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ABSTRACT 

Human gait analysis studies the coordination of human lower extremity in providing 

propulsion to move forward while maintaining the body balance, with one foot in contact with 

the ground at all time. Hence, gait analysis plays an important role in clinical settings and 

rehabilitations. It is widely performed to identify various gait disorders, to assess the functional 

performance of a patient’s lower limb before and after a surgery or medical treatment, and to 

evaluate patient’s rehabilitation progress. In engineering, its importance is reflected in the 

design and development of the prosthetic limb, Functional Electrical Stimulation (FES) system 

as well as the humanoid robot.  

Optical motion capture system and force platform are commonly used in gait analysis to 

quantify human motion.   However, these systems are expensive, bulky and can only capture 

human motion in a dedicated environment i.e. laboratory. As an alternative, this thesis 

developed a real-time gait monitoring system that utilizes wireless miniature gyroscopes. The 

miniature gyroscope is small, light-weight, and can capture human motion in both indoor and 

outdoor environments. More importantly, it is equipped with wireless data transmission, which 

offers additional benefits. Wireless gyroscope provides relatively larger movement area. It also 

does not obstruct the natural motion of human lower extremity. 

Apart from the advantages offered by the wireless gyroscopes, this system also uses several 

novel methods to assist clinicians and researchers in identifying abnormal gait. These methods 

evaluate three main aspects of human gait. They are referred as the gait normality test, gait 

asymmetry analysis, and the estimation of gait dynamic stability. Gait normality test examines a 

person’s gait relative to normal/healthy individual’s gait that was established by other 

researchers. Parameters considered in this method are the duration of stride (Tstride), stance phase 

(Tstance), and swing phase (Tswing), and the Coefficient of Determination (CoD). Gait asymmetry 

analysis is an evaluation that examines the bilateral differences between the left and right limbs. 

Normalized Cross-Correlation (Ccnorm), time delay (Ts), temporal Symmetry Index (SI), and 

Normalized Symmetry Index (SInorm) are the parameters used to define human gait asymmetry. 

The estimation of gait dynamic stability determines human walking stability using nonlinear 

time series analysis. It uses short-term (
*

Sλ ) and long-term maximum Lyapunov exponent (
*

Lλ ) 
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to quantify the ability of human neuromuscular locomotor system in maintaining body balance 

during walking. 

Experimental study was also conducted to examine the overall capability of this system.  

This study simulated the abnormal gait by placing a load on one side of the limbs and by 

wearing a sandal on one foot. These methods successfully altered the inertial property of a 

person’s lower limb, hence inducing significant differences in spatio-temporal gait parameters 

between the affected limb and the non-affected limb. As expected, the experimental results were 

satisfactory. Significant differences between normal and abnormal gait were observed in Tstride, 

Tstance and Tswing. Similar results were also found in CoD, Ccnorm, Ts, SI, SInorm,
*

Sλ
 
and 

*

Lλ  with p 

< 0.01. These results validated the use of these methods to simulate abnormal gait on a healthy 

individual. They also demonstrated the viability of this system for future clinical applications. 
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Chapter 1                                                                       

INTRODUCTION  

1.1 Human Gait  

Walking is the most common and most important human movement [1]. It is human 

body’s natural means of moving from one location to another. Although it may seem trivial, 

walking is a complex and repetitive process that requires the coordination of both human 

lower limbs to provide support and propulsion, with at least one foot in contact with the 

ground at all times [2]-[3].  This repetitive process is generally referred as gait cycle. Perry 

defines a gait cycle as an action that flows smoothly to the next action; there is no specific 

starting point or ending point [2]. Hence any events can be selected as the starting point. 

However, since the moment of floor contact is the most readily defined event, this action is 

normally described as the start of a gait cycle in various literatures. This action is 

commonly regarded as ‘Heel-strike’ or ‘Initial Contact’. For consistency, this action is 

regarded as ‘Heel-strike’ in this thesis. One gait cycle for a limb starts from one heel-strike 

and ends at subsequent heel-strike.  

One gait cycle is divided into two main phases: stance phase and swing phase [2]-[3]. 

Stance phase is defined as the period which the foot is on the ground and it begins with 

heel-strike. Stance phase is subdivided into four periods: loading response, mid-stance, 

terminal stance, and pre-swing. Loading response is the period where both feet are on the 

ground and body weight is transferred from one limb to another. Mid-stance is the period 

where body weight passes over one limb while the other limb is in swinging motion. 

Terminal stance begins when one heel rises above the ground while the other heel touches 
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the ground. Pre-swing begins when both feet are briefly on the ground and the body weight 

is supported by both limbs.  

On the other hand, swing phase is defined as the period which the foot is in the air and 

it begins with toe-off. It is further divided into three periods: initial swing, mid-swing and 

terminal swing. Initial swing occurs when one foot leaves the ground and starts to swing 

forward. Mid-swing occurs when the foot completely leaves the ground. Terminal swing is 

the period when the foot is about to hit the ground and to start subsequent gait cycle. The 

gross normal distribution of the stance phase is 60% of the gait cycle and the swing phase is 

40% of the gait cycle [2]-[3]. Apart from gait phases and gait periods, one gait cycle is 

characterized into seven different events: heel-strike, opposite toe-off, heel-rise, opposite 

heel-strike, toe-off, feet adjacent and tibia vertical. A complete illustration of one gait cycle 

is presented in Figure 1.1.   

 

Figure 1.1 A complete illustration of human gait cycle adopted from [2]. 

Acute injury to one of the limbs or other pathological conditions such as functional 

deformity of the muscle and ligament, muscle weakness, sensory loss, pain and impaired 

motor control can disrupt the gait cycle [2]. They can alter the timing of the gait events and 

restrict the movement of the lower extremity. Patients with cerebral palsy [4]-[7], 

hemiplegic [8]-[11], amputation [11]-[13], osteoarthritis [14]-[15] and Parkinson disease 

[16]-[17] and patients who have undergone major surgery on the lower extremity, such as 
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hip or knee arthoplasty [18]-[19] have these symptoms. In most cases, patients 

unconsciously perform various compensatory mechanisms that may introduce stresses/pains 

to other parts of the body [2]-[3], [20].  

Identifying patients’ conditions and tracking their rehabilitation progress have become 

one of the primary functionalities of gait analysis. An increasing number of clinicians is 

selecting proper treatments for their patients based on gait analysis results [21]. For this 

reason, technology and knowledge related to gait analysis in clinical applications have 

significantly improved over the past 25 years [22]. Besides that, gait analysis is also used to 

design and to develop orthotic and prosthetic devices and Functional Electrical Stimulation 

(FES) systems, to study human movement in sports, and to study human musculoskeletal 

function in various activities i.e. running, walking and jumping [22].  

