Supporting Information

Frutescone A-G, Tasmanone-Based Meroterpenoids from the aerial parts of Baeckea frutescens

Ji-Qin Hou, ${ }^{\dagger, \ddagger}$ Cui Guo, ${ }^{\dagger}$ Jian-Juan Zhao, ${ }^{\dagger}$ Qi-Wei He, ${ }^{\dagger}$ Bao-Bao Zhang, ${ }^{\dagger}$ and Hao

Wang****
${ }^{\dagger}$ State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry and
${ }^{\ddagger}$ Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
List of Supporting Information
Contents:
Figure S1. X-ray crystallographic structure of 1 (30\% probability level) S1
Figure S2. X-ray crystallographic structure of $\mathbf{2}$ (30\% probability level) S1
Figure S3. X-ray crystallographic structure of $\mathbf{3}$ (30\% probability level) S2
Figure S4. X-ray crystallographic structure of 4 (30\% probability level) S2
Quantum chemical ECD calculation for 5 and (-)-7 S3
Figure S5-1. Optimized geometries of predominant conformers of $\mathbf{5}$ S3
Figure S5-2. Key molecular orbitals of former $\mathbf{5 c}$ in the gas phase S11
Table S1-1. Selected key transitions and their related rotatory and oscillator strengths of conformer $\mathbf{5 c}$ S12
Figure S5-3. Optimized geometries of predominant conformers of (-)-7 S13
Figure S5-4. Key molecular orbitals of former (-)-7a in the gas phase S21
Table S1-2. Selected key transitions and their related rotatory and oscillator strengths of conformer (-)-7a S21
For compound 1
Figure S6. HR-ESI-MS spectrum of 1 S23
Figure S7. UV spectrum of $\mathbf{1}$ in MeOH S23
Figure S8. CD spectrum of $\mathbf{1}$ in MeOH S24
Figure S9. IR spectrum of $\mathbf{1}$ S24
Figure S10-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$ S25
Figure S10-2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S25
Figure S10-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 222 \mathrm{~K})$ S26
Figure S11-1. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 298 \mathrm{~K})$ S26
Figure S11-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 242 \mathrm{~K})$ S27
Figure S12. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S27
Figure S13. HSQC spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S28
Figure S14. HMBC spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S28
Figure S15. NOESY spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S29
For compound 2
Figure S16. HR-ESI-MS spectrum of 2 S29
Figure S17. UV spectrum of $\mathbf{2}$ in MeOH S30
Figure S18. CD spectrum of $\mathbf{2}$ in MeOH S30
Figure S19. IR spectrum of 2 S31
Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S31
Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S32
Figure S22. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S32
Figure S23. HSQC spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S33
Figure S24. HMBC spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S33
Figure S25. NOESY spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S34
For compound 3
Figure S26. HR-ESI-MS spectrum of $\mathbf{3}$ S34
Figure S27. UV spectrum of $\mathbf{3}$ in MeOH S35
Figure $\mathbf{S 2 8}$. CD spectrum of $\mathbf{3}$ in MeOH S35
Figure S29. IR spectrum of $\mathbf{3}$ S36
Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S36
Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S37
Figure S32. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S37
Figure S33. HSQC spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S38
Figure S34. HMBC spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S38
Figure S35. ROESY spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S39
For compound 4
Figure S36. HR-ESI-MS spectrum of 4 S39
Figure S37. UV spectrum of $\mathbf{4}$ in MeOH S40
Figure S38. CD spectrum of $\mathbf{4}$ in MeOH S40
Figure S39. IR spectrum of 4 S41
Figure S40-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$ S41
Figure S40-2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S42
Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ (synthetic) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, 298 \mathrm{~K})$ S42
Figure S42-1. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 298 \mathrm{~K})$ S43
Figure S42-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 242 \mathrm{~K})$ S43
Figure S43. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ (synthetic) in $\mathrm{CDCl}_{3}(125 \mathrm{MHz}, 298 \mathrm{~K})$ S44
Figure S44. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S44
Figure S45. HSQC spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S45
Figure S46. HMBC spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S45
Figure S47. NOESY spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$ S46
For compound 5
Figure S48. HR-ESI-MS spectrum of 5 S46
Figure S49. UV spectrum of $\mathbf{5}$ in $\mathbf{~ M e O H}$ S47
Figure S50. CD spectrum of $\mathbf{5}$ in $\mathbf{M e O H}$ S47
Figure S51. IR spectrum of 5 S48
Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S48
Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (synthetic) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$ S49
Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S49
Figure S55. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 (synthetic) in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$ S50
Figure S56. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 5 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S50
Figure S57. HSQC spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S51
Figure S58. HMBC spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S51
Figure S59. ROESY spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S52
For compound 6
Figure S60. HR-ESI-MS spectrum of 6 S52
Figure S61. UV spectrum of 6 in MeOH S53
Figure S62. CD spectrum of 6 in MeOH S53
Figure S63. IR spectrum of 6 S54
Figure $\mathbf{S 6 4}$. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$ S54
Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ (synthetic) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$ S55
Figure S66. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$ S55
Figure S67. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ (synthetic) in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$ S56
Figure S68. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$ S56
Figure S69. HSQC spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$ S57
Figure S70. HMBC spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}$) S57
Figure S71. NOESY spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$ S58
For compound 7
Figure S72. HR-ESI-MS spectrum of (\pm)-7 S58
Figure S73. UV spectrum of $(\pm)-7$ in MeOH S59
Figure $\mathbf{S 7 4}$. CD spectrum of (+)-7 and (-)-7 in MeOH S59
Figure S75. IR spectrum of (\pm)-7 S60
Figure S76. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\pm)-\mathbf{7}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S60
Figure S77. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\pm)-\mathbf{7}$ (synthetic) in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S61
Figure S78. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\pm)-7$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S61
Figure S79. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\pm)-7$ (synthetic) in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S62
Figure S80. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $(\pm)-7$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S62
Figure S81. HSQC spectrum of (\pm)) $\mathbf{7}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S63
Figure S82. HMBC spectrum of (\pm) - $\mathbf{7}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S63
Figure S83. ROESY spectrum of $(\pm)-7$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S64
Figure S84. Chiral HPLC chromatogram of (\pm)-7 S64
For compound 12
Figure S85. ESI-MS spectrum of 12 S65
Figure S86. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S66
Figure S87. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S66
For compound 13
Figure S88. ESI-MS spectrum of $\mathbf{1 3}$ S67
Figure S89. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$ S68
Figure S90. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$ S68
References S69
HPLC-Q/TOF-MS analysis of the petroleum ether portion extract of the aerial parts of B. frutescens S70
Figure S91. HPLC-Q/TOF-MS analysis of the petroleum ether portion extract of the
aerial parts of B. frutescens and and the mixed standards S72
Figure S92. EIC for $m / z 441$ to 442 at 9.44 min and TIC for 3 S73
Figure S93. EIC for $m / z 441$ to 442 at 9.97 min and TIC for 2 S74
Figure S94. EIC for $m / z 441$ to 442 at 10.25 min and TIC for 7 S75
Figure S95. EIC for $m / z 441$ to 442 at 10.82 min and TIC for 6 S76
Figure S96. EIC for $m / z 441$ to 442 at 11.61 min and TIC for $\mathbf{1}$ S77
Figure S97. EIC for $m / z 441$ to 442 at 12.14 min and TIC for 5 S78
Figure S98. EIC for $m / z 441$ to 442 at 13.97 min and TIC for 4 S79
Scheme S1. Possible Formation for Major Fragments of Frutescone A-G (1-7) in (+)
ESI-MS ${ }^{2}$ Spectrum S80
HPLC-MSD Trap analysis of the $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ extract of the aerial parts of \boldsymbol{B}.
frutescens S80
Figure S99. LC-MSD Trap analysis of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the aerial parts of B.
frutescens and the mixed standards S82
Figure S100. EIC for $m / z 441$ at 14.5 min and BPC for 3 S83
Figure S101. EIC for $m / z 441$ at 15.6 min and BPC for 2 S84
Figure S102. EIC for $m / z 441$ at 16.1 min and BPC for 7 S85
Figure S103. EIC for $m / z 441$ at 17.1 min and BPC for 6 S86
Figure S104. EIC for $m / z 441$ at 17.6 min and BPC for $\mathbf{1}$ S87
Figure S105. EIC for $m / z 441$ at 18.6 min and BPC for $\mathbf{5}$ S88

Figure S106. EIC for $m / z 441$ at 21.5 min and BPC for 4................................. 89

Figure S1. X-ray crystallographic structure of 1 (30% probability level)

Figure S2. X-ray crystallographic structure of $\mathbf{2}$ (30\% probability level)

Figure S3. X-ray crystallographic structure of $\mathbf{3}$ (30% probability level)

Figure S4. X-ray crystallographic structure of 4 (30\% probability level)

