using the above equations, the angle of

incidence, θi, of the wave should be found first. Figure C.4 shows a plane wave

of λ wavelength making an angle θi with the z-axis. In this figure, PQ = λ and

∠POQ = θi. If PO is taken to be α,

α =
λ

sin θi
, (C.4)
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and

∂φ

∂x
=

2π

α
,

=
2π

λ
sin θi. (C.5)

Therefore, for a two-dimensional geometry,

θi(x) = sin−1
(

λ

2π

∂φ

∂x

)
,

≈ λ

2π

∂φ

∂x
for smallθi. (C.6)

Similarly, for a three-dimensional geometry,

|θi(x, y)| = sin−1
(

λ

2π
|∇xyφ|

)
,

≈ λ

2π
|∇xyφ| for smallθi. (C.7)

Hence, for a plane wave incident on the tissue-photonic crystal interface,

|∇xyφA| = 2π

λ
sin θi. (C.8)

Thus, the angle of incidence can be obtained by

|θi| = sin−1
[

λ

2π
|∇xyφA|

]
. (C.9)

The phase profile at z = zA, obtained using the phase retrieval technique dis-

cussed in Chapter 7 can be used to find the quantity |∇xyφA| of Eq. (C.9).

The field at each point on the tissue-photonic crystal interface can be resolved

into parallel and perpendicular components and Eq. (C.2) and Eq. (C.3) can be

used to find the transmitted field components. Then, the two transmitted com-
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ponents can be combined to find the resultant transmitted field at each point at

this interface.

The next step is to calculate the field distribution inside the photonic crystal.

Light propagation through photonic crystal structures is governed by Maxwell’s

equations [9]. The finite difference time domain technique can be used to solve

Maxwell’s equations and hence the field distribution at the exit of the photonic

crystal layer can be obtained. Commercially available software for modeling pho-

tonic crystals may be used for this purpose.

Then, at the photonic crystal-tissue interface the field will be again resolved

to a TE and TM wave in order to find the proportion that is transmitted into the

tissue layer. At this interface, the reflection coefficients are for the TE wave

Γ′TE =
ηe f f cos θi −

√
η2

T − η2
e f f sin2 θi

ηe f f cos θi +
√

η2
T − η2

e f f sin2 θi

, (C.10)

and for the TM wave,

Γ′TM =
η2

T cos θi − ηe f f

√
η2

T − η2
e f f sin2 θi

η2
T cos θi + ηe f f

√
η2

T − η2
e f f sin2 θi

. (C.11)

Once the field transmitted into the tissue layer is obtained, the TE and TM

components can be combined to obtain the resultant field. Then, the electric field,
(
Ed2

)
, can be used to obtain the intensity (i.e. the irradiance) using the relation-

ship

I =
1
2

vε|E|2, (C.12)

where v and ε are the propagation speed and the permittivity in the medium,

respectively. Once the irradiance profile at the plane z = d2 is obtained, it should
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be converted back to a radiance profile so that the PTE can be used to model the

light propagation beyond this plane as for the example with an implanted metal

screen. This can be carried out using the technique discussed in Chapter 8. The

method proposed in Chapter 6 can then be used to model the light propagation

through the remaining layers of tissue.
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