At present, gait analysis is commonly conducted in a laboratory using optical motion 

capture system. This system uses several cameras to capture human motion in a 3-D space 

through reflective markers placed on human body. Despite being a gold standard in gait 

analysis, this system is expensive, bulky and difficult to operate [22]. Moreover, it is only 

capable of capturing limited number of consecutive gait cycles, which may not completely 

represent a person’s gait [23]. Lastly, it only confines to a dedicated space i.e. laboratory 

[24]-[25].   

With the recent developments of the miniature sensor technology, inertial sensors such 

as accelerometer, gyroscope and magnetometer are widely considered to be simpler and 

inexpensive alternatives to capture human motion. However, inertial sensors generally 

suffer from one major drawback. Inertial sensor has to be physically wired to a workstation 

to measure and record human motion. Hence, it may restrict subject’s movements and the 

experiment may only be conducted in laboratory environment. In order to overcome this 

limitation, wireless technology is embedded into the sensor. Wireless technology enables 

the sensor to capture human motion for a long period of time in both indoor and outdoor 

environments. [24]-[31]. Hence, wireless inertial sensor is suitable for long term real-time 

ambulatory monitoring purposes. 
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1.2 Research Statement  

In view of the merits offered by miniature inertial sensor, this research aimed to design 

and develop a new real-time motion capture system that can measure human motion during 

walking and provide immediate and comprehensive examination of a person’s walking 

condition. This system was developed using wireless gyroscope as the main sensing device 

to capture human lower extremity in real-time. This system was also designed to be used in 

various clinical settings and rehabilitations thus it offers several computational methods that 

can directly assist clinicians, biomechanists and researchers to obtain better understanding 

of the overall functionality of human lower extremity. These computational methods were 

developed to examine several aspects of human gait, which include:  

• Gait events identification  

Identifying gait events is the first step of gait analysis. Identifying gait events, 

particularly heel-strike and toe-off allows the estimation of temporal gait parameters 

and allows the gait data to be segmented on stride-to-stride basis. This thesis aimed to 

develop an algorithm that could automatically identify gait events using data measured 

by miniature sensors. This algorithm has to be robust and does not involve complex 

computations so that it can identify human gait events in various walking conditions 

and it can be implemented as one of the online data processes.  

• Gait normality test  

Determining the normality of a person’s gait is another important aspect of gait 

analysis. Experts in human movement science can determine patient’s pathological 

conditions based on patient’s spatio-temporal gait parameters, such as duration of 

stride, stance phase, swing phase and the orientation of the lower extremity during 

certain gait phases. Using real-time data captured by miniature sensors, this thesis 

aimed to provide comprehensive information on a person’s spatio-temporal gait 

parameters when a person is walking on a treadmill or on the ground. This thesis also 

aimed to develop a method that can provide discrete measure that can differentiate 

normal and abnormal gait. More importantly, this method has to be able to perform 

necessary computations in a relatively short period of time so that it can be 

implemented as one of the online data processes.  

• Gait asymmetry   

Gait asymmetry is another important gait characteristic. Gait of a healthy individual is 

fairly symmetrical with acceptable deviations. Symmetrical gait offers a stable and 
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adaptive gait, minimizes energy expenditure and minimizes the risk of fall. This thesis 

aimed to develop computational methods that were robust and practical, which could be 

easily implemented in various clinical applications while overcoming limitations posed 

by current methods.  

• Gait dynamic stability  

Gait dynamic stability presented in this thesis aimed to examine the stability of human 

body segments i.e. thigh and shank during walking. This thesis adopted tools available 

in nonlinear dynamical system theory, particularly the Lyapunov exponent. In gait 

analysis, the maximum Lyapunov exponent corresponds to the ability of human 

neuromuscular locomotor system in maintaining walking stability.  

To achieve above objectives, this thesis attempted to  

• Perform an extensive study to determine the right wireless miniature sensor that can 

capture human lower extremity motion in real-time  

• Create an interactive and user-friendly hardware/software co-design system that allows 

the real-time data streaming and data visualization  

• Develop and optimize a computational method which is able to identify various 

important spatio-temporal gait parameters derived from the sensors outputs.  

• Develop and optimize computational methods which can differentiate normal and 

abnormal gait i.e. the gait normality test, gait asymmetry analysis and the estimation of 

gait dynamic stability.  

• Optimize the overall system architecture to facilitate periodical and immediate gait 

evaluation results without interrupting the real-time data streaming and data recording.  

• Conduct an experimental study to examine the performances of the system.  

• Conduct necessary statistical analysis to validate the experimental results and to 

examine the efficacy of the system in identifying gait abnormalities.  

• Establish normative data for the gait monitoring system that uses gyroscope as its main 

sensing device and for the new computational methods introduced in this thesis.   

1.3 Dissertation Outline  

As the first step, an extensive research on human gait analysis was conducted. The 

focus of this research was to investigate several aspects of the current gait analysis 

including the merits and drawbacks of the instruments, the usefulness of gait analysis in 
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clinical applications, and the efficacy of the methods used to identify abnormalities in 

human gait. These aspects were later considered as the major factors that shape the system 

framework. Details of this research are discussed in Chapter 2.  

This thesis produced a gait monitoring system that uses five inertial sensors to capture 

human lower extremity motion in real-time. Movements captured by the system are 

periodically examined to determine a person’s walking condition. Additionally, it also 

records measurement data into a spreadsheet file for future reference. Whenever necessary, 

this file can be uploaded to the system to re-examine his/her gait. Detailed descriptions of 

the overall hardware/software co-design system architecture are presented in Chapter 3.  

Interactive and user-friendly software was developed to accommodate the wireless data 

transmissions and data processing. It provides several functionalities that segment the 

measurement data on stride-to-stride basis, perform periodical gait evaluations, and present 

the outcomes qualitatively and quantitatively. The complete software architecture of the 

system is described in Chapter 4.  

Several computational methods were implemented in the system to process and 

transform the measurement data to valuable information. Among them are the Hybrid 

Multi-resolution Wavelet Decomposition method, the computations of temporal gait 

parameters, the estimation and evaluation of the lower extremity motion in each gait cycle, 

and the computation of gait asymmetry index. These methods are discussed in further 

details in Chapter 5.  

An experimental study was conducted to assess the overall performances of the system. 

In this study, participants were requested to walk on a treadmill and on the ground. 

Abnormal gait was simulated to examine the effectiveness of the online gait normality test, 

online gait asymmetry analysis, and offline gait dynamic stability analysis. Experimental 

setup and its results are presented in Chapter 6 and Chapter 7 respectively. Discussion on 

the system capabilities and the significances of the computational methods used to 

determine gait normality, gait asymmetry and gait dynamic stability are discussed in 

Chapter 8.  