Quantum chemical ECD calculation for 5 and (-)-7

Computational data of 5

The systematic random conformational analysis of compound $\mathbf{5}$ were performed in the SYBYL 8.1 program by using MMFF94s molecular force field, which afforded 12 conformers for 5 with an energy cutoff of $10 \mathrm{kcal} \mathrm{mol}^{-1}$ to the global minima. All of the obtained conformers were further optimized using DFT at the B3LYP/6-31+G(d) level in gas phase by using Gaussian09 software, ${ }^{[1]}$ and 4 conformers of 5 were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 50 excitations. The overall ECD curves of $\mathbf{5}$ were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.3 eV). The calculated ECD spectra of $\mathbf{5}$ was subsequently compared with the experimental ones. The ECD spectra were produced by SpecDis 1.6 software. ${ }^{[2]}$

5a

5 c

5b

Figure S5-1. Optimized geometries of predominant conformers of $\mathbf{5}$ in the gas phase at the B3LYP/6-31+G(d) level

For 5a
 absolute energies $=-1357.2675802$
 atom coordinates:

\%nprocshared=12
\%chk=C: \Users \Administrator \backslash Desktop $\backslash \mathrm{BF}-22 \backslash$ randomsearchBF22d000011. chk \%mem=200MW
\# td=(nstates=50, root=1) b31yp/6-31g(d, p) scrf=(cpcm, solvent=methanol) guess=read geom=(connectivity, allcheck) test
randomsearchBF22d000011
01

C	4.00692900	-1.04304200	0.00842300
C	4.29119500	0.27169700	-0.10654300
C	3.20452900	1.27227600	0.05341700
C	1.81766100	0.81099200	0.19789600
C	1.61979500	-0.49065600	0.52383500
C	2.66149300	-1.58714700	0.43757400
C	0.66593400	1.80334400	0.13968000
O	0.43862800	-0.96348600	0.97432600
O	3.48788400	2.48064800	0.08599100
C	2.83342100	-2.25975100	1.82813800
C	2.16818900	-2.64602300	-0.58610400
O	4.95401200	-2.03048100	-0.13152400
C	5.67762600	0.81275600	-0.33604000
C	0.46389300	2.46457600	-1.27806100
C	1.29080000	3.73331300	-1.53756900
C	0.62734600	1.46556400	-2.43390100
C	0.08536400	0.45686900	2.91512700
C	-2.94296500	2.55624800	0.19662000
C	-1.69827600	2.24328700	1.06912600
C	-4.07203700	1.54175800	0.22755900
C	-3.89485200	0.26590900	-0.56731400
C	-3.73197700	-1.10136800	0.17490200
C	-2.35184300	-1.59753300	0.59409700
C	-1.76117000	-0.84936500	1.81817600
C	-0.49925500	-0.00086800	1.57018600
C	-0.69566800	1.15751400	0.56410200
C	-5.07902300	-0.37560700	-1.34670900
C	-4.53635600	-1.79243800	-0.98194700
C	-5.17971800	1.78980800	0.93970600
C	5.53743100	-2.20686500	-1.43282300
C	-3.65172500	-2.36800900	-2.09529900
C	-5.57482600	-2.82413800	-0.54234500
H	-1.11137600	0.68773000	-0.33298600
H	-4.38272100	-1.07745700	1.05969300
H	-3.05631500	0.39343600	-1.26023000
H	0.89482700	2.6161500	0.84134100
H	3.58261000	-3.05158200	1.76404100

H	1.88460500	-2.69105500	2.15260300
H	3.15961600	-1.53062800	2.57565300
H	2.88917600	-3.46355500	-0.65159200
H	2.04500300	-2.20403500	-1.57932800
H	1.20600600	-3.05160500	-0.26653400
H	5.86037500	1.05075900	-1.39123200
H	6.43936300	0.10207900	-0.00881600
H	5.79341000	1.74526100	0.22043700
H	-0.58175600	2.79342900	-1.28969300
H	0.93774500	4.22005200	-2.45452400
H	2.35356300	3.51552300	-1.64641900
H	1.18321400	4.45065900	-0.71655000
H	0.02688500	0.56115800	-2.28838500
H	1.67095200	1.15362400	-2.54650800
H	0.31272000	1.92319000	-3.37803800
H	1.00754000	1.02724400	2.78599800
H	0.30197700	-0.41345200	3.54057200
H	-0.62958800	1.08698000	3.44994800
H	-3.33697600	3.51826500	0.54284400
H	-2.62859300	2.70838800	-0.84428500
H	-1.14999700	3.18431000	1.18884700
H	-2.05954900	1.99210000	2.07138700
H	-2.43135800	-2.66313300	0.84294900
H	-1.65687500	-1.54593400	-0.25032100
H	-2.52159600	-0.20434300	2.27076200
H	-1.49265900	-1.57773600	2.59064000
H	-5.16238900	-0.12473100	-2.40954500
H	-6.04103500	-0.17803800	-0.86406300
H	-5.29291800	2.70793000	1.51013800
H	-6.00994100	1.09027200	0.98519900
H	6.21212400	-3.05971300	-1.34473600
H	6.10450700	-1.32934200	-1.75205700
H	4.76530700	-2.42947200	-2.17610100
H	-3.11617900	-3.26224100	-1.75730900
H	-2.90761700	-1.64766500	-2.45077000
H	-4.26751200	-2.65574700	-2.95541900
H	-6.22950700	-2.42085300	0.23803800
H	-5.09401800	-3.72651900	-0.14487600
H	-6.20671800	-3.13172400	-1.38458300

For 5b

absolute energies $=-1357.2667287$
atom coordinates:
\%nprocshared=12
\%chk=C: \Users \Administrator \Desktop\BF-22\randomsearchBF22d000012. chk
\%mem=200MW
\# td=(nstates=50, root=1) b31yp/6-31g(d, p) scrf=(cpcm, solvent=methanol)
guess=read geom=(connectivity, allcheck) test

01			
C	-4. 03100100	-0.96766800	-0.11097000
C	-4.28413300	0. 35042800	0. 03517500
C	-3.16443200	1. 32390700	-0. 03862600
C	-1.78745000	0.82875600	-0.15828500
C	-1.61106200	-0.46780100	-0.51691900
C	-2.68384600	-1.53704000	-0.50080800
C	-0.61195200	1. 78422800	-0.02320600
0	-0.42634900	-0.95805700	-0.93961600
0	-3.41192900	2. 54070700	-0.02036800
C	-2.81762200	-2.16982900	-1.91414000
C	-2.26142200	-2.63566500	0.51289300
0	-5. 00896000	-1.93201600	-0.04099200
C	-5.66385100	0. 92369500	0. 22338900
C	-0.43544800	2. 37658800	1. 43029900
C	-1. 18042700	3. 69443300	1. 69083900
C	-0.73302500	1. 35419100	2. 53793800
C	0. 00086000	0.53873400	-2.81023400
C	3. 18814700	2. 16778800	-0.07769900
C	1. 79986800	2. 19216300	-0.78588900
C	4. 25286600	1. 29783100	-0.72766700
C	4. 45858200	-0.12056200	-0.25320900
C	3. 28752100	-0.95831200	0. 32356200
C	2. 38922600	-1.72884000	-0.63933300
C	1. 78311000	-0.87852800	-1. 77749000
C	0.55090200	0. 00050400	-1. 47829000
C	0. 74389400	1. 10693300	-0.41380000
C	5. 22777800	-0.41503100	1. 07271100
C	4. 30304900	-1.65366200	1. 30260400
C	5. 00929900	1. 79401800	-1.71738200
C	-5.65261300	-2.12921400	1. 22867300
C	3. 80411600	-1.87313700	2. 73060400
C	4. 92348100	-2.94366600	0. 75293900
H	1. 08156300	0.58673300	0. 48579000
H	2. 67936300	-0.30380900	0.95434900
H	4. 94373200	-0.68452500	-1.05850800
H	-0.78858900	2. 63143700	-0.69869800
H	-3.59003300	-2.94157200	-1.89990600
H	-1.86855700	-2.61964700	-2.21146700
H	-3. 09336800	-1.41391100	-2.65536900
H	-3. 00891000	-3.43149800	0. 52894300
H	-2.16330700	-2.22303500	1. 52135000
H	-1. 30056600	-3. 06346500	0. 21915500
H	-5. 88341400	1. 13922500	1. 27636900
H	-6. 43022200	0.24346500	-0.15386400
H	-5.73181800	1. 87348800	-0.31140500
H	0. 63155500	2. 62177000	1. 51105400

