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1 Outlines of the Proofs of Theorems 1, 2 and 3

We first provide brief outlines of the proofs of Theorems 1, 2 and 3.

Theorem 1 and Theorem 2

There are two major steps in the proof of Theorems 1 and 2. The first step is to decom-

pose the excess `-risk into the estimation error and approximation error. Then we show

that the probability of the estimation error exceeding O(skr log(r−1)) for the L1 penalty,

or O(
√
pskr log(r−1)) for the L2 penalty, can be written in terms of a concentration in-

equality indexed by a scaled empirical process. The second step is to obtain a suitable

probability upper bound of this concentration inequality. To this end, one can use the

chaining technique, which discretizes the functional space of the optimization problem,

hence decomposing the corresponding probability into several parts. For each part, the

probability can be controlled by established concentration inequalities. See Theorem A.2

in Wang and Shen (2007) for an example.

Therefore, the question boils down to control the complexity of the discretized func-

tional space. A common approach to depict such complexity in the literature is to use

the entropy numbers. In the Supplementary Materials, for linear and kernel learning, we

introduce Lemmas 2 and 4 respectively, to control the complexity of the corresponding

functional spaces for the empirical processes, in terms of their L2 entropy numbers. In

particular, we show that for a small and positive ε, the ε-entropy numbers for linear and

kernel learning are in the order of O(ε−2) under mild conditions. Consequently, we can

prove the desired concentration inequality.
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It should be noted that, although the orders of the entropy numbers for linear and

kernel learning are similar, the techniques used are quite different. In particular, in linear

learning, we treat the functional space as a convex hull of 2p functions, which leads to a

bound on the entropy number. For kernel learning, we consider the natural embedding of

the kernel function into the regular L2 functional space consisting of continuous functions

on the domain of x. Such embedding can be shown to be absolutely 2-summing with

2-summing norm no larger than 1. Hence we can bound the entropy number of this

embedding operator (which can be shown to be the same as the entropy number of the

original kernel space) by its corresponding approximation numbers, which can be further

bounded by Carl’s inequality between approximation and entropy numbers.

Theorem 3

Theorem 3 extends the well established results on fast rate of convergence from binary

classifiers to multicategory ones. The key to the proof is to find a pseudo-norm that

can be used to both upper and lower bound the conditional excess `-risk gf (x, y) =∑
j 6=y `{〈f ,Yj〉} −

∑
j 6=y `{〈f

∗,Yj〉} (up to constants). In Bartlett and Wegkamp (2008),

as the modified hinge loss function ψ(u) is piecewise linear, and remains flat for large

u, one can use ρ(f1, f2) ∝ |f1 − f2| as the pseudo-norm. However, for more general loss

functions, especially differentiable loss functions, an L1 type pseudo-norm cannot lower

bound the conditional excess `-risk. Therefore, we employ the (squared) L2 type pseudo-

norm in this proof. With the low noise assumption, we can show that the class {gf (x, y)}

is a Bernstein class with the Bernstein exponent α/(1 +α). The next step is to apply the

symmetrization technique, and show that the estimation error can be (up to a constant)

bounded by a tail probability plus a small term that converges to zero at a very fast speed,

where the tail probability term is indexed by an empirical process of {gf (x, y)}. At this

stage, we can employ Bernstein’s inequality to bound the corresponding tail probability.

As {gf (x, y)} is a Bernstein class, the variance term in the power of the upper bound in

Bernstein’s inequality can be bounded by a linear term of Egf (x, y). Combined with an

upper bound on the entropy number for Gaussian kernel space, we can prove the desired

result in Theorem 3.

2



2 Detailed Proofs to Propositions and Theorems

Before the proofs, we first introduce a lemma for simplicity and completeness of further

arguments.

Lemma 1 (Zhang and Liu, 2014, Lemma 1). Suppose we have an arbitrary f ∈ Rk−1.

For any u, v ∈ {1, . . . , k} such that u 6= v, define T u,v = Yu − Yv. For any scalar z ∈ R,

〈(f + zT u,v),Yw〉 = 〈f ,Yw〉, where w ∈ {1, . . . , k} and w 6= u, v. Furthermore, we have

that 〈(f + zT u,v),Yu〉 − 〈f ,Yu〉 = −〈(f + zT v,u),Yv〉+ 〈f ,Yv〉.

Lemma 1 shows that we can increase 〈f ∗,Yi〉 by an arbitrary ε > 0, and decrease

〈f ∗,Yj〉 by the same ε without changing 〈f ∗,Yl〉 for l /∈ {i, j}.

Proof of Proposition 1: We aim to find f ∗ that minimizes the conditional expected

loss
k∑
j=1

Pj{
∑
i 6=y

`(〈f ,Yi〉)},

which is equivalent to find

argmin
f

k∑
j=1

`(〈f ,Yj〉)(1− Pj).

We assume P1 ≥ P2 ≥ · · · ≥ Pk in this proof for simplicity.

First, we show that 〈f ∗,Y1〉 ≥ 〈f ∗,Y2〉 ≥ · · · 〈f ∗,Yk〉. We prove this by con-

tradiction. Suppose 〈f ∗,Y1〉 < 〈f ∗,Y2〉. By Lemma 1, we can define f̃ such that

〈f ∗,Y1〉 = 〈f̃ ,Y2〉 and 〈f ∗,Y2〉 = 〈f̃ ,Y1〉. One can verify that
∑k

j=1 `(〈f
∗,Yj〉)(1−Pj) >∑k

j=1 `(〈f̃ ,Yj〉)(1− Pj), which is a contradiction to the definition of f ∗. Notice that this

argument holds true for any pairwise comparisons between 〈f ∗,Yi〉 and 〈f ∗,Yj〉 for i 6= j.

Therefore, we have 〈f ∗,Y1〉 ≥ 〈f ∗,Y2〉 ≥ · · · 〈f ∗,Yk〉.

The second step is to start from f = 0, and consider the pairwise comparison between

(P1, 〈f ,Y1〉) and (Pq, 〈f ,Yj〉) for q > 1, in order to decrease the conditional expected loss.

By Lemma 1 and similar argument as in Section 3.1, one can verify that if a(1 − P1) <

(1 − Pq), we should increase 〈f ,Y1〉 and decrease 〈f ,Yq〉 to decrease the conditional

expected loss. If a(1 − P1) ≥ (1 − Pq), we should keep 〈f ,Yq〉 at 0. After k − 1 such

comparisons, one can verify that f is such that if the assumption in Proposition 1 holds,

then 〈f ,Y1〉 > 0, 〈f ,Y2〉 = · · · = 〈f ,Yj〉 = 0, and 〈f ,Yq〉 < 0 for j + 1 ≤ q ≤ k.

Note that the fact `′(u) is a constant for u > 0 is essential for this sequence of pairwise

comparisons to hold.
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The last step is to check that f ∗ = f , where f is obtained in the second step. To

this end, notice that if f ∗ 6= f , we can always perform the pairwise comparison as in the

second step to decrease the conditional expected loss. Therefore, Proposition 1 holds. �

Proof of Proposition 2: For any fixed x, the conditional expected loss for the reject

option is d. To predict class label, clearly ŷ = Y(1) is the only admissible decision,

whose conditional expected loss is 1 − P(1). Therefore, we would predict the label when

1− P(1) < d, and we reject when 1− P(1) ≥ d. �

Proof of Proposition 3: We assume P1 ≥ P2 ≥ · · · ≥ Pk in this proof for simplicity. To

prove the lower bound, suppose a(1−P1) > (1−Pk). Consequently, we have a(1−P1) >

(1−Pj) for j ≥ 2, which further leads to a(k− 1)(1−P1) > k− 1− (1−P1). With some

calculation, this is equivalent to 1− P1 >
k−1

a(k−1)+1
. Therefore, by letting k−1

a(k−1)+1
= d, or

equivalently, a = a1, we can prove that the lower bound inequality holds.

