Enantioselective Synthesis of Allenes by Catalytic Traceless Petasis Reactions

Yao Jiang, ${ }^{1}$ Abdallah B. Diagne, ${ }^{2}$ Regan J. Thomson, ${ }^{2}{ }^{*}$ Scott E. Schaus ${ }^{1 *}$
${ }^{1 .}$ Department of Chemistry, Center for Molecular Discovery, Boston University, 590
Commonwealth Ave, Boston, MA 02215, USA
${ }^{2 .}$ Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
*seschaus@bu.edu, *r-thomson@northwestern.edu
\section*{Supporting Information}

1. General Information S1
2. Experimental Procedures S3
3. Stereochemical Proofs S56
4. References S57
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S59
6. HPLC Traces for Enantiomeric Excess Determination S122

1. General Information.

All ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using Varian Unity Plus 500 or 400 MHz spectrometer at ambient temperature in CDCl_{3} (Cambridge Isotope Laboratories, Inc.). Chemical shifts in ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 7.26 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{app}=$ apparent, $\mathrm{br}=\mathrm{broad}$, par obsc $=$ partially obscure, ovrlp $=$ overlapping, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz), and integration. Chemical shifts in ${ }^{13} \mathrm{C}$ NMR are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 77.0$ ppm). All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. Chemical shifts in ${ }^{19}$ F NMR spectra are reported in parts per million using $0.05 \% \alpha, \alpha, \alpha$-trifluorotoluene in
deuterobenzene as the external standard. Infrared spectra were recorded on a Nicolet Nexus 670 FT-IR ESP spectrophotometer. High-resolution mass spectra were obtained using a Waters QTOF mass spectrometer. LC-MS experiments were performed using an Agilent Single-Quad LC/MSD VL with single-quad low resolution (1 decimal place) capable of both ESI positive and negative modes using flow injection analysis. GC-MS experiments were performed using an Agilent GC-MS 6890N equipped with a MS detector up to $800 \mathrm{~m} / \mathrm{z}$. The ionization is electron impact (EI) and software is ChemStation. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm , and were reported as $[\alpha]^{\mathrm{T}}{ }^{\circ} \mathrm{C}$ (concentration in grams $/ 100 \mathrm{~mL}$ solvent). Chiral HPLC analysis was performed using an Agilent 1100 series HPLC System with a diode array detector. Chiral columns include Chiralcel®OD (Chiral Technologies Inc., $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D.), Chiralpak®AD-H (Chiral Technologies Inc., $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D.) and Chiralpak®IA-H (Chiral Technologies Inc., $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D.). Analytical thin layer chromatography was performed using EMD 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash column chromatography was performed on Sorbent Technologies $60 \AA$ silica gel. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Catalyst loadings were calculated with respect to the amount of boronates. All reactions were carried out in oven-dried glassware under an argon or nitrogen atmosphere unless otherwise noted. HPLC grade THF, dichloromethane, $\mathrm{Et}_{2} \mathrm{O}$ and toluene were purchased from Fisher and VWR and were purified and dried by passing through as PURE SOLV ${ }^{\circledR}$ solvent purification system (Innovative Technology Inc.). Triethyl borate was distilled over CaH_{2} before use in the preparation of alkynyl boronates. Mesitylene was dried by and stored with $3 \AA$ molecular sieves beads. The previously reported chiral biphenol catalysts were prepared according to known literature procedures. ${ }^{1}$ All other reagents were purchased from commercial suppliers and used without further purification.

2. Experimental Procedures

a. Synthesis of Hydrazides

2-Nitrobenzenesulfonylhydrazide (NBSH, 20) was synthesized according to the procedure reported by Myers and coworkers. ${ }^{2}$

2,5-Dibromobenzenesulfonohydrazide (8)

Hydrazine monohydrate ($6.1 \mathrm{~mL}, 125 \mathrm{~mol}, 2.5 \mathrm{eq}$) was added dropwise to a solution of $2,5-$ dibromobenzenesulfonyl chloride ($16.7 \mathrm{~g}, 50 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (20 mL) at $-30^{\circ} \mathrm{C}$ under an argon atmosphere. During the addition a white precipitate of hydrazine hydrochloride was deposited. After stirring at $-30^{\circ} \mathrm{C}$ for 1 h , EtOAc $\left(30 \mathrm{~mL}, 23^{\circ} \mathrm{C}\right)$ was added to the cold reaction solution and the mixture was washed repeatedly with ice-cold 10% aqueous sodium chloride solution ($5 \times 100 \mathrm{~mL}$). The organic layer was dried over sodium sulfate at $0{ }^{\circ} \mathrm{C}$ and then was added slowly to a stirring solution of hexanes (500 ml) at $23{ }^{\circ} \mathrm{C}$ over 5 min . 2,5Dibromobenzenesulfonohydrazide precipitated within 10 min as an off-white solid and was collected by vacuum filtration. The filter cake was washed with hexanes $\left(2 \times 20 \mathrm{~mL}, 23{ }^{\circ} \mathrm{C}\right)$ and then recrystallized by dichloromethane to afford an off-white crystal ($11.7 \mathrm{~g}, 71 \%$ yield). The hydrazide was stored at $-8^{\circ} \mathrm{C}$ without exposure to light.
Caution: During the reaction one equivalent of hydrazine hydrochloride was generated as a white precipitate. Stirring might be impeded and the rate of stirring should be adjusted. Hydrazine hydrochloride is extremely hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion or inhalation. After the aqueous work-up it remained in the water layer, which should be disposed to a separate container as a hazardous waste.
${ }^{1}$ H NMR (500 MHz, DMSO- d_{6}) $\delta 8.80(\mathrm{br}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.68(\mathrm{~m}, 2 \mathrm{H})$, 4.43 (br, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 140.0,137.5,137.0,134.4,121.1,119.2$.

2-Nitro-4-(trifluoromethyl)benzenesulfonohydrazide (17)

Hydrazine monohydrate ($6.1 \mathrm{~mL}, 125 \mathrm{~mol}, 2.5 \mathrm{eq}$) was added dropwise to a solution of 2-nitro-4-(trifluoromethyl)benzenesulfonyl chloride ($14.5 \mathrm{~g}, 50 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (20 mL) at $-30^{\circ} \mathrm{C}$ under an argon atmosphere. During the addition a white precipitate of hydrazine hydrochloride was deposited. After stirring at $-30^{\circ} \mathrm{C}$ for 30 min , EtOAc ($30 \mathrm{~mL}, 23^{\circ} \mathrm{C}$) was added to the cold reaction solution and the mixture was washed repeatedly with ice-cold 10% aqueous sodium chloride solution $(5 \times 100 \mathrm{~mL})$. The organic layer was dried over sodium sulfate at $0{ }^{\circ} \mathrm{C}$ and then was added slowly to a stirring solution of hexanes $(500 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ over 5 min . 2-Nitro-4(trifluoromethyl)benzenesulfonohydrazide precipitated within 10 min as a yellow solid and was collected by vacuum filtration. The filter cake was washed with hexanes $\left(2 \times 20 \mathrm{~mL}, 23{ }^{\circ} \mathrm{C}\right)$ and then recrystallized by dichloromethane to afford a pale white solid ($10.7 \mathrm{~g}, 75 \%$ yield). The
hydrazide was stored at $-8^{\circ} \mathrm{C}$ without exposure to light.
Caution: During the reaction one equivalent of hydrazine hydrochloride was generated as a white precipitate. Stirring might be impeded and the rate of stirring should be adjusted. Hydrazine hydrochloride is extremely hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion or inhalation. After the aqueous work-up it remained in the water layer, which should be disposed to a separate container as a hazardous waste.
${ }^{1} \mathbf{H}$ NMR (500 MHz , Acetonitrile- d_{3}) $\delta 8.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (dq, $J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (br, 1 H), 2.74 (br, 2 H).
${ }^{13} \mathbf{C}$ NMR (126 MHz , Acetonitrile- d_{3}) $\delta 148.7,135.0(\mathrm{q}, J=34.5 \mathrm{~Hz}), 133.9$, 133.5, 129.3 (q, $J=$ $3.8 \mathrm{~Hz}), 122.5(\mathrm{q}, J=272.7 \mathrm{~Hz}), 122.3(\mathrm{q}, J=4.0 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta-63.9$.

b. Synthesis of (S)-($\left.\mathrm{CF}_{3}\right)_{4}$-BINOL (10)

(S)-3,3'-Diiodo-2,2'-bis(methoxymethoxy)-6,6'-bis(trifluoromethyl)-1,1'-binaphthalene (S10) To a solution of (S)-2,2'-bis(methoxymethyloxy)-6,6'-bis(trifluoromethyl)-1,1'-binaphthyl ${ }^{3}$ $(3.17 \mathrm{~g}, 5.19 \mathrm{mmol})$ in dry THF $(60 \mathrm{~mL})$ was added a hexane-cyclohexane solution of s butyllithium ($1.02 \mathrm{M}, 20.8 \mathrm{~mL}, 21.2 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under argon and the resulting mixture was stirred for 1 h at the same temperature. Iodine ($7.92 \mathrm{~g}, 31.2 \mathrm{mmol}$) in dry THF (25 mL) was then added by a cannula and the reaction mixture was stirred for an additional 3 h at the same temperature. The reaction was quenched with water and diluted with EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc. The organic layers were combined and treated with aqueous $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ to destroy excess iodine, and washed with brine, and dried over anhydrous sodium sulfate. After filtration and concentration under reduced pressure, the crude product was purified by silica gel column chromatography (hexanes/EtOAc: $50 / 1$) to afford (S)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-6,6'-bis(trifluoromethyl)-1,1'binaphthalene as an amorphous oil in 65% yield.
$[\alpha]_{\mathrm{D}}{ }^{22}=+3.1\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.91-4.71(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,141.1,134.9,130.8,127.9(\mathrm{q}, J=32.6 \mathrm{~Hz}), 127.5,125.8$, $125.0,124.5(\mathrm{q}, J=4.5 \mathrm{~Hz}), 122.9(\mathrm{q}, J=3.2 \mathrm{~Hz}), 99.8,94.2,56.5$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.5.
ESI-MS found 762.9 (calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{I}_{2} \mathrm{O}_{4}\right]^{+}$: 762.9)
IR (thin film, cm^{-1}): 3015, 2948, 2902, 2827, 1570, 1328, 1164, 1069, 957.

(S)-3,3',6,6'-Tetrakis(trifluoromethyl)-[1,1'-binaphthalene]-2,2'-diol (10)

A mixture of (S)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-6,6'-bis(trifluoromethyl)-1,1'binaphthalene ($\mathbf{S 1 0}$) $(0.56 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{FSO}_{2} \mathrm{CF}_{2} \mathrm{CO}_{2} \mathrm{Me}(0.51 \mathrm{ml}, 4 \mathrm{mmol}), \mathrm{CuI}(0.46 \mathrm{~g}, 2.4$ $\mathrm{mmol})$, HMPA ($0.70 \mathrm{ml}, 4 \mathrm{mmol}$) in NMP $(20 \mathrm{~mL})$ was stirred under argon atmosphere at $80^{\circ} \mathrm{C}$ and monitored by TLC. When the starting material vanished, the reaction was cooled to room temperature and diluted with dichloromethane $(50 \mathrm{~mL})$. The solution was washed with water (3 X 100 mL), dried over sodium sulfate, and concentrated to afford a syrup. The crude product was then dissolved in THF/ $\mathrm{MeOH}(1: 1,25 \mathrm{ml} / 25 \mathrm{ml})$ mixture. 1 gram of Amberlyst 15 was added and the mixture was heated to $50{ }^{\circ} \mathrm{C}$ for 3 h . The Amberlyst powder was filtered off and the filtrate was concentrated and subjected to column chromatography (hexanes/EtOAc: 50/1) to directly afford the deprotected product as a light yellow solid (45% yield over two steps).
$[\alpha]_{\mathrm{D}}{ }^{22}=+4.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~s}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=9.0,2 \mathrm{H}), 7.19(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.53$ (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,136.1,131.4(\mathrm{q}, J=5.4 \mathrm{~Hz}), 127.9(\mathrm{q}, J=33.0 \mathrm{~Hz}), 127.4$ $(\mathrm{q}, J=4.3 \mathrm{~Hz}), 126.7,125.9(\mathrm{q}, J=3.0 \mathrm{~Hz}), 124.9,124.4(\mathrm{q}, J=119.0 \mathrm{~Hz}), 122.2(\mathrm{q}, J=119.8$ Hz), $120.4(\mathrm{q}, J=31.9 \mathrm{~Hz}), 112.3$.
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.6,-62.7$.
ESI-MS found 557.0 (calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{9} \mathrm{~F}_{12} \mathrm{O}_{2}\right]^{-}$: 557.0)
IR (thin film, cm^{-1}): 3549, 1639, 1467, 1338, 1144.

Table S1: Optimization of Asymmetric Petasis Alkynylations

Entry	Catalyst (mol\%)	Hydrazide	Temperature/Time	Yield	e.r.
1	$\mathbf{C 1}(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$0^{\circ} \mathrm{C} / 24 \mathrm{~h}$	85%	$86: 14$
2	$\mathbf{C 2}(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$0^{\circ} \mathrm{C} / 24 \mathrm{~h}$	20%	$85: 15$
3	$\mathbf{C} 3(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$0^{\circ} \mathrm{C} / 24 \mathrm{~h}$	75%	$70: 30$
4	$\mathbf{1 9}(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$0^{\circ} \mathrm{C} / 24 \mathrm{~h}$	70%	$73: 27$
5	$\mathbf{1 0}(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$0^{\circ} \mathrm{C} / 24 \mathrm{~h}$	85%	$87: 13$
6	$\mathbf{C 1}(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$-10^{\circ} \mathrm{C} / 48 \mathrm{~h}$	20%	$88: 12$
7	$\mathbf{1 0}(15 \mathrm{~mol} \%)$	$\mathbf{2 0}$	$-10^{\circ} \mathrm{C} / 48 \mathrm{~h}$	50%	$90: 10$
8	$\mathbf{C 1}(15 \mathrm{~mol} \%)$	$\mathbf{8}$	$0^{\circ} \mathrm{C} / 48 \mathrm{~h}$	68%	$88: 12$
9	$\mathbf{C 1}(15 \mathrm{~mol} \%)$	$\mathbf{1 7}$	$0^{\circ} \mathrm{C} / 24 \mathrm{~h}$	83%	$58: 42$
10	$\mathbf{1 0}(15 \mathrm{~mol} \%)$	$\mathbf{8}$	$0^{\circ} \mathrm{C} / 48 \mathrm{~h}$	83%	$92: 8$
11	$\mathbf{1 0}(10 \mathrm{~mol} \%)$	$\mathbf{8}$	$0^{\circ} \mathrm{C} / 48 \mathrm{~h}$	85%	$92: 8$
12	$\mathbf{C 4}(10 \mathrm{~mol} \%)$	$\mathbf{8}$	$0^{\circ} \mathrm{C} / 48 \mathrm{~h}$	51%	$85: 15$
13^{a}	$\mathbf{1 0}(10 \mathrm{~mol} \%)$	$\mathbf{8}$	$0^{\circ} \mathrm{C} / 48 \mathrm{~h}$	85%	$93: 7$

${ }^{\mathrm{a}} \mathrm{PhCH}_{3}$ /Mesitylene $=1: 1$

c. General Procedure for Synthesis of Acyclic Alkynyl Boronates

Acyclic alkynyl boronates were synthesized in a modified procedure based on the published method. ${ }^{4}$ To flask A charged with argon was added 25 mL diethyl ether and alkyne ($15 \mathrm{mmol}, 1$ eq). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate ($2.55 \mathrm{~mL}, 15$ mmol). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The boronates were allowed to be stored for up to 2 weeks and were used directly without further purification.

Diethyl (phenylethynyl)boronate (1a/14)

To a flask A charged with argon was added diethyl ether (25 mL) and phenyl acetylene (1.65 ml , $15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6$ M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (phenylethynyl)boronate (1a/14) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl ((4-methoxyphenyl)ethynyl)boronate (1b)

To a flask A charged with argon was added 25 mL diethyl ether and 4-ethynylanisole (1.95 ml , $15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6$ M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl ((4-methoxyphenyl)ethynyl)boronate (1b) was allowed to be stored for up to 1 week and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5,2 \mathrm{H}), 4.39-4.25(\mathrm{~m}, 4 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl ((4-fluorophenyl)ethynyl)boronate (1c)

To a flask A charged with argon was added 25 mL diethyl ether and 1-ethynyl-4-fluorobenzene ($1.72 \mathrm{ml}, 15 \mathrm{mmol}, 1 \mathrm{eq}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15$ $\mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate $(2.55 \mathrm{~mL}, 15 \mathrm{mmol})$. Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flamed-dried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C . The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl ((4-fluorophenyl)ethynyl)boronate (1c) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $4 \mathrm{H}), 1.51(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl ((2-(trifluoromethyl)phenyl)ethynyl)boronate (1d)
To a flask A charged with argon was added 25 mL diethyl ether and 1-ethynyl-2trifluoromethylbenzene ($2.09 \mathrm{ml}, 15 \mathrm{mmol}, 1 \mathrm{eq}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate ($2.55 \mathrm{~mL}, 15 \mathrm{mmol}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flamed-dried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C . The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8 \quad{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl ((2(trifluoromethyl)phenyl)ethynyl)boronate (1d) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl (thiophen-3-ylethynyl)boronate (1e)
To a flask A charged with argon was added 25 mL diethyl ether and 3-ethynylthiophene (1.48 ml , $15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6$ M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (thiophen-3-ylethynyl)boronate (1e) was allowed to be stored for up to 1 week and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $4 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl (naphthalen-2-ylethynyl)boronate (1f)

To a flask A charged with argon was added 25 mL diethyl ether and 2-ethynylnaphthalene (2.13 $\mathrm{ml}, 15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.6 M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A . Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (naphthalen-2-ylethynyl)boronate (1f) was allowed to be stored for up to 1 week and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl (4-phenylbut-1-yn-1-yl)boronate (1g)

To a flask A charged with argon was added 25 mL diethyl ether and (3-butynyl)benzene (1.95 g , $15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6$ M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A . Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (4-phenylbut-1-yn-1-yl)boronate ($\mathbf{1 g}$) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.48(\mathrm{~m}, 5 \mathrm{H}), 4.31-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H})$, $2.88-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.31(\mathrm{~m}, 6 \mathrm{H})$.