Conclusion of this thesis is drawn in Chapter 9 together with its possibilities for future 

research.  
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Chapter 2                                                                                  

BACKGROUND 

This chapter describes the prior research conducted in clinical applications and 

biomechanics in order to provide a better understanding on why a real-time gait monitoring 

system equipped with periodical gait evaluation was designed and developed in this thesis. It 

also discusses the merits and demerits of existing methods used to examine a person’s walking 

condition and to identify and track rehabilitation progress of patients with pathologic gait. 

Lastly, it briefly justifies how the developed system addresses those drawbacks and achieves 

exceptional outcomes out of this thesis.  

2.1 Motion Capture System  

Research and development in human motion analysis has been growing rapidly over 

these few decades. This growth does not only involve medical branches, but computing 

technology and engineering science too [32]. Human motion analysis possesses vast 

potential applications including clinical rehabilitation of patients with stroke or spinal cord 

injuries, and patients with walking disabilities and knee problems [33]-[41]. Besides that, it 

is also widely used in sports training to identify the faulty movements in various sports 

events i.e. golf, swimming, and running [33]-[46].  

Human motions are mainly captured using optical and magnetic technologies. However, 

these technologies are expensive and only restricted to laboratory environment. Due to these 

reasons and the advances in MEMS (Micro Electro-Mechanical System) technology, 

inertial sensors, such as accelerometer, gyroscope, magnetometer, have been widely 
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materials that can distort the signal and lead to less accurate readings 

to this reason, this system is not a preferred

[1]. 

8 

alternative solution to capture human motion in various activities
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Optical motion capture system uses active or passive reflective markers placed on 

various body segments and Charge Coupled Device (CCD) cameras to capture a 

on’s movement within the field of view. The merits of this system are that it has 

minimal impact on the natural motion of a person and it also allows the movement to be 

captured without the need to tether the data acquisition device. However, this system i

expensive, requires high-speed processing devices and is only able to capture human 

motion within the field of view of the cameras in a dedicated space i.e. laboratory

 

Figure 2.1 Vicon F-series cameras for motion analysis [48]

Magnetic Tracking System  

Magnetic tracking system utilizes magnetic sensors that are attached on various 

nts to measure the strength of magnetic pulses generated by a transmitter. It 

uses more than 11 magnetic sensors to acquire full body motion in a 

merits of this system are that it is able to overcome the line of sight restriction and 

on battery supply, hence making it is suitable for body mounting and ambulatory 

However, magnetic sensors are sensitive to nearby ferromagnetic 

n distort the signal and lead to less accurate readings 

to this reason, this system is not a preferred tool for research in sports and gait analysis 

alternative solution to capture human motion in various activities [47]. 

e conventional technologies 

racking system and the main attributes of 

Optical motion capture system uses active or passive reflective markers placed on 

various body segments and Charge Coupled Device (CCD) cameras to capture a 

on’s movement within the field of view. The merits of this system are that it has 

minimal impact on the natural motion of a person and it also allows the movement to be 

captured without the need to tether the data acquisition device. However, this system is 

le to capture human 

space i.e. laboratory 

[48]. 

attached on various 

magnetic pulses generated by a transmitter. It 

uses more than 11 magnetic sensors to acquire full body motion in a 3-D space [32]. 

line of sight restriction and 

suitable for body mounting and ambulatory 

However, magnetic sensors are sensitive to nearby ferromagnetic 

n distort the signal and lead to less accurate readings [1],[32],[49]. Due 

sports and gait analysis 



9 

 

 

Figure 2.2 MotionStar Wireless 2 from Ascension Technologies, Inc. [50]. 

2.1.3 Miniature Body-mounted Sensor – Inertial Sensor 

Due to rapid growth of MEMS technology, communication system and 

transmission, inertial sensors have been used to measure the kinematic parameters of 

human motion in both indoor and outdoor activities. These inertial sensors generally 

include accelerometer, gyroscope, magnetometer and their combinations. Inertial sensor 

offers a convenient and practical way to capture human motion. Its miniature size and 

light-weight will not encumber human movement. Moreover, it can be easily mounted 

on a human body hence increasing its adaptability and flexibility.  

Roetenberg et al. attached tri-axial accelerometer, gyroscope and magnetometer on 

subjects’ upper arm, back and thigh to acquire kinematic parameters of their motions in 

a 3-D space [49]. To validate their research outcomes, a test was conducted against an 

optical motion capture system. Test results indicated that their system can reach 

accuracy about 5 mm for position and 3 degrees for orientation measurements. The 

accuracy of their system might deteriorate when movements with high velocities 

occurred. Nevertheless, their findings proved the efficacy of the inertial sensors for 

human gait analysis.  

Aminian et al. proposed the use of miniature gyroscopes to estimate spatio-

temporal parameters in walking [51]. Gyroscopes were attached with a rubber band to 

right thigh, right shank and left shank to measure the angular rate parallel to the 

mediolateral axis (on the sagittal plane). They used wavelet analysis to identify heel-

strike and toe-off events in every gait cycle and used a simple mechanical model to 

derive the stride length and walking velocity. Their research outcomes indicated that 

miniature gyroscope can be a promising tool for human gait analysis.  
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Plamondon et al. developed a hybrid system composed of two inertial sensors 

which each consists of accelerometer, magnetometer and gyroscope to measure the 

movement of human trunk [38]. Their research also used additional source of 

information: a potentiometer to measure the relative rotation between the inertial 

sensors to validate their system. Experimental results showed that the root mean square 

error of their system was generally below 3
o
 for the flexion and lateral bending axes and 

less than 6
o
 for the torsion axis.  

Jasiewicz et al. combined a gyroscope with two bi-axial accelerometers to define 

the gait events of normal and spinal cord injured persons [40]. For validation, they 

placed pressure-sensitive foot switches on their subject’s feet. Their experiments 

showed a promising result. Inertial sensors were as accurate as the foot switches in 

estimating the time of heel-strike and toe-off in both normal and spinal-cord injured 

individuals.  

From the literatures published so far, it is evident that inertial sensor offers a great 

prospect ahead in acquiring human motion in both indoor and outdoor environment. 

Moreover, it is relatively cheaper and less sophisticated. It also does not restrict the data 

acquisition process to laboratory environment. A summary of the main characteristics of the 

inertial sensors compared to conventional motion capture technologies is presented in Table 

2.1. For these reasons, this research initiated its first step and proposed a wireless gait 

monitoring system that is solely based on the measurement data obtained from wireless 

inertial sensor.  