To prove the upper bound, suppose 1 − P1 > d. With a = a2 = (k−1)(1−d)
d

, we have

a(1−P1) > (k−1)(1−d) > (k−1)P1 >
∑k−1

j=1 Pj = 1−Pk. This proves the upper bound.

To see the tightness of these 2 bounds, one can easily construct numerical counter

examples, and we omit the details here. �

Proof of Theorem 1: The key to the proof of this theorem is to bound the tail prob-

ability that the deviation of a related empirical process from its expected value exceeds

a certain threshold. This consists of two major parts. The first part is to transform the

problem into the empirical process, and the second part is to bound the corresponding

tail probability.

Recall the definition of F(p, k, s). Define t(p, s) = s if we use the L1 penalty, and

t(p, s) = (ps)1/2 if we use the L2 penalty. One can verify that for L1 or L2 penalized

method, and any j ∈ {1, . . . , k−1}, |f̂j| = |β̂
T

j x| ≤ t(p, s). Therefore, in future arguments,

it suffices to consider F̃(p, k, s) = F(p, k, s) ∩ {f : ‖f‖ ≤ (k − 1)t(p, s)}. Furthermore,

define f (p,k,s) = argminf∈F̃(p,k,s) E[
∑

j 6=y `{〈f ,Yj〉}],

hf (·) = {2(k − 1)
1− d
d

t(p, s)}−1{
∑
j 6=·

`(〈f ,Yj〉)−
∑
j 6=·

`
(
〈f (p,k,s),Yj〉

)
},

and H̄ = {hf : f ∈ F̃(p, k, s)}. Since ` is Lipschitz with Lipschitz constant (k−1)(1−d)
d

and
∑k

j=1〈f ,Yj〉 = 0, |
∑

j 6=· `(〈f ,Yj〉) −
∑

j 6=· `(〈f
′,Yj〉)| ≤ | (k−1)(1−d)

d
〈f − f ′, ·〉| ≤

2 (k−1)(1−d)
d

t(p, s). Therefore, we have the L2(Q) diameter of {
∑

j 6=· `(〈f ,Yj〉)−
∑

j 6=· `(〈f
(p,k,s),Yj〉)}

is bounded by {2 (k−1)(1−d)
d

t(p, s)}, and the L2(Q) diameter of H̄ is bounded by 1. Here Q

is any arbitrary distribution.
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The next lemma bounds the complexity of H̄ in terms of its L2(Q) entropy. For any

ε > 0, we can define G to be an ε-net of a function class F if, for any f ∈ F , there exists

g ∈ G such that ‖g − f‖Q,2 ≤ ε. Let the L2(Q) covering number N{ε,F , L2(Q)} be the

minimum size of all such possible ε-nets, and denote by H{ε,F , L2(Q)} the logarithm

of N{ε,F , L2(Q)}, which is referred to as the L2(Q) entropy. Define the uniform L2(Q)

covering number, N(ε,F), to be supQN{ε,F , L2(Q)}, and define the uniform L2(Q)

entropy H(ε,F) in a similar manner. Lemma 2 gives an upper bound on H(ε, H̄).

Lemma 2. For any ε > 0, H(ε, H̄) ≤ 2(k−1)
ε2

log(e+ 2peε2).

Proof of Lemma 2: To bound the L2(Q) entropy of H̄, we can first bound the L2(Q)

entropy of G := {
∑

j 6=· `(〈f ,Yj〉) :
∑k−1

j=1 ‖βj‖1 ≤ t(p, s)}, as a {2(k − 1)1−d
d
t(p, s)ε}-

net on G naturally introduces an ε-net on H̄. To this end, we find an ε-net on G. Let

g =
∑

j 6=· `(〈f ,Yj〉), g′ =
∑

j 6=· `(〈f
′,Yj〉) ∈ G. Notice that

‖g − g′‖2
Q,2 = E[

∑
j 6=·

`{〈Yj,f(X)〉} −
∑
j 6=·

`{〈Yj,f ′(X)〉}]2

≤ E{(k − 1)(1− d)

d

∑
j 6=·

〈Yj,f(X)− f ′(X)〉}2

≤ E{(k − 1)(1− d)

d

k−1∑
j=1

|fj(X)− f ′j(X)|}2

≤ (k − 1)3(1− d)2

d2

k−1∑
j=1

‖fj − f ′j‖2
Q,2.

where the last step is from the Cauchy-Schwartz inequality. Next, we define ~x = (xT1 , . . . ,x
T
k−1)T

with each xj a p-dimensional vector. Let ~f(~x) =
∑k−1

j=1 β
T
j xj. Also let ~Q be the distri-

bution of ~X = (δ1X1, . . . , δk−1Xk−1), where Xj’s are independent and identically dis-

tributed with any arbitrary distribution Q, and (δ1, . . . , δk−1) has a joint distribution

pr{(δ1, . . . , δk−1)T = ej} = (k − 1)−1. Thus we may conclude that
∑k−1

j=1 ‖fj − f ′j‖2
Q,2 =

(k−1)E ~Q(~f− ~f ′)2, and ‖g−g′‖2
Q,2 ≤

(k−1)4(1−d)2

d2
‖~f− ~f ′‖2

Q,2. Consequently, if we can bound

L2(Q) entropy of the function class ~F = {~f : ~f(~x) =
∑k−1

j=1

∑p
l=1 βj,lxj,l;

∑k−1
j=1 ‖βj‖1 ≤

t(p, s)}, we can bound H̄.

To bound the entropy of ~F , we define wj,l(~x) = t(p, s)xj,l. Hence, J = {±wj,l} forms a

basis for ~F . In other words, each ~f =
∑k−1

j=1

∑p
l=1 βj,lxj,l =

∑k−1
j=1

∑p
l=1 |βj,l|{sign(βj,l)wj,l(~x)}/t(p, s)

is a convex combination of wj,l. Thus, ~F is the convex hull of J . By Lemma 2.6.11 in

van der Vaart and Wellner (2000), N{εdiamJ , ~F , L2( ~Q)} ≤ [e+e{2p(k−1)}ε2]2/ε
2
, where

diamJ = supJ1,J2∈J ‖J1 − J2‖ ~Q,2 ≤ 2t(p, s). Thus, we conclude that N{ε, H̄, L2(Q)} =
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N{2(k−1)1−d
d
t(p, s)ε,G, L2(Q)} ≤ N{2t(p, s)

√
(k − 1)−1ε,J , L2( ~Q)} ≤ (e+2peε2)2(k−1)/ε2 .

Since the final bound is independent of Q, we have that the bound is uniform for any Q.

�

The next lemma shows that in order to show the result in Theorem 1, we can focus

on bounding a tail probability.

Lemma 3. For given n, p, k, and s, assume that there exists M > 0 that satisfies

(log2

16
√

6ε0
M

+ 1)2
{256 log(e+ 2peε20)

n

}
≤ M2

256
, (1)

where ε0 > 0 is such that

2(k − 1) log(e+ 2peε20)

ε20
=

1

4
nM2. (2)

Then for dn,p,k = inff∈F(p,k,s) e`(f ,f
(p,k)), we have

pr{e`
(
f̂ ,f (p,k)

)
≥ 8(k − 1)t(p, s)M + dn,p,k} ≤ 6(1− 1

16nM2
)−1 exp(−nM2).

Proof of Lemma 3: Define the empirical process h → Pnh − Ph, where h ∈ H̄,

Ph =
∫
hdP and Pnh = n−1

∑n
i=1 h(yi). We have, by definition of dn,p,k,

pr{e`(f̂ ,f (p,k)) > 8(k − 1)t(p, s)M + dn,p,k} ≤ pr[e`
(
f̂ ,f (p,k,s)

)
{2(k − 1)t(p, s)}−1 > 4M ].