Diethyl (()-(4-phenylbut-3-en-1-yn-1-yl)boronate (1h)
(E)-but-1-en-3-yn-1-ylbenzene ($\mathbf{S} 6 \mathbf{h}$) was synthesized according to disclosed procedure. ${ }^{5}$

To a flask A charged with argon was added 25 mL diethyl ether and (E)-but-1-en-3-yn-1ylbenzene ($1.92 \mathrm{~g}, 15 \mathrm{mmol}, 1 \mathrm{eq}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added nBuLi ($9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate ($2.55 \mathrm{~mL}, 15 \mathrm{mmol}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution suresealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flamed-dried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C . The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (E)-(4-phenylbut-3-en-1-yn-1-yl)boronate ($\mathbf{1 h}$) was allowed to be stored for up to 1 week and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37(\mathrm{~d}, J=16.2,1 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

Diethyl (cyclohexylethynyl)boronate (1i)

To a flask A charged with argon was added 25 mL diethyl ether and cyclohexylacetylene (1.96 $\mathrm{ml}, 15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.6 M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A . Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (cyclohexylethynyl)boronate (1i) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35-4.10(\mathrm{~m}, 4 \mathrm{H}), 2.83-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.85(\mathrm{~m}, 5 \mathrm{H})$, $1.80-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.28(\mathrm{~m}, 6 \mathrm{H})$.

Diethyl oct-1-yn-1-ylboronate (1j)

To a flask A charged with argon was added 25 mL diethyl ether and 1-octyne ($2.21 \mathrm{ml}, 15 \mathrm{mmol}$, $1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate $(2.55 \mathrm{~mL}, 15$ mmol). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl oct-1-yn-1-ylboronate ($\mathbf{1} \mathbf{j}$) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35-4.17(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.53-1.39(\mathrm{~m}, 8 \mathrm{H}), 1.16(\mathrm{~m}, 3 \mathrm{H})$.

Diethyl (3-(benzyloxy)prop-1-yn-1-yl)boronate (1k)

To a flask A charged with argon was added 25 mL diethyl ether and propargyl benzyl ether (2.19 $\mathrm{g}, 15 \mathrm{mmol}, 1 \mathrm{eq})$. Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.6 M in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate (2.55 mL , 15 mmol). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flameddried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl (3-(benzyloxy)prop-1-yn-1-yl)boronate ($\mathbf{1 k}$) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.53(\mathrm{~m}, 5 \mathrm{H}), 4.89-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.34(\mathrm{~m}, 2 \mathrm{H})$, $4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 6 \mathrm{H})$.

see ref. 6
65% yield over two steps
S1I

5,5-Dimethyl-2-(prop-2-yn-1-yl)-1,3-dioxane (S11)

To a stirred solution of carbon tetrabromide ($6.6 \mathrm{~g}, 20 \mathrm{mmol}$) in dichloromethane (100 mL) was added triphenylphosphine ($7.9 \mathrm{~g}, 30 \mathrm{mmol}$) in dichloromethane $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , before a solution of 2-(5,5-dimethyl-1,3-dioxan-2yl)acetaldehyde ${ }^{6}(1.6 \mathrm{~g}, 10 \mathrm{mmol})$ in anhydrous dichloromethane $(5 \mathrm{~mL})$ was added. The resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ before an addition of $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ to partition the organic layer. The resulting mixture was extracted with dichloromethane (3 X 50 mL); the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude mixture was dissolved in 5 ml dichloromethane and filtered through a silica gel column by hexane/ether ($10: 1,500 \mathrm{ml}$) to afford 2-(3,3-dibromoallyl)-5,5-dimethyl-1,3-dioxane as a yellow solid, which was used in the next step without further purification. To a stirred solution of 2-(3,3-dibromoallyl)-5,5-dimethyl-1,3-dioxane ($3.1 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (30 $\mathrm{mL})$ was added $\mathrm{nBuLi}\left(15.6 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in hexane, 25 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The resulting solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$, before it was quenched with aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The aqueous layer was extracted with EtOAc (3 X 50 mL). The organic layer was washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was eluted through a silica column by hexanes/EtOAc (10:1) to afford compound 5,5-dimethyl-2-(prop-2-yn-1-yl)-1,3-dioxane (S1I) ($1.0 \mathrm{~g}, 65 \%$ over two steps) as a colorless liquid.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.35(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.2,2 \mathrm{H}), 3.02(\mathrm{~d}, J=10.7$, 2 H), 2.45 (dd, $J=5.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 99.6, 79.2, 76.5, 70.1, 29.4, 25.5, 22.6, 21.1.

Diethyl (3-(5,5-dimethyl-1,3-dioxan-2-yl)prop-1-yn-1-yl)boronate (11)

To a flask A charged with argon was added 10 mL diethyl ether and 5,5-dimethyl-2-(prop-2-yn1 -yl)-1,3-dioxane (S1I) ($0.77 \mathrm{~g}, 5 \mathrm{mmol}, 1 \mathrm{eq}$, vide infra). Solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(3.1 \mathrm{~mL}, 5 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 20 mL diethyl ether and freshly distilled triethyl borate ($0.85 \mathrm{~mL}, 5 \mathrm{mmol}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(2.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 5 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flamed-dried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C . The boronate solution in flask C was concentrated in vacuo to
less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8^{\circ} \mathrm{C}$. The toluene solution of diethyl (3-(5,5-dimethyl-1,3-dioxan-2-yl)prop-$1-\mathrm{yn}-1-\mathrm{yl})$ boronate (11) was allowed to be stored for up to 1 week and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.87-3.73(\mathrm{~m}, 2 \mathrm{H})$, 3.61 (d, $J=10.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.43 (ovrlp, 9H), 0.88 (s, 3H).

Diethyl ((tert-butyldimethylsilyl)ethynyl)boronate (1m)

To a flask A charged with argon was added 25 mL diethyl ether and (tertbutyldimethylsilyl)acetylene ($2.80 \mathrm{~g}, 15 \mathrm{mmol}, 1 \mathrm{eq}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to it was added $\mathrm{nBuLi}(9.4 \mathrm{~mL}, 15 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane). Solution was allowed to stir at this temperature for 1 h . To a second flask B charged with argon was added 25 mL diethyl ether and freshly distilled triethyl borate ($2.55 \mathrm{~mL}, 15 \mathrm{mmol}$). Solution was cooled to $-78^{\circ} \mathrm{C}$ and to flask B was added via cannula the solution of lithium-acetylene from flask A. Reaction was allowed to stir at the same temperature for 2 h , at which point to it was added anhydrous $\mathrm{HCl}(7.5 \mathrm{~mL}, 2 \mathrm{M}$ solution sure-sealed in diethyl ether, 15 mmol). Reaction was removed from the dry ice-acetone bath and allowed to warm to room temperature for 1 h , during which time precipitate started to form. A third flask C was flamed-dried and to it was added 5 ml dry toluene. The crude boronate solution with precipitate from flask B was quickly filtered under nitrogen through an over-dried funnel and dry celite ${ }^{\circledR}$ to flask C. The boronate solution in flask C was concentrated in vacuo to less than 5 ml volume without exposure to the air, and made into a 1 M solution in toluene stored in a sealed vial at $-8 \quad{ }^{\circ} \mathrm{C}$. The toluene solution of diethyl ((tertbutyldimethylsilyl)ethynyl)boronate (1m) was allowed to be stored for up to 2 weeks and used directly without further purifications.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.24(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.52-1.33(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.36$ ($\mathrm{s}, 6 \mathrm{H}$).

d. General Procedure for Racemic Petasis Alkynylations

2-Nitrobenzenesulfonohydrazide 20 ($87 \mathrm{mg}, 0.4 \mathrm{mmol}$), glycolaldehyde dimer 9 ($24 \mathrm{mg}, 0.2$ mmol), and $3 \AA$ oven-dried powdered molecular sieves (400 mg) were added to a 10 mL ovendried reaction vial equipped with a magnet stir bar. Racemic BINOL catalyst ($15 \mathrm{mg}, 0.052$ mmol) was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was stirred for 5 min , at which moment to it was subjected the alkynyl boronate $(0.52 \mathrm{mmol}$, stored as 1 M solution in toluene). The reaction was stirred at room temperature for 18 h . The racemic allenyl alcohol products were isolated directly by silica gel chromatography.

e. General Procedure for Asymmetric Petasis Alkynylations

2,5-Dibromobenzenesulfonohydrazide 8 ($132 \mathrm{mg}, 0.4 \mathrm{mmol}$), glycolaldehyde dimer 9 (24 mg , 0.2 mmol), and oven-dried $3 \AA$ powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $10(29 \mathrm{mg}, 0.052 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ for 10 min under argon, at which moment to it was subjected the alkynyl boronate ($0.52 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene). The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 48 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel afforded the desired compound.

f. Analytical Data for Allenyl Alcohols

(S)-4-Phenylbuta-2,3-dien-1-ol (6a)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 a}$ (0.52 mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (8:1) to afford the pure product as a colorless oil. Yield: $50 \mathrm{mg}, 85 \%$.
e.r.: 93:7.
$[\alpha]_{\mathbf{D}}{ }^{22}=+103.0\left(\mathrm{c}=0.49, \mathrm{CH}_{3} \mathrm{CN}\right)$. In $\operatorname{lit}^{.}{ }^{7}[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=+105.9\left(\mathrm{c}=0.49, \mathrm{CH}_{3} \mathrm{CN}\right)$. The absolute stereochemistry was assigned as (S).
HPLC Analysis, tr major: 43.7 min., tr minor: 46.9 min., [Chiralpak $® A D-H$ column, $24 \mathrm{~cm} \times$ 4.6 mm I.D., Hexanes: $\mathrm{iPrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$].

All spectra were in agreement with reported data. ${ }^{7}$

(S)-4-(4-Methoxyphenyl)buta-2,3-dien-1-ol (6b)

2,5-Dibromobenzenesulfonohydrazide $8(132 \mathrm{mg}, 0.4 \mathrm{mmol})$, glycolaldehyde dimer $9(24 \mathrm{mg}$, 0.2 mmol), and $3 \AA$ oven-dried powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $10(58 \mathrm{mg}, 0.104 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $-10^{\circ} \mathrm{C}$ under argon for 10 min , at which moment to it was subjected the alkynyl boronate $\mathbf{1 b}$ ($0.52 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene). The reaction was allowed to stir at $-10^{\circ} \mathrm{C}$ for 48 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with elution by hexanes/EtOAc (8:1) afforded the desired compound as a clear oil.
Yield: $56 \mathrm{mg}, 80 \%$.
e.r.: 91:9.
$[\alpha]_{\mathrm{D}}{ }^{22}=+27.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 39.5 min., tr minor: 42.9 min., [Chiralpak $® A D-H$ column, $24 \mathrm{~cm} \times$ 4.6 mm I.D., Hexanes: $\mathrm{iPrOH}=98: 2,1 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$].

The absolute stereochemistry was assigned by analogy. All spectra were in agreement with reported data. ${ }^{8}$

(S)-4-(4-Fluorophenyl)buta-2,3-dien-1-ol (6c)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 c}$ (0.52 mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $51 \mathrm{mg}, 78 \%$.
e.r.: 93:7.
$[\alpha]_{\mathrm{D}}{ }^{22}=+53.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 30.6 min., tr minor: 31.7 min., [Chiralpak $® I A-H$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=98: 2,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
The absolute stereochemistry was assigned by analogy. All spectra were in agreement with reported data. ${ }^{8}$

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate 1d (0.52 mmol) according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (10:1) to afford the pure product as a colorless oil. Yield: $61 \mathrm{mg}, 71 \%$
e.r.: 93:7
$[\alpha]_{\mathrm{D}}{ }^{22}=+72.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 43.4 min., tr major: 45.7 min ., [Chiralpak $® I A$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=99.6: 0.4,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=$ $7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (dddd, $J=6.0,4.3,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (ddd, $J=6.1,6.1,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34-4.24(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,132.4\left(\mathrm{q},{ }^{4} J_{C-F}=1.3 \mathrm{~Hz}\right), 131.8,128.7,127.0,126.2(\mathrm{q}$,
$\left.{ }^{1} J_{C-F}=239.4 \mathrm{~Hz}\right), 126.8\left(\mathrm{q},{ }^{2} J_{C-F}=30.5 \mathrm{~Hz}\right), 126.0\left(\mathrm{q},{ }^{3} J_{C-F}=5.6 \mathrm{~Hz}\right), 95.9,93.3\left(\mathrm{q},{ }^{4} J_{C-F}=2.7\right.$
Hz), 60.1
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.5$.
HRMS found 215.0690 (calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}\right]^{+}$: 215.0684)
IR (thin film, cm^{-1}): 3377, 3082, 2940, 1955, 1731, 1495, 1316, 1162, 1121, 1060, 766.
The absolute stereochemistry was assigned by analogy.

(S)-4-(Thiophen-3-yl)buta-2,3-dien-1-ol (6e)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 e}$ (0.52 mmol) according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (6:1) to afford the pure product as a colorless oil.
Yield: $43 \mathrm{mg}, 70 \%$
e.r.: 92:8
$[\alpha]_{\mathrm{D}}{ }^{22}=+116.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 21.4 min., tr major: 23.9 min ., [Chiralpak $® I A-H$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=98: 2,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{ddd}, J=5.1,3.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}$, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{ddd}, J=6.4,3.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (ddd, $J=6.4,5.8,5.8,1 \mathrm{H}), 4.28-$ $4.20(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,135.0,126.2,126.1,121.3,95.1,91.8,60.4$.
HRMS found 153.0370 (calculated for $\left[\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{OS}\right]^{+}$: 153.0374)
IR (thin film, cm^{-1}): 3381, 3104, 2926, 1952, 1435, 1333, 1234, 1015, 789.
The absolute stereochemistry was assigned by analogy.

(S)-4-(Naphthalen-2-yl)buta-2,3-dien-1-ol (6f)

2,5-Dibromobenzenesulfonohydrazide $\mathbf{8}(132 \mathrm{mg}, 0.4 \mathrm{mmol})$, glycolaldehyde dimer $9(24 \mathrm{mg}$, 0.2 mmol), and $3 \AA$ oven-dried powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $\mathbf{1 0}(29 \mathrm{mg}, 0.052 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added and rinsed into the solution with dry toluene (0.48 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ for 10 min , at which moment to it was subjected the alkynyl boronate $\mathbf{1 f}(0.52 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene). The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 72 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with elution by hexanes/EtOAc (8:1) afforded the desired compound as a clear oil.
Yield: $67 \mathrm{mg}, 85 \%$.
e.r.: 90:10.
$[\alpha]_{\mathrm{D}}{ }^{22}=+116.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 40.5 min ., tr minor: 47.2 min ., [Chiralpak $® I A$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{PrOH}=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$]. The absolute stereochemistry was assigned by analogy. All spectra agreed with reported data. ${ }^{8}$

(S)-6-Phenylhexa-2,3-dien-1-ol (6g)

2,5-Dibromobenzenesulfonohydrazide 8 ($132 \mathrm{mg}, 0.4 \mathrm{mmol}$), glycolaldehyde dimer 9 (24 mg , 0.2 mmol), and $3 \AA$ oven-dried powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $\mathbf{1 0}(29 \mathrm{mg}, 0.052 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ under argon for 10 min , at which moment to it was subjected the alkynyl boronate $1 \mathrm{~g}(0.52 \mathrm{mmol}, 1 \mathrm{M}$ solutions in toluene). The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 72 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with elution by hexanes/EtOAc ($8: 1$) afforded the desired compound as a clear oil.
Yield: $54 \mathrm{mg}, 72 \%$.
e.r.: 92:8.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+10.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit for $(R)-6$-phenylhexa-2,3-dien-1-ol: ${ }^{9}[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-38.7(\mathrm{c}=$ $1.05, \mathrm{CHCl}_{3}, 96 \%$ ee).
HPLC Analysis, tr minor: 27.6 min., tr major: 44.8 min., [Chiralcel $® O D$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=98: 2,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
All spectra were in agreement with reported data. ${ }^{9}$

(S, E)-6-Phenylhexa-2,3,5-trien-1-ol (6h)
2,5-Dibromobenzenesulfonohydrazide $\mathbf{8}(132 \mathrm{mg}, 0.4 \mathrm{mmol})$, glycolaldehyde dimer $9(24 \mathrm{mg}$, 0.2 mmol), and $3 \AA$ oven-dried powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $10(29 \mathrm{mg}, 0.052 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ under argon for 10 min , at which moment to it was subjected the alkynyl boronate $\mathbf{1 h}(0.52 \mathrm{mmol}, 1 \mathrm{M}$ solutions in toluene). The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 72 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc (5 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic
layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with elution by hexanes/EtOAc (8:1) afforded the desired compound as a clear oil.
Yield: $49 \mathrm{mg}, 71 \%$.
e.r.: 90:10.
$[\alpha]_{\mathbf{D}}{ }^{22}=+29.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 43.4 min., tr major: 54.0 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
The absolute stereochemistry was assigned by analogy. All spectra were in agreement with reported data. ${ }^{10}$

(S)-4-Cyclohexylbuta-2,3-dien-1-ol (6i)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 i}$ $(0.52 \mathrm{mmol})$ according to the General Procedure, but for 72 hours. The product was purified by flash column chromatography with elution by hexanes/EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $38 \mathrm{mg}, 63 \%$.
e.r.: 90:10.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=+80.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit: ${ }^{9}[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 1}}=+100.9\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$.
HPLC Analysis, tr minor: 19.0 min., tr major: 19.8 min., [Chiralpak®IA column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}]$.
All spectra were in agreement with reported data. ${ }^{9}$

(S)-Deca-2,3-dien-1-ol (6j)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 j}$ $(0.52 \mathrm{mmol})$ according to the General Procedure but for 96 hours. The product was purified by flash column chromatography with elution by hexanes/EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $45 \mathrm{mg}, 73 \%$.
e.r.: 90:10.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+60.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit for (R)-deca-2,3-dien-1-ol: ${ }^{11}[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{20}=-72.5(\mathrm{c}=1.02$, $\mathrm{CHCl}_{3}, 94 \%$ ee).
HPLC Analysis, tr minor: 18.3 min., tr major: 19.5 min., [Chiralpak $® I A-H$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=99.6: 0.4,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
All spectra were in agreement with reported data. ${ }^{11}$

(S)-5-(Benzyloxy)penta-2,3-dien-1-ol (6k)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $1 \mathbf{k}$ (0.52 mmol) according to the General Procedure but for 96 hours. The product was purified by flash column chromatography with elution by hexanes/EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $46 \mathrm{mg}, 60 \%$.
e.r.: 90:10.
$[\alpha]_{\mathrm{D}}{ }^{22}=+33.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 37.1 min., tr major: 39.2 min ., [Chiralpak $® I A$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{EtOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}]$.
The absolute stereochemistry was assigned by analogy. All spectra were in agreement with reported data. ${ }^{8}$

(S)-5-(5,5-Dimethyl-1,3-dioxan-2-yl)penta-2,3-dien-1-ol (61)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate 11 (0.52 mmol) according to the General Procedure but for 72 hours. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (10:1) to afford the pure product as a colorless oil.
Yield: $56 \mathrm{mg}, 70 \%$
e.r.: 85:15
$[\alpha]_{\mathrm{D}}{ }^{22}=-19.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 13.0 min., tr minor: 13.9 min., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=97: 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42-5.31(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.07$ (m, 2H), $3.61(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.18$ (s, 3H), 0.71 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.6,100.8,92.4,89.2,77.2,77.1,59.5,34.4,30.1,22.9,21.7$.
ESI-MS found 199.1 (calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}\right]^{+}$: 199.1)
IR (thin film, cm^{-1}): 3370, 2956, 2849, 1969, 1472, 1392, 1131, 1090, 1020.
The absolute stereochemistry was assigned by analogy.