H	-0.86478500	4.11433200	2.65332300
H	-2.26166500	3.55412800	1.70823400
H	-0.95479400	4.43500800	0.91528800
H	-1.80138100	1.12092700	2.59273600
H	-0.42956900	1.75366500	3.51167400
H	-0.19672600	0.41140100	2.38531100
H	0.75552600	1.14434700	-3.31789100
H	-0.88967000	1.15452800	-2.67096600
H	-0.25659300	-0.29652100	-3.46713300
H	3.55662000	3.19926000	-0.08207500
H	3.05633400	1.89926500	0.97757900
H	1.35826100	3.16701200	-0.55561600
H	1.97149100	2.20666700	-1.86711900
H	2.98115900	-2.51884400	-1.11727100
H	1.58489500	-2.23584800	-0.09351400
H	1.47195600	-1.56285000	-2.57556500
H	2.55670500	-0.23945300	-2.21647900
H	5.05014600	0.36071600	1.82576600
H	6.30587600	-0.58861100	0.99205100
H	4.91114000	2.82367700	-2.05286500
H	5.75385800	1.18617800	-2.22540100
H	-6.33852000	-2.96605200	1.08902800
H	-6.21660800	-1.24879500	1.54520700
H	-4.91830600	-2.38540600	1.99894700
H	3.03321500	-2.65275100	2.76451000
H	3.37276400	-0.95577800	3.14618200
H	4.62110000	-2.18859900	3.39093100
H	4.19425000	-3.76176100	0.74325500
H	5.76437200	-3.25669700	1.38268000
H	5.30292500	-2.82432200	-0.26686700

For 5c
 absolute energies $=-1357.2667286$
 atom coordinates:

\%nprocshared=12
\%chk=C: \Users \backslash Administrator \backslash Desktop $\backslash \mathrm{BF}-22 \backslash$ randomsearchBF22d000013. chk \%mem=200MW
\# td=(nstates=50, root=1) b3lyp/6-31g(d, p) scrf=(cpcm, solvent=methanol) guess=read geom=(connectivity, allcheck) test
randomsearchBF22d000013
01

C	4.03103100	-0.96762900	-0.11102000
C	4.28416300	0.35046600	0.03515400
C	3.16446500	1.32395900	-0.03867400
C	1.78747100	0.82879800	-0.15832600
C	1.61107400	-0.46775300	-0.51698600
C	2.68387300	-1.53698900	-0.50090200

C	0.61197600	1. 78426600	-0. 02316500
0	0. 42635500	-0.95800100	-0.93967000
0	3. 41196600	2. 54075800	-0. 02037400
C	2. 81765100	-2. 16968100	-1.91427400
C	2. 26144700	-2.63567500	0.51273200
0	5. 00897000	-1.93199400	-0.04099400
C	5. 66387400	0. 92371200	0. 22353100
C	0. 43547400	2. 37640700	1. 43040700
C	1. 18090600	3. 69391700	1. 69132300
C	0.73250900	1. 35363900	2. 53785600
C	-0.00084100	0. 53885500	-2. 81023400
C	-3. 18812800	2. 16781700	-0.07763700
C	-1.79988000	2. 19218400	-0.78588400
C	-4.25288800	1. 29790400	-0.72760600
C	-4. 45861900	-0.12051800	-0.25323600
C	-3. 28755000	-0.95825300	0. 32353300
C	-2. 38923700	-1.72874500	-0.63936700
C	-1. 78313300	-0.87841200	-1.77751700
C	-0.55090300	0. 00059800	-1. 47832200
C	-0.74386400	1. 10698000	-0. 41380700
C	-5.22785300	-0. 41506600	1. 07264700
C	-4. 30307200	-1.65365200	1. 30254000
C	-5.00936000	1. 79417400	-1.71726000
C	5. 65257400	-2. 12917800	1. 22870300
C	-3. 80417000	-1. 87310200	2. 73055400
C	-4.92342900	-2.94368800	0.75286000
H	-1. 08152900	0. 58675500	0. 48576600
H	-2.67941000	-0.30374800	0. 95433900
H	-4.94373000	-0.68443900	-1. 05859300
H	0.78860800	2. 63154800	-0.69857000
H	1. 86855000	-2.61936800	-2. 21168500
H	3. 09352400	-1. 41373700	-2. 65543100
H	3. 58995900	-2.94152700	-1. 90004800
H	3. 00883600	-3. 43160700	0. 52858700
H	2. 16353900	-2. 22314800	1. 52125100
H	1. 30049500	-3. 06332500	0. 21908500
H	6. 43026400	0. 24343000	-0.15359300
H	5. 73195100	1. 87347500	-0.31130500
H	5. 88331900	1. 13924900	1. 27653500
H	-0.63145300	2. 62195900	1. 51102500
H	0. 86535400	4. 11368600	2. 65389700
H	2. 26208900	3. 55316400	1. 70880300
H	0.95561300	4. 43477300	0. 91594900
H	1. 80080800	1. 12018000	2. 59291000
H	0. 42879900	1. 75289100	3. 51160300
H	0. 19607400	0.41099300	2. 38478200
H	-0.75550600	1. 14443900	-3. 31793200
H	0. 88964200	1. 15470100	-2.67088400
H	0. 25671500	-0. 29637900	-3. 46711900

H	-3.55657900	3.19929800	-0.08196100
H	-3.05627500	1.89924100	0.97762300
H	-1.35826800	3.16704500	-0.55567400
H	-1.97155800	2.20664800	-1.86710900
H	-2.98115800	-2.51874300	-1.11732600
H	-1.58490300	-2.23574800	-0.09355100
H	-1.47201300	-1.56271100	-2.57562400
H	-2.55674000	-0.23931700	-2.21645800
H	-5.05031100	0.36066800	1.82574200
H	-6.30593200	-0.58871800	0.99192400
H	-4.91118600	2.82384900	-2.05269200
H	-5.75395600	1.18638300	-2.22528400
H	6.33867700	-2.96585100	1.08902700
H	6.21634700	-1.24865500	1.54534700
H	4.91825900	-2.38559700	1.99889600
H	-3.03327900	-2.65272400	2.76449900
H	-3.37282200	-0.95574000	3.14613000
H	-4.62117500	-2.18854500	3.39086400
H	-5.76431800	-3.25676600	1.38258200
H	-5.30285500	-2.82435900	-0.26695600
H	-4.19415700	-3.76174800	0.74318800

For 5d
absolute energies $=-1357.2681166$
atom coordinates:
\%nprocshared=12
\%chk=C: \Users \Administrator\Desktop\BF-22\randomsearchBF22d000014. chk \%mem=200MW
\# td=(nstates=50, root=1) b3lyp/6-31g(d, p) scrf=(cpcm, solvent=methanol)
guess=read geom=(connectivity, allcheck) test
randomsearchBF22d000014

01			
C	-4.08768700	-0.98469500	-0.02896800
C	-4.34867100	0.33390300	-0.15752800
C	-3.24318500	1.31613600	-0.02356300
C	-1.86879800	0.83246900	0.16699700
C	-1.69371000	-0.47124300	0.49431400
C	-2.75043700	-1.55122000	0.39809800
C	-0.71256000	1.82358400	0.13247600
0	-0.52449200	-0.95537900	0.95798500
0	-3.49845300	2.53222900	-0.05952600
C	-2.93291800	-2.22974900	1.78444100
C	-2.27193800	-2.61016200	-0.63262500
0	-5.05154000	-1.95680100	-0.15915700
C	-5.72517400	0.89710700	-0.39370100
C	-0.69736800	2.54617200	-1.26674900
C	-0.14608400	1.68175000	-2.41081800

C	-0.04339300	3. 93715700	-1. 24911300
C	-0.15939500	0. 47869100	2. 88326900
C	2. 94737000	2. 46507000	0. 17755100
C	1. 68884600	2. 19778100	1. 04646800
C	4. 05951900	1. 43258400	0. 24422600
C	3. 87568000	0. 15211300	-0. 54092200
C	3. 65682400	-1. 20197900	0. 20875300
C	2. 25039500	-1.64423500	0. 59805800
C	1. 66995600	-0. 86528400	1. 80753500
C	0. 42394400	0. 00177000	1. 54365800
C	0.64663800	1. 15651300	0. 52930300
C	5. 06175800	-0. 52844700	-1. 28313500
C	4. 46844900	-1.92618300	-0.92208100
C	5. 15774600	1. 67105100	0. 97386300
C	-5. 64250500	-2. 13431700	-1. 45706600
C	3. 59474700	-2. 48447300	-2. 05275300
C	5. 46407100	-2.98481900	-0. 44881300
H	1. 04535300	0.67289900	-0.36657200
H	4. 28725800	-1. 18890500	1. 10842000
H	3. 05883200	0. 29088800	-1.25748300
H	-0.93792600	2. 60526500	0. 87119900
H	-3. 69494400	-3. 00860200	1.71529100
H	-1. 99125000	-2.67832600	2. 10609800
H	-3. 24704300	-1. 50012300	2. 53663600
H	-3. 00272100	-3. 41869200	-0.70150000
H	-2. 14526100	-2. 16366300	-1.62346900
H	-1.31411300	-3. 02914600	-0.31693000
H	-5. 82629300	1. 83670800	0. 15371800
H	-5. 90267200	1. 12873700	-1. 45113400
H	-6. 49933400	0. 20288800	-0.06046900
H	-1. 75086200	2. 72910000	-1. 48767700
H	-0.38444400	2. 14075500	-3. 37649900
H	0. 94315600	1. 57235300	-2. 36952200
H	-0.58481400	0. 67804500	-2. 40359200
H	-0.22863400	4. 44644800	-2. 20183100
H	-0.46455100	4. 56227400	-0. 45394400
H	1. 03951300	3. 90110500	-1.11075500
H	-0.38378500	-0. 38387200	3. 51658900
H	0. 55954000	1. 10812800	3. 41336000
H	-1. 07720000	1. 05452800	2. 74834200
H	3. 35640700	3. 42919800	0. 49959700
H	2. 64874500	2. 59120000	-0.87053500
H	1. 17842300	3. 15623900	1. 18182100
H	2. 04180400	1. 92103200	2. 04470400
H	2. 27912000	-2.71135800	0. 85104100
H	1. 57706100	-1. 56529500	-0.26174100
H	2. 44121100	-0. 22882000	2. 25281200
H	1. 38597200	-1.57619600	2. 59053100
H	5. 18084800	-0. 28888600	-2. 34515600