Since f̂ is such that e`(f̂ ,f
(p,k,s)){2(k − 1)t(p, s)}−1 > 4M , and f̂ minimizes the em-

pirical loss n−1
∑n

i=1

∑
j 6=yi `{〈f(xi),Yj〉}, we have n−1

∑n
i=1{

∑
j 6=yi `(〈f

(p,k,s),Yj〉) −∑
j 6=yi `(〈f̂ ,Yj〉)} ≥ 0. Hence,

pr{e`(f̂ ,f (p,k)) > 8(k − 1)t(p, s)M + dn,p,k}

≤ prouter
[

sup
f∈F̃(p,k,s):e`(f ,f

(p,k,s)){2(k−1)t(p,s)}−1>4M

1

n

n∑
i=1

[
∑
j 6=yi

{`(〈f (p,k,s),Yj〉)− `(〈f ,Yj〉)}] > 0
]

≤ prouter
[

sup
f∈F̃(p,k,s):e`(f ,f

(p,k,s)){2(k−1)t(p,s)}−1>4M

− 1

n

n∑
i=1

[hf (yi)− E{hf (Y )}]

> {2(k − 1)t(p, s)}−1E{
∑
j 6=y

`(〈f ,Yj〉)−
∑
j 6=y

`(〈f (p,k,s),Yj〉)}
]
.

Here prouter is the outer probability. In the region f ∈ F̃(p, k, s) : e`(f ,f
(p,k,s)){2(k −

1)t(p, s)}−1 > 4M , {2(k − 1)t(p, s)}−1E{
∑

j 6=y `(〈f ,Yj〉) −
∑

j 6=y `(f
(p,k,s),Yj)} is always
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larger than 4M . Hence we have

pr{e`(f̂ ,f (p,k)) > 8(k − 1)t(p, s)M + dn,p,k} ≤ prouter(sup
h∈H̄
|Pnh− Ph| > 4M).

The rest part of the proof is to bound the tail probability suph∈H̄ |Pnh − Ph| >

4M . Notice that the entropy of H̄ is given in Lemma 2, and the entropy is of the

order ε−2. Thus, by (1), (2), and Theorem A.2 in Wang and Shen (2007), we have

prouter(suph∈H̄ |Pnh−Ph| > 4M) ≤ 6{1− (1/16nM2)}−1 exp(−nM2), and this completes

the proof. �

With Lemma 3 proved, we can proceed to prove Theorem 1.

Let M = 5r log(r−1). We need to verify that (1) holds for the choice of M and ε0

in (2). First, note that ε0 goes to 0. Because if ε0 is bounded away from 0 and ∞,

the left hand side of (2) is of order O(log p), and the right hand side of (2) is of order

O{log p log2(r)−1}, which is a contradiction. If ε0 → ∞, the left hand side of (2) is of

order o(log p), which is still a contradiction. Next, note that (1) is equivalent to

(log2

16
√

6ε0
M

+ 1)2 ≤ nM2

216 log(e+ 2peε20)
. (3)

We have log2(16
√

6ε0)/M + 1 ∝ log2(ε0/M) � log2(1/M) � log(1/r), where ∝ means

“equivalent up to a constant”, and � means “less than or equal to up to a constant”. As

a result, the left hand side of (3) has an order no greater than O{log2(r−1)}. For the right

hand side of (3), we have ε−2
0 � (nM2)/{216 log(e+ 2peε20)}. The left hand side of (2) has

order O{log p log2(r)−1}. If the order of 1/ε0 is less than that of log(1/r), we have the

order of the right hand side of (2) smaller than O{log p log2(1/r)}, because ε0 goes to 0.

Thus, (1) is valid, because the order of left hand side of (3) is less than that of the right

hand side.

Finally, note that nM2 = 25 log p log2(1/r) > 2.5 log p log(1/r) ≥ 2.5 log n > 2 log n.

Hence, we have exp(−nM2) ≤ exp(−2 log n) = n−2. The desired result in Theorem 1

then follows from the Borel-Cantelli Lemma. �

Proof of Theorem 2: The key to the proof is to show that with any kernel func-

tion such that K(·, ·) ≤ ∞, the corresponding entropy number of the function space is

approximately in the order ε−2.

Let t(p, s) = s for kernel learning. Define f (p,k,s), hf (·), and H̄ in a similar manner

with respect to the linear learning case in the proof of Theorem 1. Here without loss of

generality, assume that the kernel function is upper bounded by 1. Note that the theory
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can be naturally generalized to other cases with different upper bounds. Now, with the

assumption that the kernel is separable, one can verify that the L2 diameter of H̄ can

be bounded by 1. Next, instead of bounding the uniform entropy as in the linear case,

we bound the empirical uniform entropy for kernel learning. In particular, let TX be the

empirical measure of a training data set {(x1, y1), . . . , (xm, ym)}, and let the L2 norm

be defined as ‖f‖L2(TX) =
(

1
m

∑m
i=1 |f(xi, yi)|2

)1/2
. We can define the L2(TX) covering

number and entropy number in an obvious manner. In kernel learning, let H(ε, H̄) be

supTX H(ε, H̄, L2(TX)), which we call the empirical uniform entropy. Next, we bound

H(ε, H̄). Notice that C is a constant that may change in different context.

Lemma 4. For any ε > 0, H(ε, H̄) ≤ Cε−2 log(1
ε
).

Proof of Lemma 4: Let G := {
∑

j 6=· `(〈f ,Yj〉) :
∑k−1

j=1 J(f) ≤ s}. Let g and g′ be

defined as in the proof of Lemma 2. One can verify that

‖g − g′‖2
L2(TX) = E[

∑
j 6=·

`{〈Yj,f(X)〉} −
∑
j 6=·

`{〈Yj,f ′(X)〉}]2

≤ E{(k − 1)(1− d)

d

∑
j 6=·

〈Yj,f(X)− f ′(X)〉}2

≤ (k − 1)2(1− d)2

d2
E{

k−1∑
j=1

|fj(X)− f ′j(X)|}2.

Hence, the L2(TX) covering number of G can be upper bounded through bounding the

L2(T ′X) covering number of G ′, which is a set that ranges over all individual classifica-

tion functions whose norm is upper bounded by s. Here T ′X is the empirical measure of

{δ1X, δ2X, . . . , δk−1X}, where X = (x1, . . . ,xn), and (δ1, . . . , δk−1) has a joint distribu-

tion pr{(δ1, . . . , δk−1)T = ej} = (k − 1)−1. Next, by similar arguments as in the proof of

Lemma 2 in Zhang et al. (2016) , we have supTX N
(
ε,G, L2(TX)

)
≤ 5 exp(Cε−2)

ε
. Therefore,

the claim in Lemma 4 holds. �

The rest of the proof is to notice that the order of the entropy number is ε−2 log(1/ε),

which is very close to ε−2. Hence, one can verify that (1) and (2) hold in general. By

similar arguments as in the proof of linear learning, we can prove Theorem 2. �

Proof of Theorem 3: First, notice that for j 6= 1, (1 − P(j))`
′(〈Yj,f ∗〉) = a(1 − P(1)).

Hence, as we assume that the probabilities are bounded away from 0, we can conclude that

for a fixed loss function, 〈Y(j),f
∗〉 is bounded away from ∞ for all j 6= 1. Consequently,

we have that `′′(〈Y(j),f
∗〉) has a lower bound for any 〈Yj,f ∗〉 < 0. Denote by ζ this

lower bound. Next, define r(f) =
∑k

j=1(1− Pj){`(〈f ,Yj〉)− `(〈f ∗,Yj〉)} for any f . For
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brevity in expression, we let f ∗ ∈ F(p, k). Notice that if f ∗ /∈ F(p, k), the proof becomes

slightly more complicated in the approximation error term. Hence we have r(f̂) ≥ 0, and

∇r(f) |f∗= 0.