(S)-4-(tert-Butyldimethylsilyl)buta-2,3-dien-1-ol (6 m)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 m}$ $(0.52 \mathrm{mmol})$ according to the General Procedure, but for 96 hours. The product was purified by flash column chromatography with elution by hexanes/EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $46 \mathrm{mg}, 62 \%$.
e.r.: 95:5.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+116.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 14.9 min., tr minor: 16.8 min., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{EtOH}=99.6: 0.4,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
The absolute stereochemistry was assigned by analogy. All spectra were in agreement with reported data. ${ }^{12}$

(S)-2-Methyl-4-phenylbuta-2,3-dien-1-ol (6n)

2,5-Dibromobenzenesulfonohydrazide 8 ($132 \mathrm{mg}, 0.4 \mathrm{mmol}$), hydroxyacetone (11) ($30 \mathrm{mg}, 0.4$ mmol), and oven-dried $3 \AA$ powdered molecular sieves (400 mg) were added to a 10 mL ovendried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time $(S)-\left(\mathrm{CF}_{3}\right)_{4}{ }^{-}$ BINOL catalyst 10 ($29 \mathrm{mg}, 0.052 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ under argon for 10 min , at which moment to it was subjected the alkynyl boronate $\mathbf{1 a}$ ($0.52 \mathrm{mmol}, 1 \mathrm{M}$ solutions in toluene). The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 72 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel with elution by hexanes/EtOAc (8:1) afforded the desired compound as a clear oil.
Yield: $58 \mathrm{mg}, 91 \%$.
e.r.: 90:10.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+9.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit for (R)-2-methyl-4-phenylbuta-2,3-dien-1-ol: ${ }^{13}[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=-$ 10.9 ($\mathrm{c}=0.5, \mathrm{CHCl}_{3}, 99 \%$ ee).

HPLC Analysis, tr major: 14.3 min., tr minor: 15.7 min ., [Chiralpak®IA column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{EtOH}=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
All spectra were in agreement with reported data. ${ }^{13}$

g. General procedure for Synthesis of Cyclic Alkynyl Boronates

Cyclic alkynyl boronates were synthesized according to the modified procedure by Yamamoto. ${ }^{14}$ To a solution of the potassium trifluoro(phenylethynyl)borate ($2.07 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 2,2,7,7-tetramethyl-3,6-dioxa-2,7-disilaoctane ${ }^{15}(2.06 \mathrm{~g}, 10.0 \mathrm{mmol})$ in dry acetone (10 mL) was added chlorotrimethylsilane $(2.17 \mathrm{~g}, 20.0 \mathrm{mmol})$ at room temperature, and the solution was stirred overnight. The precipitates were removed by filtration under N_{2} atmosphere, and the filtrate was concentrated. The crude oil was purified by a quick neutral alumina column by hexanes and the resulting 2-(phenylethynyl)-1,3,2-dioxaborolane S1a solution was concentrated and stored as 1 M solution in toluene.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H})$, 4.32 (s, 4H).

Potassium (S)-((1,4-dioxaspiro[4.5]decan-2-yl)ethynyl)trifluoroborate (S12)

The title trifluoroborate salt was synthesized according to the procedure reported by Thomson and coworkers. ${ }^{8}$ To a solution of (S)-2-ethynyl-1,4-dioxaspiro[4.5]decane ${ }^{16}(4.00 \mathrm{~g}, 24.1 \mathrm{mmol})$ in dry THF $(75 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere was added $n-\operatorname{BuLi}(13.75 \mathrm{~mL}, 24.1 \mathrm{mmol}$, 1.75 M in hexanes) dropwise over 10 minutes. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , triisopropyl borate $(8.33 \mathrm{~mL}, 36.1 \mathrm{mmol})$ was quickly added by syringe. The reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 10 minutes, and removed from the bath and allowed to warm up to room temperature over 2 h . The reaction was then cooled to $0^{\circ} \mathrm{C}$ and dry $\mathrm{MeOH}(25 \mathrm{~mL})$ was then added by syringe, followed by a slurry of potassium hydrogen difluoride $\left(\mathrm{KHF}_{2}\right)(11.28 \mathrm{~g}, 144.4 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(60$ $\mathrm{mL}+2 \times 5 \mathrm{~mL}$ rinses) via addition funnel. The reaction was then allowed to warm to room temperature over 1.5 h . The solvent was removed under reduced pressure, and the resulting suspension was allowed to dry over high vacuum overnight. The residual solids were broken up using a spatula and dissolved in 75 mL of acetone. The resulting mixture was placed on a rotary evaporator and rotated rapidly at atmospheric pressure with the bath set at $45^{\circ} \mathrm{C}$ for 45 minutes. The mixture was decanted over Celite ${ }^{\circledR}$ under vacuum, and the residual solids were once again taken up in 75 mL of acetone and the mixture was heated at $45^{\circ} \mathrm{C}$ for 15 minutes. The mixture was filtered over Celite ${ }^{\circledR}$, washing with acetone. The filtrate was concentrated to $\sim 10 \mathrm{~mL}$, and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, causing a gel to crash out. The flask was chilled in the freezer at $30^{\circ} \mathrm{C}$ for 6 h , and the gel was collected by vacuum filtration using a medium gauge fritted filter, then further dried over high vacuum overnight to afford $\mathbf{S 1 2}(2.51 \mathrm{~g}, 9.22 \mathrm{mmol}, 38 \%)$ as an offwhite solid that contained minor impurities and cannot be further purified.
mp (decomp) $327^{\circ} \mathrm{C}$
$[\alpha]_{\mathbf{D}}{ }^{22}=+268.5\left(\mathrm{c}=0.94, \mathrm{CH}_{3} \mathrm{CN}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 4.58(\mathrm{dd}, \mathrm{J}=7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.60 (dd, J = 7.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.65-1.48$ (m, 8H), $1.40-1.34$ (m, 2H).
${ }^{13}$ C NMR (126 MHz, DMSO- d_{6}) (relaxation time $\mathrm{d}_{1}=3$ seconds, increasing to $\mathrm{d}_{1}=7$ seconds does not reveal clear signal for the second acetylenic carbon atom) $\delta 109.0,69.2,65.5,35.6,35.1$, 24.6, 23.5.
${ }^{11} \mathbf{B}$ NMR (128.4 MHz, DMSO-d ${ }_{6}$) $\delta-2.10$.
${ }^{19}$ F NMR (376.5 MHz, DMSO-d $_{6}$) $\delta-127.3$.
ESI-HRMS found 233.1054 (calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{K}]^{-}$: 233.1075.)
IR (thin film, cm^{-1}): 2935, 2861, 1449, 1365, 1345, 1279, 1236, 979.

(S)-2-((1,4-Dioxaspiro[4.5]decan-2-yl)ethynyl)-5,5-dimethyl-1,3-2-dioxaborinane (12)

To a flame-dried round bottom flask equipped with a stir bar was added potassium trifluoroborate $\mathbf{S 1 2}(1.00 \mathrm{~g}, 3.67 \mathrm{mmol}$) and dry acetone (3.70 mL). 1,3-Bis(trimethylsilyloxy)-2,2-dimethylpropane ${ }^{17}(1.10 \mathrm{~mL}, 3.67 \mathrm{mmol})$ was then added quickly, followed by trimethyl silyl chloride ($0.933 \mathrm{~mL}, 7.35 \mathrm{mmol}$). The reaction was allowed to stir at room temperature for 24 h , at which time it was filtered over a pad of neutral alumina, washing with hexanes. The filtrate was then concentrated to afford the title compound (0.762 g) with some impurities as a yellow oil. It was then stored as a 1 M solution in toluene.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.71(\mathrm{td}, \mathrm{J}=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{ddd}, \mathrm{J}=8.0,6.1,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94 (dddd, $\mathrm{J}=8.0,6.2,4.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.77-1.54(\mathrm{~m}, 10 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 111.2,81.6,73.7,72.0,69.8,69.5,64.9,35.6,35.4,25.0,23.9$, 22.8, 22.6, 21.8.
${ }^{11} \mathbf{B}$ NMR $\left(128.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.57$.

h. General Procedure for Petasis Reactions Using Cyclic Alkynyl Boronates

2,5-Dibromobenzenesulfonohydrazide 8 ($132 \mathrm{mg}, 0.4 \mathrm{mmol}$), glycolaldehyde dimer 9 (24 mg , 0.2 mmol), and oven-dried $3 \AA$ powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $10(58 \mathrm{mg}, 0.104 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was added and rinsed into the solution with tributyl borate ($60 \mathrm{mg}, 0.26 \mathrm{mmol}$) and dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to
$4^{\circ} \mathrm{C}$ for 10 min , at which moment to it was subjected 2-(phenylethynyl)-1,3,2-dioxaborolane S1a ($0.52 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene). The reaction was allowed to stir at $4^{\circ} \mathrm{C}$ for 46 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution and allowed to warm up to room temperature overnight. The reaction mixture was transferred to a separatory funnel using EtOAc $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by EtOAc (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel afforded 6a in 91:9 e.r. and 65% yield.

(S)-4-((S)-1,4-Dioxaspiro[4.5]decan-2-yl)buta-2,3-dien-1-ol (6o)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 2}$ (0.52 mmol) according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (19:1) to afford the pure product as a colorless oil. The single diastereomer can be isolated by the same chromatography conditions using silverimpregnated $\left(\mathrm{AgNO}_{3}\right)$ silica gel.
Yield: $56 \mathrm{mg}, 68 \%$
$[\alpha]_{\mathrm{D}}{ }^{24}=+35.8\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48(\mathrm{qd}, \mathrm{J}=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{tt}, \mathrm{J}=6.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ $(\mathrm{ddd}, \mathrm{J}=6.4,6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=6.0,2.8,2 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=8.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}$, $\mathrm{J}=8.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.53(\mathrm{~m}, 11 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.6,110.2,94.0,94.0,73.9,73.8,69.1,60.2,36.3,35.3,25.1$, 23.9, 23.8.

HRMS (EI) found 210.1248 (calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}: 210.1256$.)
IR (thin film, cm^{-1}): 3399, 2934, 2861, 1966, 1448, 1366, 1279, 1162, 1096, 1018.

(R)-4-((S)-1,4-Dioxaspiro[4.5]decan-2-yl)buta-2,3-dien-1-ol (6p)

Prepared from glycolaldehyde dimer $9(0.2 \mathrm{mmol})$ and the corresponding alkynyl boronate $\mathbf{1 2}$ $(0.52 \mathrm{mmol})$ according to the General Procedure, using $(R) \mathbf{- 1 0}$ catalyst. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (19:1) to afford the pure product as a colorless oil. The single diastereomer can be isolated by the same chromatography conditions using silver-impregnated $\left(\mathrm{AgNO}_{3}\right)$ silica gel.
Yield: $60 \mathrm{mg}, 71 \%$
$[\alpha]_{\mathrm{D}}{ }^{24}=+16.5\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52(\mathrm{qd}, \mathrm{J}=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{tt}, \mathrm{J}=6.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (ddd, $\mathrm{J}=6.3,6.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=5.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{dd}, \mathrm{J}=8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, J = 8.3, 6.3 Hz, 1H), $1.79-1.48(\mathrm{~m}, 9 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.6,110.3,94.3,93.8,73.7,73.7,68.8,60.1,36.4,35.3,25.0$, 23.9, 23.8.

h. Isolation of the Propargylic Intermediate 3a

2,5-Dibromobenzenesulfonohydrazide $\mathbf{8}(132 \mathrm{mg}, 0.4 \mathrm{mmol})$, glycolaldehyde dimer 9 (24 mg , 0.2 mmol), and oven-dried $3 \AA$ powdered molecular sieves (400 mg) were added to a 10 mL oven-dried reaction vial equipped with a magnet stir bar. Dry mesitylene (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time (S) -$\left(\mathrm{CF}_{3}\right)_{4}$-BINOL catalyst $10(29 \mathrm{mg}, 0.104 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $-5^{\circ} \mathrm{C}$ for 20 min , at which moment to it was subjected alkynyl boronate $\mathbf{1 a}(0.52 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene). The reaction was allowed to stir at the same temperature for 48 h , at which moment the reaction mixture was subjected to flash column chromatography on silica gel using pentane $/ \mathrm{Et}_{2} \mathrm{O}(10: 1$ to $1: 2)$ to afford allenol product $\mathbf{6 a}$ and intermediate 3a. 3a was condensed by a high-vac pump without allowing the temperature to exceed 10
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.72($ par obsc, 1 H$), 2.82(\mathrm{br}, 1 \mathrm{H})$.
Note: this compound is not stable and its spectra contain solvent peaks.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7,137.4,136.3,135.6,131.9,129.0,128.4,122.1,121.7$, 118.2, 87.0, 83.7, 61.7, 54.7.

ESI-MS found 472.9, 474.9, 476.9 (calculated for $\mathbf{3 a}\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right]^{+}$: 474.9)

i. Synthesis of $\boldsymbol{\alpha}$-Hydroxy Lactones (S13)

(S)-2,2-Dimethyl-5-phenyl-1,3-dioxolan-4-one (S13a)

To a flame-dried round bottom flask equipped with a stir bar was added S-(+)-mandelic acid ($3.00 \mathrm{~g}, 19.7 \mathrm{mmol}$) and acetone (30 mL). 2,2-dimethoxypropane ($7.19 \mathrm{~g}, 69.0 \mathrm{mmol}$) was then added, followed by p-toluenesulfonic acid $(0.150 \mathrm{~g}, 0.789 \mathrm{mmol})$. The reaction was allowed to stir at room temperature for 14 h . The solvent was then evaporated under reduced pressure, and the residue was taken up in EtOAc (40 mL) and transferred to a separatory funnel, where it was washed with 25 mL of sat. NaHCO_{3} and 35 mL of brine. The organic layer was dried over MgSO_{4} and concentrated to afford the title compound ($3.60 \mathrm{~g}, 18.7 \mathrm{mmol}, 95 \%$) as a white solid that required no further purification. Spectral data matched those previously reported in the literature. ${ }^{18}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$.

(S)-5-Benzyl-2,2-dimethyl-1,3-dioxolan-4-one (S13b)

To a flame-dried round bottom flask equipped with a stir bar was added L-(-)-3-phenyllactic acid ($3.00 \mathrm{~g}, 18.1 \mathrm{mmol}$) and acetone (30 mL). 2,2-dimethoxypropane ($6.58 \mathrm{~g}, 63.2 \mathrm{mmol}$) was then added, followed by p-toluenesulfonic acid $(0.137 \mathrm{~g}, 0.722 \mathrm{mmol})$. The reaction was allowed to stir at room temperature for 18 h . The solvent was then evaporated under reduced pressure, and the residue was taken up in EtOAc (40 mL) and transferred to a separatory funnel, where it was washed with 25 mL of sat. NaHCO_{3} and 25 mL of brine. The organic layer was dried over MgSO_{4} and concentrated to afford the title compound ($3.63 \mathrm{~g}, 17.6 \mathrm{mmol}, 98 \%$) as a clear and colorless liquid that solidified into a white solid upon refrigeration. Spectral data matched those previously reported in the literature. ${ }^{19}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.66(\mathrm{dd}, \mathrm{J}=6.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=$ $14.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, \mathrm{J}=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.

(S)-2,2,5-Trimethyl-1,3-dioxolan-4-one (S13c)

To a flame-dried round bottom flask equipped with a stir bar was added $\mathrm{L}-(+)-$ lactic acid $(5.00 \mathrm{~g}$, 55.5 mmol) and anhydrous benzene (35 mL). 2,2-dimethoxypropane ($10.2 \mathrm{~mL}, 83.3 \mathrm{mmol}$) was then added, and the reaction was allowed to stir under reflux with a Dean-Stark apparatus for 4 h with azeotropic removal of methanol. The reaction was then concentrated to afford the title compound ($4.05 \mathrm{~g}, 31.1 \mathrm{mmol}, 56 \%$) as a clear and colorless oil that required no further purification.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 2}}=+42.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.48(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,110.3,70.4,27.4,25.6,17.4$.
HRMS (ESI) found 131.0708. (Calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$131.0706.)
IR (neat, cm^{-1}): 2992, 2941, 2876, 1799, 1447, 1346, 1267, 1146, 1126, 1051, 935, 844.

(S)-5-Isopropyl-2,2-dimethyl-1,3-dioxolan-4-one (S13d)

To a flame-dried round bottom flask equipped with a stir bar was added (S)-(+)-2-hydroxy-3-methyl-butyric acid ($2.30 \mathrm{~g}, 19.5 \mathrm{mmol}$) and acetone (50 mL). 2,2-dimethoxypropane (7.10 g , 68.1 mmol) was then added, followed by p-toluenesulfonic acid ($0.129 \mathrm{~g}, 0.677 \mathrm{mmol}$). The reaction was allowed to stir at room temperature for 18 h . The solvent was then evaporated under reduced pressure, and the residue was taken up in EtOAc (100 mL) and transferred to a separatory funnel, where it was washed with 50 mL of sat. NaHCO_{3} and 50 mL of brine. The organic layer was dried over MgSO_{4} and concentrated to afford the title compound ($2.82 \mathrm{~g}, 17.8$ $\mathrm{mmol}, 92 \%$) as a pale yellow liquid. Spectral data matched those previously reported in the literature. ${ }^{19}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.24(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53$ ($\mathrm{s}, 3 \mathrm{H}$), $1.07(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

j. Synthesis of α-Hydroxy Lactols (13)

(5S)-2,2-Dimethyl-5-phenyl-1,3-dioxolan-4-ol (13a)
To a flame-dried round bottom flask equipped with a stir bar was added the acetonide S13a (1.26 $\mathrm{g}, 6.57 \mathrm{mmol}$) and anhydrous toluene (20 mL). The reaction was cooled to $-78^{\circ} \mathrm{C}$, and DIBAL $(10.95 \mathrm{~mL}, 10.95 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) was then added dropwise. The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 50 minutes, at which time 15 mL of 1 M HCl was added carefully to quench the reaction. The cooling bath was removed, and the flask was allowed to warm slowly to room temperature. After the clear formation of two layers, the mixture was transferred to a separatory funnel using EtOAc (25 mL) and water (10 mL). The layers were separated, and the aqueous layer was extracted with $3 \times 25 \mathrm{~mL}$ of EtOAc. The combined organic layers were filtered through a pad of silica gel, washing with EtOAc, then were dried over MgSO_{4} and concentrated to afford the title compound ($1.19 \mathrm{~g}, 6.13 \mathrm{mmol}, 93 \%$) as a clear and colorless oil that was directly used in the next step without further purification.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, 1 H), $2.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, major diastereomer.