H	6.01570900	-0.35465100	-0.77587600
H	5.27524600	2.59364100	1.53617700
H	5.97572600	0.95907600	1.04173600
H	-6.32653600	-2.97873900	-1.36051500
H	-6.20076000	-1.25236200	-1.77937700
H	-4.87615600	-2.37055800	-2.20204000
H	2.88340900	-1.74453300	-2.43387200
H	4.22260800	-2.80034900	-2.89404300
H	3.02240500	-3.35776500	-1.72030800
H	6.10889300	-2.59620700	0.34704000
H	4.94620700	-3.87023400	-0.05977300
H	6.10901700	-3.31590200	-1.27197800

Figure S5-2. Key molecular orbitals involved in important transitions regarding the
ECD spectra of conformer $\mathbf{5 c}$ in the gas phase at the B3LYP/6-31+G(d) level

Table S1-1. Selected key transitions and their related rotatory and oscillator strengths of conformer $\mathbf{5 c}$ of $\mathbf{5}$ at the B3LYP/6-31+G(d) level in the gas phase

Computational data of (-)-7

The systematic random conformational analysis of compound (-)-7 were performed in the SYBYL 8.1 program by using MMFF94s molecular force field, which afforded 8 conformers for (-)-7 with an energy cutoff of $10 \mathrm{kcal} \mathrm{mol}^{-1}$ to the global minima. All of the obtained conformers were further optimized using DFT at the B3LYP/6-31+G(d) level in gas phase by using Gaussian09 software, ${ }^{[1]}$ and 4 conformers of (-)-7 were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 50 excitations. The overall ECD curves of (-)-7 were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.3 eV). The calculated ECD spectra of (-)-7 was subsequently compared with the experimental ones. The ECD spectra were produced by SpecDis 1.6 software. ${ }^{[2]}$

$7 a$

7c

7b

7d

Figure S5-3. Optimized geometries of predominant conformers of (-)-7 in the gas phase at the B3LYP/6-31+G(d) level

For (-)-7a
absolute energies $=-1357.2716973$
atom coordinates:
\%nprocshared=12
\%chk=C: \Users \Administrator \Desktop $\backslash \mathrm{BF}-25 \backslash \mathrm{BF} 25$ randomsearch200010. chk \%mem=200MW \# td=(nstates=50, root=1) b31yp/6-31g(d, p) scrf=(cpcm, solvent=methanol) guess=read geom=(connectivity, allcheck) test

BF25randomsearch200010

01

C	3.74383700	-1.21017900	-0.66096900
C	3.63365500	-0.14722200	-1.48872400
C	2.57248300	0.86229800	-1.24672200
C	1.63775800	0.65044300	-0.14226100
C	1.70781300	-0.47951900	0.59804400
C	2.76816400	-1.54859100	0.45043300
C	0.57230700	1.66814200	0.18394400
C	-0.74153700	0.88961800	0.51867000
C	-0.55246600	-0.23610200	1.58087700
O	0.84697000	-0.73476000	1.60760100
C	2.49407000	1.86522300	-1.97704500
C	3.53299800	-1.69031400	1.79447100
C	2.08885100	-2.90363700	0.10607900
O	4.71838800	-2.17058000	-0.80420500
C	1.04723900	2.76155400	1.21884000
C	2.18206300	2.32754100	2.16126700
C	1.45080900	4.05098900	0.48271100
C	6.08286000	-1.77156400	-0.59286600
C	4.52444300	0.08406600	-2.68083500
C	-1.94396500	1.81935400	0.81472500
C	-2.83553600	-1.41463000	1.03265500
C	-1.34470200	-1.53070000	1.21198000
C	-2.54542700	2.52345300	-0.42939200
C	-3.45620200	-1.64191200	-0.13019700
C	-4.92978000	-1.48500900	-0.45811100
C	-5.07326900	-0.26541000	-1.45007000
C	-4.38592000	0.96050700	-0.92219700
C	-3.25378700	1.53819700	-1.35418200
C	-5.79802300	-1.26161900	0.79191100
C	-5.42359600	-2.75420900	-1.18597500
C	-2.57147800	1.23482300	-2.66491800
C	-0.81917400	0.18734800	3.02578000
H	-0.97885300	0.35800700	-0.40947300
H	0.36470800	2.20586500	-0.74617800
H	4.28381500	-2.47912300	1.71393600
H	2.83389700	-1.95140300	2.59144700
H	4.03148900	-0.75477400	2.06462300

H	2.84881100	-3.67980900	-0.00377400
H	1.52590100	-2.83161700	-0.82923600
H	1.40283500	-3.18758600	0.90664300
H	0.19011900	3.01397200	1.85296600
H	1.95329400	1.40094000	2.69325700
H	3.11814800	2.17366000	1.61445800
H	2.36082500	3.10825600	2.90905900
H	0.61346100	4.45765300	-0.09517500
H	2.27093000	3.85587600	-0.21533900
H	1.77522000	4.82226000	1.19033900
H	6.67225100	-2.68842600	-0.64104500
H	6.43296600	-1.07708800	-1.36009600
H	6.20377000	-1.31296200	0.39346800
H	4.94574000	-0.85431100	-3.04748500
H	3.94359500	0.55194000	-3.47890300
H	5.35265700	0.76675000	-2.45470000
H	-2.74984900	1.23888000	1.26948800
H	-1.66371300	2.57667300	1.55402500
H	-3.41474300	-1.13478900	1.91093500
H	-0.90670200	-1.91673000	0.28491600
H	-1.11828500	-2.26154100	2.00025000
H	-3.25909000	3.27431700	-0.06859600
H	-1.77008900	3.07545600	-0.97292200
H	-2.83988500	-1.92096400	-0.98827200
H	-6.14752700	-0.09091700	-1.60347000
H	-4.66045700	-0.56099600	-2.41989200
H	-4.78072800	1.32285500	0.02846700
H	-5.52679400	-0.35146300	1.33426100
H	-6.85253900	-1.17796500	0.50829100
H	-5.70367800	-2.10265900	1.48690300
H	-4.80936300	-2.97044500	-2.06705400
H	-5.38361500	-3.62666100	-0.52495800
H	-6.45977800	-2.63024200	-1.52037400
H	-1.55166300	0.85873300	-2.51394900
H	-2.47101200	2.15404900	-3.25714400
H	-3.11211500	0.50638600	-3.27251900
H	-0.51037200	-0.61413100	3.70280400
H	-0.26887200	1.09268400	3.29062900
H	-1.88264100	0.37604100	3.18876500

For (-)-7b
 absolute energies $=-1357.2676662$
 atom coordinates:

\%nprocshared=12
\%chk=C: \Users \Administrator \Desktop $\backslash \mathrm{BF}-25 \backslash \mathrm{BF} 25$ randomsearch200017. chk
\%mem=200MW
\# td=(nstates=50, root=1) b31yp/6-31g(d, p) scrf=(cpcm, solvent=methanol)
guess=read geom=(connectivity, allcheck) test