Without loss of generality, assume that η0 is small enough such that aη0(k − 1) < 1.

Define ρ(f ,f ∗) = ζ
2ak

max
(
1, (k−1)η0

1/a−(k−1)η0

)∑k
j=1(〈f ,Yj〉 − 〈f ∗,Yj〉)2. For a(1 − P(1)) >

(1 − P(k)) and f close to f ∗, we have by Taylor’s expansion, r(f) ≥ {(1 − P(1)) − 1
a
(1 −

P(k))}
∑k

j=1
`′′(〈f∗,Yj〉)

2
(〈f ,Yj〉 − 〈f ∗,Yj〉)2. Notice that

∑k
j=1〈f ,Yj〉 =

∑k
j=1〈f

∗,Yj〉 = 0,

and we can conclude that r(f) ≥ ζ
2k
{(1−P(1))− 1

a
(1−P(k))}

∑k
j=1(〈f ,Yj〉− 〈f ∗,Yj〉)2 ≥

|a(1− P(1))− (1− P(k))|ρ(f ,f ∗). On the other hand, if a(1− P(1)) < (1− P(k)), one can

verify that 1
a
(1−P(k))− (1−P(1)) ≤ 1

a
− (k− 1)η0. Hence, by similar argument as above,

we have r(f) ≥ ζ
2k
{ 1
a
(1−P(k))− (1−P(1))} (k−1)η0

1/a−(k−1)η0
≥ |a(1−P(1))− (1−P(k))|ρ(f ,f ∗).

Next, define gf (x, y) =
∑

j 6=y `{〈f ,Yj〉} −
∑

j 6=y `{〈f
∗,Yj〉}. We prove that Pg2 ≤

B(Pg)α/(1+α) for a constant B that does not depend on n. To this end, notice that for

any f ,

E{gf (x, y)} = E{r(f)}

≥ Eρ(f ,f ∗)|a(1− P(1))− (1− P(k))|

≥ tE{ρ(f ,f ∗)}I|a(1−P(1))−(1−P(k))|≥t

= t[E{ρ(f ,f ∗)} − E{ρ(f ,f ∗)I|a(1−P(1))−(1−P(k))|<t}]

≥ t[E{ρ(f ,f ∗)} − C1(s)tα],

where C1(s) is a linear function of s, such that C1(s) ≥ ρ(f ,f ∗) for all f . Choose

t =
[
E{ρ(f ,f∗)}

2C1(s)

]1/α

, and we have E{ρ(f ,f ∗)} ≤ C2(s)[E{gf (x, y)}]α/(1+α), where C2(s) is

another linear function of s.

On the other hand, notice that

E{gf (x, y)}2 = E[E{gf (x, y)}2|x]

≤ C3E{ρ(f ,f ∗)},

where C3 is a universal constant. Hence, combining the above inequalities to obtain that

E{gf (x, y)}2 ≤ C4(s)E{gf (x, y)}α/(1+α),

where C4(s) is a linear function of s.

9



Next, let Pngf = 1
n

∑n
i=1 gf (xi, yi), and Pgf = EP(x,y)gf . We have

e`(f̂ ,f
∗) = E{2Pngf̂ + (P− 2Pn)gf̂}

≤ 2E{ inf
f∈F(p,k,s)

2Pngf + sup
f∈F(p,k,s)

(P− 2Pn)gf}

≤ 2 inf
f∈F(p,k,s)

E(Pngf ) + E{ sup
f∈F(p,k,s)

(P− 2Pn)gf}

≤ 2dn,p,k + 2(k − 1)

[
εn + pr{ sup

f∈Fn(p,k,s)

(P− 2Pn)gf ≥ εn}

]
,

where Fn(p, k, s) is the space of functions that corresponds to an εn-net of H̄. Furthermore,

because the entropy number of Fn(p, k, s) is the same as that of H̄, and is of order o(ε−δn )

for any δ > 0 (Zhou, 2002), we have, by Bernstein’s Inequality,

pr{ sup
f∈Fn(p,k,s)

(P− 2Pn)gf ≥ εn} ≤
∑

f∈Fn(p,k,s)

pr{(P− Pn)gf ≥
1

2
(Pgf + εn)}

≤ |Fn(p, k, s)| max
f∈Fn(p,k,s)

exp

{
−n

8

(Pgf + εn)2

Pg2
f + C1(s)(Pgf + εn)/6

}
≤ exp(C5ε

−δ
n − C6(s)nε2−α/(1+α)

n ),

where C5 is a universal constant, and C6(s) is a linear function of s.

Let εn = M(s)n−(1+α)/(2+α), where M(s) is a linear function of s. We choose M(s)

such that C5ε
−δ
n = 1

2
C6(s)nε

2−α/(1+α)
n and exp(−nε2−α/(1+α)

n ) = o(εn). We then have

e`(f̂ ,f
∗) ≤ 2dn,p,k + 2C7(k− 1)sn−(1+α)/(2+α) for a universal constant C7. This completes

the proof.

For binary loss functions that are flat for large enough u, one can verify that the

largest |〈f ∗,Yj〉| is bounded. In that case, it is possible to obtain similar results by

defining ρ(f ,f ∗) to be C
∑k

j=1 |〈f ,Yj〉 − 〈f
∗,Yj〉|, where C can be chosen by careful

analysis of the loss function. See Bartlett and Wegkamp (2008) for an example in the

binary case with SVM as the loss function. �

Proof of Corollary 3: The proof is immediate from Lemma 2 in Wang and Shen (2007)

and Theorems 1-3. �

Next, we consider two examples in which the choices of γ1 and γ2 differ. In particular,

in the first example, the classification problem is nearly separable. In this case, we show

that γ2 can be arbitrarily large. Hence, the convergence rate of the excess risk can be very

fast. In the second example, the classes are distributed with weak classification signals.

Consequently, we show that γ1 = 2 and γ2 = 1. Therefore, the convergence rate of the
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excess risk is slower than that in the first example.

For brevity, we focus on linear learning, and let `1 be the reversed DWD loss. We

construct two 3-class examples, where the true signal depends only on two predictors

X(1) and X(2). The remaining predictors are continuous and uniformly bounded. Assume

that the prior proportion of the three classes is the same. Denote by Zj the line segment

between the origin and Yj; j = 1, 2, 3.

Illustrating Example 1: Let the marginal density of X be non-zero only on Zj’s.

In particular, for any point x = (x(1), x(2)) in R2, define tj(x) = 〈Yj, (x(1), x(2))T 〉 for

j = 1, 2, 3. For each observation, suppose that with probability θ, the first two predictor

values are (0, 0), and with probability 1 − θ, the marginal pdf of (X(1), X(2)) | Y = j be

such that pr{tj(x) ∈ [a, b]} ∝
∫ b
a
tβdt for tj ∈ [0, 1], where β > 0. Suppose the cost for

rejection d is such that d < 2/3. It can be verified that for any β, the best parameters

{βj, j = 1, . . . , k − 1} are uniformly bounded.

Next, we explore the behavior of the linear learning parameters. DefineB = (β1, . . . ,βk−1)

to be the p by k − 1 matrix that contains the k − 1 parameter vectors. Define B(p,k) in

a similar manner as f (p,k). Because p can go to infinity, we study the behavior of B in

a neighbourhood of B(p,k) under the uniform metric, d(B1, B2) = supi,j{(B1)ij − (B2)ij},

where Bij is the (i, j)th element of B. We have the following result for d(B,B(p,k)).