Table 2.1 Comparison of various motion capture technologies 

Description 
Optical motion 

capture system 

Magnetic 

tracking system 

Miniature Body-

mounted sensor 

Complexity/ 

sophistication 
High Medium Low 

Method 

Reflective 

markers and CCD 

cameras 

Magnetic sensors Inertial sensors 

Reliability/ 

accuracy 
High High 

Depends on the 

computational 

method 

Implementation Difficult Medium Easy 

Mobility Low Medium Low 

Environment Indoor Indoor Indoor and outdoor 

Main application 

Human gait 

analysis and 

sports science 

3-D animation 

Human gait 

analysis and sports 

science 
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2.2 Gait Event Identification  

Gait event identification is essential in human motion analysis. Heel-strike and toe-off 

represent the start of stance phase and the start of swing phase respectively. These two 

events are widely used to measure and segment other definable gait events, and to aid the 

analysis of gait and the development of gait assisted devices [27],[52]-[54]. In several 

clinical settings, gait event identification is used to evaluate treatments for patients with 

pathologic gait and cerebral palsy, to assess the functional performance of a patient’s lower 

limb after treatment or surgery, such as hip or knee arthroplasty, to refine proper alignment 

and fit of eternal prosthesis or orthesis and to asses fall risk of elderly person. Due to these 

reasons, many tools and methodologies have been proposed and developed to identify gait 

events.  

One of the earliest tools to identify gait events is the microswitch shoe developed by 

Winter, et al. [55]. In their approach, two microswitches were placed on the heel area and 

three microswitches were placed on the sole area of the shoe. Despite of its simplicity, 

microswitch shoe successfully identified various gait events i.e. heel-strike, flat-foot, heel-

rise, opposite heel-strike and toe-off. However, due to advances in engineering and 

computing, this microswitch shoe does not seem to be a feasible tool for gait event 

identification anymore as there are more accurate and more sophisticated tools available 

now.  

Vetlink, et al. developed orthopaedic shoes equipped with six degrees of freedom force 

sensors to identify the gait events and to obtain various kinematic and kinetic parameters 

such as ground reaction force and center of pressure [56]. Comparing to the conventional 

force plate, it achieved reasonably accurate readings with root mean square difference of the 

ground reaction force is equal to 15±2 N and root mean square difference of the center of 

pressure is equal to 2.9±0.4 mm.  

Catalfamo, et al. used F-scan in-shoe measurement system to identify heel-strike and 

toe-off in walking [57]. They proposed a new area detection method, which uses the loaded 

area during the gait cycle to identify gait events. This approach produced reliable and 

accurate results with absolute mean differences between their method and F-scan in-built 

algorithm were equal to 42±11 ms for heel-strike and 37±11 ms for toe-off.  
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Ghoussayni et al. placed reflective markers on human feet to detect four major gait 

events: heel-strike, heel-rise, toe-contact and toe-off and three intervals i.e. heel contact to 

toe-contact, toe-contact to heel-rise, heel-rise to toe-off [58]. They calculated velocities of 

these markers on the sagittal plane using empirically set thresholds to determine four gait 

events. These thresholds were determined visually by inspecting two barefoot and two shod 

trials for two randomly selected subjects. Their research outcomes indicated that four major 

gait events could be automatically derived using kinematic data alone with acceptable error 

of 16.7 ms. This error is comparable to findings published by other researchers [57], [134]-

[136]. 

As the research in human motion capture system advances, inertial sensors attract 

attentions of biomechanists, clinicians, and physiotherapists, as discussed in Chapter 2.1.3. 

Besides Aminian et al. and Jasiewicz et al., Mansfield and Lyons also used miniature body-

mounted sensor, particularly, accelerometer to identify gait events in hemiplegic patients 

who used FES system [59]. They placed an accelerometer on the patient’s trunk to detect 

the heel contact events on both legs based on the examination of the anterior-posterior 

horizontal acceleration signal. For validation, foot-switches were placed on the sole of one 

foot to record the heel-strike and heel-off times. Their research concluded that 

accelerometer was a valid tool to identify the occurrences of heel-strike during FES assisted 

walking.  

Sabatini et al. constructed an inertial sensor that consisted of one bi-axial accelerometer 

and one uni-axial gyroscope to estimate spatio-temporal gait parameters [22]. Inertial sensor 

was attached to the instep of the foot. This sensor was combined with gait phase 

segmentation procedure to obtain the occurrences of heel-strike and toe-off, and to 

determine the duration of stride, swing phase and stance phase. Even though it was only 

tested during treadmill walking, it appeared to be a promising measuring device for various 

applications in rehabilitation, sports medicine, and health monitoring.  

A clear indication that can be extracted from above literatures is that identification of 

gait events is important in gait analysis and clinical rehabilitation. Kinematic and/or kinetic 

parameterscan be used to extract the timing information of various gait events such as heel-

strike, toe-off, heel-rise, and opposite heel-strike. It is also evident that a miniature body-

mounted sensor can be a valid and reliable tool to identify these events.  
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2.3 Discrimination of the Normal and Abnormal Gaits  

Gait analysis is the study of the biomechanics of human movement aimed at 

quantifying factors governing the functionality of human lower extremity [60]. This study 

may involve analysis of the orientation of the lower extremity, muscle activities, analysis of 

human body balance, study on the oxygen consumption and the interaction between many 

neuromuscular and structural element of the locomotor system including the brain, spinal 

cord, nerves, joints and skeletons [60]. Gait analysis is commonly conducted by clinicians, 

biomechanists and researchers for detection of gait disorder, identification of body balance 

factors, assessment of clinical gait intervention and rehabilitations. In engineering, human 

gait plays important role in the design and development of prostheses and controllers used 

in exoskeletons and robotics [61].  

A conventional gait analysis involves a gait laboratory, optical motion capture system, 

force platforms, and a high-end workstation. In this laboratory, human walking motion is 

measured and recorded using optical motion capture system and force platforms. For most 

clinicians and therapists, interpretation of the gait data can be difficult due to its high 

complexity. This complexity arises from high data dimensionality and volume, non-linear 

data dependencies and non-unique correlations, as described in [60]-[62]. 

To conveniently interpret human gait data and to identify the deviations of abnormal 

gait from normal movement patterns, various parameterization techniques and waveform 

classifiers have been employed by clinicians and researchers [63]. Parameterization 

techniques use a fraction of available kinematics and kinetics parameters by extracting the 

instantaneous values of their amplitude and time. Romei, et al. proposed Normalcy Index 

(NI) to quantify the amount of deviation in a subject’s gait [6]. NI involves 16 kinematic 

parameters i.e. time to toe-off, walking speed, cadence, mean pelvic tilt, range of pelvic tilt, 

mean pelvic rotation, minimum hip flexion, range of hip flexion, peak abduction in swing 

phase, mean hip rotation in stance phase, knee flexion at initial contact, time of peak 

flexion, range of knee flexion, peak dorsiflexion in stance phase, peak dorsiflexion in swing 

phase, and mean foot progression angle in stance. In their study, they found that NI was 

robust enough to categorize pathological gait of idiopathic toe-walkers and patients with 

cerebral palsy.  

Regardless of its viability in several clinical applications, parameterization techniques 

are not practical. It is difficult to identify the required peaks and valleys. Moreover, the 
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variables used in these techniques are seldom justified [64].  Lastly, they do not provide 

information regarding the waveform patterns of the variables [63]. 