01			
C	3. 92655800	-1.03514200	-0.36911300
C	3. 79488200	-0.08687400	-1.32282900
C	2. 61759100	0.81596000	-1.29819100
C	1. 64524800	0.68481500	-0.21167800
C	1. 81059100	-0.26790700	0.73213000
C	2.97715100	-1.23012600	0.79798400
C	0.51168900	1. 67840300	-0.10249100
C	-0.75073700	0.93630700	0. 44962800
C	-0.48225400	-0.09515300	1. 60908600
0	0.95435100	-0.41169200	1. 76732700
0	2. 48396800	1. 68810600	-2. 17334700
C	3. 75727000	-0.97894000	2. 12074900
C	2. 44623700	-2.68791600	0.79170100
0	5. 01041600	-1.88109500	-0.30621000
C	1. 05945400	3.00999900	0. 53406900
C	0. 29417000	4. 27706200	0. 11203700
C	1. 28471000	2. 99475400	2. 05213700
C	5. 16129000	-2.85121900	-1.35576800
C	4. 81313300	0. 16243200	-2. 40423900
C	-1.97052000	1. 84735400	0. 72281300
C	-2.59813100	-1.52726800	1. 06496800
C	-1.10618700	-1.48636600	1. 26368500
C	-2.65257500	2. 42807700	-0.54428700
C	-3.18766500	-1.82617700	-0.09747300
C	-4.66932400	-1.80844900	-0.42654500
C	-4.92308700	-0.62438400	-1.43833700
C	-4.34288000	0.67007100	-0.94470700
C	-3.27657300	1. 33877200	-1.41172700
C	-5.55396300	-1.63997100	0. 82086300
C	-5. 04784000	-3.12924100	-1.13084300
C	-2.58348400	1. 05380100	-2. 72155300
C	-0.89738000	0.33596100	3. 01688700
H	-1.04431400	0. 29870100	-0.39106200
H	0. 26163700	1. 96123800	-1.13107200
H	4. 60351100	-1. 66552000	2. 18615000
H	3. 09816300	-1. 14256500	2. 97599600
H	4. 13455100	0. 04707200	2. 16072700
H	3. 27972900	-3.38793800	0. 87978400
H	1. 89990500	-2.90629100	-0.13082100
H	1. 77232000	-2.83945900	1. 63689600
H	2. 04999900	3. 11106800	0. 07343700
H	-0.69591300	4. 35011900	0. 56985200
H	0. 85691600	5. 16719800	0. 41584700
H	0. 16893700	4. 32268700	-0.97511600
H	1. 79923100	2. 08893400	2. 38357400
H	0.34170100	3. 07228500	2. 60257400

H	1.89743200	3.85382500	2.34775300
H	4.27850900	-3.49499800	-1.41915800
H	5.33807500	-2.38297400	-2.32686000
H	6.02942200	-3.45303500	-1.08279000
H	4.84814100	1.23122700	-2.62641100
H	5.80620300	-0.17300000	-2.09790200
H	4.55414200	-0.34497800	-3.34159700
H	-2.73559800	1.26568200	1.24258100
H	-1.69465500	2.66098900	1.40055300
H	-3.20922900	-1.29056600	1.93396400
H	-0.61090200	-1.84820700	0.35546600
H	-0.81922900	-2.16313600	2.07943400
H	-3.42765500	3.12757600	-0.20703700
H	-1.94228500	3.01865000	-1.13119800
H	-2.54528900	-2.05719900	-0.95063000
H	-6.00950700	-0.54656800	-1.58635300
H	-4.49352200	-0.90206700	-2.40590600
H	-4.76263400	1.02342000	-0.00146300
H	-5.36190600	-0.70055900	1.34711400
H	-6.61156600	-1.65185300	0.53671800
H	-5.38812000	-2.45769900	1.53014000
H	-6.09067900	-3.10400400	-1.46665900
H	-4.41583400	-3.30530300	-2.00822700
H	-4.93072000	-3.98247000	-0.45414800
H	-3.05772600	0.25549100	-3.29572300
H	-1.53103900	0.78158300	-2.57096100
H	-2.57708100	1.95623200	-3.34709200
H	-0.55895300	-0.41858500	3.73278600
H	-0.45632100	1.29241200	3.29643300
H	-1.98196300	0.41822800	3.10451200

```
For (-)-7c
absolute energies \(=-1357.2680772\)
atom coordinates:
```

\%nprocshared=12
\%chk=C: \Users \Administrator \Desktop\BF-25\BF25randomsearch200035. chk
\%mem=200MW
\# td=(nstates=50, root=1) b31yp/6-31g(d, p) scrf=(cpcm, solvent=methanol)
guess=read geom=(connectivity, allcheck) test

BF25randomsearch200035

01			
C	3.86667600	-1.10358900	-0.59373300
C	3.66633100	-0.13702200	-1.51718500
C	2.53623400	0.80918500	-1.34886000
C	1.61451000	0.62038500	-0.22706200
C	1.78310200	-0.42055100	0.61745900
C	2.93278300	-1.40276500	0.56392700

C	0. 50890300	1. 62334500	0. 00999100
C	-0.75778500	0. 85856800	0. 52200300
C	-0.48465800	-0. 29369000	1. 56148300
0	0. 94753600	-0.65014500	1. 65349400
0	2. 38472300	1. 74590700	-2. 15153100
C	3. 71996500	-1. 32373200	1. 90097700
C	2. 37651600	-2. 84238800	0. 38423800
0	4. 91007500	-1.99671900	-0.65691000
C	1. 10706100	2. 87189900	0.75919900
C	0. 36432600	4. 19154000	0. 48406600
C	1. 36622000	2. 70000400	2. 26190700
C	6. 24509300	-1. 47924800	-0.53160600
C	4. 52346800	0. 04850700	-2.74174300
C	-1.94590800	1. 76301900	0. 92573800
C	-2.64094500	-1.62353600	0. 92669800
C	-1. 14430700	-1. 63019700	1. 08942200
C	-2. 65313600	2. 48988400	-0.24858400
C	-3. 26516000	-1.78128000	-0.24543500
C	-4. 75340200	-1. 69923800	-0. 53176600
C	-5. 00488000	-0.40845500	-1. 40402600
C	-4. 38660200	0. 81496700	-0.78974500
C	-3. 31889200	1. 51120600	-1.21120100
C	-5. 60367800	-1.64759900	0.74936200
C	-5. 17789300	-2. 92926600	-1.36299100
C	-2. 66234200	1. 35460500	-2. 56085800
C	-0.85925400	-0. 00170200	3. 01594600
H	-1. 09103600	0. 31908200	-0.37058000
H	0. 24014000	2. 01180400	-0.97847300
H	4. 53543200	-2. 05002400	1. 89623000
H	3. 05415300	-1.54941000	2. 73643300
H	4. 13831100	-0.32403400	2. 05170800
H	1. 80508700	-2. 92741000	-0.54480900
H	1. 72234000	-3. 09384300	1. 22132800
H	3. 20285000	-3. 55504600	0. 35077000
H	2. 08951500	2. 99369900	0. 28559100
H	0. 95689400	5. 03467600	0. 85722100
H	0. 21180400	4. 34636600	-0.58946900
H	-0.61122400	4. 24107400	0.97484000
H	1. 86878500	1. 75588800	2. 48814200
H	0. 43698300	2. 73936200	2. 83906700
H	2. 00316900	3. 51333700	2. 62740800
H	6. 89805500	-2. 35154400	-0. 47630300
H	6. 53322100	-0.86732600	-1.38936600
H	6. 34744900	-0.89002400	0. 38498700
H	4. 99706800	-0.88959700	-3. 03903900
H	5. 31090900	0. 79678200	-2. 58960700
H	3. 90229700	0. 41174400	-3. 56351400
H	-2.71032300	1. 14580900	1. 40401300
H	-1. 63220500	2. 49440500	1. 67706800

H	-3.22504700	-1.47246500	1.83276700
H	-0.67806700	-1.90323800	0.13590200
H	-0.85133100	-2.39310700	1.82281500
H	-3.40820200	3.15523700	0.18858700
H	-1.95242200	3.13578600	-0.78656900
H	-2.64861000	-1.93114200	-1.13505500
H	-6.09260900	-0.29519300	-1.51501500
H	-4.60404300	-0.58815200	-2.40640700
H	-4.77442400	1.07112000	0.19750800
H	-5.37700700	-0.77339500	1.36592500
H	-6.66789200	-1.60824400	0.49391600
H	-5.43855700	-2.53934100	1.36304400
H	-5.06597400	-3.85189700	-0.78339300
H	-6.22690600	-2.84688300	-1.66901600
H	-4.56929300	-3.02426900	-2.26895500
H	-2.65688900	2.31677300	-3.08984900
H	-3.16232100	0.62594400	-3.20192300
H	-1.61109600	1.05418900	-2.46603100
H	-1.93961700	0.09131600	3.13843800
H	-0.52052500	-0.83124400	3.64321100
H	-0.39159000	0.91296300	3.38030400

```
For (-)-7d
absolute energies = -1357.2562663
atom coordinates:
```

\%nprocshared=12
\%chk=C: \Users \Administrator \Desktop $\backslash \mathrm{BF}-25 \backslash \mathrm{BF} 25$ randomsearch200001. chk
\%mem=200MW
\# td=(nstates=50, root=1) b31yp/6-31g(d, p) scrf=(cpcm, solvent=methanol)
guess=read geom=(connectivity, allcheck) test