Proposition 1. Let `1 be the reversed DWD loss. There exists a β and a constant C1,

such that e`(f ,f
(p,k)) ≥ C1d(B,B(p,k)).

Proof of Proposition 1: The proof is analogous to that of Theorem 5 in Zhang and

Liu (2014). Notice that we can choose β such that the theoretical minimizer f ∗ does

not belong to any F(p, k). Furthermore, because here we assume that the marginal

distribution of the predictors is continuous for ‖X‖ > 0, the assumptions in Theorem 5

of Zhang and Liu (2014) are automatically valid (despite that the loss function we consider

in this paper is not differentiable at 0, the corresponding probability is 0 because of the

continuous distribution assumption in Illustrating Example 1, hence the proof does not

change). �

As X(1) and X(2) are bounded, one can further verify that ∆(f ,f (p,k)) � d(B,B(p,k)).

Thus, we have that ∆(f ,f (p,k)) � e`(f ,f
(p,k)) in a small neighbourhood of f (p,k). Conse-

quently, we can choose γ1 = 1 in this example.

Next, we calculate γ2. Without loss of generality, we can restrict our discussion in

f ∈ F(2) := {f : f(x) = (x(1)β
(1)
1 + x(2)β

(2)
1 , x(1)β

(1)
2 + x(2)β

(2)
2 )T}. This is because

11



X(3), . . . , X(pn−1) are irrelevant to the classification problem. The data projected by the

classification function vector in R2 have positive support only on Z1, Z2 and Z3 for f (p,k).

Define W (β
(1)
1 , β

(2)
1 , β

(1)
2 , β

(2)
2 ) = E

f(x(1)β
(1)
1 +x(2)β

(2)
1 ,x(1)β

(1)
2 +x(2)β

(2)
2 )T
{L(f , Y )}, where L is

the 0-d-1 loss. For any (w
(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 ) ∈ R4, define

∆W := W (β
(1)
1 + w

(1)
1 , β

(2)
1 + w

(2)
1 , β

(1)
2 + w

(1)
2 , β

(2)
2 + w

(2)
2 )−W (β

(1)
1 , β

(2)
1 , β

(1)
2 , β

(2)
2 ).

When the norm of (w
(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 ) is small, one can verify that ∆W is upper bounded

by, up to a constant, {sup(w
(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 )}(β+1)/2. Notice that sup(|w(1)

1 |, |w
(2)
1 |, |w

(1)
2 |, |w

(2)
2 |)

is a norm defined on (w
(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 ) ∈ R4. On the other hand, ∆(f ,f ∗) =[

E{f1(x)−f (p,k)
1 (x)}2 +E{f2(x)−f (p,k)

2 (x)}2
]1/2 � (|w(1)

1 |+ |w
(2)
1 |+ |w

(1)
2 |+ |w

(2)
2 |) as X is

bounded. Since |w(1)
1 |+ |w

(2)
1 |+ |w

(1)
2 |+ |w

(2)
2 | is also a norm on (w

(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 ) ∈ R4,

we have that sup(|w(1)
1 |, |w

(2)
1 |, |w

(1)
2 |, |w

(2)
2 |) �

(
|w(1)

1 | + |w(2)
1 | + |w(1)

2 | + |w(2)
2 |
)

for all

(w
(1)
1 , w

(2)
1 , w

(1)
2 , w

(2)
2 ) ∈ R4. Therefore, we may choose γ2 = (β + 1)/2. Consequently, we

obtain γ2/γ1 = (β + 1)/2 in Corollary 3. When β → ∞, the classification signal in this

example becomes stronger, and the convergence rate of the excess risk can be arbitrarily

fast. Note that a similar result on the excess risk for binary classification was provided in

Wang and Shen (2007). �

Illustrating Example 2: This example is constructed similarly as the first example,

whereas the difference is on the marginal distribution of (X(1), X(2)). In particular, define

`′(u) to be the derivative of our loss function in (3) with `1 the reversed DWD loss for

u 6= 0, and at u = 0, define the derivative to be 1. We still let a proportion θ of

the observations remain at the origin, and for the rest 1− θ observations, let pr{tj(x) ∈

[a, b]} ∝
∫ b
a
`′(|t|)dt for tj ∈ [−1/2, 1]. Assume that when tj < 0, the marginal distribution

of (X(1), X(2)) | Y = j is on Zi, i 6= j and is symmetric with respect to the vector Zj. In

this case, the classification signal is much weaker than the first example. One can verify

that f ∗ = f (p,k). We then have the following result for the relationship between the excess

`-risk and d(B,B(p,k)).

Proposition 2. There exists a β and a constant C2, such that e`(f ,f
(p,k)) ≥ C2d(B,B(p,k))2.

The proof of Proposition 2 is analogous to that of Proposition 1, thus is omitted.

By similar arguments as in the first illustrating example, we can choose γ1 = 2 and

γ2 = 1. Consequently, the convergence rate of the excess risk is much slower than that of

the first example. �
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Proof of Theorem 4: To prove this theorem, we need to introduce a recent technique in

the statistical machine learning literature, namely, the Rademacher complexity (Bartlett

and Mendelson, 2002; Koltchinskii and Panchenko, 2002; Shawe-Taylor and Cristianini,

2004; Bartlett et al., 2005; Koltchinskii, 2006; Mohri et al., 2012). Recall the definition of

F(p, k, s) from the main paper. Let σ = {σi; i = 1, . . . , n} be independent and identically

distributed random variables, that take 1 and −1 with probability 1/2 each. Denote by

S a sample of observations (xi, yi); i = 1, . . . , n, independent and identically distributed

from the underlying distribution P(X, Y ). Consider the continuous indicator function

I R©,κ{f(x), y} = I R©,κ(x) with fixed κ. Given S, we define the empirical Rademacher

complexity of the function class F(p, k, s) to be

R̂n{F(p, k, s)} = Eσ[ sup
f∈F(p,k,s)

1

n

n∑
i=1

σiI R©,κ{Yyi ,f(xi)}].

Here Eσ means taking expectation with respect to the joint distribution of σ. Furthermore,

define the Rademacher complexity of F(p, k, s) to be

Rn{F(p, k, s)} = Eσ,S[ sup
f∈F(p,k,s)

1

n

n∑
i=1

σiI R©,κ{Yyi ,f(xi)}].

The proof of Theorem 4 consists of two major steps. In the first step, we show that

with probability at least 1−ζ (0 < ζ < 1), E{I R©,κ(YY , f̂)} is bounded by the summation

of its empirical evaluation, the Rademacher complexity of the function class F(p, k, s),

and a penalty term on ζ. In particular, we have the following lemma.

Lemma 5. Let Rn{F(p, k, s)} and R̂n{F(p, k, s)} be defined as above. Then with proba-

bility at least 1− ζ,

E[I R©,κ{YY ,f(X)}] ≤ 1

n

n∑
i=1

I R©,κ{Yyi ,f(xi)}+ 2Rn{F(p, k, s)}+ Tn(ζ), (4)

where Tn(ζ) = {log(1/ζ)/n}1/2.

Moreover, with probability at least 1− ζ,

E[I R©,κ{YY ,f(X)}] ≤ 1

n

n∑
i=1

I R©,κ{Yyi ,f(xi)}+ 2R̂n{F(p, k, s)}+ 3Tn(ζ/2).

Proof of Lemma 5: The proof consists of three parts. In the first part, we use the

McDiarmid inequality (McDiarmid, 1989) to bound the left hand side of (4) in terms
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of its empirical estimation, plus the expectation of their supremum difference, E(φ),

where φ is to be defined. In the second part, we show that E(φ) is bounded by the

Rademacher complexity using symmetrization inequalities (van der Vaart and Wellner,

2000). In the third part, we provide a bound on the Rademacher complexity using the

empirical Rademacher complexity.