(5S)-5-Benzyl-2,2-dimethyl-1,3-dioxolan-4-ol (13b)
To a flame-dried round bottom flask equipped with a stir bar was added the acetonide S13b (1.50 $\mathrm{g}, 7.27 \mathrm{mmol}$) and anhydrous toluene (20 mL). The reaction was cooled to $-78^{\circ} \mathrm{C}$, and DIBAL ($6.86 \mathrm{~mL}, 10.2 \mathrm{mmol}, 25 \mathrm{wt} \%$ in toluene) was then added dropwise. The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 60 minutes, at which time 6 mL of 3 M HCl was added carefully to quench the reaction. The cooling bath was removed, and the flask was allowed to warm slowly to room temperature. After the clear formation of two layers, the mixture was transferred to a separatory funnel using EtOAc (25 mL) and water (10 mL). The layers were separated, and the aqueous layer was extracted with $3 \times 25 \mathrm{~mL}$ of EtOAc. The combined organic layers were filtered through a pad of silica gel, washing with EtOAc, then were dried over MgSO_{4} and concentrated to afford the title compound ($1.28 \mathrm{~g}, 6.15 \mathrm{mmol}, 85 \%$) as a clear and colorless oil that was directly used in the next step without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.11(\mathrm{dd}, \mathrm{J}=4.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{td}, \mathrm{J}=$ $6.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, \mathrm{J}=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H} 0,2.89(\mathrm{dd}, \mathrm{J}=$ $14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H})$, major diastereomer.

(5S)-2,2,5-Trimethyl-1,3-dioxolan-4-ol (13c)
To a flame-dried round bottom flask equipped with a stir bar was added the acetonide S13c ($0.335 \mathrm{~g}, 2.57 \mathrm{mmol}$) and anhydrous toluene (20 mL). The reaction was cooled to $-78^{\circ} \mathrm{C}$, and DIBAL ($2.08 \mathrm{~mL}, 3.09 \mathrm{mmol}, 25 \mathrm{wt} \%$ in toluene) was then added dropwise. The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 60 minutes, at which time 5 mL of anhydrous MeOH was added carefully to quench the reaction. The flask was allowed to warm to room temperature, and a saturated solution of Rochelle's salt (10 mL) was then added, causing a gel to form immediately. This gel was filtered over Celite ${ }^{\circledR}$ to form a biphasic solution that was transferred to a separatory funnel with the aid of EtOAc (10 mL). The layers were separated, and the aq. Layer was extracted with 50 mL of EtOAc. The combined organic layers were washed with 50 mL of sat. NaHCO_{3} followed by 50 mL of brine, then dried over MgSO_{4} and concentrated to afford the title compound ($68 \mathrm{mg}, 0.51 \mathrm{mmol}, 20 \%$) that was directly used in the next step without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.21(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=7.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, major diastereomer.

(5S)-5-Isopropyl-2,2-dimethyl-1,3-dioxolan-4-ol (13d)
To a flame-dried round bottom flask equipped with a stir bar was added the acetonide S13d (1.00 $\mathrm{g}, 6.32 \mathrm{mmol}$) and anhydrous toluene (20 mL). The reaction was cooled to $-78^{\circ} \mathrm{C}$, and DIBAL ($5.05 \mathrm{~mL}, 7.59 \mathrm{mmol}, 25 \mathrm{wt} \%$ in toluene) was then added dropwise. The mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 60 minutes, at which time 15 mL of 1 M HCl was added carefully to quench the reaction. The cooling bath was removed, and the flask was allowed to warm slowly to room temperature for 1 h . After the clear formation of two layers, the mixture was transferred to a separatory funnel using EtOAc (25 mL) and water (10 mL). The layers were separated, and the aqueous layer was extracted with $3 \times 25 \mathrm{~mL}$ of EtOAc. The combined organic layers were filtered through a pad of silica gel, washing with EtOAc, then were dried over MgSO_{4} and concentrated to afford the title compound ($0.785 \mathrm{~g}, 4.90 \mathrm{mmol}, 78 \%$) as a clear and colorless oil that was directly used in the next step without further purification.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 5.11(\mathrm{dd}, J=4.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dqd}, J=19.2,6.3,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=4.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H})$, major diastereoisomer.

k. General Procedure for Diastereoselective Petasis Alkynylations

2,5-Dibromobenzenesulfonohydrazide $\mathbf{8}$ ($132 \mathrm{mg}, 0.4 \mathrm{mmol}$), α-hydroxy lactol $\mathbf{1 3}$ (0.4 mmol), and oven-dried $3 \AA$ powdered molecular sieves (250 mg) were added to a 4 dram flame-dried reaction vial equipped with a magnetic stir bar. Dry mesitylene $(1.0 \mathrm{~mL})$ was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time $(S)-\left(\mathrm{CF}_{3}\right)_{4}{ }^{-}$ BINOL catalyst 10 ($44 \mathrm{mg}, 0.078 \mathrm{mmol}, 15 \mathrm{~mol} \%$) was added and rinsed into the solution with dry toluene $(0.48 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ for 10 min under nitrogen, at which time the alkynyl boronate 1a ($0.52 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene) was added. The reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 48 h and then quenched by 1 ml aqueous $10 \% \mathrm{NaOH}$ solution. The reaction was then diluted with $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and transferred to a separatory funnel with the aid of additional $\mathrm{NaOH}(5 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with 3 x $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Flash column chromatography on silica gel afforded the desired compound.

1. Analytical Data for Allenyl Alcohols

(1R, 3S)-1,4-Diphenylbuta-2,3-dien-1-ol (anti-15a)
Prepared from the corresponding α-hydroxy lactol 13a $(0.4 \mathrm{mmol})$ and alkynyl boronate $1 \mathrm{a}(0.52$ mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (9:1) to afford the pure product as a pale yellow oil.
Yield: $80 \mathrm{mg}, 90 \%$.
d.r.: 20:1.
$[\alpha]_{\mathrm{D}}{ }^{22}=+158.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit: ${ }^{20}[\alpha]_{\mathbf{D}}{ }^{22}=+168.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.27-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.31(\mathrm{dd}, \mathrm{J}=6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81($ app t, J = 6.4 Hz, 1H), $5.31(\mathrm{dd}, \mathrm{J}=6.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10 (br s, 1H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.8,142.8,133.6,128.7,128.6,127.9,126.9,126.0,100.0$, 97.9, 72.4.

All spectra were in agreement with reported data. ${ }^{20}$ Thus, the major diastereomer was assigned as anti-15a.

Carrying out the reaction under identical conditions with catalyst $(R) \mathbf{- 1 0}$ afforded the title compound $(0.040 \mathrm{~g}, 0.17 \mathrm{mmol}, 45 \%, 1.2: 1$ d.r.) as a pale yellow oil. The minor syn-15a isomer was not separable from its anti-15a isomer through chromatography. The following signals are discernible:
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{dd}, \mathrm{J}=6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.5,142.7,127.8,126.0,99.9,97.9,72.1$.

(2S, 4S)-1,5-Diphenylpenta-3,4-dien-2-ol (anti-15b)
Prepared from the corresponding α-hydroxy lactol 13b (0.4 mmol) and alkynyl boronate $\mathbf{1 a}(0.52$ mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (19:1) to afford the pure product as a clear and colorless oil.
Yield: $77 \mathrm{mg}, 85 \%$.
d.r.: 20:1.
$\left[\alpha_{\mathbf{D}}{ }^{\mathbf{2 2}}=-343.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)\right.$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=6.4,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{app} \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=13.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=13.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.0,137.5,133.6,129.7,128.6,127.1,126.8,126.6,98.6,97.1$,
71.4, 44.1.

The spectral data matched those of an authentic sample previously reported in the literature. ${ }^{8}$ Thus, the major diastereomer was assigned anti-15b.

Carrying out the reaction under identical conditions with catalyst $(R) \mathbf{- 1 0}$ afforded the title compound ($0.044 \mathrm{~g}, 0.187 \mathrm{mmol}, 47 \%, 1.1: 1$ d.r.) as a clear and colorless oil. Partial separation of the minor syn-15b isomer was possible under the chromatography conditions. The spectral data matched those of an authentic sample previously reported in the literature. ${ }^{8}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 2 \mathrm{H}) ; 7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{dd}$, $\mathrm{J}=6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\operatorname{app} \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathrm{J}=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.91(\mathrm{dd}, \mathrm{J}=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 203.1,137.3,133.6,129.8,128.6,128.5,127.2,126.8,126.6$, 99.2, 98.0, 70.0, 43.8.

(2S,4S)-5-Phenylpenta-3,4-dien-2-ol (anti-15c)
Prepared from the corresponding α-hydroxy lactol $\mathbf{1 3 c}(0.2 \mathrm{mmol})$ and alkynyl boronate $\mathbf{1 a}(0.26$ mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (19:1) to afford the pure product as a clear and colorless oil.
Yield: $24.6 \mathrm{mg}, \mathbf{7 6 \%}$.
d.r.: 6:1.
$[\alpha]_{\mathrm{D}}{ }^{22}=+70.7\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{dd}, \mathrm{J}=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}$, $1 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{dd}, \mathrm{J}=6.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{app} \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{app} \mathrm{pd}$, $\mathrm{J}=6.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 203.4,129.6,129.0,127.4,127.1,101.5,97.5,23.8$.
This compound was previously reported in the literature. ${ }^{21}$
Carrying out the reaction under identical conditions with catalyst $(R) \mathbf{- 1 0}$ afforded the title compound ($12.2 \mathrm{mg}, 0.076 \mathrm{mmol}, 36 \%, 1: 1.4$ d.r.) as a clear and colorless oil. Partial separation of the syn-15c isomer was not possible under the chromatography conditions. The following peaks are discernible:
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 203.5,130.4,128.9,101.4,97.6,23.1$.

(3S,5S)-2-Methyl-6-phenylhexa-4,5-dien-3-ol (anti-15d)
Prepared from the corresponding α-hydroxy lactol 13d $(0.4 \mathrm{mmol})$ and alkynyl boronate $1 \mathbf{1 a}(0.52$
mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (19:1) to afford the pure product as a clear and colorless oil.
Yield: $59 \mathrm{mg}, 78 \%$.
d.r.: 12:1.
$[\alpha]_{\mathrm{D}}{ }^{22}=+7.1\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{app} \mathrm{h}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=$ $6.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\operatorname{app} \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{td}, \mathrm{J}=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dq}, \mathrm{J}=13.0$, $6.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 203.5,134.0,128.7,127.2,126.8,98.1,97.6,74.6,34.3,18.2$, 17.7.

HRMS (ESI) found 188.1208 (calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}: 188.1201$.)
IR (neat, cm^{-1}): 3410, 2961, 2926, 2873, 1951, 1598, 1459, 1386, 1261, 1168, 1027.
Carrying out the reaction under identical conditions with catalyst $(R) \mathbf{- 1 0}$ afforded the title compound ($0.035 \mathrm{~g}, 0.187 \mathrm{mmol}, 47 \%, 1.2: 1$ d.r.) as a clear and colorless oil. Partial separation of the minor syn-15d isomer was possible under the chromatography conditions.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.22(\operatorname{apph}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, \mathrm{J}=$ $6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\operatorname{app} \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{td}, \mathrm{J}=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dq}, \mathrm{J}=13.0$, $6.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 204.0,134.0,128.7,127.2,126.8,97.7,97.0,75.2,34.2,18.3$, 17.9.

(S)-3-((S)-2-Phenylvinylidene)heptan-2-ol (anti-15e)

Prepared from the corresponding α-hydroxy ketone $16(0.4 \mathrm{mmol})$ and alkynyl boronate $\mathbf{1 a}$ (0.52 mmol) according to the General Procedure. The product was purified by flash column chromatography with elution by hexanes/EtOAc (9:1) to afford the pure product as a clear and colorless oil.
Yield: $61 \mathrm{mg}, 70 \%$.
d.r.: 20:1.
$[\alpha]_{\mathrm{D}}{ }^{22}=-23.1\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{ddd}, \mathrm{J}=6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{app} \mathrm{q}$, $\mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{ddt}, \mathrm{J}=10.0,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddt}, \mathrm{J}=7.8,5.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}$, $\mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{ddt}, \mathrm{J}=13.2,8.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, 3 H), 0.84 (t, J = $7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,135.0,128.6,126.9,126.5,114.4,98.7,68.5,30.0,28.5$, 22.6, 22.5, 13.9.

HRMS (ESI) found 216.1506 (calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: 216.1514$.
IR (neat, cm^{-1}): 3384, 2959, 2929, 2873, 2858, 1952, 1598, 1496, 1460, 1377, 1216, 1081.
Carrying out the reaction under identical conditions with catalyst $(R) \mathbf{- 1 0}$ afforded the title
compound ($50 \mathrm{mg}, 0.23 \mathrm{mmol}, 58 \%, 9: 1$ d.r.) as a clear and colorless oil. Partial separation of the syn-15e isomer was not possible under the chromatography conditions. The following peaks are discernible:
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\operatorname{app~q}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{ddt}, \mathrm{J}=10.0,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,135.1,99.0,68.5,30.2,29.1,22.9,21.2$, 14.4.

m. Synthesis of Ynals (18)

Ynal 18a was purchased from Santa Cruz biotechnology and used as received. 18b, ${ }^{22}$ 18c, ${ }^{22}$ $\mathbf{1 8 d},{ }^{23} \mathbf{1 8 e},{ }^{24} \mathbf{1 8 f},{ }^{25} \mathbf{1 8 g},{ }^{26} \mathbf{1 8 h},{ }^{27} \mathbf{1 8 i},{ }^{28} \mathbf{1 8 j},{ }^{29} \mathbf{1 8 k},{ }^{30} \mathbf{1 8 m},{ }^{30} \mathbf{1 8 n}{ }^{23}$ were synthesized following the disclosed literature procedure. Hept-2-ynal in Table 4 was also synthesized in the same manner. ${ }^{23}$

n. Synthesis of 181

Methyl phenyl(prop-2-yn-1-yl)carbamate (S181)

To the solution of N-(prop-2-yn-1-yl)aniline ${ }^{31}(2.2 \mathrm{~g}, 17 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dichloromethane (35 $\mathrm{ml})$ was added DIPEA (N, N-diisopropylethylamine) $(4.4 \mathrm{ml}, 1.5 \mathrm{eq})$ and methyl chloroformate $(1.4 \mathrm{ml}, 1.1 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm up to room temperature and stir for overnight, after which moment the mixture was diluted with dichloromethane, washed with 1 M HCl solution and extracted with dichloromethane (3 X 100 ml). The combined organic layer was then washed with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a residue, which was purified by flash chromatography with hexanes/EtOAc (10:1) to afford methyl phenyl(prop-2-yn-1-yl)carbamate (S18I) as a light yellow liquid in 90% yield (2.9 g).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 155.5,141.4,129.0,127.1,126.7,79.5,72.3,53.2,40.2$.

Methyl (4-oxobut-2-yn-1-yl)(phenyl)carbamate (18I)
Dry THF (25 ml) and methyl phenyl(prop-2-yn-1-yl)carbamate ($\mathbf{S 1 8 I}$) ($1.9 \mathrm{~g}, 10 \mathrm{mmol}, 1.0 \mathrm{eq}$) were added to an oven dried nitrogen purged flask. The flask was cooled to $-78^{\circ} \mathrm{C}$ using a dry ice-acetone cold bath. Next, n-butyllithium ($6.3 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 1.0 eq) was added dropwise to the flask and allowed to stir for 10 minutes at the same temperature. To the flask, dry
dimethylformamide (DMF) ($1.5 \mathrm{~mL}, 2.0 \mathrm{eq}$) was then slowly added. The reaction temperature was allowed to warm to room temperature in 10 min . The reaction was then poured into a vigorously stiired biphasic solution prepared from a 10% aqueous solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}(100 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The organic layer was washed with water (2 X 100 ml). The combined aqueous layers were then extracted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrate. The residue was purified by flash chromatography on silica gel using hexanes/EtOAc (8:1) to afford methyl (4-oxobut-2-yn-1-yl)(phenyl)carbamate (181) in 45% yield $(1.0 \mathrm{~g})$ as a light yellow liquid.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.18(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.61(\mathrm{~s}$, 2H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,155.5,140.9,129.3,127.5,126.7,92.0,83.3,53.5,40.6$.

o. Synthesis of 180

180

(S)-3-(1,4-dioxaspiro[4.5[decan-2-yl)propiolaldehyde (180)

To a solution of (S)-2-ethynyl-1-4,-dioxaspiro[4.5]decane ($1.00 \mathrm{~g}, 6.02 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry THF (16.5 mL) at $-40^{\circ} \mathrm{C}$ under N_{2} atmosphere was added n - $\mathrm{BuLi}(2.4 \mathrm{~mL}, 6.02 \mathrm{mmol}, 2.50 \mathrm{M}$ in hexanes, 1.0 eq) dropwise over 3 minutes. The reaction was maintained at $-40^{\circ} \mathrm{C}$ for 40 minutes, at which point N, N-dimethyl formamide ($0.93 \mathrm{~mL}, 12.04 \mathrm{mmol}, 2 \mathrm{eq}$) was added, and the reaction was allowed to stir at the same temperature for an additional 30 minutes. The solution was then poured into an Erlenmeyer flask containing a stirring mixture of $\mathrm{KH}_{2} \mathrm{PO}_{4}(0.90 \mathrm{~g}, 6.62$ $\mathrm{mmol}, 1.1 \mathrm{eq}), \mathrm{Et}_{2} \mathrm{O}(66 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(66 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 5 min at that temperature, the mixture was transferred to a separatory funnel with the aid of $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}(10$ mL each $)$. The layers were separated, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated. The crude residue was purified by silica gel chromatography with hexanes/EtOAc (19:1) to afford the title compound ($1.04 \mathrm{~g}, 5.35 \mathrm{mmol}$, 89%) as a pale yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+48.5\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.24(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{ddd}, \mathrm{J}=6.5,5.40 .6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$
(dd, J = 8.3, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,112.0,93.4,83.9,68.9,64.7,35.6,35.1,24.9,23.8,23.8$.
ESI-HRMS found 194.0952 (calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}\right]^{+}$: 194.0943.)
IR (neat, cm^{-1}): 2935, 2861, 2262, 1713, 1449, 1366, 1333, 1160, 1094.