BF25randomsearch200001
01

C	3.35866000	-1.45187600	-0.17473100
C	3.55626200	-0.39612100	-0.99231800
C	2.56636000	0.70850700	-1.00733000
C	1.46920300	0.71056200	-0.03598300
C	1.30558000	-0.36245500	0.78014000
C	2.23577900	-1.55838700	0.83681800
C	0.45399700	1.83778100	-0.09041200
C	-0.88422600	1.29004200	0.49046400
C	-0.67347800	0.58910600	1.86093600
0	0.28372400	-0.51159400	1.64821700
0	2.68331600	1.62226800	-1.84255100
C	2.86388500	-1.62819300	2.25879600
C	1.42384000	-2.85456400	0.57245100
O	4.22420600	-2.52025200	-0.11044700
C	0.93516500	3.23851200	0.46839500

C	2. 39331300	3. 29161300	0. 95515900
C	0.71864200	4. 34255100	-0. 58070800
C	4. 32009500	-3. 36851400	-1. 26651300
C	4. 74199500	-0. 25203300	-1. 90962500
C	-2. 07809900	2. 26611800	0. 42870100
C	-2.94969900	-0.81441300	1. 60132900
C	-1. 92106000	-0.11166900	2. 46131300
C	-2.63905600	2. 49586100	-1. 00711200
C	-2.79429600	-1. 50370700	0. 46692800
C	-3. 92228800	-2. 02764700	-0. 41324200
C	-4. 00810000	-1. 10556100	-1. 69390800
C	-3.84146100	0. 34863800	-1.34195100
C	-2.89143500	1. 19605500	-1.76787000
C	-5.28556500	-2. 03069200	0. 30195800
C	-3. 59607600	-3. 46541500	-0.86660600
C	-1. 96042800	0. 91612100	-2. 92403900
C	-0.08258900	1. 46494700	2. 97644600
H	-1. 16026300	0. 46462300	-0. 17117700
H	0. 27748400	2. 00127700	-1.15886900
H	3. 54082700	-2. 48231400	2. 32164900
H	2. 07591800	-1.73960900	3. 00627200
H	3. 42824800	-0.71713700	2. 47853800
H	0.97187600	-2.83933900	-0. 42407300
H	0. 62619300	-2. 95125300	1. 31101900
H	2. 07868300	-3.72513600	0.64782100
H	0. 30480500	3. 48668000	1. 32861500
H	2. 59309700	4. 26277600	1. 42165800
H	2. 62230000	2. 51659900	1. 69245000
H	3. 08744900	3. 17003800	0. 11986700
H	1. 02128900	5. 32028200	-0.18905900
H	-0.32955500	4.41947200	-0.88477000
H	1. 31576100	4. 13329300	-1. 47465800
H	4. 73048900	-2.84142600	-2. 13102000
H	4. 99382100	-4. 17966900	-0.98628500
H	3. 34094400	-3.78317700	-1. 52605400
H	4. 51750200	-0.57868900	-2. 93226200
H	5. 59456700	-0.82938800	-1.54588300
H	5. 02417600	0. 80135100	-1.97395700
H	-2.89416500	1. 85746000	1. 03211800
H	-1. 82799400	3. 23662100	0. 87294800
H	-3.96143100	-0.69812100	1. 98591100
H	-1. 52884900	-0. 80631200	3. 21739100
H	-2. 45686500	0. 65031200	3. 03731000
H	-3. 56913700	3. 06926300	-0.90718600
H	-1.95435700	3. 12820200	-1.58173900
H	-1. 79556200	-1.64365800	0. 05285300
H	-4.97372000	-1. 30499600	-2. 18051200
H	-3. 23229600	-1. 41773600	-2. 39895000
H	-4. 47860600	0. 69491800	-0. 52743300

H	-5.62717400	-1.02281600	0.55681700
H	-6.04416200	-2.47999900	-0.34738500
H	-5.24540900	-2.61399200	1.22776200
H	-2.60923100	-3.51657600	-1.33970900
H	-3.59753100	-4.15566500	-0.01576100
H	-4.33584500	-3.82219200	-1.59211800
H	-0.91515500	0.83655500	-2.59952000
H	-1.99510200	1.74659600	-3.64104700
H	-2.21289300	0.00270700	-3.46604400
H	-0.70284000	2.34991900	3.14353600
H	-0.04741900	0.89554900	3.91018300
H	0.93064800	1.79033000	2.74408300

Figure S5-4. Key molecular orbitals involved in important transitions regarding the
ECD spectra of conformer 7a in the gas phase at the B3LYP/6-31+G(d) level

Table S1-2. Selected key transitions and their related rotatory and oscillator strengths of conformer 7a of (-)-7 at the B3LYP/6-31+G(d) level in the gas phase

HOMO is 121

NO	Energy $\left(\mathrm{cm}^{-1}\right)$	Wavelength (nm)	Osc. Strength	$\overline{\mathbf{R}}$ (length)	Major contribtions
1	31055.7647	321.55	0.0043	-0.7762	$\begin{aligned} & \text { H-3->LUMO (32\%) } \\ & \text { H-2->LUMO (} 48 \%) \end{aligned}$
2	33112.0271	301.58	0.1292	-80.2237	$\begin{aligned} & \text { H-1->LUMO (13\%) } \\ & \text { H->LUMO (78\%) } \end{aligned}$
3	34983.8462	285.45	0.0048	-0.3988	$\begin{gathered} \text { H-1->LUMO (84\%) } \\ \text { H->LUMO (15\%) } \end{gathered}$
4	38887.7647	256.79	0.0235	29.8081	$\begin{aligned} & \text { H-3->LUMO (59\%) } \\ & \text { H-2-> LUMO (} 36 \% \text {) } \end{aligned}$
5	39789.8462	250.97	0.1328	-58.6780	H-4->LUMO (71\%)
6	44700.552	223.40	0.0009	3.7490	H-5->LUMO (80\%)
7	45945.7466	217.34	0.0202	1.6724	HUMO->L+136\%)
					H-6->LUMO(31\%)
8	46484.5792	214.83	0.0335	46.9385	H-1->L+1(18\%)
					HUMO->L+1(15\%)
9	47271.4842	211.25	0.0510	106.9159	H-6->LUMO (28\%)
10	47812.733	208.86	0.0053	2.438	$\mathrm{H}-2->\mathrm{L}+1(38 \%)$
10	4812.733	208.86	0.005	2.4385	H-3->L+1(25\%)
11	48014.0905	207.98	0	23365	H-7->LUMO (53\%)
11	48014.0905	207.98	0.0041	-2.3365	H-6->LUMO (26\%)
12	48327.4027	206.63	0.0193	-11.6174	HUMO->L+2(70\%)
					HUMO->L+3(40\%)
13	48822.7421	204.54	0.0094	6.6368	H-1->L+2(28\%)
14	49417.1493	202.08	0.0452	-26.2473	HUMO->L+3(35\%)
15	50780.7421	196.65	0.0130	-14.8683	H-8->LUMO (66\%)
16	51012.7059	195.76	0.0692	40.8003	H-1->L+3(21\%)
17	51205.2036	195.02	0.1173	33.1329	H-4->L+1(49\%)
18	52178.1629	191.38	0.2615	80.2018	H-3->L+1(37\%)
19	52532.552	190.09	0.1526	75.6914	H-3 ->L+2(18\%)
20	53063.3303	188.19	0.0524	-37.7322	H-9-> LUMO (57\%)

m / z		Ion		Formula
	441.3365		Abundance	

	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass	Calc Mass	Diff (ppm)
	\checkmark	C29 H44 03	C29 H45 03	441.3363	96.7		440.3293	440.329	-0.51

Figure S6. HR-ESI-MS spectrum of $\mathbf{1}$

Figure S7. UV spectrum of $\mathbf{1}$ in MeOH

Figure S8. CD spectrum of $\mathbf{1}$ in MeOH

Figure $\mathbf{S 9}$. IR spectrum of $\mathbf{1}$

Figure S10-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$

Figure S10-2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S10-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 222 \mathrm{~K})$

```
&%%
-111.89
```


Figure S11-1. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 298 \mathrm{~K})$

Figure S11-2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S12. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S13. HSQC spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S14. HMBC spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S15. NOESY spectrum of $\mathbf{1}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S16. HR-ESI-MS spectrum of 2

Figure S17. UV spectrum of $\mathbf{2}$ in MeOH

Figure S18. CD spectrum of $\mathbf{2}$ in MeOH

Figure S19. IR spectrum of 2

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

Figure S22. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S23. HSQC spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S24. HMBC spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz}$)

Figure S25. NOESY spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

m/2		Ion	Formula	Abundance					
	441.3359	$(\mathrm{M}+\mathrm{H})+$	C 29 H 4503	814759					
	Best	Formula (M)	Ion Formula	Calc m/2	Score	Cross Score	Mass	Calc Mass	Diff (ppm)
\pm	V	C29 H44 O3	C29 H45 03	441.3363	97.64		440.3287	440.329	0.79