With the intention to overcome the drawbacks of the parameterization techniques, 

waveform classifiers were proposed by several researchers [63]. These methods include use 

of Principal Component Analysis (PCA) [11],[65], neural network [64]-[66], and other 

pattern recognition techniques [67]-[68]. Schutte, et al. used PCA to derive a set of 16 

independent variables from 16 selected gait variables [11]. Some of the variables include 

walking speed, cadence, mean pelvic tilt, mean pelvic rotation, minimum hip flexion, knee 

flexion, peak dorxiflexion and mean foot progression. Using the variables derived from 

PCA, they proposed a normalcy index that measured the distance between the variables 

describing patient’s gait and variables of a normal and healthy person. As a result, their 

normalcy index was able to classify Type I, Type II, Type III, and Type IV hemiplegic 

patients.  

Tingley, et al. applied PCA to angular rotation of hip, knee and ankle during a complete 

gait cycle [65]. Data reduction using PCA was achieved by locating the primary directions 

of the kinematic parameters from the mean behavior. Variations from the mean were then 

calculated to obtain one-dimensional index that classified a child’s gait as normal, unusual 

or abnormal. The merit of this method is that it can be applied across multiple joint angle 

curves and their derivates. Thus, they believed that it could be a valuable clinical tool that 

distinguished the gait of normal healthy children and children who were born prematurely. 

Schwartz, et al. proposed Hip Flexor Index (HFI) which utilized PCA from five 

kinematic and kinetic variables [7]. These variables were collected from 23 normal and 

healthy individuals and six patients diagnosed with celebral palsy. These five variables are 

the maximum pelvic tilt, pelvic tilt range, maximum hip extension in stance phase, timing 

of crossover, and hip flexion power during late stance phase. HFI were proven to 

correspond well with the subjective clinical evaluation that was carried out by six clinicians. 

Thus, HFI can be a simple quantitative tool for clinicians to evaluate the patients’ walking 

conditions.  

Holzreiter and Kohle used Artificial Neural Networks (ANN) to classify normal gait 

and pathological gait [66]. Ground reaction force profiles of 94 healthy persons and 131 

patients who had calcaneus fracture, artificial limbs and other diseases were measured and 

used as the main variables. Their experimental study achieved satisfactory results with 
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classification accuracy up to 95%. It demonstrated the capability of neural network to assist 

clinician’s decision making.  

Barton, et al. proposed Quantization Error (QE) derived from self-organizing neural 

networks to quantify the deviation of patients’ abnormal walking gait from normal and 

healthy gait [64]. 3-D joint angles, moments and power of the lower limbs and the pelvis 

were used to train Kohonen ANN. 18 normal subjects and 79 patients with various gait 

problems due to cerebral palsy, head injury, spina bifida, neuropathy, amputees, ankle 

injury, autism, Parkinson’s disease, and dystonia involved in their experimental study. This 

study validated the application of QE in clinical application to be a measure of gait quality 

that was normally inaccessible by quantitative gait analysis.  

Xu, et al. combined neural network capabilities and fuzzy logic qualitative approaches 

to classify gait of normal and healthy persons and gait of patients with pes cavus and pes 

planus [67]. In their study, plantar pressure distributions of the feet were the main kinetic 

parameters. With this approach, they were able to achieve high classification accuracy of 

96.15%, 92.5%, 93.33% for normal persons, and for patients who suffered from pes cavus 

and pes planus respectively. These accuracies were relatively higher than other neural 

network approaches.  

In their recent publications, Schwartz and Rozumalski proposed a biometric method 

that was commonly used for human face identification, ‘Eigenface’ method [68]. In this 

method, a set of kinematic plots and joint angles were digitized and converted to vectors. 

This vector was then subjected to PCA. Subsequently, a distance metric was defined to 

measure the similarity of one gait feature to another gait feature. For validation, GDI was 

applied to the gait of patients with celebral palsy. From their experimental results, it could 

be observed that GDI successfully distinguished the affected and contralateral side for the 

hemiplegia while confirming that the contralateral side did not exhibit a normal gait pattern. 

Hence, they concluded that GDI could be a practical tool to measure the overall gait 

pathology of a patient.  

Despite of their implementations in several clinical applications, waveform classifiers 

have a high computational requirement. Hence, they consume significant time to generate 

the results and can only be implemented offline. Moreover, most of the classifiers still use 

conventional motion capture systems i.e. optical motion capture systems and force 

platforms. Lastly, waveform classifiers require a large set of normative data that have to be 
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collected from normal and healthy individuals. Prior knowledge on the pathological gait 

patterns is also one of the important elements to distinguish patient’s gait from healthy 

individual’s gait.  

To address these limitations, this research proposes the use of Coefficient of 

Determination (CoD) to provide quantitative gait index. It serves as a discrete measure that 

represents all data points in every gait cycle. Since it does not require extensive 

computation, CoD can be implemented as one of the online processes. Thus, quantitative 

gait assessment can be performed while a person is walking on a treadmill or on the ground. 

In addition, various temporal gait parameters such as duration of stride (Tstride), stance phase 

(Tstance), and swing phase (Tswing) can also be calculated to compliment the online gait 

assessment and to provide comprehensive information on a person’s walking condition.  

2.4 Gait Asymmetry  

Gait asymmetry is one of the most important gait characteristics. Gait symmetry is 

defined as a perfect agreement between the actions of the lower limbs and/or when no 

statistical differences are noted on parameters measured bilaterally. Gait of a healthy 

individual is fairly symmetrical with acceptable deviations. Symmetrical gait offers both 

stable and adaptive walking patterns, minimizes energy expenditures and minimizes the risk 

of fall. On the contrary, asymmetrical gait is commonly found in patients who suffer from 

celebral palsy [4],[69], hemiplegic [8],[9],[10], amputation [12],[13],[70], limb length 

discrepancy [71] and Parkinson disease [16]. Significant bilateral differences can be found 

in both kinematic and kinetic parameters such as the duration of stride, stance phase, and 

swing phase [72]-[73], ground reaction force profile [73]-[75] and range of motion of the 

lower limbs [76]. Fundamental approaches used to define gait asymmetry are the Symmetry 

Index (SI), the Symmetry Ratio index (SR) and the statistical approach [77].  

2.4.1 Symmetry Index (SI) 

Symmetry index or SI was initially proposed by Robinson, et al. [78]. It evaluates 

the degree of symmetric behavior using the calculated differences between the left and 

right limbs for a given parameter divided by their bilateral average. Zero SI indicates 

that the gait is perfectly symmetrical. Becker, et al. demonstrated the usefulness of SI in 

the rehabilitation of young adults who underwent surgical treatment of ankle fracture 

[79]. Using SI, they found that significant load asymmetries particularly in the lateral 
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forefoot of the injured leg. Asymmetrical loading suggested that patients used 

compensation mechanisms to regain gait symmetry after ankle alteration.  