p. General Procedure for Racemic Allylation

2-Nitro-4-(trifluoromethyl)benzenesulfonohydrazide 17 ($114 \mathrm{mg}, 0.4 \mathrm{mmol}$), ynal 18 (0.4 mmol), and oven-dried $3 \AA$ powdered molecular sieves (200 mg) were added to a 10 mL reaction vial equipped with a magnet stir bar. Dichloromethane $(1.0 \mathrm{~mL})$ was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time the reaction mixture was concentrated first by rotary evaporation and then by static pressure vacuum ($2-10$ Torr) for 10 min . Racemic BINOL catalyst ($17 \mathrm{mg}, 0.06 \mathrm{mmol}, 10 \mathrm{~mol} \%$), tert-butanol ($89 \mathrm{mg}, 1.2 \mathrm{mmol}$) and allylboronate $5^{32}(76 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added and rinsed into the solution with dry toluene $(0.2 \mathrm{~mL})$. The reaction was applied to sonication for 10 min to facilitate dissolution. The vial was sealed with a rubber septum and attached to a balloon filled with argon. The mixture was allowed to stir at room temperature for 24 h , at which time the crude mixture was chromatographed on silica gel to afford the desired product.

q. General Procedure for Asymmetric Allylation

2-Nitro-4-(trifluoromethyl)benzenesulfonohydrazide 17 ($114 \mathrm{mg}, 0.4 \mathrm{mmol}$), ynal 18 (0.4 mmol), and oven-dried $3 \AA$ powdered molecular sieves $(200 \mathrm{mg})$ were added to a 10 mL oven dried reaction vial equipped with a magnet stir bar. Dichloromethane $(1.0 \mathrm{~mL})$ was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time the reaction mixture was concentrated first by rotary evaporation and then by static pressure vacuum ($2-10$ Torr) for $10 \mathrm{~min} .(R)-\mathrm{Ph}_{2}$-BINOL catalyst $19(18 \mathrm{mg}, 0.04 \mathrm{mmol}, 7 \mathrm{~mol} \%)$, tert-butanol (89 mg , $1.2 \mathrm{mmol})$ and allylboronate $5(76 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added and rinsed into the solution with dry toluene $(0.2 \mathrm{~mL})$. The reaction was applied to sonication for 10 min to facilitate dissolution. The vial was sealed with a rubber septum and attached to a balloon filled with argon. The mixture was allowed to stir at room temperature for 24 h , at which time the crude mixture was chromatographed on silica gel to afford the desired product.

r. General Procedure for Hydroboration/Oxidation

The allyl allene (0.3 mmol) was dissolved in dry THF (0.4 ml) under argon and cooled to $0{ }^{\circ} \mathrm{C}$. 9-BBN (0.5 M in THF, $0.45 \mathrm{ml}, 1.5 \mathrm{eq}$) was added dropwise to the reaction, and the reaction was allowed to warm up to room temperature naturally. After one hour, the reaction was cooled to $0{ }^{\circ} \mathrm{C} .3 \mathrm{M} \mathrm{NaOH}$ solution $(0.1 \mathrm{ml})$ was added slowly to the reaction, followed by dropwise addition of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, 0.3 ml$)$. The reaction was warmed to room temperature in 5 min . The reaction mixture was transferred to a separatory funnel using $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was collected and the aqueous layer was extracted by $\mathrm{Et}_{2} \mathrm{O}$ (3 X 5 ml). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure followed by flash column chromatography on silica gel afforded the desired compound.

s. Analytical Data for Allyl Allenes

(R)-(Hexa-1,2,5-trien-1-yl)benzene (7a)

Prepared from the corresponding ynal $18 \mathbf{(0 . 4} \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $52 \mathrm{mg}, 83 \%$
e.r.: 99:1
$[\alpha]_{\mathrm{D}}{ }^{22}=-227.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. Absolute stereochemistry as assigned by Lowe's rule. ${ }^{33}$
HPLC Analysis, tr major: 6.1 min ., tr minor: 6.7 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes, $1 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}]$.

All spectra were in agreement with reported data. ${ }^{34}$

(R)-1-(Hexa-1,2,5-trien-1-yl)-4-methoxybenzene (7b)

Prepared from the corresponding ynal $\mathbf{1 8 b}(0.4 \mathrm{mmol})$ and allyl boronate $\mathbf{5}(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (50:1) to afford the pure product as a colorless oil.
Yield: $66 \mathrm{mg}, 88 \%$
e.r.: 98:2
$[\alpha]_{\mathrm{D}}{ }^{22}=-248.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol S7b following the hydroboration/oxidation procedure, tr major: 21.9 min., tr minor: 33.0 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=97: 3,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{ddd}, J=$ $6.0,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{ddd}, J=6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (dddd, $J=$ $17.1,1.6,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (dddd, $J=10.2,1.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.85$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,158.6,136.3,127.7,127.0,115.5,114.1,94.4,93.0,55.3$, 33.3.

GCMS found 186.1 (calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$: 186.1)
IR (thin film, cm^{-1}): 3072, 3005, 2935, 2836, 1608, 1511, 1303, 1172, 1035, 833.

(R)-6-(4-Methoxyphenyl)-hexa-4,5-dien-1-ol (S7b)

S7b was prepared following the general hydroboration/oxidation procedure in 0.2 mmol scale and the crude mixture was purified by flash column chromatography with hexanes/EtOAc (5:1) to afford the pure product as a colorless oil.
Yield: $17 \mathrm{mg}, 42 \%$
e.r.: 98:2
$[\alpha]_{\mathrm{D}}{ }^{22}=-66.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{ddd}, J=$ $6.3,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.58 (ddd, $J=6.5,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.21 (dddd, $J=12.8,6.5,3.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76 (ddt, $J=9.5,7.8,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25$ (br, 1 H).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.5,127.6,127.1,114.1,113.9,94.5,94.3,62.4,55.3,31.9$, 25.1.

HRMS found 205.1239 (calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}\right]^{+}$: 205.1229)
IR (thin film, cm^{-1}): 3412, 2989, 2934, 2875, 1605, 1512, 1467, 1249, 1172, 1034, 836.

(R)-1-Fluoro-4-(hexa-1,2,5-trien-1-yl)benzene (7c)

Prepared from the corresponding ynal $\mathbf{1 8 c}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (200:1) to afford the pure product as a colorless oil.
Yield: $61 \mathrm{mg}, 87 \%$
e.r.: 99:1
$[\alpha]_{\mathbf{D}}{ }^{22}=-246.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol S7c following the hydroboration/oxidation procedure, tr major: 18.4 min., tr minor: 20.3 min., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.14$ (ddd, $J=6.2,2.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (dddd, $J=16.7,10.2,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{ddd}, J=6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.15 (dddd, $J=17.0,1.7,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dddd, $J=10.2,1.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-$ 2.85 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 162.8,160.8,136.0,130.7(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, $128.0(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 93.7(\mathrm{~d}, J=84.3 \mathrm{~Hz}), 33.1$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.7$ (ddd, $J=14.2,9.1,5.6 \mathrm{~Hz}$).
GCMS found 174.1 (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}: 174.1$)
IR (thin film, cm^{-1}): 3062, 2976, 2918, 1950, 1640, 1604, 1508, 1229, 1156, 837.

(R)-6-(4-Fluorophenyl)-hexa-4,5-dien-1-ol (S7c)

S7c was prepared following the general hydroboration/oxidation procedure in 0.3 mmol scale and the crude mixture was purified by flash column chromatography with hexanes/EtOAc (4:1) to afford the pure product as a colorless oil.
Yield: $20 \mathrm{mg}, 35 \%$
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-117.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{ddd}, J=6.5,3.1$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddd}, J=6.6,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{td}, J=7.2,3.1 \mathrm{~Hz}$, ${ }^{2 H}$), $1.81-1.70(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,162.8,160.8,130.8,127.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=$ 21.7 Hz), $94.4(\mathrm{~d}, J=68.0 \mathrm{~Hz}), 62.3,31.8,24.9$.
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.8$ (ddd, $\left.J=13.9,8.9,5.5 \mathrm{~Hz}\right)$.
ESI-MS found 175.1, 193.1 (calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FO}\right]^{+}$: 193.1)
IR (thin film, cm^{-1}): $3360,3045,2937,1951,1604,1508,1226,1156,840$.

(R)-1-(Hexa-1,2,5-trien-1-yl)-4-nitrobenzene (7d)

Prepared from the corresponding ynal $\mathbf{1 8 d}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (100:1) to afford the pure product as a yellow oil.
Yield: $70 \mathrm{mg}, 87 \%$
e.r.: 98:2
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=-318.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 14.8 min. , tr major: 16.3 min ., [Chiralpak®IA column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.26-6.20(\mathrm{~m}$,
$1 \mathrm{H}), 5.89$ (dddd, $J=16.7,10.2,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (ddd, $J=6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (dddd,
$J=17.1,1.5,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (dddd, $J=10.1,1.5,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.89$ (m, 2H).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 207.4,146.4,142.2,135.4,127.0,124.0,116.2,94.2,32.6$.
GCMS found 201.1 (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2}$: 201.1)
IR (thin film, cm^{-1}): $3078,2979,2843,1949,1640,1595,1516,1494,1342,1110,874$.

(R)-1-Bromo-2-(hexa-1,2,5-trien-1-yl)benzene (7e)
Prepared from the corresponding ynal 18e (0.26 mmol) and allyl boronate $5(0.4 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (100:1) to afford the pure product as a colorless oil.
Yield: 35 mg , 60\%
e.r.: 99:1
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 2}}=-148.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 7.4 min., tr minor: 9.3 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes, $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.04$ (ddd, $J=8.0,7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{ddd}, J=6.4,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (dddd, $J=16.9,10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (ddd, $J=6.7,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dddd, $J=16.9$, $1.7,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (dddd, $J=10.1,1.6,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.86$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 206.5,135.9,134.2,132.9,128.3,128.1,127.4,122.4,115.8$, 94.1, 93.3, 32.9.

GCMS found 234.1, 236.1 (calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}$: 234.0)
IR (thin film, cm^{-1}): 3078, 2928, 1953, 1600, 1563, 1474, 1439, 1022, 917.

(R)-2-(-Hexa-1,2,5-trien-1-yl)naphthalene (7f)

Prepared from the corresponding ynal $\mathbf{1 8 f}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $73 \mathrm{mg}, 89 \%$
e.r.: 98:2
$[\alpha]_{\mathrm{D}}{ }^{22}=-236.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 16.1 min ., tr minor: 16.9 min ., [Chiralpak®IA column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=$ $8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.36$ (ddd, $J=6.1,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (dddd, $J=16.6$, $10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (ddd, $J=6.6,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.20 (dddd, $J=17.1,1.7,1.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09$ (dddd, $J=10.1,1.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.91$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 206.1,136.1,133.7,132.6,132.3,128.2,127.7,127.7,126.2$, 125.5, 125.4, 124.6, 115.7, 95.4, 93.4, 33.2.

GCMS found 206.1 (calculated for $\mathrm{C}_{16} \mathrm{H}_{14}$: 206.1)
IR (thin film, cm^{-1}): 3056, 2978, 1947, 1639, 1599, 1509, 895, 819, 754.

(R)-3-(-Hexa-1,2,5-trien-1-yl)thiophene (7g)

Prepared from the corresponding ynal $\mathbf{1 8 g}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $56 \mathrm{mg}, 87 \%$
e.r.: 99:1
$[\alpha]_{\mathrm{D}}{ }^{22}=-267.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol $\mathbf{S 7 g}$ following the hydroboration/oxidation procedure, tr major: 44.6 min ., tr minor: 50.0 min ., [Chiralpak ${ }^{\circledR}$ AD-H column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{EtOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{ddd}, J=6.1,2.7$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.90 (dddd, $J=16.6,10.9,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (ddd, $J=6.7,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.15 (dd, $J=17.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.84$ (m, 2H).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8,136.2,136.1,126.3,125.8,120.4,115.6,92.3,89.6,33.2$.
GCMS found 162.1 (calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~S}: 162.1$)
IR (thin film, cm^{-1}): 3079, 2978, 2911, 1952, 1791, 1639, 1435, 1258, 993, 787.

(R)-6-(Thiophen-3-yl)-hexa-4,5-dien-1-ol (S7g)
$\mathbf{S 7 g}$ was prepared following the general hydroboration/oxidation procedure in 0.3 mmol scale and the crude mixture was purified by flash column chromatography with hexanes/EtOAc (5:1) to afford the pure product as a colorless oil.
Yield: $32 \mathrm{mg}, 59 \%$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-183.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{ddd}, J=6.3,3.1$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{ddd}, J=6.5,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{br}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,136.2,126.2,125.8,120.4,93.6,89.7,62.3,31.8,25.0$.
ESI-MS found 181.1 (calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{OS}\right]^{+}$: 181.1)
IR (thin film, cm^{-1}): 3463, 3056, 2944, 1951, 1057, 788.

(R)-3-(Hexa-1,2,5-trien-1-yl)pyridine (7h)

2-Nitro-4-(trifluoromethyl)benzenesulfonohydrazide 17 (114 mg, 0.4 mmol), 3-(pyridin-3yl)propiolaldehyde $\mathbf{1 8 h}(52 \mathrm{mg}, 0.4 \mathrm{mmol})$, and oven-dried $3 \AA$ powdered molecular sieves (200 mg) were added to a 10 mL reaction vial equipped with a magnet stir bar. Dichloromethane (0.5
mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time the reaction mixture was concentrated first by rotary evaporation and then by static pressure vacuum ($2-10 \mathrm{Torr}$) for $10 \mathrm{~min} .(R)-\mathrm{Ph}_{2}$-BINOL catalyst $19(36 \mathrm{mg}, 0.08 \mathrm{mmol}, 7$ mol\%), tert-butanol ($89 \mathrm{mg}, 1.2 \mathrm{mmol}$) and allylboronate $5(152 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added and rinsed into the solution with dry toluene $(0.2 \mathrm{~mL})$. The reaction was applied to sonication for 10 min to facilitate dissolution. The vial was sealed with a rubber septum and attached to a balloon filled with argon. The mixture was allowed to stir at room temperature for 24 h , at which time the crude mixture was chromatographed on silica gel with hexanes/EtOAc (50:1) to afford the pure product as a brown oil.
Yield: $17 \mathrm{mg}, 27 \%$.
e.r.: 98:2
$[\alpha]_{\mathbf{D}}{ }^{22}=-222.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 11.0 min., tr major: 11.5 min ., [Chiralpak®IA-H column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{EtOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{ddd}, J=7.9,1.9,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (ddd, $J=6.1,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (dddd, $J=16.7$, $10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65$ (ddd, $J=6.8,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.15 (dddd, $J=17.0,1.6,1,6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07$ (dddd, $J=10.1,1.5,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.0,148.2,147.9,135.7,133.4,130.7,123.4,116.0,93.9,91.8$, 32.8 .

HRMS found 158.0979 (calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}^{+}\right.$: 158.0970)
IR (thin film, cm^{-1}): 3057, 2982, 1951, 1640, 1571, 1481, 1431, 1025, 916, 810, 748.

(R)-(Hexa-1,2,5-trien-1-yl)dimethyl(phenyl)silane (7i)

Prepared from the corresponding ynal $\mathbf{1 8 i}(0.4 \mathrm{mmol})$ and allyl boronate $\mathbf{5}(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $62 \mathrm{mg}, 73 \%$
e.r.: 98:2
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-50.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 9.9 min., tr minor: 10.9 min., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.82(\mathrm{dddd}, J=16.6$, $10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.00$ (dddd, $J=10.1,1.5,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (ddd, $J=6.9,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2 \mathrm{H}), 0.38-0.34(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.1,138.5,136.9,133.7,129.1,127.7,115.0,82.1,81.5,32.3$, -2.2, -2.3.
GCMS found 214.1 (calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Si}$: 214.1).
IR (thin film, cm^{-1}): 3069, 3001, 2961, 2905, 1940, 1642, 1428, 1249, 1114, 816.

(R)-(((Hepta-2,3,6-trien-1-yl)oxy)methyl)benzene (7j)

Prepared from the corresponding ynal $\mathbf{1 8 j}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (50:1) to afford the pure product as a colorless oil.
Yield: $72 \mathrm{mg}, 90 \%$
e.r.: 98:2
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-58.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 14.9 min., tr minor: 15.8 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=800: 1,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.87$ (dddd, $J=16.6$, $10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.21(\mathrm{~m}, 2 \mathrm{H}), 5.12$ (dddd, $J=17.1,1.7,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dddd, $J=10.1,1.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.79$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,138.2,136.2,128.4,127.8,127.6,115.5,90.0,88.9,71.6$, 68.4, 32.9 .

GCMS found 200.1 (calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: 200.1$)
IR (thin film, cm^{-1}): 3064, 3030, 2978, 2857, 1964, 1640, 1496, 1454, 1351, 1095, 1029, 915, 736.

(\boldsymbol{R})- N -(Hepta-2,3,6-trien-1-yl)- N -methylaniline (7k)

Prepared from the corresponding ynal $\mathbf{1 8 k}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure, but for 40 hours. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (100:5) to afford the pure product as a brown oil.
Yield: $40 \mathrm{mg}, 50 \%$
e.r.: 99:1
$[\alpha]_{\mathbf{D}}{ }^{22}=+3.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 8.8 min., tr major: 9.2 min., [Chiralpak $® I A$ column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$].
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1 H), 5.77 (dddd, $J=16.7,10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.11(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.05$ $-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,149.1,136.3,129.0,116.6,115.3,112.9,90.4,87.2,51.9$, 38.1, 33.1.

HRMS found 200.1433 (calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}\right]^{+}$: 200.1439)
IR (thin film, cm^{-1}): 3006, 2979, 2908, 1965, 1600, 1506, 1342, 748.