Figure S26. HR-ESI-MS spectrum of $\mathbf{3}$

Figure S27. UV spectrum of $\mathbf{3}$ in MeOH

Figure S28. CD spectrum of $\mathbf{3}$ in MeOH

Figure S29. IR spectrum of $\mathbf{3}$

BF-45 H1-NIR CDC13 $303 \mathrm{~K} \quad \mathrm{AV}-300$

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

Figure S32. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S33. HSQC spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S34. HMBC spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S35. ROESY spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

m/2		Ion	Formula	Abundance					
	441.3357	(M+H)+	C 29 H 45 O 3	780117.9					
	Best	Formula (M)	Ion Formula	Calc m/z	Score $\quad \nabla$	Cross Score	Mass	Calc Mass	Diff (ppm)
\pm	V	C29 H44 O3	C29 H45 O3	441.3363	96.55		440.3285	440.329	1.24

Figure S36. HR-ESI-MS spectrum of 4

Measurement Properties
Wavelength Range (nm .)
Scan Speed:
Sampling Interval:
Auto Sampling Interval: Scan Mode:
200.00 to 400.00

Medium
0.2

Enabled
Auto

No.	P/V	Wavelength	Abs.	Description
1	$\mathbf{0}$	298.40	0.179	
2	$\mathbf{0}$	248.40	0.360	
3		204.80	0.584	
4	0	270.60	0.081	
5	0	229.00	0.189	

Figure S37. UV spectrum of $\mathbf{4}$ in MeOH

Figure S38. CD spectrum of $\mathbf{4}$ in MeOH

Figure S39. IR spectrum of 4

Figure S40-1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 298 \mathrm{~K})$

Figure $\mathbf{S 4 0 - 2} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$
$\stackrel{8}{8}$

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ (synthetic) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, 298 \mathrm{~K})$

Figure S42－1．${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 298 \mathrm{~K})$

Figure S42－2．${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz}, 242 \mathrm{~K})$

5	
$\stackrel{5}{5}$	5

Figure $\mathbf{S 4 3} .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ (synthetic) in $\mathrm{CDCl}_{3}(125 \mathrm{MHz}, 298 \mathrm{~K})$

Figure $\mathbf{S 4 4} .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S45. HSQC spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S46. HMBC spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S47. NOESY spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 242 \mathrm{~K})$

Figure S48. HR-ESI-MS spectrum of 5

Measurement Properties Wavelength Range (nm .)
Scan Speed:
Sampling Interval: Auto Sampling Interval: Scan Mode:
200.00 to 400.00

Medium
0.2

Enabled
Auto

No.	P/V	Wavelength	Abs.	Description
1	$(\overline{1}$	296.20	0.147	
2	$\mathbf{1}$	250.80	0.331	
3	$\mathbf{0}$	203.60	0.644	
4	$\mathbf{0}$	273.00	0.090	
5	$\mathbf{0}$	232.00	0.172	

Figure $\mathbf{S 4 9}$. UV spectrum of $\mathbf{5}$ in MeOH

Figure S50. CD spectrum of $\mathbf{5}$ in MeOH

Figure S51. IR spectrum of 5

BF-22 H1-NMR CDC13 300 K AV-300

Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (synthetic) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

Figure S55. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 (synthetic) in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S56. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure $\mathbf{S 5 7}$. HSQC spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S58. HMBC spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S59. ROESY spectrum of $\mathbf{5}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

m/z		Ion	Formula	Abundance					
441.3363		(M+H)+	C 29 H 45 O 3	1249737.6					
	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass	Calc Mass	Diff (ppm)
+	$\sqrt{\sim}$	C29 H44 O3	C29 H45 O3	441.3363	98.06		440.329	440.329	0

Figure S60. HR-ESI-MS spectrum of 6

Figure S61. UV spectrum of $\mathbf{6}$ in MeOH

Figure S62. CD spectrum of 6 in MeOH

Figure S63. IR spectrum of 6

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ (synthetic) in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S66. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(125 \mathrm{MHz})$

Figure S69. HSQC spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

Figure S70. HMBC spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}$)

Figure S71. NOESY spectrum of $\mathbf{6}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

m/2		Ion	Formula	Abundance					
441.3366		$(\mathrm{M}+\mathrm{H})+$	C 29 H 4503	1192332.3					
	Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass	Calc Mass	Diff (ppm)
$\pm+$	$\sqrt{4}$	C29 H44 03	C29 H45 O3	441.3363	99.71		440.3293	440.329	-0.53

Figure S72. HR-ESI-MS spectrum of (\pm)-7

Measurement Properties
Wavelength Range (nm .):
Scan Speed:
Sampling Interval:
Auto Sampling Interval: Scan Mode:
200.00 to 400.00

Medium
0.2

Disabled
Auto

No.	P/V	Wavelength	Abs.	Description
1	$\mathbf{0}$	297.00	0.066	
2	$\mathbf{0}$	252.00	0.160	
3	$\mathbf{0}$	204.40	0.259	
4	$\mathbf{0}$	274.40	0.037	
5	$\mathbf{0}$	231.80	0.087	

Figure S73. UV spectrum of (\pm)-7 in MeOH

Figure S74. CD spectrum of (+)-7 and (-)-7 in MeOH

Figure S75. IR spectrum of (\pm)-7

EF-25 H1-NMR CDC13 303K AV-300

Figure S76. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\pm)-7$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S77. ${ }^{1} \mathrm{H}$ NMR spectrum of (\pm)-7 (synthetic) in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S78. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\pm)-7$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

Figure S79. ${ }^{13} \mathrm{C}$ NMR spectrum of $(\pm)-7$ (synthetic) in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

Figure S80. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ spectrum of $(\pm)-7$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S81. HSQC spectrum of (\pm)-7 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S82. HMBC spectrum of (\pm) - $\mathbf{7}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S83. ROESY spectrum of (\pm)-7 in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure 84. Chiral HPLC chromatogram of (\pm)-7
[Chiral HPLC separation of (\pm)-7 was carried out on a Daicel Chiralcel OD-RH (250 $\times 10 \mathrm{~mm}, 5 \mu \mathrm{~m})$, using $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(85: 15, \mathrm{v} / \mathrm{v})$ as mobile phase at a flow rate of 4 $\mathrm{mL} / \mathrm{min}$ at room temperature with UV detection at 254 nm .]

Display Report - Selected Window Selected Analysis

Figure S85. ESI-MS spectrum of 12

Figure S86. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

Figure S87. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

Display Report - Selected Window Selected Analysis

Analysis Name!PG-M--28.6	Instrument! amazonsl	Print Date: $2015 \cdot 03 \cdot 26$ 5:27:34 FM
Methodt XL_MSM	Operator! bruker	Acq. Date: 2015-03-24 5:17:41 FM
Analysis Info:		

Figure S88. ESI-MS spectrum of $\mathbf{1 3}$

Figure S89. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(300 \mathrm{MHz})$

8

PG-N-2B C13-NXR DVSO-d6 303K AV-300

Figure S90. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}$ in $\mathrm{CDCl}_{3}(75 \mathrm{MHz})$

References

[1] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J . Fox , Gaussian, Inc ., Wallingford C T, 2009.
[2] T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, SpecDis version 1.60, University of Wuerzburg, Germany, 2012.

HPLC-Q/TOF-MS analysis of the petroleum ether portion of the aerial parts of

B. frutescens

Preparation of sample solution

The fresh aerial parts of B. frutescens L. were ground into powders. Sample powders $(5 \mathrm{~g})$ were percolated with 100 mL methanol at room temperature for 48 h . The crude methanol extract was concentrated in vacuo, suspended in $\mathrm{H}_{2} \mathrm{O}$ and partitioned with petroleum ether (PE, $60-90^{\circ} \mathrm{C}$). The petroleum ether extract of B. frutescens was subjected on a silica flash column (25-40 $\mu \mathrm{m}, 25 \mathrm{~g}$) with PE-EtOAc (100:0, 95:5, each 100 mL) as eluent. Then, the PE: EtOAc (95:5) fraction was concentrated and analyzed on LC-MS.

Preparation of mixed standards

Mixed standards ($0.02 \sim 0.1 \mathrm{mg} / \mathrm{mL}$ for $1-7$) were prepared in methanol. $2 \mu \mathrm{~L}$ was injected into LC-MS for analysis.

Instrument and chromatographic conditions

The HPLC analysis was performed on an Agilent series 1200 HPLC system equipped with a quaternary pump, a degasser, an autosampler, a thermostated column compartment and a diode array detector. Chromatographic separation was carried out at $25^{\circ} \mathrm{C}$ on an Agilent Poroshell 120 EC-C18 column ($4.6 \times 50 \mathrm{~mm}, 2.7 \mu \mathrm{~m}$) with the gradient program of mobile phase $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(85: 15 \rightarrow 95: 5)$. The flow rate was 1 $\mathrm{mL} / \mathrm{min}$.