Kim and Eng used SI to identify gait asymmetry in individuals with chronic stroke 

[73]. Using patients’ ground reaction force profiles to derive SI, they found that stroke 

patients’ gait speed was correlated with the symmetry of temporal measures and ground 

reaction force. In addition, they also described that symmetry in patients’ ground 

reaction force was correlated with symmetry in temporal parameters with p < 0.05.  

Perttunen et al. applied SI to study the gait asymmetry in patients with leg length 

discrepancy [71]. Plantar pressures distribution, ground reaction force profile and 

muscle activities of 25 patients were measured and recorded to compare the bilateral 

difference between the left and right limbs. They found that vertical ground reaction 

force of the longer limb was greater than the shorter limb. Similar observation was also 

apparent in the maximum isometric torque. Their experimental results implied that foot 

loading pattern shifted more to the forefoot of the longer limb to compensate walking 

disturbances.  

Despite the wide implementation of SI in various clinical applications, SI suffers 

from several drawbacks. One of the drawbacks is that SI requires a reference value 

which is typically different from case to case [75]. Besides that, SI is prone to artificial 

inflation as highlighted in [78],[80]. It was reported that maximum SI value of 13,000% 

could occur when the difference between sides was divided by a much smaller value 

[75].  

2.4.2 Symmetry Ratio (SR) 

Symmetry Ratio or SR is calculated based on the ratio of a gait parameter between 

the left and right limbs. The gait is symmetrical if and only if SR is close to one. 

Balasubramanian, et al. utilized SR to observe the step length and walking performance 

of individuals with chronic hemiparesis [8]. Patients’ walking speed, step length, and 

the duration of swing phase and pre-swing were collected using an instrumented mat 

and force plates to determine gait asymmetry. Their study suggested that patients 

generated least paretic propulsion when walking with relatively longer paretic steps.  

On a different application, Andres and Stimmel applied SR to assess the lower limb 

prosthetic alignment [12]. Stride length, step length, the duration of stride, stance phase, 
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swing phase and double support, walking velocity, joint angles and vertical 

displacement of the centre of gravity were used as the main parameters. Their research 

revealed that patients performed several compensatory mechanisms to reduce gait 

asymmetry. Hip angle asymmetries were found to compensate for knee angle 

asymmetries and swing phase lasted longer while the double support time decreased on 

the prosthetic side.  

Similar to SI, SR may suffer from the artificial inflation as well. This effect may 

happen if both gait parameters are close to zero. Moreover, SR also requires a reference 

value, which may be different from one application to another. In spite of providing 

good indication of gait asymmetry, SI and SR only take into account single variable or 

limited set of points from left and right limbs. They do not analyze the motion in one 

complete gait cycle [76],[81]. 

2.4.3 Statistical Approaches  

The statistical approaches are also used to identify gait asymmetry between the 

lower limbs in walking. Sadeghi applied PCA as a curve structure detection method to 

determine gait asymmetry [82]. They used the muscle moment of the lower limbs as the 

main variable. As the research outcome, they concluded that the gait of able-bodied 

subjects appeared to be symmetrical. This behavior was identified as a result of local 

asymmetry which indicated different levels of within and between muscle activities 

developed at each joint in one gait cycle.  

Shorter, et al. proposed Regions of Deviation (RoD) analysis to quantify gait 

asymmetry between bilateral joint pairs and its behavior relative to the normative data 

[76]. RoD used kinematic parameters collected from an optical motion capture system. 

This analysis effectively identified the timing and magnitude of deviations throughout 

the gait cycle. It also provided information about the impact of a joint-mobility 

perturbation on neighboring joints. Thus, this analysis appeared to be useful for 

clinicians in detecting gait impairments and monitoring the changes in gait as a function 

of recovery process.  

Allard et al. applied paired t-test (α < 0.05) to determine the presence of gait 

asymmetry [83]. Kinematic and kinetic parameters collected from the force plates and 

optical motion capture system were used to identify the bilateral difference between the 

left and right limbs. From the experimental results, they found that right limb developed 
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a significantly greater total negative work than left limb. On the contrary, both limbs 

generated similar total positive work while maintaining the walking speed.  

Regardless of their capabilities, statistical approaches require additional subjects 

and experiments to define gait asymmetry. In addition, they also need normative data 

from able-bodied subject as a reference.  

To address limitations of these three different approaches i.e. SI, SR and statistical 

methods, this thesis introduces Normalized Cross-correlations (Ccnorm) to generate a 

discrete indicator that signifies the bilateral differences between the left and right limbs 

and to estimate the time shift (Ts) between them.  This thesis also introduces 

Normalized Symmetry Index (SInorm) to determine the gait asymmetry over one 

complete gait cycle. Unlike conventional SI, SInorm is capable of identifying the timing 

and magnitude of gait asymmetry. It is also not prone to artificial inflation. Lastly, this 

thesis explores the viability of these methods in identifying gait asymmetry in both 

normal and abnormal walking patterns. Details of these approaches are discussed in 

Chapter 5.7, Chapter 5.8, and Chapter 5.9.  

2.5 Gait Dynamic Stability  

Gait dynamic stability is defined as the ability to maintain functional locomotion 

despite the presence of small kinematic disturbances or control errors [85]. Deterioration of 

gait stability is a sign of many pathologic conditions which commonly found in the elderly 

[92], patients with Down syndrome [93], patients with diabetic neuropathic [94] and 

patients with ACL deficient knee [97]. For this reason, stability is one of important factors 

in gait analysis.  

In recent years, many researchers have attempted to investigate and to quantify human 

stability during walking [86]-[90]. In some of the studies, magnitude of kinematic 

variability was often referred as an estimate of stability. However, there were little 

evidences that support this assumption [91]-[92]. Gait variability generally quantifies only 

the average differences between strides and it is independent of the temporal order in which 

the strides occur. It also does not contain information on how the locomotor control system 

responds to perturbations either within or across strides [91]-[94]. Moreover, it is limited by 

its ability to quantify and to provide a discrete measure that represents all data points [92].  
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Due to these reasons, tools from nonlinear dynamical system theory were proposed to 

assess the point-to-point fluctuations in movement trajectories throughout the gait cycle 

[85],[91]-[92],[94]. Although the fluctuations in measurement data are often described as 

error or noise of a system, dynamical system theory provides a different explanation. It 

proposes that these fluctuations might be a consequence of the dynamic self-organization of 

a complex system. The most popular tool derived from this theory is the estimation of the 

maximum Lyapunov exponent (λ*). While true Lyapunov exponents cannot be calculated 

from discrete time-series of biological system behavior (i.e. human walking), Rosenstein et 

al. [95]and Kantz and Schreiber [96] developed methods that can estimate λ*, which 

dominates the entire system stability.  