(R)-Methyl(hepta-2,3,6-trien-1-yl)(phenyl)carbamate (71)

Prepared from the corresponding ynal $\mathbf{1 8 1}(0.4 \mathrm{mmol})$ and allyl boronate $\mathbf{5}(0.6 \mathrm{mmol})$ according to the General Procedure, but for 40 hours. The crude mixture was purified by flash column chromatography with hexanes/EtOAc (100:5) to afford the pure product as a colorless oil.
Yield: $83 \mathrm{mg}, 85 \%$
e.r.: 99:1
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-23.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 45.5 min., tr minor: 49.7 min., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.71$ (dddd, $J=16.9$, $10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.17$ (ddddd, $J=6.6,6.6,6.6,2.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (dddd, $J=16.9,1.7,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (dddd, $J=10.1,1.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (ddd, $J=$ $15.2,5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (ddd, $J=15.2,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.63$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,155.8,136.1,128.8,126.9,126.5,115.4,110.0,91.0,88.3$, 52.9, 49.9, 32.9.

HRMS found 244.1338 (calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}: 244.1331$)
IR (thin film, cm^{-1}): 3292, 2958, 1700, 1596, 1497, 1446, 1381, 1280, 1218.

(R)-Octadeca-1,4,5-triene (7m)

Prepared from the corresponding ynal $\mathbf{1 8 m}(0.4 \mathrm{mmol})$ and allyl boronate 5 (0.6 mmol) according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: 97 mg , 98\%
e.r.: 98:2
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-39.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol S7m following the hydroboration/oxidation procedure, tr minor: 28.3 min., tr major: 30.9 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.85$ (dddd, $\left.J=16.7,10.5,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.16-5.03(\mathrm{~m}, 3 \mathrm{H})$, 5.01 (ddd, $J=10.3,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}$, $2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2,136.8,115.0,91.4,88.9,33.5,31.9,29.7$, 29.7, 29.7, 29.5, 29.4, 29.1, 29.1, 28.8, 22.7, 14.1.

GCMS found 248.3 (calculated for $\mathrm{C}_{18} \mathrm{H}_{32}$: 248.3)
IR (thin film, cm^{-1}): 3082, 2956, 2854, 1963, 1641, 1467, 1261, 991, 912, 870.

(R)-Octadeca-4,5-dien-1-ol (S7m)

$\mathbf{S 7 m}$ was prepared following the general hydroboration/oxidation procedure in 0.3 mmol scale and the crude mixture was purified by flash column chromatography with hexanes/EtOAc (100:10) to afford the pure product as a colorless oil.
Yield: $58 \mathrm{mg}, 72 \%$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=-41.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dt}, J=6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.04(\mathrm{~m}$, $2 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{tt}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 18 \mathrm{H}), 1.35$ $-1.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 203.8,91.6,90.1,62.4,32.0,31.9,29.7,29.7,29.6,29.5,29.4$, 29.2, 29.1, 29.0, 25.2, 22.7, 14.1.

ESIMS found 267.3 (calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}\right]^{+}$: 267.3)
IR (thin film, cm^{-1}): 2952, 2924, 2854, 2200, 1964, 1467, 1059, 883.

(R)-(Неха-1,2,5-trien-1-yl)cyclohexane (7n)

Prepared from the corresponding ynal $\mathbf{1 8} \mathbf{n}(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $40 \mathrm{mg}, 62 \%$
e.r.: 99:1
$[\alpha]_{\mathrm{D}}{ }^{22}=-57.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol S7n following the hydroboration/oxidation procedure, tr minor: 40.4 min., tr major: 53.8 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.84(\mathrm{dddd}, J=16.6,10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.03(\mathrm{~m}, 3 \mathrm{H})$, 5.00 (dddd, $J=10.1,1.5,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.57$ $(\mathrm{m}, 4 \mathrm{H}), 1.33-1.06(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,136.8,115.0,97.5,89.8,37.1,33.6,33.1,33.0,26.2,26.0$, 26.0.

GCMS found 162.1 (calculated for $\mathrm{C}_{12} \mathrm{H}_{18}$: 162.1)
IR (thin film, cm^{-1}): 3078, 2925, 2853, 1960, 1640, 1449, 1261, 992, 913, 761.

(R)-6-Cyclohexyl-hexa-4,5-dien-1-ol (S7n)

S7n was prepared following the general hydroboration/oxidation procedure in 0.25 mmol scale and the crude mixture was purified by flash column chromatography with hexanes/EtOAc (100:10) to afford the pure product as a colorless oil.
Yield: $27 \mathrm{mg}, 59 \%$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-37.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.05-5.29(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{tt}, J=6.3,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{tdd}, J=$ 6.8, 5.4, 2.0 Hz, 2H), $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6,97.6,91.1,62.4,37.2,33.1,33.1,32.0,26.2,26.0,25.3$.
ESIMS found 181.2 (calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}\right]^{+}$: 181.2)
IR (thin film, cm^{-1}): 2923, 2850, 1469, 1053.

(S)-2-((R)-Hexa-1,2-5-trien-1-yl)-1,4-dioxaspiro[4.5]decane (7o)

Prepared from the corresponding ynal $180(0.4 \mathrm{mmol})$ and allyl boronate $5(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a pale yellow oil.
Yield: $70 \mathrm{mg}, 79 \%$
e.r.: 98:2
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=+69.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis tr major: 4.25 min ., tr minor: 6.69 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=99.0: 1.0,1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{ddt}, \mathrm{J}=16.6,10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{qd}, \mathrm{J}=6.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21$ (ddt, J = 7.5, $6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08(\mathrm{dq}, \mathrm{J}=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, \mathrm{J}=10.1,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{tdd}, \mathrm{J}=7.4,6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, \mathrm{J}=8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}) 3.69(\mathrm{dd}, \mathrm{J}=8.2,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.76(\mathrm{tdt}, \mathrm{J}=6.6,2.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 204.9,135.9,115.6,110.0,91.5,91.4,74.4,69.3,36.4,35.4$, 32.7, 25.1, 23.9, 23.9.

HRMS (EI) found 221.1467 (calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$221.1463)
IR (thin film, cm^{-1}): 2936, 2862, 2002, 1586, 1586, 1448, 1366, 1278, 1162, 1099, 1041.

t. General Procedure for Racemic Crotylations

2-Nitrobenzenesulfonohydrazide $20(87 \mathrm{mg}, 0.4 \mathrm{mmol})$, ynal $18(0.4 \mathrm{mmol})$, and oven-dried $3 \AA$ powdered molecular sieves (200 mg) were added to a 10 mL reaction vial equipped with a magnet stir bar. Dichloromethane (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time the reaction mixture was concentrated first by rotary evaporation and then by static pressure vacuum ($2-10 \mathrm{Torr}$) for 10 min . Racemic $\mathrm{Ph}_{2}{ }^{-}$ BINOL catalyst 19 ($18 \mathrm{mg}, 0.04 \mathrm{mmol}, 7 \mathrm{~mol} \%$), tert-butanol ($89 \mathrm{mg}, 1.2 \mathrm{mmol}$) and crotylboronate ${ }^{32} 21$ or $22(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ were added and rinsed into the solution with dry toluene $(0.2 \mathrm{~mL})$. The reaction was applied to sonication for 10 min to facilitate dissolution. The vial was sealed with a rubber septum and attached to a balloon filled with argon. The mixture was allowed to stir at room temperature for 48 h , at which time the crude mixture was chromatographed on silica gel to afford the desired product.

u. General Procedure for Asymmetric Crotylations

2-Nitrobenzenesulfonohydrazide 20 ($87 \mathrm{mg}, 0.4 \mathrm{mmol}$), ynal 18 (0.4 mmol), and oven-dried $3 \AA$ powdered molecular sieves (200 mg) were added to a 10 mL reaction vial equipped with a magnet stir bar. Dichloromethane (1.0 mL) was added to the vial and the reaction mixture was stirred at room temperature for 2 h , at which time the reaction mixture was concentrated first by rotary evaporation and then by static pressure vacuum ($2-10 \mathrm{Torr}$) for $10 \mathrm{~min} .(R)-\mathrm{Ph}_{2}$-BINOL catalyst 19 ($18 \mathrm{mg}, 0.04 \mathrm{mmol}, 7 \mathrm{~mol} \%$), tert-butanol ($89 \mathrm{mg}, 1.2 \mathrm{mmol}$) and crotylboronate 21 or $22(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ were added and rinsed into the solution with dry toluene $(0.2 \mathrm{~mL})$. The reaction was applied to sonication for 10 min to facilitate dissolution. The vial was sealed with a rubber septum and attached to a balloon filled with argon. The mixture was allowed to stir at room temperature for 48 h , at which time the crude mixture was chromatographed on silica gel to
afford the desired product.

v. Analytical Data for Crotyl Allenes

(R_{a}, S)-(4-Methyl-hexa-1,2,5-trien-1-yl)benzene (23a)
Prepared from the corresponding ynal 18a (0.4 mmol) and crotyl boronate $21(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $53 \mathrm{mg}, 78 \%$
e.r.: 98:2. d.r.: >20:1.
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-163.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 6.2 min ., tr minor: 6.6 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=6.4,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=6.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (ddd, $J=$ $17.2,1.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{ddd}, J=10.2,1.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.21$ (d, $J=6.9$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,142.4,134.9,128.6,126.8,126.5,113.3,99.5,96.0,37.5$, 19.8.

GCMS found 170.1 (calculated for $\mathrm{C}_{13} \mathrm{H}_{14}$: 170.1)
IR (thin film, cm^{-1}): 3084, 3030, 2970, 2930, 1950, 1495, 1458, 915, 776.

(\boldsymbol{R}_{a}, R)-(4-Methyl-hexa-1,2,5-trien-1-yl)benzene (24a)
Prepared from the corresponding ynal 18a (0.4 mmol) and crotyl boronate $22(0.6 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $36 \mathrm{mg}, 53 \%$
e.r.: 98:2
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-120.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr major: 27.7 min., tr minor: 30.0 min ., [Chiralcel®OD column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=800: 1,0.2 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=6.4,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=6.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (ddd, $J=$ $17.1,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{ddd}, J=10.2,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,142.4,134.9,128.6,126.8,126.6,113.3,99.5,96.0,37.5$, 19.8.

GCMS found 170.1 (calculated for $\mathrm{C}_{13} \mathrm{H}_{14}$: 170.1)

IR (thin film, cm^{-1}): 3065, 3032, 2973, 1726, 1495, 1262, 919, 698.

(R_{a}, S)-3-Methyl-deca-1,4,5-triene (23b)
Prepared from the corresponding ynal $36(0.5 \mathrm{mmol})$ and crotyl boronate $21(0.75 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: $57 \mathrm{mg}, 76 \%$
e.r.: 99:1
$[\alpha]_{\mathrm{D}}{ }^{22}=+34.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol 23bS1 following the hydroboration/oxidation procedure, tr major: 28.3 min., tr minor: 33.7 min., [Chiralpak ${ }^{\circledR} A D-$ H column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81$ (ddd, $\left.J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.18$ (dddd, $J=6.5,6.5$, $6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (dddd, $J=6.4,6.2,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (ddd, $J=17.1,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96 (ddd, $J=10.2,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dtd}, J=7.4,6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.45-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.85(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,143.0,112.6,95.4,92.5,37.3,31.3,28.6,22.2,19.7,13.9$.
GCMS found 150.1 (calculated for $\mathrm{C}_{11} \mathrm{H}_{18}$: 150.1)
IR (thin film, cm^{-1}): 2960, 2872, 1683, 1590, 1456, 917, 875.

(R_{a}, S)-3-Methyl-deca-4,5-dien-1-ol (23bS1)
The substrate was run in 0.2 mmol scale following the hydroboration/oxidation procedure and the crude mixture was purified by flash column chromatography with hexanes:EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $19 \mathrm{mg}, 56 \%$
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{22}=-15.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{dddd}, J=6.6,6.6,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (dddd, $J=6.4,6.3$, $3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6,96.4,92.1,61.2,39.8,31.3,30.4,28.7,22.2,20.7$, 13.9.
HRMS found 169.1593 (calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}\right]^{+}: 169.1592$)
IR (thin film, cm^{-1}): 3370,2958, 2929, 2871, 1459, 1369, 1261. 1203, 1170, 1049, 874, 834, 755.

($\boldsymbol{R}_{a}, \boldsymbol{R}$)-3-Methyl-deca-1,4,5-triene (24b)
Prepared from the corresponding ynal $36(1.0 \mathrm{mmol})$ and crotyl boronate $22(1.5 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: 100 mg , 67\%
e.r.: 99:1
$[\alpha]_{\mathrm{D}}{ }^{22}=-124.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol $\mathbf{3 7}$ following the hydroboration/oxidation procedure, tr major: 32.3 min., tr minor: 39.7 min., [Chiralpak®AD-H column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=99.9: 0.1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{ddd}, J=17.2,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dddd, $J=6.5,6.5$, $6.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.04$ (ddd, $J=17.2,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (ddd, $J=10.2$, $1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.9,142.9,112.6,95.3,92.5,37.2,31.3,28.6,22.1,19.7,13.9$.
GCMS found 150.1 (calculated for $\mathrm{C}_{11} \mathrm{H}_{18}$: 150.1)
IR (thin film, cm^{-1}): 2959, 2928, 2872, 1683, 1590, 1456, 917, 875, 760.

($\boldsymbol{R}_{a}, \boldsymbol{R}$)-3-Methyl-deca-4,5-dien-1-ol (37)
The substrate was run in 0.67 mmol scale following the general procedure of hydroboration/oxidation and the crude mixture was purified by flash column chromatography with hexanes/EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $70 \mathrm{mg}, 62 \%$
$[\alpha]_{\mathrm{D}}{ }^{22}=-71.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13$ (dddd, $\left.J=6.6,6.6,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05(\mathrm{dt}, J=6.5,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{td}, J=6.4,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6,96.4,92.2,61.3,39.7,31.4,30.5,28.8,22.2,20.8,13.9$.
HRMS found 169.1586 (calculated for [$\left.\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}\right]^{+}: 169.1592$)
IR (thin film, cm^{-1}): 3353, 2958, 2929, 2872, 1961, 1457, 1053.

w. Stereochemistry Determination of Crotyl Allenes

(R_{a}, S)-3-Methyldeca-4,5-dienoic acid (23bS2)
(R_{a}, S)-3-methyl-deca-4,5-dien-1-ol (23bS1) ($73 \mathrm{mg}, 0.4 \mathrm{mmol}$) was dissolved in 3 ml acetone and cooled to $-20{ }^{\circ} \mathrm{C}$. Jones reagent (2.5 equiv), prepared from $\mathrm{CrO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol}$), concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.09 \mathrm{ml}, 1.6 \mathrm{mmol})$, and water (0.4 ml), was added slowly to the reaction and the reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ in 2 h before quenched by addition of $1 \mathrm{ml} i-\mathrm{PrOH}$, and the mixture was filtered and concentrated down to 1 ml . The residue was then purified by flash column chromatography with hexanes:EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $39 \mathrm{mg}, 53 \%$
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=-50.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit: ${ }^{35}$ its enantiomer $\left(S_{a}, R\right)$-3-methyldeca-4,5-dienoic acid $[\alpha]_{\mathrm{D}}{ }^{22}=+45\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23-5.11(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=15.6,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.4,178.2,95.5,93.4,40.9,31.3,29.7,28.6,22.2,20.2,13.9$.
Analytical data for this compound matched that of the previously reported values and therefore confirmed the stereochemistry. ${ }^{35}$

($\boldsymbol{R}_{a}, \boldsymbol{R}$)-3-Methyldeca-4,5-dienoic acid (38)
(R_{a}, R)- 3-Methyl-deca-4,5-dien-1-ol (37) ($73 \mathrm{mg}, 0.4 \mathrm{mmol}$) was dissolved in 3 ml acetone and cooled to $0{ }^{\circ} \mathrm{C}$. Jones reagent (2.5 equiv), prepared from $\mathrm{CrO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$, concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.09 \mathrm{ml}, 1.6 \mathrm{mmol})$, and water (0.4 ml), was added slowly to the reaction and the reaction remained at the same temperature for 2 h before quenched by addition of $1 \mathrm{ml} i-\mathrm{PrOH}$, and the mixture was filtered and concentrated down to 1 ml . The residue was then purified by flash column chromatography with hexanes:EtOAc (8:1) to afford the pure product as a colorless oil.
Yield: $41 \mathrm{mg}, 56 \%$
$[\alpha]_{\mathbf{D}}{ }^{22}=-80.5\left(\mathrm{c}=1.34, \mathrm{CHCl}_{3}\right)$. In lit: ${ }^{35}[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-74.9\left(\mathrm{c}=1.34, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.24-5.08(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=15.6,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.29 (dd, $J=15.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.09$ (d, $J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.4,177.5,95.5,93.4,40.8,31.3,29.8,28.6,22.2,20.3,13.9$.
Analytical data for this compound matched that of the previously reported values and therefore confirmed the stereochemistry. ${ }^{35}$

x. Cyclization of Enantioenriched Allenols

(R)-2-Phenyl-2,5-dihydrofuran (25)
(S)-4-Phenylbuta-2,3-dien-1-ol (6a) ($44 \mathrm{mg}, 0.3 \mathrm{mmol}, 92: 8$ e.r.) was dissolved in 3 ml hot pentane. Silver nitrate on silica gel ($51 \mathrm{mg}, 10 \% \mathrm{wt}, 0.1 \mathrm{eq}$) was added in and the reaction flask was wrapped with aluminum foil and allowed to stir for 26 hours at room temperature. After the allenol was consumed (as monitored by TLC), the reaction mixture was subjected directly to column chromatography on silica gel eluting with hexanes to afford the cyclized product $\mathbf{2 5}$ as a colorless oil.
Yield: $35 \mathrm{mg}, 79 \%$.
e.r.: 92:8.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+111.8\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right) . \mathrm{In} \mathrm{lit}^{36}:[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=+248\left(\mathrm{c}=0.59, \mathrm{CHCl}_{3}, 93 \%\right.$ ee $)$.
HPLC Analysis, tr minor: 12.9 min., tr major: 17.2 min., [Chiralpak®IA column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=99.95: 0.05,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}]$.
All spectra were in agreement with reported data. ${ }^{37}$

(S)-2-Phenethyl-2,5-dihydrofuran (26)
(S)-6-Phenylhexa-2,3-dien-1-ol ($\mathbf{6 g}$) ($52 \mathrm{mg}, 0.3 \mathrm{mmol}, 92: 8$ e.r.) was dissolved in a mixture of acetone/water $(1.2 \mathrm{ml} / 0.8 \mathrm{ml})$. Silver nitrate $(10 \mathrm{mg}, 0.2 \mathrm{eq})$ was added in and the reaction flask was wrapped with aluminum foil and allowed to stir for 48 hours at room temperature. After the allenol was consumed (as monitored by TLC), the solvent was removed under reduced pressure and the crude reaction mixture was subjected to column chromatography using hexanes to give cyclized product $\mathbf{2 6}$ as a colorless oil.
Yield: $35 \mathrm{mg}, 67 \%$.
e.r.: 92:8.
$[\alpha]_{\mathrm{D}}{ }^{22}=+74.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, tr minor: 11.5 min ., tr major: 12.2 min ., [Chiralpak $® I A$ column, $24 \mathrm{~cm} \times 4.6$ mm I.D., Hexanes: $\mathrm{iPrOH}=99.9: 0.1,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$].
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{ddt}, J=6.0,1.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dtd}, J=6.0,2.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.57(\mathrm{~m}, 2 \mathrm{H}), 2.78-$ $2.61(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.79(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,129.5,128.4,128.3,126.7,125.7,85.4,75.1,37.7,31.5$.
ESIMS found 175.1 (calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}\right]^{+}$: 175.1)
IR (thin film, cm^{-1}): 3081, 3061, 3027, 2924, 2848, 1603, 1496, 1454, 1354, 1079, 1018.