For a given sample S, we define

φ(S) = sup
f∈F(p,k,s)

(
E[I R©,κ{YY ,f(X)} − 1

n

n∑
i=1

I R©,κ{Yyi ,f(xi)}]

)
.

Let S(i,x) = {(x1, y1), . . . , (x′i, yi), . . . , (xn, yn)} be another sample from P(X, Y ), where

the difference between S and S(i,x) is only on the x value of their ith pair. By definition,

we have

|φ(S)− φ(S(i,x))| = | sup
f∈F(p,k,s)

(
E[I R©,κ{YY ,f(X)}]− 1

n

∑
S

I R©,κ{Yyi ,f(xi)}

)

− sup
f∈F(p,k,s)

(
E[I R©,κ{YY ,f(X)}]− 1

n

∑
S(i,x)

I R©,κ{Yyi ,f(xi)}

)
|.

For simplicity, assume that fS is the function that achieves the supremum of φ(S). Note

that the case of no function reaching the supremum can be treated analogously, with

only some additional discussions on the arbitrarily small difference between φ(f) and its

supremum. Thus, we omit the details here. We have that,

|φ(S)− φ(S(i,x))| ≤|E[I R©,κ{YY ,fS(X)}]− 1

n

∑
S

I R©,κ{Yyi ,fS(xi)}

−E[I R©,κ{YY ,fS(X)}] +
1

n

∑
S(i,x)

I R©,κ{Yyi ,fS(xi)}|.

=
1

n
|
∑
S

I R©,κ{Yyi ,fS(xi)} −
∑
S(i,x)

I R©,κ{Yyi ,fS(xi)}|

≤ 1

n
.

Next, by the McDiarmid inequality, we have that for any t > 0, pr[φ(S)−E{φ(S)} ≥ t] ≤

exp[−(2t2)/{2n(1/n)2}], or equivalently, with probability at least 1−ζ, φ(S)−E{φ(S)} ≤

Tn(ζ). Consequently, we have that with probability at least 1 − ζ, E{I R©,κ(YY , f̂)} ≤

n−1
∑n

i=1 I R©,κ{Yyi , f̂(xi)}+E{φ(S)}+Tn(ζ). This completes the first part of the proof.

In the second part, we bound E{φ(S)} by the Rademacher complexity. To this end,

define S ′ = {(x′i, y′i); i = 1, . . . , n} as an independent, duplicate sample of size n with
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identical distribution as S. Denote by ES the action of taking expectation with re-

spect to the distribution of S, and define ES′ analogously. By definition, we have that

ES′
[
n−1

∑
S′ I R©,κ{Yy′i , f̂(x′i)} | S

]
= E[I R©,κ{YY , f̂(x)}], and ES′

[
n−1

∑
S I R©,κ{Yyi , f̂(xi)} |

S
]

= n−1
∑

S I R©,κ{Yyi , f̂(xi)}. Then, by Jensen’s inequality and the property of σ, we

have that

E{φ(S)} = ES
(

sup
f∈F(p,k,s)

ES′ [
1

n

∑
S′

I R©,κ{Yy′i , f̂(x′i)} −
1

n

∑
S

I R©,κ{Yyi , f̂(xi)}] | S
)

≤ ES,S′
[

sup
f∈F(p,k,s)

1

n

∑
S′

I R©,κ{Yy′i , f̂(x′i)} −
1

n

∑
S

I R©,κ{Yyi , f̂(xi)}
]

= ES,S′,σ
[

sup
f∈F(p,k,s)

1

n

∑
S′

σiI R©,κ{Yy′i , f̂(x′i)} −
1

n

∑
S

σiI R©,κ{Yyi , f̂(xi)}
]

≤ 2Rn{F(p, k, s)}.

Hence the second part is proved.

In the third step, we need to bound Rn{F(p, k, s)} in terms of R̂n{F(p, k, s)}. This

step is analogous to the first part. In particular, one can apply the McDiarmid inequality

on R̂n{F(p, k, s)} and the corresponding expectation Rn{F(p, k, s)}. Similar to the first

part of this proof, we can show that with probability at least 1 − ζ, Rn{F(p, k, s)} ≤

R̂n{F(p, k, s)} + 2Tn(ζ). The final results can be obtained by choosing the confidence

1 − ζ/2 in the first and third steps, and combining the inequalities of the three steps

together. �

The second major step to prove Theorem 4 involves bounding the empirical Rademacher

complexities for different learning settings. We have the following lemma.

Lemma 6. In linear learning, when we use the L1 penalty, the empirical Rademacher com-

plexity R̂n{F(p, k, s)} ≤ s
κ

√
2 log(2pk−2p)

n
, and when we use the L2 penalty, R̂n{F(p, k, s)} ≤

{2(k−1)(ps)1/2}/(κn1/4)+{2(ps)1/2}
(

log[e+e{2p(k−1)}]/(n1/2)
)1/2

/(κn1/4). For kernel

learning with separable and bounded kernel functions, the empirical Rademacher complex-

ity R̂n{F(p, k, s)} ≤ s(k−1)
κ
√
n

.

Proof of Lemma 6: For the L1 penalized learning, note that the Rademacher complexity

R̂n{F(p, k, s)} is upper bounded by the following Rademacher complexity. In particular,

by Lemma 4.2 in Mohri et al. (2012), we have that R̂n{F(p, k, s)} is upper bounded by

1

κ
R̂∗n{F(p, k, s)} =

1

κ
Eσ

 sup∑k−1
j=1 ‖βj‖1<s

1

n

n∑
i=1

σi{
k−1∑
j=1

xTi βj}

 , (5)
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because the continuous indicator function is Lipschitz with constant 1/κ, and elements in

Yj are bounded by 1. Without loss of generality, we can rewrite (5) as

1

κ
R̂∗n{F(p, k, s)} =

1

κ
Eσ

{
sup
‖γ‖1<s

1

n

n∑
i=1

σiγ
Tx∗i

}
,

where γ can be regarded as a vector that contains all the elements in βj for j = 1, . . . , k−1,

and x∗i is defined accordingly. Next, using Theorem 10.10 in Mohri et al. (2012), we

have that R̂∗n{F(p, k, s)} ≤ s
√

2 log(2pk−2p)
n

. Thus, R̂n{F(p, k, s)} ≤ s
κ

√
2 log(2pk−2p)

n
for L1

penalized linear learning.

For L2 penalized learning, the proof is analogous to that of Lemma 8 in Zhang and

Liu (2014), and we omit the details here.

For kernel learning, notice that one can include the intercept in the original predictor

space (i.e., augment x to include a constant 1 before the other predictors), and define a

new kernel function accordingly. This new kernel is also positive definite and separable

with bounded kernel function. By Mercer’s Theorem, this introduces a new RKHS H.

Next, by similar argument as for (5), we have that the original Rademacher complexity

is upper bounded by

1

κ
R̂∗n{F(p, k, s)} =

1

κ
Eσ

{
sup∑

j ‖fj‖2H≤s

1

n

n∑
i=1

σi{
k−1∑
j=1

fj(xi)}

}
, (6)

≤ k − 1

κ
Eσ

{
sup
‖f‖2H≤s

1

n

n∑
i=1

σif(xi)

}
, (7)

≤ k − 1

κ

s√
n
, (8)

where the last inequality follows from Theorem 5.5 in Mohri et al. (2012). Hence, we have

that for kernel learning, R̂n{F(p, k, s)} ≤ s(k−1)
κ
√
n

. �

The proof of Theorem 4 is thus finished by combining Lemmas 5 and 6, and the fact

that the continuous indicator function I R©,κ is an upper bound of the indicator function

I R© for any κ. �

Proof of Theorem 5: The proof is analogous to that of Theorem 4 and is omitted. �
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3 Derivation of Implementations

Derivation of the implementation for linear learning: Introducing Lagrangian

variable λ, slack variables ξij and ηij, we have that (3) is equivalent to

min
f∈F

nλ

2

k−1∑
q=1

βTq β +
n∑
i=1

∑
j 6=yi

(ξij + ηij)

subjectto ξij ≥ 0,

ηij ≥ 0,

ξij − 〈f(xi),Yj〉 − 1 ≥ 0,

ηij − (a− 1)〈f(xi),Yj〉 ≥ 0; i = 1, . . . , n, j 6= yi.