All MS experiments were conducted on an Agilent 6210 Q/TOF mass spectrometer equipped with an ESI source. The MS conditions were as follows: The mass range was set at $m / z 100-1200$; drying gas temperature, $350^{\circ} \mathrm{C}$; drying gas flow, $8 \mathrm{~L} / \mathrm{min}$; nebulizer pressure, 35 psi; capillary voltage, 4000 V . Both MS and MS/MS data were performed in positive mode. Collision energy was set at 25 V . Data acquisition was performed with MassHunter Workstation.

Result and Conclusion

To confirm that compounds 1-7 are naturally occurring in the plant, the petroleum ether portion extract of the aerial parts of B. frutescens was analyzed by LC-Q/TOF-MS (Figure S91). Compounds 1-7 were detected in the crude petroleum ether portion extract by comparsion of the HPLC retention times, HRMS spectra, MS ${ }^{2}$ spectra, and UV absorptions with those of isolates (Figure S92-S98). The above results indicated that compounds 1-7 are naturally occurring products.

Figure S91. The HPLC-Q/TOF-MS analysis of the petroleum ether portion from B. frutescens and the mixed standards. a) The total ion chromatogram (TIC) for the petroleum ether portion extract of B. frutescens. b) The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 from the petroleum ether portion extract. c) The HPLC-UV chromatogram for the mixed standards. d) The total ion chromatogram (TIC) for the mixed standards.

Figure S92-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000, retention time: $9.44 \mathrm{~min} ; m / z 441.3384[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, m / z 441.3333\right)$

Figure S92-2. The total ion chromatogram (TIC) for compound 3, retention time:
$9.20 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3420[\mathrm{M}+\mathrm{H}]^{+}$

Figure S93-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 , retention time: $9.97 \mathrm{~min} ; m / z 441.3390[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, m / z 441.3316\right)$

Figure S93-2. The total ion chromatogram (TIC) for compound 2, retention time:
$9.75 \mathrm{~min} ; m / z 441.3416[\mathrm{M}+\mathrm{H}]^{+}$

Figure S94-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 , retention time: $10.25 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3417[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, \mathrm{~m} / \mathrm{z} 441.3428\right)$

Figure S94-2. The total ion chromatogram (TIC) for compound 7, retention time:
$10.26 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3501[\mathrm{M}+\mathrm{H}]^{+}$

Figure S95-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 , retention time: $10.82 \mathrm{~min} ; m / z 441.3390[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, \mathrm{~m} / \mathrm{z} 441.3354$)

Figure S95-2. The total ion chromatogram (TIC) for compound 6, retention time:
$10.78 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3373[\mathrm{M}+\mathrm{H}]^{+}$

Figure S96-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 , retention time: $11.61 \mathrm{~min} ; m / z 441.3394[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, \mathrm{~m} / \mathrm{z} 441.3317$)

Figure S96-2. The total ion chromatogram (TIC) for compound 1, retention time: $11.50 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3482[\mathrm{M}+\mathrm{H}]^{+}$

Figure S97-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 , retention time: $12.14 \mathrm{~min} ; m / z 441.3392[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, m / z 441.3306$)

Figure S97-2. The total ion chromatogram (TIC) for compound 5, retention time:
$11.76 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3375[\mathrm{M}+\mathrm{H}]^{+}$

Figure S98-1. The extracted ion chromatogram (EIC) for $m / z 441.0000$ to 442.0000 , retention time: $13.97 \mathrm{~min} ; m / z 441.3439[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3}, m / z 441.3397$)

Figure S98-2. The total ion chromatogram (TIC) for compound 4, retention time:
$13.88 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.3410[\mathrm{M}+\mathrm{H}]^{+}$

Scheme S1. Possible Formation for Major Fragments of Frutescone A-G (1-7) in (+) ESI-MS ${ }^{2}$ Spectrum

$m / z 237[M+H]^{+}$

M.W. 204

$m / z 205[\mathrm{M}+\mathrm{H}]^{+}$
M.W. 204

or

Frutescone D-G (4-7)
M.W. 204

$m / z 237\left[M+\mathrm{H}^{+}\right.$
M.W. 236

$m / z 205[M+H]^{+}$

$m / z 205[M+]^{+}$

HPLC-MSD Trap analysis of the $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ extract of the aerial parts of \boldsymbol{B}. frutescens

Preparation of sample solution

The fresh aerial parts of B. frutescens were ground into powders and passed through a 60 -mesh (0.3 mm) sieve. Sample powders (5 g) were extracted by ultrasonator with $100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature with for 40 min . The crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was concentrated in vacuo, and was subjected to a silica flash column (25-40 $\mu \mathrm{m}, 25 \mathrm{~g}$) with PE-EtOAc (100:0, 95:5, each 100 mL) as eluent. Then, the PE: EtOAc (95:5) fraction was concentrated and analyzed on LC-MS.

Preparation of mixed standards

Mixed standards ($0.02 \sim 0.1 \mathrm{mg} / \mathrm{mL}$ for $1-7$) were prepared in methanol. $2 \mu \mathrm{~L}$ was injected into LC-MS for analysis.

Instrument and chromatographic conditions

The HPLC analysis was performed on an Agilent series 1100 HPLC system
equipped with a quaternary pump, a degasser, an autosampler, a thermostated column compartment and a diode array detector. Chromatographic separation was carried out at $25^{\circ} \mathrm{C}$ on an Agilent Poroshell 120 EC-C18 column ($4.6 \times 50 \mathrm{~mm}, 2.7 \mu \mathrm{~m}$) with the gradient program of mobile phase $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(85: 15 \rightarrow 95: 5)$. The flow rate was 1 $\mathrm{mL} / \mathrm{min}$.

All MS experiments were conducted on an Agilent 1100 series LC-MSD Trap mass spectra with an electrospray interface (ESI). The MS conditions were as follows: The mass range was set at $m / z 50-1200$; drying gas temperature, $190^{\circ} \mathrm{C}$; drying gas flow, $9 \mathrm{~L} / \mathrm{min}$; nebulizer pressure, 16 psi ; capillary voltage, 140 V .; Trap drive, 63.4; rolling averages, 1 cts. Both MS and MS/MS data were performed in positive mode. Data acquisition was performed with Bruker Compass DataAnalysis 4.1.

Result and Conclusion

The fresh aerial parts of B. frutescens L. was extracted by ultrasonator at room temperature with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, more efficient than petroleum ether. Then the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was analyzed by HPLC-MSD Trap (Figure S99). Compounds 1-7 were also detected in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract by comparison of the HPLC retention time and MS^{n} spectra, with those of isolates (see the Supporting Information, Figure S99-S106). Thus, compounds 1-7 are proved to be natural occurring products in B. frutescens, not artifacts produced during the extraction and isolation procedure.

Figure S99. The LC-MSD Trap analysis of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of B. frutescens and the mixed standards. a) The HPLC-UV chromatogram (254 nm) for the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of B. frutescens. b) The base peak chromatogram (BPC) for the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract. c) The extracted ion chromatogram (EIC) for $m / z 441$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract. d) The HPLC-UV chromatogram (254 nm) for the mixed standards. e) The base peak chromatogram (BPC) for the mixed standards. f) The extracted ion chromatogram (EIC) for $m / z 441$ from the mixed standards.

Figure S100-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time:
$14.5 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S100-2. The base peak chromatogram (BPC) for compound 3, retention time:
$14.5 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S101-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time: $15.6 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S101-2. The base peak chromatogram (BPC) for compound 2, retention time:
$15.6 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S102-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time:
$16.1 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S102-2. The base peak chromatogram (BPC) for compound 7, retention time:
$16.2 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S103-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time:
$17.1 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S103-2. The base peak chromatogram (BPC) for compound 6, retention time: $17.2 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

Figure S104-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time: $17.6 \mathrm{~min} ; m / z 441.28[\mathrm{M}+\mathrm{H}]^{+}$

Figure S104-2. The base peak chromatogram (BPC) for compound 1, retention time: $17.6 \mathrm{~min} ; \mathrm{m} / \mathrm{z} 441.28[\mathrm{M}+\mathrm{H}]^{+}$

Figure S105-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time: $18.6 \mathrm{~min} ; m / z 441.28[\mathrm{M}+\mathrm{H}]^{+}$

Figure S105-2. The base peak chromatogram (BPC) for compound 5, retention time:
$18.7 \mathrm{~min} ; m / z 441.28[\mathrm{M}+\mathrm{H}]^{+}$

Figure S106-1. The extracted ion chromatogram (EIC) for $m / z 441$, retention time:
$21.5 \mathrm{~min} ; m / z 441.30[\mathrm{M}+\mathrm{H}]^{+}$

Figure S106-2. The base peak chromatogram (BPC) for compound 4, retention time:
$21.3 \mathrm{~min} ; m / z 441.29[\mathrm{M}+\mathrm{H}]^{+}$