Dingwell and Kang examined the dynamic stability of older adults using λ* [92]. They 

used trunk kinematics to estimate the dynamic stability of upper body during walking. 

Trunk kinematic was captured using optical motion capture system with six markers placed 

on the left and right acromias, C7 and T10 spinal processes and spines of each scapulae. 

Their experimental results indicated that older adults exhibited higher λ* than younger 

adults. Higher λ* implied that older adults had increased dynamic instability during walking 

compared to the younger ones. However, when they walked slower, they decreased their 

dynamic instability in spite of increased variability. Their findings suggested that older 

adults walked slower to increase their overall gait stability.  

Buzzi and Ulrich examined dynamic gait stability of preadolescent children with and 

without Down syndrome [93]. They captured thigh, shank and foot movement using optical 

motion capture system. The kinematic variable i.e. angular displacement on the sagittal 

plane was used as the main variable to examine gait dynamic stability of these children. 

Their experimental study suggested that children with Down syndrome had increased 

dynamic instability during walking compared to healthy children.  

Dingwell et al. used λ* to examine dynamic stability of patients with diabetic 

neuropathic [94]. Single tri-axial accelerometer and three electrogoniometers were placed 

on the upper body, hip, knee and ankle to measure the kinematic variables of these 

segments during walking. Their experimental results indicated that patients with diabetic 

neuropathic adopted more stable gait patterns by slowing their self-selected walking speed 

even though they exhibited greater kinematic variability than healthy subjects. Additionally, 
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they also found that walking on a treadmill was slightly more stable than walking on the 

ground.  

Stergiou et al. assessed functional dynamic knee stability of patients with Anterior 

Cruciate Ligament (ACL) deficient knee using λ* [97]. They used optical motion capture 

system to measure the sagittal knee angular displacement when the subjects walked on a 

motorized treadmill. They found that λ* of ACL deficient knee was higher than the 

contralateral knee. This finding implied that the deficient knee was more unstable than the 

contralateral knee. Thus, deficient knee was less adaptable to ever-changing environment.  

Despite its wide clinical applications, the kinematic variables used to estimate λ* are 

generally derived from optical motion capture system [92]-[94],[97]-[102]. Although it is 

considered as gold standard in capturing human motion, the optical motion capture system 

is expensive, bulky and difficult to operate [23],[25]. Therefore, this research explores the 

advantages offered by the miniature sensor, particularly gyroscope, to estimate the gait 

dynamic stability. In this thesis, the estimation of λ* is implemented as one of the system 

offline processes. Offline process implies that λ* can only be estimated after the experiment 

is completed or when the experimental data is uploaded to the system. This is solely due to 

large amount of data, and substantial calculation and computational time involved in the 

estimation process. In this thesis, there are two different measures that are considered in 

estimating gait dynamic stability: short-term maximum Lyapunov exponent (
*

S
λ ) and long-

term maximum Lyapunov exponent (
*

L
λ ). 

*

S
λ  reflects the ability of human neuromuscular 

locomotor system in maintaining short-term stability whereas 
*

L
λ  reflects the ability of 

human neuromuscular locomotor system in maintaining long-term stability.  
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Chapter 3                                                                                              

AMBULATORY GAIT 

MONITORING SYSTEM  

The wireless ambulatory gait monitoring system is a system that utilizes the state-of-art 

wireless inertial sensors to capture human gait. It comprises real-time hardware/software co-

design system architecture that provides an integrated process to monitor and to evaluate human 

gait over long period of time in indoor and outdoor environments. The developed system was 

designed to provide sufficient information that assists clinicians, biomechanists, and researchers 

in interpreting the gait data, monitoring patient’s rehabilitation progress, assessing functional 

performances of the lower limb upon medical treatment or surgery, and devising appropriate 

treatments for the patients.  

Figure 3.1 illustrates a general overview of the wireless ambulatory gait monitoring system. 

This system consists of several main components i.e. wireless Inertia-Link sensors, wireless 

transceivers, workstation and system software developed using LabVIEW 8.5. To monitor and 

to examine human gait, wireless sensors are attached to the abdomen, right thigh, right shank, 

left thigh and left shank. Each sensor measures and records 3-D acceleration and 3-D angular 

rate of its respective body segment in real-time. This sensor then converts the measurement data 

into a series of data packets and transmits them to the workstation through its wireless 

transceiver. Subsequently, the system software converts the data back to the relevant kinematic 

parameters i.e. acceleration and angular rate and displays them on graphs.  

In this thesis, LabVIEW 8.5 was selected as the main programming platform. One of the 

main reasons is that it can provide a reliable real-time wireless communication interface 
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between the wireless inertial sensors and the workstation. It also supports the simultaneous real-

time data streaming from wireless inertial sensors. Lastly, it offers an interactive and user-

friendly Graphical User Interface (GUI) so that a novice user can use the software without much 

difficulty. A detailed description of the software architecture is presented in Chapter 4. 

 

Figure 3.1 An overview of the ambulatory gait monitoring system. 

It is important to note that this system consists of two operational modes: online periodical 

gait evaluation mode and offline gait evaluation mode (Figure 3.1). In this context, the word 

‘Online’ refer to the real-time data streaming and data visualization. Therefore, online 

periodical gait evaluation mode implies that the gait evaluation occurs periodically during the 

real-time data streaming. On the contrary, offline gait evaluation mode refers to the system 

capability in performing similar gait evaluation after the experiment ends or when a 

measurement file is loaded into the software.  

When online periodical gait evaluation mode is selected, measurement data collected during 

the experiment are evaluated periodically every five seconds. Prior to the evaluation process, 

the sensor coordinate frame is transformed to a global coordinate frame. Subsequently, Hybrid 

Multi-resolution Wavelet Decomposition (HMWD) method is applied to the shank angular rate 

to identify mid-swing (MS), heel-strike (HS) and toe-off (TO). The occurrences of these gait 

events can be then used to estimate Tstride, Tstance, and Tswing. They also allow the data to be 

segmented on stride-to-stride basis. A detailed description of HMWD is presented in Chapter 

5.2.  

The first operational mode has two different evaluation categories: gait normality test and 

gait asymmetry analysis. Gait normality test is an evaluation that compares the lower extremity 
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movements to the ideal movements of a healthy individual. This test provides the following 

information: The mean and standard deviation of Tstride, Tstance, Tswing, and CoD. Tstride, Tstance, and 

Tswing define the temporal gait parameters of a person. CoD provides single discrete measure that 

determines the normality of a person’s gait. Detailed descriptions of Tstride, Tstance, Tswing, and 

CoD are discussed in Chapter 5.3 and Chapter 5.5.  