(2R, 5R)-2,5-Piphenyl-2,5-dihydrofuran (S19)
To a solution of $\mathrm{AuCl}_{3}(0.6 \mathrm{mg}, 0.0020 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ in a flame-dried vial equipped with a magnetic stir bar was added a solution of the allenol (anti-15a) ($33 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (1 mL) via cannula, followed by a 1 mL rinse. The reaction was allowed to stir at r.t. for 4 h ,
at which time TLC indicated full consumption of the starting material. The solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography with hexanes ($39: 1$) to afford the title compound as a pale yellow oil.
Yield: $23 \mathrm{mg}, 70 \%$.
$[\alpha]_{\mathrm{D}}{ }^{22}=+382.2\left(\mathrm{c}=0.48, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 3 \mathrm{H}), 5.93(\operatorname{app~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, 4 H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,130.3,128.6,127.9,126.5,88.3$.
HRMS (ESI) found 223.1116 (calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}+\mathrm{H}\right]^{+}: 223.1123$)
IR (thin film, cm^{-1}): 3084, 3062, 3029, 2922, 2851, 1601, 1493.

(R)-2-((R)-2,5-Dihydrofuran-2-yl)-1,4-dioxaspiro[4.5]decane (27)

To a solution of $\mathrm{AuCl}_{3}(0.6 \mathrm{mg}, 0.0020 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ in a flame-dried vial equipped with a magnetic stir bar was added a solution of the allenol $110(30 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF (1 mL) via cannula, followed by a 1 mL rinse. The reaction was allowed to stir at r.t. for 2 h , at which time TLC indicated full consumption of the starting material. The solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography with hexanes ($39: 1$) to afford the title compound as a pale yellow oil and a single diastereomer.
Yield: $19 \mathrm{mg}, 64 \%$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{24}=+41.3\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{3}\right) . \operatorname{In} \mathrm{lit}^{38}:[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{24}=+51 \quad\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
All spectra were in agreement with reported data. ${ }^{38}$

(R)-2-((S)-2,5-Dihydrofuran-2-yl)-1,4-dioxaspiro[4.5]decane (28)

To a solution of $\mathrm{AuCl}_{3}(0.6 \mathrm{mg}, 0.0020 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ in a flame-dried vial equipped with a magnetic stir bar was added a solution of the allenol $\mathbf{1 1 p}(30 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF (1 mL) via cannula, followed by a 1 mL rinse. The reaction was allowed to stir at r.t. for 2 h , at which time TLC indicated full consumption of the starting material. The solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography with hexanes ($39: 1$) to afford the title compound as a pale yellow oil and a single diastereomer.
Yield: $18 \mathrm{mg}, 59 \%$.
$[\alpha]_{\mathrm{D}}{ }^{24}=+26.1\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{3}\right)$.
All spectra were in agreement with reported data. ${ }^{38}$

(2S, 5R)-2-Benzyl-5-phenyl-2,5-dihydrofuran (29)
A solution of the allenol anti-15b $(0.046 \mathrm{~g}, 0.19 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added by cannula to a solution of $\mathrm{AuCl}_{3}(\sim 0.6 \mathrm{mg}, 0.002 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. The reaction was allowed to stir at room temperature over 2 h , at which time TLC indicated full consumption of the starting material. The reaction was then concentrated under reduced pressure, and the residue was purified by flash column chromatography with $0 \% \rightarrow 2 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to afford the title compound as a clear and colorless oil.
Yield: ($0.027 \mathrm{~g}, 0.16 \mathrm{mmol}, 59 \%$) as a clear oil.
All spectra were in agreement with reported data. ${ }^{8}$

y. Synthesis of Laballenic Acid

(R)-Heptadeca-1,4,5-triene (31)

Prepared from the corresponding ynal $\mathbf{3 0}(2.0 \mathrm{mmol})$ and allyl boronate $\mathbf{5}(3.0 \mathrm{mmol})$ according to the General Procedure. The crude mixture was purified by flash column chromatography with hexanes to afford the pure product as a colorless oil.
Yield: 399 mg , 85\%
e.r.: 99:1
$[\alpha]_{\mathbf{D}}{ }^{22}=-38.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
HPLC Analysis, this compound was converted to the corresponding alcohol (see below) following the hydroboration/oxidation procedure, tr minor: 32.5 min ., tr major: 34.3 min , [Chiralpak®IA column, $24 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ I.D., Hexanes: $\mathrm{iPrOH}=800: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$].
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85(\mathrm{dddd}, J=16.6,10.1,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.04(\mathrm{~m}, 3 \mathrm{H})$, 5.01 (ddd, $J=10.1,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.71$ (m, 2H), $2.03-1.92$ (m, 2H), 1.46 - 1.35 (m, 2H), $1.35-1.19$ (m, 16H), 0.89 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.2,136.8,115.0,91.5,88.9,33.5,31.9,29.7,29.6,29.5,29.4$, 29.1, 29.1, 28.8, 22.7, 14.1.

GCMS found 234.2 (calculated for $\mathrm{C}_{17} \mathrm{H}_{30}$: 234.2)
IR (thin film, cm^{-1}): 2956, 2926, 2854.

(R)-Heptadeca-4,5-dien-1-ol (32)

The product was prepared on a 1.0 mmol scale following the general procedure for hydroboration/oxidation and the crude mixture was purified by flash column chromatography with hexanes:EtOAc (100:5) to afford the pure product as a colorless oil.

Yield: $189 \mathrm{mg}, 75 \%$
$[\alpha]_{\mathbf{D}}{ }^{22}=-43.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 2 \mathrm{H})$, $2.01-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{tt}, J=7.3,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 16 \mathrm{H})$, $0.91-0.85$ (m, 3H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.8,91.6,90.1,62.4,32.0,31.9,29.7,29.7,29.5,29.3,29.2$, 29.1, 25.2, 22.7, 14.1.

ESIMS found 253.2 (calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}\right]^{+}$: 253.2)
IR (thin film, cm^{-1}): 3354, 2853, 1467, 1057, 930.

(R)-Octadeca-5,6-dienenitrile (34)
(R)-Heptadeca-4,5-dien-1-ol 32 ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ and cooled to $0^{\circ} \mathrm{C}$. Triphenylphosphine ($262 \mathrm{mg}, 1 \mathrm{mmol}$) and DIAD ($202 \mathrm{mg}, 1 \mathrm{mmol}$) were added followed by the addition of acetone cyanohydrin $33(85 \mathrm{mg}, 1 \mathrm{mmol})$. The reaction mixture was allowed to stir at the same temperature for 1 h and warm up to room temperature. After 24 hours, the reaction mixture was flashed through a short pad of silica gel and the solvent was removed under vacuum. The crude product was purified by column chromatography with hexanes/EtOAc (50:1) to afford the pure product as a colorless oil.
Yield: $95 \mathrm{mg}, 73 \%$
$[\alpha]_{\mathrm{D}}{ }^{22}=-47.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.14$ (dddt, $J=6.5,6.5,6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (dddt, $J=6.4,6.3$, $6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74$ $(\mathrm{m}, 2 \mathrm{H}), 1.38(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 204.1,119.6,92.3,88.6,31.9,29.7,29.6,29.5,29.3,29.2,29.1$, 28.9, 27.6, 24.6, 22.7, 16.4, 14.1.

ESIMS found 262.2 (calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}\right]^{+}$: 262.2)
HRMS found 284.2364 (calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NNa}\right]^{+}$: 284.2354)
IR (thin film, cm^{-1}): 2924, 2854, 2250, 1963, 1465, 880.

(R)-Octadeca-5,6-dienoic acid, laballenic acid (35)
(R)-Octadeca-5,6-dienenitrile $34(115 \mathrm{mg}, 0.44 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(0.5 \mathrm{ml})$. To this solution was added a solution of $\mathrm{NaOH}(120 \mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{ml})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h . The reaction was acidified with $\mathrm{HCl}(2 \mathrm{M})$ to $\mathrm{pH}=1$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 5 \mathrm{ml})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude mixture was purified by column chromatography with hexanes/EtOAc/AcOH (100:10:0.1) to afford the pure product as a colorless oil with acidic smell.
Yield: $107 \mathrm{mg}, 87 \%$
$[\alpha]_{\mathbf{D}}{ }^{22}=-45.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. In lit: $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{29}=-42.7\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right){ }^{39}[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{27}=-50.6(\mathrm{c}=$ $\left.1.025, \mathrm{CHCl}_{3}\right)$. ${ }^{40}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.14-5.00(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{qd}, J=7.0$, $2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{qd}, J=6.9,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{tt}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{tt}, J=7.1,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 204.0, 179.9, 91.6, 89.6, 33.3, 31.9, 29.7, 29.6, 29.5, 29.4, 29.2, 29.1, 28.9, 28.2, 24.0, 22.7, 14.1.

ESIMS found 279.2 (calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2}\right]^{-}$: 279.2)
HRMS found 279.2325 (calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2}\right]^{-}: 279.2324$)
IR (thin film, cm^{-1}): 2923, 2854, 1710, 1457, 1254, 878.
All spectra were in agreement with reported data. ${ }^{39-40}$
3. Summary of Absolute Stereochemistry Determination for Allenols and Allyl Allenes

The absolute stereochemistry of allenols was determined unambiguously by direct comparison of the optical rotations of $\mathbf{6 a},{ }^{7} \mathbf{6 g},{ }^{9} \mathbf{6 i},{ }^{9} \mathbf{6} \mathbf{j},{ }^{11} \mathbf{6 n},{ }^{13}$ with those reported for the same compounds or their enantiomers.
The cyclized product $\mathbf{2 5}$ from 6a also matched the reported optical information. ${ }^{36}$
The absolute stereochemistry of $\mathbf{2 3 b S} 2$ and $\mathbf{3 8}$ was confirmed by their NMR data and optical rotations compared to those that had been reported by Ma's group. ${ }^{35}$ Therefore the absolute stereochemistry of crotyl allenes was decisively determined.
The optical rotation of laballenic acid 35^{39-40} confirmed the absolute stereochemistry of the corresponding allyl allene precursor 31, and the absolute configuration of the remaining allyl allene products was determined by analogy.

The optical rotations of allenols and allyl allenes both match Lowe's rules. ${ }^{33}$

4. References

1. Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701-2704.
2. Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem.1997, 62, 7507-7507.
3. Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180-8186.
4. Bishop, J. A.; Lou, S.; Schaus, S. E. Angew. Chem. Int. Ed. 2009, 48, 4337-4340.
5. Mokar, B. D.; Liu, R.-S. Chem. Commun. 2014, 50, 8966-8969.
6. Zeng, L.; Xu, G.; Gao, P.; Zhang, M.; Li, H.; Zhang, J. Eur. J. Med. Chem. 2015, 93, 109120.
7. Horvath, A.; Backvall, J.-E. Chem. Commun. 2004, 964-965.
8. Mundal, D. A.; Lutz, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2012, 134, 5782-5785.
9. Ye, J.; Fan, W.; Ma, S. Chem. Eur. J. 2013, 19, 716-720.
10. Poh, J.-S.; Tran, D. N.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Angew. Chem. Int. Ed. 2015, 54, 7920-7923.
11. Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Zhang, J.; Ma, S. Chem. Commun. 2015, 51, 6956-6959.
12. Okada, T.; Shimoda, A.; Shinada, T.; Sakaguchi, K.; Ohfune, Y. Org. Lett. 2012, 14, 61306133.
13. Deska, J.; del Pozo Ochoa, C.; Bäckvall, J.-E. Chem. Eur. J. 2010, 16, 4447-4451.
14. Yamamoto, Y.; Hattori, K.; Ishii, J.-i.; Nishiyama, H. Tetrahedron 2006, 62, 4294-4305.
15. Pollex, A.; Millet, A.; Müller, J.; Hiersemann, M.; Abraham, L. J. Org. Chem. 2005, 70, 5579-5591.
16. Evans, D. A.; Burch, J. D. Org. Lett. 2001, 3, 503-505.
17. Blanchard, C.; Framery, E.; Vaultier, M. Synthesis 1996, 1996, 45-47.
18. Flagstad, T.; Petersen, M. T.; Nielsen, T. E. Angew. Chem. Int. Ed. 2015, 54, 8395-8397.
19. Kim, H.-O.; Friedrich, D.; Huber, E.; Peet, N. P. Synth. Commun. 1996, 26, 3453-3469.
20. Zhang, J.; Ye, J.; Ma, S. Org. Biomol. Chem. 2015, 13, 4080-4089.
21. Redon, S.; Berthe Berkaoui, A.-L.; Pannecoucke, X. Tetrahedron 2007, 63, 3707-3717.
22. Romanov-Michailidis, F.; Besnard, C.; Alexakis, A. Org. Lett. 2012, 14, 4906-4909.
23. Guan, Y.; López-Alberca, M. P.; Lu, Z.; Zhang, Y.; Desai, A. A.; Patwardhan, A. P.; Dai, Y.; Vetticatt, M. J.; Wulff, W. D. Chem. Eur. J. 2014, 20, 13894-13900.
24. Solorio-Alvarado, C. R.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 11881-11883.
25. Hack, D.; Chauhan, P.; Deckers, K.; Hermann, G. N.; Mertens, L.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 5188-5191.
26. Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew. Chem. Int. Ed. 2009, 48, 8923-8926.
27. Lee, K. Y.; Lee, M. J.; GowriSankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 5043-5046.
28. McGee, P.; Bellavance, G.; Korobkov, I.; Tarasewicz, A.; Barriault, L. Chem. Eur. J. 2015, 21, 9662-9665.
29. Luo, S.; Qiao, Y.; Zhang, L.; Li, J.; Li, X.; Cheng, J.-P. J. Org. Chem. 2009, 74, 9521-9523.
30. Calderone, J. A.; Santos, W. L. Angew. Chem. Int. Ed. 2014, 53, 4154-4158.
31. Yang, X.; Toste, F. D. Chem. Sci. 2016, 7, 2653-2656.
32. Barnett, D. S.; Moquist, P. N.; Schaus, S. E. Angew. Chem. Int. Ed. 2009, 48, 8679-8682.
33. Lowe, G. Chem. Commun. 1965, 411-413.
34. Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 8770-8773.
35. Jiang, X.; Fu, C.; Ma, S. Chem. Eur. J. 2008, 14, 9656-9664.
36. Bélanger, E.; Pouliot, M.-F.; Paquin, J.-F. Org. Lett. 2009, 11, 2201-2204.
37. Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K. Organometallics 1993, 12, 4188-4196.
38. Schmidt, B.; Biernat, A. Synlett 2007, 2007, 2375-2378.
39. Yu, Q.; Ma, S. Eur. J. Org. Chem. 2015, 2015, 1596-1601.
40. Tang, X.; Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu, Q.; Fu, C.; Ma, S. Org. Chem. Front. 2015, 2, 688-691.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

Parameter	Value
1 Solvent	cd3cn
2 Spectrometer Frequency	125.69
3 Nucleus	$13 C$

$19018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 50$ f1 (ppm)

17

Parameter	
1 Solvent	Value
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

S10

(
10.09.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 $4.54 .03 .53 .02 .52 .01 .51 .00 .50 .0-0.5-1 . C$ f1 (ppm)

$20019018017016015014013012011010090 \quad 80 \quad 70 \quad 60$ f1 (ppm)

10

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 470.24	
3 Nucleus	$19 F$

$0 \quad-10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-1 \varepsilon$ f1 (ppm)

Parameter	Value
1 Solvent	c6d6
2 Spectrometer	Frequency 499.81
3 Nucleus	1 H

[^0]

| Parameter
 1 Solvent
 2Spectrometer Frequency 123.69
 cdic
 130 |
| :--- | ---: |
| 3Nucleus |$|$

[^1]

[^2]

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

Parameter	
1 Solvent	Value
2 Spectrometer Frequency 499.81	
3 Nucleus	

10.09.5 9.0 8.58 .07 .57 .06 .56 .05 .55 .04 .54 .03 .53 .02 .52 .01 .51 .00 .5 0.0-0.5-1.0 f1 (ppm)

M
0
0
0
1

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency	499.18
3 Nucleus	1 H

Parameter	Value
1 Solvent	cdcl 3
2	Spectrometer Frequency
399.22	
3 Nucleus	1 H

m	
0	
0	
0	

2 Spectrometer Frequency 399.75
3 Nucleus

Parameter	Value cdcl3
1 Solvent	
2 Spectrometer Frequency	499.18

3 Nucleus 1H

M
$\stackrel{\circ}{\circ}$
0
0

Parameter	Value
1 Solvent	cdcl 3
2	Spectrometer Frequency
499.18	
3 Nucleus	1 H

Parameter	Value
1 Solvent	cdcl3
2	Spectrometer Frequency
399.18	
3	Nucleus

Parameter	Value
1	Solvent
2	CDCl3
3 Nuctrometer	Frequency

-142.81
133.62
128.67
128.59
127.90
127.33
126.87
126.01
99.96
97.92

anti-15a

Parameter	Value cdcl3
1 Solvent	1H
2	Spectrometer Frequency
499.18	
3	Nucleus

Parameter	Value
1	Solvent
2	CDCl3
3	Nucleus

Parameter	Value
1	Solvent
2	CDCl3
3	Nucteus

Parameter	Value
1 Solvent	CDCl 3
2 Spectrometer Frequency	125.80
3 Nucleus	13 C

1	1	1	1	1	1	1	1	1	1	1	1 ,	1	1	1	1	1	1	1	1	1		1
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f}_{1}(\mathrm{opm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

Parameter	
1 Solvent	Value
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

181

10.09.5 9.0 8.58 .07 .57 .06 .56 .05 .55 .04 .54 .03 .53 .02 .52 .01 .51 .00 .5 0.0-0.5-1. f1 (ppm)
-176.3
-155.5 $\begin{array}{r}-140.9 \\ L_{=129.3}^{127.5} \\ \hline 126.7\end{array}$