Now define the corresponding Lagrangian function L as

L =
nλ

2

k−1∑
q=1

βTq β +
n∑
i=1

∑
j 6=yi

(ξij + ηij)−
n∑
i=1

∑
j 6=yi

τijξij −
n∑
i=1

∑
j 6=yi

χijηij

−
n∑
i=1

∑
j 6=yi

αij{ξij − 〈f(xi),Yj〉 − 1} −
n∑
i=1

∑
j 6=yi

γij{ηij − (a− 1)〈f(xi),Yj〉},

where αij, γij, τij, and χij; i = 1, . . . , n, j = 1, . . . , k are the Lagrangian multipliers.

Define Aij = I(j 6= yi). Take partial derivative of L with respect to ξij, ηij and βq, and

we have

∂L
∂ξij

= Aij − αij − τij = 0,

∂L
∂ηij

= Aij − γij − χij = 0,

∂L
∂βq

= nλβq +
n∑
i=1

∑
j 6=yi

αijYj,qxi +
n∑
i=1

∑
j 6=yi

γij(a− 1)Yj,qxi

= nλβq +
n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,qxi = 0,

where Yj,q is the qth element of Yj. Now one can conclude that 0 ≤ αij ≤ Aij, 0 ≤ γij ≤

Aij; i = 1, . . . , n, j = 1, . . . , k, and

βq = − 1

nλ

n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,qxi. (9)
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Plugging β in L, one can verify that

L = −nλ
2

k−1∑
q=1

βTq βq +
n∑
i=1

∑
j 6=yi

αij.

Derivation of the implementation for kernel learning: Next, we briefly discuss the

case of kernel learning. Let the kernel function be K(·, ·), and the corresponding gram

matrix be K =
(
K(xi,xi′)

)
i,i′

. Without loss of generality, assume that the gram matrix

K is invertible. If we penalize the intercepts and choose J(f) to be the squared norm of

f in the RKHS, the optimization problem (3) can be written as (Kimeldorf and Wahba,

1971).

min
f∈F

nλ

2

k−1∑
q=1

θTqKθq +
nλ

2

k−1∑
q=1

θ2
q,0 +

n∑
i=1

∑
j 6=yi

(ξij + ηij)

subjectto ξij ≥ 0,

ηij ≥ 0,

ξij − 〈f(xi),Yj〉 − 1 ≥ 0,

ηij − (a− 1)〈f(xi),Yj〉 ≥ 0; i = 1, . . . , n, j 6= yi,

where fq(x) =
∑n

i=1K(xi,x)θq,i + θq,0; q = 1, . . . , k − 1, and θq,i is the ith element of θq.

Now introduce the Lagrangian multipliers αij, γij, τij, and χij as in the linear case, take

the partial derivatives with respect to θq, θq,0, ξij and ηij and set to zero, and we have

θq = − 1

nλ
K−1[

n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,qKi],

θq,0 = − 1

nλ

n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,q,

where Ki is the ith column of K. Therefore, the optimization problem (3) is equivalent

to

min
αij ,γij

1

2nλ

k−1∑
q=1

[
n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,qKi]
TK−1[

n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,qKi]

+
1

2nλ

k−1∑
q=1

[
n∑
i=1

∑
j 6=yi

{αij + (a− 1)γij}Yj,q]2 −
n∑
i=1

∑
j 6=yi

αij

subjectto 0 ≤ αij ≤ Aij, 0 ≤ γij ≤ Aij; i = 1, . . . , n, j = 1, . . . , k. (10)

Because KT
i K

−1Kj = K(xi,xj), one can verify that (10) can be solved in an analogous
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manner as (6) in the main paper.

4 Extended Numerical Results

Example 1, Soft with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 50.91 29.36 28.38 28.38
52.26 30.17

p2 28.35
size 2: 22.64

45.78 44.94 1.673
size 3: 5.714

p3 20.74 69.79 - - 47.74 -

Overall 100.0 41.92 39.41 28.17 100.0 45.64

Example 1, Soft with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 49.43 28.80 27.58 27.58
52.26 30.17

p2 28.97
size 2: 24.62

45.89 45.35 1.581
size 3: 4.349

p3 21.60 69.61 - - 47.74 -

Overall 100.0 41.92 39.32 27.47 100.0 45.64

Table 1: Simulation results for Example 1, the Soft loss, with d = 0.6

Example 1, DWD with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 52.36 31.19 29.70 29.70
58.71 31.25

p2 27.79
size 2: 21.60

47.07 45.37 2.011
size 3: 6.192

p3 19.85 69.95 - - 41.29 -

Overall 100.0 42.87 39.96 28.04 100.0 43.93

Example 1, DWD with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 49.45 31.79 31.30 31.30
58.71 31.25

p2 26.62
size 2: 17.91

45.04 46.59 2.980
size 3: 8.711

p3 23.93 66.14 - - 41.29 -

Overall 100.0 42.87 41.80 30.60 100.0 43.93

Table 2: Simulation results for Example 1, the DWD loss, with d = 0.6.
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Example 1, Soft with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 47.39 26.56 26.32 26.32
47.92 27.33

p2 26.33
size 2: 22.16

43.92 44.11 1.244
size 3: 4.168

p3 26.28 67.61 - - 53.08 -

Overall 100.0 41.92 37.22 25.94 100.0 39.64

Example 1, Soft with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 47.01 26.40 26.11 26.11
47.92 27.33

p2 26.72
size 2: 22.90

44.03 44.07 1.201
size 3: 3.821

p3 26.27 67.54 - - 53.08 -

Overall 100.0 41.92 37.18 25.72 100.0 39.64

Table 3: Simulation results for Example 1, the Soft loss, with d = 0.5.

Example 1, DWD with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 50.77 30.02 28.84 28.84
55.13 32.08

p2 25.85
size 2: 20.18

46.16 46.00 1.898
size 3: 5.673

p3 23.38 67.13 - - 44.87 -

Overall 100.0 42.87 38.22 26.82 100.0 40.12

Example 1, DWD with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 49.78 29.74 28.80 28.80
55.13 32.08

p2 26.14
size 2: 21.56

44.88 45.69 1.731
size 3: 4.578

p3 24.08 67.83 - - 44.87 -

Overall 100.0 42.87 38.32 26.83 100.0 40.12

Table 4: Simulation results for Example 1, the DWD loss, with d = 0.5.
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Example 2, Soft with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 57.45 27.10 26.99 26.99
58.61 28.74

p2
size2: 16.81

48.34 48.35 9.141b {1, 2}: 72.2%

p3 25.74 52.72 - - 41.39 -

Overall 100.0 37.94 37.43 29.92 100.0 38.33

Example 2, Soft with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 55.21 26.58 26.37 26.37
58.61 28.74

p2
size2: 16.11

48.24 48.22 8.979b {1, 2}: 72.8%

p3 28.68 53.01 - - 41.39 -

Overall 100.0 37.94 37.16 30.32 100.0 38.33

Table 5: Simulation results for Example 2, the Soft loss, with d = 0.5.