- m M-
$\begin{array}{ll}\stackrel{0}{0} & 0 \\ \stackrel{0}{0} & \dot{+} \\ 1 & 1\end{array}$

181 f1 (ppm)
M
0
0
0

Parameter	Value
1 Solvent	CDCl 3
2 Spectrometer Frequency	500.25
3 Nucleus	1 H

[^3]| Parameter | Value |
| :--- | :---: |
| 1 Solvent | cdcl3 |
| 2 Spectrometer Frequency 470.24 | |
| 3 Nucleus | 19 F |

7c

Parameter	
1 Solvent	Value
2 Spectrometer	Frequency 499.81
3 Nucleus	

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 125.69	
3 Nucleus	13 C

20

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency	470.24
3 Nucleus	$19 F$

[^4]

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency	125.69
3 Nucleus	13 C

${ }_{220}$ $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & & & & (\mathrm{ppm})\end{array}$

[^5]

Parameter	
1 Solvent	Value
2 Spectrometer	Frequency 499.81
3 Nucleus	1 H


```
22021020019018017016015014013012011010090 80 70 60 50 40 30 20 10 0 -11
    f1 (ppm)
```


Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

$\frac{m}{0}$
$\frac{m}{0}$
0
0
0
0
0
∞
∞
∞
∞

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer	Frequency 125.69
3 Nucleus	13 C

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

f1 (ppm)

Parameter	Value
1 Solvent	cdcl 3
2 Spectrometer Frequency	125.69
3 Nucleus	$13 C$

$22021020019018017016015014013012011010090 \quad 80 \quad 70 \quad 60 \quad 504030 \quad 2010$ f1 (ppm)

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 499.81	
3Nucleus	1 H

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 125.69	
3 Nucleus	13 C

[^6]

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

$22021020019018017016015014013012011010090 \quad 80 \quad 70605040302010 \quad 0 \quad-1$ f1 (ppm)

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 125.69	
3 Nucleus	13 C

[^7]

[^8]

[^9]

$9.59 .08 .58 .07 .57 .06 .56 .05 .5 \quad 5.04 .54 .03 .53 .02 .52 .01 .51 .00 .50 .0-0.5-1$. f1 (ppm)

Parameter	Value cdcl3
1 Solvent	13 C
2 Spectrometer Frequency	125.69
3 Nucleus	

29
//
7.26 cdcl 3

Parameter Value 1 Solvent cdcl3 2 Spectrometer Frequency 499.26 3 Nucleus

Parameter	Value
1 Solvent	cdcl3
2	Spectrometer Frequency
499.26	
3 Nucleus	1 H

230	210	190	170	150	130	110 $\mathrm{f} 1(\mathrm{ppm})$	90	70	50	30	10	-11

32

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency	499.81
3 Nucleus	1 H

Parameter	Value
1 Solvent	cdcl 3
2 Spectrometer Frequency 125.69	
3 Nucleus	13 C

| 230 | 210 | 190 | 170 | 150 | 130 | 110
 $\mathrm{f} 1(\mathrm{ppm})$ | 90 | 70 | 50 | 30 | 10 | -11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

34

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency 499.81	
3 Nucleus	1 H

 f1 (ppm)

$\frac{\mathrm{M}}{\mathrm{O}} \frac{\mathrm{m}}{\mathrm{U}} \frac{\mathrm{m}}{\mathrm{O}}$

34

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency	125.69
3 Nucleus	13 C

| 230 | 210 | 190 | 170 | 150 | 130 | 110
 $\mathrm{f} 1(\mathrm{ppm})$ | 90 | 70 | 50 | 30 | 10 | -11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

35

Parameter	Value
1 Solvent	cdcl3
2 Spectrometer Frequency	499.81
3 Nucleus	1 H

| 230 | 210 | 190 | 170 | 150 | 130 | 110
 $\mathrm{f}(\mathrm{ppm})$ | 90 | 70 | 50 | 30 | 10 | -11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6. HPLC Traces for Enantiomeric Excess Determination

Signal 1: MWD1 A, Sig=250,100 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

144.425 BB $\quad 1.06176123 .25830 \quad 85.4806149 .7261$

248.957 BB 1.13466190 .7182678 .2878250 .2739

Totals: $\quad 1.23140 \mathrm{e} 4 \quad 163.76842$

1: MWD1 A, $\operatorname{Sig}=250,100$ Ref $=360,100$

Signal 1: MWD1 A, Sig=250,100 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \% ----|-------|----|------|---------|------------------| 139.268 PB $\quad 0.94271589 .81372 \quad 23.6962950 .6876$ 242.568 BB $\quad 0.86191546 .6811522 .0092949 .3124$

Totals: $\quad 3136.49487 \quad 45.70558$

Signal 1: MWD1 A, Sig=250,100 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \% ----|--|
$139.500 \mathrm{BB} \quad 1.02702287 .0105030 .7751690 .7920$
242.869 BP $\quad 0.7732231 .94621 \quad 3.55491 \quad 9.2080$

Totals: $\quad 2518.9567134 .33006$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Totals: $\quad 1.84056 \mathrm{e} 4469.43668$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \% -----------------|-------------------------------------|
130.553 MF 0.64935876 .10938150 .8385593 .3335
231.668 FM $0.6153419 .7103311 .36878 \quad 6.6665$

Totals: $\quad 6295.81970 \quad 162.20732$

Signal 2: MWD1 B, $\operatorname{Sig}=254,16$ Ref $=360,100$
 $143.239 \mathrm{BV} \quad 0.87542731 .1794448 .9176149 .9265$
245.853 VB 0.92272739 .2219245 .7410750 .0735

6d
Totals: $\quad 5470.40137 \quad 94.65868$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU]
---|
1 43.388 BV $0.83411513 .86182 \quad 27.94063 \quad 6.9265$
$245.705 \mathrm{VB} \quad 0.90332 .03423 \mathrm{e} 4344.2958493 .0735$
Totals: $\quad 2.18562 \mathrm{e} 4 \quad 372.23647$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

1 21.720 MM $0.46348912 .11328 \quad 320.55563 \quad 50.2741$
2 24.288 MM 0.51688814 .94434284 .2609949 .7259
$6 e$
Totals: $\quad 1.77271 \mathrm{e} 4 \quad 604.81662$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

$6 f$
Totals: $\quad 9.27782 \mathrm{e} 41567.55682$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
----|-------|----|------------------------------------|
$140.483 \mathrm{MM} \quad 0.88955456 .49365102 .23568 \quad 90.2400$
$247.150 \mathrm{MM} \quad 0.9648590 .1515510 .194309 .7600$
Totals: $\quad 6046.64520 \quad 112.42998$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref= $=360,100$
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
-----------------|-------------------------------------|
$127.595 \mathrm{MM} \quad 0.78173616 .99487 \quad 77.113998 .0906$
244.826 MM 1.32734 .10891 e 4515.9387291 .9094

Totals: $\quad 4.47061 \mathrm{e} 4593.05271$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] $\%$ --|
142.449 BB 1.12597617 .34766101 .0035950 .6764
$252.680 \mathrm{BB} \quad 1.41927413 .9990278 .1198749 .3236$

6h

Totals: $\quad 1.50313 \mathrm{e} 4 \quad 179.12346$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

143.438 MM $\quad 1.2537 \quad 105.05833 \quad 1.39660 \quad 10.0200$
$253.981 \mathrm{MM} \quad 1.5653943 .4323710 .0454589 .9800$
Totals: $\quad 1048.49070 \quad 11.44204$

Signal 4: MWD1 D, Sig=230,16 Ref=360,100

Signal 4: MWD1 D, Sig=230,16 Ref=360,100

Signal 3: MWD1 C, ${ }^{15}$ Sig $=210,8$ Ref $=360,100^{17}$

1 18.336 MF $\quad 0.43683785 .69141144 .4395649 .4461$
2 19.712 FM $0.48303870 .51025133 .54718 \quad 50.5539$
Totals: $\quad 7656.20166277 .98674$

Signal 3: MWD1 C, Sig=210,8 Ref=360,100

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

Totals : $\quad 9395.07275 \quad 182.06285$

Signal 1: MWD1 A, $\operatorname{Sig}=250,100$ Ref $=360,100$

3: $\mathrm{MWD} 1 \mathrm{C}, \mathrm{Sig}=210,8$ Ref $=360,100$
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
----|---|
$1 \begin{array}{lllllll}12.865 & \text { PV } & 0.3912 & 934.88318 & 37.71471 & 49.9179\end{array}$
2 13.767 VV 0.4141 937.9596635 .0596850 .0821

Totals: $\quad 1872.84283 \quad 72.77439$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Signal 3: MWD1 C, Sig=210,8 Ref=360,100

Totals: 5745.49683199 .18746

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Signal 3: MWD1 C, Sig=210,8 Ref=360,100

6n

Totals :
3.34085 e 41613.89612

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref=360,100

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

Signal 1: MWD1 A, Sig=250,100 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

$1 \quad 6.088$ MM 0.22241 .43963 e 41078.8736699 .2730
$2 \quad 6.706 \mathrm{MM} \quad 0.2043 \quad 105.43246 \quad 8.60119 \quad 0.7270$
Totals: $\quad 1.45017 \mathrm{e} 4 \quad 1087.47484$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
-----------------|-------------------------------------|
121.773 BB $\quad 0.62233592 .5222289 .4975450 .0242$
$232.783 \mathrm{BB} \quad 0.91493589 .04053 \quad 60.0835649 .9758$
Totals: $\quad 7181.56274149 .58110$
C7b

Signal 2: MWD1 B, Sig=254,16 Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
------------|----|-------------------------------------|
$121.912 \mathrm{VB} \quad 0.64736562 .77930156 .4941798 .3881$
233.043 MM 1.0262107 .518441 .746141 .6119

Totals: $\quad 6670.29774158 .24032$

Totals: $\quad 1524.11511 \quad 45.02617$

Signal 2: MWD1 B, $\operatorname{Sig}=254,16$ Ref $=360,100$

Signal 4: MWD1 D, Sig=230,16 Ref=360,100

Signal 4: MWD1 D, Sig=230,16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

1 14.808 MM $0.3344 \quad 105.75404 \quad 5.27122 \quad 1.4140$
2 16.320 VV 0.4909 7373.18750206 .3159698 .5860
Totals: $\quad 7478.94154211 .58718$

Signal 2: MWD1 B, $\operatorname{Sig}=254,16$ Ref $=360,100$
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \% ----|---|
$1 \quad 7.358$ VB $\quad 0.23452268 .17944149 .9629750 .3140$
2 9.200 BB 0.27632239 .86938126 .6741949 .6860

Totals: $\quad 4508.04883 \quad 276.63716$
(YAO21149-NEW.D)
Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

$1 \quad 7.379$ VP $\quad 0.24771 .39069 \mathrm{e} 4 \quad 873.6568099 .4693$
2 9.273 BP 0.270774 .196724 .229030 .5307
Totals: $\quad 1.39811 \mathrm{e} 4 \quad 877.88583$

Signal 1: MWD1 A, Sig=250,100 Ref=360,100
\# [min] [min] [mAU*s] [mAU] \%
----------------|------------------------------------|
1 16.147 MF 0.46422 .93883 e 41055.1438047 .8283
217.025 FM $0.54363 .20572 \mathrm{e} 4 \quad 982.77771 \quad 52.1717$

$7 f$
Totals: $\quad 6.14455 \mathrm{e} 42037.92151$

Signal 1: MWD1 A, $\operatorname{Sig}=250,100 \operatorname{Ref}=360,100$
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

1 16.147 MF 0.44707124 .74658265 .6719498 .7134
2 16.925 FM $0.3361 \quad 92.85820 \quad 4.60466 \quad 1.2866$
Totals: $\quad 7217.60478 \quad 270.27660$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
------------|----|------------------------------------|
1 44.632 MM $1.20822 .11441 \mathrm{e} 4 \quad 291.6841199 .2568$
$249.954 \mathrm{MM} \quad 1.3190 \quad 158.31035 \quad 2.00036 \quad 0.7432$
Totals: $\quad 2.13024 \mathrm{e} 4 \quad 293.68447$

Signal 1: MWD1 A, Sig=250,100 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \% ----|-------|----|-----------------------------------| 1 10.860 MF $\quad 0.3721 \quad 598.50427 \quad 26.8067647 .7913$ 2 11.572 FM $0.2778 \quad 653.82581 \quad 39.22197 \quad 52.2087$

7h

Totals : $1252.33008 \quad 66.02874$

Signal 1: MWD1 A, $\operatorname{Sig}=250,100$ Ref=360,100

Signal 2: MWD1 B, $\operatorname{Sig}=254,16$ Ref $=360,100$

2 10.717 FM $0.3941701 .50549 \quad 29.6697450 .1624$
$7 i$

Totals: $1398.46979 \quad 61.75031$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

1 9.920 VV $0.36373677 .83496 \quad 157.9438998 .0815$
2 10.859 VB $0.382271 .94076 \quad 2.304541 .9185$
Totals: $\quad 3749.77572 \quad 160.24843$

Totals: $\quad 1.06102 \mathrm{e} 4 \quad 396.55545$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100

Signal 2: MWD1 B, Sig=254,16 Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
---|
$18.814 \mathrm{VV} \quad 0.1824132 .8418411 .53262 \quad 0.3823$
29.187 VB 0.33173 .46116 e 41542.9617999 .6177

Totals: $\quad 3.47444 \mathrm{e} 4 \quad 1554.49441$

Signal 3: MWD1 C, Sig=210,8 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

248.827 VB 1.36251 .46066 e 4158.0119649 .8770

Totals: $\quad 2.92853 \mathrm{e} 4 \quad 335.05212$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
----|---|
$145.547 \mathrm{BB} \quad 1.33802 .47968 \mathrm{e} 4 \quad 277.6436299 .5610$
2 49.712 MM $1.2803109 .349531 .42350 \quad 0.4390$
Totals: $\quad 2.49062 \mathrm{e} 4 \quad 279.06711$

3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
--|
$141.073 \mathrm{BB} \quad 1.10109302 .50684129 .9821050 .0732$
$255.451 \mathrm{VB} \quad 1.41129275 .30566 \quad 92.2355149 .9268$
Totals :

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Signal 1: MWD1 A, Sig=250,100 Ref=360,100

70
Totals: $\quad 768.0090692 .51422$

1: MWD1 A, $\operatorname{Sig}=250,100$ Ref $=360,100$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Totals: $\quad 5846.45581383 .05919$
23a

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
----|---|
1 6.159 MF 0.2429 7792.95996 534.67914 99.1479
$2 \quad 6.600$ FM $\quad 0.1582 \quad 66.97829 \quad 7.05811 \quad 0.8521$
Totals: $\quad 7859.93825 \quad 541.73725$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Totals: 7340.85449140 .36111
24a

Signal 2: MWD1 B, Sig=254, 16 Ref=360,100
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

1 27.690 MF $0.83672 .90638 \mathrm{e} 4 \quad 578.9097398 .7937$
2 29.756 FM $0.8905 \quad 354.86429 \quad 6.64148 \quad 1.2063$
Totals :
2.94186 e 4585.55121

Signal 3: MWD1 C, $\operatorname{Sig}=210,8 \operatorname{Ref}=360,100$
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
----|-------|----|-------------------------------------|
129.051 VV 1.00209274 .04004134 .2345950 .3345
232.636 VB 1.17649150 .77148108 .0101249 .6655

23bS1

Totals: $\quad 1.84248 \mathrm{e} 4 \quad 242.24471$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \% ----|------------|--------------------------------------|
1 28.319 MM $1.56274 .34380 \mathrm{e} 4 \quad 463.2873299 .8296$
233.705 MM $1.2395 \quad 74.165689 .97235 \mathrm{e}-1 \quad 0.1704$

Totals: $\quad 4.35121 \mathrm{e} 4 \quad 464.28456$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

P		倍	Area	He	Area
\# [min]	[min]	in] [$\mathrm{mAU}^{*} \mathrm{~s}$			\%
		---------------	-------	------	
32.817 VB		1.01706308.	. 98682	88.14	50.3866
240.385 BB		1.31666212.	. 16943	64.56	0449.6134
Totals :		1.25212 e 4	152.7	578	

132.817 VB $\quad 1.01706308 .98682 \quad 88.1447450 .3866$

Totals: $\quad 1.25212 \mathrm{e} 4 \quad 152.70578$

Signal 3: MWD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%
-----------------|-------------------------------------|
$132.260 \mathrm{MM} \quad 1.41881 .68966 \mathrm{e} 4 \quad 198.4820399 .6123$
239.677 MM $\quad 0.9670 \quad 65.75671 \quad 1.133340 .3877$

Totals: $\quad 1.69623 \mathrm{e} 4 \quad 199.61536$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref=360,100

[^10]

Signal 2: MWD1 B, Sig=254, 16 Ref $=360,100$

Totals: $\quad 617.84515 \quad 29.48153$

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] [------------------------------------

132.888 VV $0.73433128 .99512 \quad 60.6058451 .1128$

234.870 VB 0.84832992 .7443848 .4764748 .8872

Totals :
6121.73950109 .08231

32

Signal 3: MWD1 C, $\operatorname{Sig}=210,8$ Ref=360,100
Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU]
\%
-----------------|------------------------------------|
$132.507 \mathrm{PV} \quad 0.8162 \quad 226.18513 \quad 3.25690 \quad 1.0226$
234.345 VB $1.10852 .18925 \mathrm{e} 4 \quad 259.9684198 .9774$

Totals: $\quad 2.21187 \mathrm{e} 4 \quad 263.22532$

[^0]: $\begin{array}{llllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 \\ 40 & 30 & 20 & 10 & 0 & -1 C\end{array}$ f1 (ppm)

[^1]: $2202102001901801701601501401301201101009080706050403020100-11$ f1 (ppm)

[^2]: $2202102001901801701601501401301201101009080706050403020100-11$ f1 (ppm)

[^3]: $\frac{1}{220}$

[^4]: $2202102001901801701601501401301201101009080706050403020100-11$ f1 (ppm)

[^5]: $2202102001901801701601501401301201101009080706050403020100-1$ f1 (ppm)

[^6]:

[^7]: f1 (ppm)

[^8]: $220210200190180170160150140130120110100908070605040302010<0$ f1 (ppm)

[^9]: 2202102001901801701601501401301201101009080706050403020100 f1 (ppm)

[^10]: Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
 ----|-------|----|-------|----------------------------|
 1 12.903 MM $0.3132 \quad 230.10577 \quad 12.24614 \quad 7.7157$
 217.224 PB $0.44152752 .19360 \quad 92.3924592 .2843$

 Totals: $\quad 2982.29938104 .63859$