Example 2, SVM with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 52.53 28.15 27.81 27.81
42.40 25.85

p2
size2: 12.90

48.57 51.00 11.26b {1, 2}: 73.1%

p3 34.57 53.01 - - 57.60 -

Overall 100.0 39.57 38.91 33.33 100.0 40.66

Example 2, SVM with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 50.40 27.75 28.19 28.19
42.40 25.85

p2
size2: 14.41

47.23 50.61 11.32b {1, 2}: 73.3%

p3 35.19 53.67 - - 57.60 -

Overall 100.0 39.57 38.86 33.43 100.0 40.66

Table 6: Simulation results for Example 2, the SVM hinge loss, with d = 0.5.

Example 2, Soft with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 64.91 29.30 28.36 28.36
63.34 29.12

p2
size2: 19.21

43.00 42.12 9.538b {1, 2}: 69.71%

p3 15.88 67.14 - - 36.66 -

Overall 100.0 37.94 36.03 29.77 100.0 40.44

Example 2, Soft with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 63.58 29.10 28.01 28.01
63.34 29.12

p2
size2: 18.85

43.65 43.18 10.01b {1, 2}: 68.37%

p3 17.57 63.80 - - 36.66 -

Overall 100.0 37.94 36.49 30.23 100.0 40.44

Table 7: Simulation results for Example 2, the Soft loss, with d = 0.6.
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Example 2, SVM with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 66.43 32.15 32.20 32.20
54.68 26.51

p2
size2: 17.25

44.15 42.08 10.70b {1, 2}: 69.24%

p3 16.32 64.92 - - 45.32 -

Overall 100.0 39.57 38.44 33.02 100.0 41.69

Example 2, SVM with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 65.12 32.06 31.88 31.88
54.68 26.51

p2
size2: 17.57

43.33 43.07 10.16b {1, 2}: 67.78%

p3 17.31 63.99 - - 45.32 -

Overall 100.0 39.57 38.71 32.93 100.0 41.69

Table 8: Simulation results for Example 2, the SVM hinge loss, with d = 0.6.

Example 3, DWD with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 47.08 27.30 27.48 27.48

36.97 24.72
p2 26.25

size 2: 22.42

35.29 36.86 3.768
b {1, 2}: 42.5%
b {3, 4}: 41.6%

size 3: 3.835

p3 26.67 57.39 - - 63.03 -

Overall 100.0 36.44 35.76 27.24 100.0 41.78

Example 3, DWD with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 45.58 25.68 26.11 26.11

36.97 24.72
p2 23.26

size 2: 19.71

36.45 35.71 1.771
b {1, 2}: 40.3%
b {3, 4}: 42.9%

size 3: 3.549

p3 31.16 56.02 - - 63.03 -

Overall 100.0 36.44 35.97 27.90 100.0 41.78

Table 9: Simulation results for Example 3, the DWD loss, with d = 0.5.
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Example 3, SVM with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 41.49 27.47 27.29 27.29

33.41 24.72
p2 31.26

size 2: 28.71

33.84 33.87 2.494
b {1, 2}: 41.1%
b {3, 4}: 41.0%

size 3: 2.552

p3 27.25 57.27 - - 66.59 -

Overall 100.0 36.69 35.13 25.71 100.0 44.53

Example 3, SVM with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 42.52 26.82 26.67 26.67

33.41 24.72
p2 28.18

size 2: 24.67

35.63 36.98 3.619
b {1, 2}: 42.2%
b {3, 4}: 41.8%

size 3: 3.509

p3 29.30 56.02 - - 66.59 -

Overall 100.0 36.69 35.71 26.99 100.0 44.53

Table 10: Simulation results for Example 3, the SVM hinge loss, with d = 0.5.

Example 1 a = a1 = 1.333 a = 1.555 a = 1.777 a = a2 = 2

Soft 39.41 39.39 39.35 39.32
DWD 39.96 40.22 41.77 41.80

Example 2 a = a1 = 1.5 a = 1.667 a = 1.833 a = a2 = 2

Soft 37.43 37.39 37.26 37.16
SVM 38.91 39.01 38.81 38.86

Example 3 a = a1 = 1.667 a = 1.889 a = 2.111 a = a2 = 2.333

DWD 35.76 35.77 35.80 35.97
SVM 35.13 35.58 35.55 35.71

Table 11: The average empirical 0-d-1 loss on the test data sets for simulated Examples
1-3 using different loss functions and various a values.
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GBM, Soft with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 72.15 13.69 13.69 13.69

72.58 13.78
p2 18.99

size 2: 17.14

41.35 39.53 3.724
b {C,M}: 44.3%
b {N,P}: 33.7%

size 3: 1.853

p3 8.857 43.33 - - 27.42 -

Overall 100.0 21.85 20.97 14.13 100.0 21.25

GBM, Soft with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 70.15 13.16 12.84 12.84

72.58 13.78
p2 19.85

size 2: 18.42

40.09 42.35 4.055
b {C,M}: 44.8%
b {N,P}: 35.8%

size 3: 1.428

p3 10.00 54.86 - - 27.42 -

Overall 100.0 21.85 21.00 13.81 100.0 21.25

Table 12: Data analysis results for the GBM data, the Soft loss.
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PCA for the ZIP testing data
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Figure 1: Left: the PCA scatter plot. Middle: the test data mapped to R2 using f̂(x) ∈ R2 in a

typical split, where the dashed lines correspond to the classification boundaries, and observations

with reject or refine prediction are identified as red squares. Right: some observations that often

(> 80% within the 100 splits) have refined prediction {4, 9}.

The ZIP data set has been extensively studied by many previous works. We choose

categories “3”, “4” and “9” to demonstrate the effect of the refine option. For handwritten

digits, it is sometimes difficult for machines to classify between “4” and “9”, while the

difference between “3” and “4” or “3” and “9” is more obvious. For visualization, we

draw a PCA plot for the test data on the left panel of Figure 1. In the middle panel,

we provide a scatter plot by projecting the sample to the 2D space using f̂(x) ∈ R2. In

particular, observations with reject or refined set predications are shown in red squares.

It can be seen that the observations which are refined are precisely those sitting on 2-way

classification boundaries (shown as the dashed red lines), while most of them are between

“4” and “9”. In the analysis, we use d = 0.4, the DWD loss, and the L2 penalty. We

normalize the data set before the analysis. To select the best tuning parameters, we split

the training data set into two groups, and use one to train the classifier and the other for

tuning. We report the average results of 100 splits.

The results for the ZIP data set are reported in Table 13. For example, for a = a1,

note that although there are only a few rejected observations (< 0.368% on average), their

misclassification rate is as high as 95.14%, if not rejected. This stunningly high error rate

justifies our reject option. Though there are only 2.578% observations that are refined,

the mis-refinement rate is as low as 0.110%, almost always correct. The middle panel of

Figure 1 also suggests that the refinement decision is well deserved since the refined data

points are in close vicinity to the classification boundaries. Lastly, it can be seen that,

for quite a few observations, the classification signal is very vague between “4” and “9”,

which is consistent with our common sense (see the middle and right panels of Figure 1).
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ZIP, DWD with a = a1 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 97.05 2.087 2.087 2.087
98.90 2.607

p2
size 2: 2.578

35.71 28.57 0.110b {4, 9}: 55.9%

p3 0.368 95.14 - - 1.104 -

Overall 100.0 3.314 2.909 2.175 100.0 3.020

ZIP, DWD with a = a2 Regular Reject R&R Probability Method

Proportion Error Proportion Error

p1 97.47 2.277 2.166 2.166
98.90 2.607

p2
size 2: 2.119

28.57 21.42 0.150b {4, 9}: 57.2%

p3 0.412 97.25 - - 1.104 -

Overall 100.0 3.314 2.885 2.279 100.0 3.020

Table 13: Data analysis results for the ZIP data, the DWD loss.
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