Gait asymmetry analysis is an evaluation that examines the bilateral differences between the 

left and right limbs. This evaluation uses temporal SI i.e. SIstride, SIswing and SIstance, Ccnorm, Ts and 

SInorm as the main parameters. Temporal SI defines the differences in Tstride, Tstance, and Tswing 

between the left and right limbs. Ccnorm defines the similarity between left limb angular rate and 

right limb angular rate. Ts determines the time shift between them. SInorm identifies the timing 

and magnitude of gait asymmetry throughout the gait cycle. Detail definitions of these 

parameters are described in Chapter 5.7, Chapter 5.8 and Chapter 5.9. 

When offline gait evaluation mode is selected, gait data are processed after the experiment 

is completed or when a measurement file is uploaded to the system software. Unlike the 

previous operational mode, this mode provides three gait evaluation methods i.e. gait normality 

test, gait asymmetry analysis and estimation of gait dynamic stability. The first two evaluations 

use similar methods to those described earlier whereas the last evaluation examines human gait 

stability. Gait dynamic stability is assessed using λ*. λ* provide a discrete measure that reflects 

human neuromuscular ability responding to the kinematic perturbations (stride-to-stride 

variability) while maintaining body balance. This system provides two different measures of λ*: 

*

S
λ  and 

*

L
λ . 

*

S
λ

 
dictates the capability of human neuromuscular locomotor system in 

maintaining short-term stability. 
*

L
λ

 
dictates the capability of human neuromuscular locomotor 

system in maintaining long-term walking stability Complete description of these parameters is 

provided in Chapter 5.10.  

3.1 Wireless Inertial Sensor: Inertia-Link  

Wireless Inertia-Link was selected as the main sensing device to measure and to record 

human lower extremity motion during walking. Inertia-Link is a small, light-weight and low 

power-consumption inertial sensor. It combines a tri-axial accelerometer, a tri-axial 

gyroscope and an onboard processor to measure the acceleration and angular rate of an 

object in a 3-D space. The sensing axes of wireless Inertia-Link are depicted in Figure 3.2. 

Inertia-Link is widely used in various application including [103]: 
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• Inertial aiding and location tracking i.e. INS (Inertial Navigational System) and 

GPS (Global Positioning System). 

• Unmanned vehicles and robotics.  

• Computer science and biomedical engineering.  

• Platform stabilization.  

 

Figure 3.2 Wireless Inertia-Link with its sensing axes [103]. 

A complete set of wireless Inertia-Link consists of one wireless inertial sensor and one 

USB wireless transceiver. Since the developed system uses five inertial sensors, five 

wireless transceivers are utilized and connected to the workstation (Figure 3.3). The inertial 

sensor comes with a 9V Lithium battery pack which can last up to 4 hours. Based on 

specific preset configuration, Inertial-Link onboard processor can generate different type of 

output data i.e. acceleration, angular rate, Euler angles, orientation matrix, differences in 

angle and differences in angular rate. All these data are fully temperature compensated and 

corrected to minimize the measurement errors [84]. Since it is a commercially available 

high performance inertial sensor, no data disruption is expected when it is operating within 

the permissible transmission range (approximately 10 m). This sensor is also accompanied 

with a high sampling rate of up to 300 Hz. Its embedded accelerometer provides measuring 

range of ±9.81 m/s
2
 with bias stability of ± 0.0981 m/s

2
 and nonlinearity of 0.2 % whereas 

the gyroscope is capable of measuring range of ±5.235 rad/s with bias stability ±0.00349 

rad/s  and nonlinearity of 0.2%. 

As illustrated in Figure 3.1, developed system places inertial sensors on a person’s 

upper body (abdomen), right thigh, right shank, left thigh and left shank. Since each Inertia-

Link has its own local sensing axes to measure 3-D acceleration and 3D angular rate (Figure 

3.2), a local-to-global coordinate frame transformation is required to provide accurate 

measurement of the movement of each body segment. Detailed mathematical description of 

this transformation is presented in Chapter 5.1.  
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Figure 3.3 Wireless Inertia-Link system configuration.  

Several configurations are set to enable simultaneous real-time data streaming from the 

sensors, to minimize data disruption and to prevent cross-talk between inertial sensors and 

transceivers. Firstly, each inertial sensor is assigned to a unique identification number 

ranging from 1 to 99 [106]. Secondly, it is allocated to a specific operating channel. 

Operating channels ranging from channel 1 to channel 26 are fixed by the manufacturer, 

thus further adjustment is not allowed. Thirdly, every wireless transceiver is assigned to an 

operating channel that is similar to one inertial sensor. This approach allows the wireless 

transceiver to be able to communicate with only one inertial sensor. The sensor 

identification numbers and their respective operating channel are presented in Table 3.1. In 

order to capture sufficient data samples during walking, the sampling frequency of this 

system is set to 200 Hz.  

Table 3.1 Sensors ID and their operating channels  

Sensor ID Sensor placement Operating channel 

53 Abdomen 24 

56 Right thigh 14 

88 Left thigh 20 

50 Right shank 22 

54 Left shank 16 

 

In spite of sensor capabilities in measuring acceleration and angular rate, only the 

angular rate of the lower extremity on sagittal plane were selected and considered in this 

thesis, therefore wireless Inertia-Link sensors were regarded as the wireless gyroscopes. 

The main reasons are:  
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• Unlike accelerometers, gyroscopes are not affected by gravity and/or any linear 

acceleration [21],[40],[51].  

• The orientation of the lower extremity can be estimated by simple integration 

[21],[40],[51].  

• Gyroscopes are able to produce similar measurement results regardless of the minor 

differences in the attachment sites on a human body [21],[40],[51].  

• No calibration is required prior to the data acquisition process.  

• Movements of the lower extremity on sagittal plane are commonly used in clinical 

settings and rehabilitations. Thus, they are better established than frontal plane and 

horizontal plane [2],[3], [21],[63],[68],[104] 

• Highest data reliability was reported on the sagittal plane [105].  

Even so, angular rate of the lower extremity on frontal plane and horizontal plane are 

still measured and recorded to provide a realistic and natural 3-D animation of human gait. 

Additionally, acceleration of the lower extremity on all three planes: sagittal plane, frontal 

plane and horizontal plane are also stored in real-time into single measurement file (*.csv).     

3.2 The Inertia-Link Lower Extremity Suit 

Optical motion capture system relies heavily on the skill of assessors in accurately 

placing reflective markers on human body. From their study, Mc Ginley et al. suggested 

that marker placements can contribute to the principal source of measurement error which 

leads to less accurate measurement [105]. To minimize this effect, a simple suit which is 

called ‘The Inertia-Link Lower Extremity Suit’ was designed and developed in this thesis. 

This suit is made of bulk straps, Velco
TM

 straps, bucklers, and buckler locks. This suit was 

designed such that   

• The subject can wear this suit comfortably regardless of his/her anthropometry.  

• The sensors can be firmly placed on the abdomen, right thigh, right shank, left thigh 

and left shank.  

• It does not hinder the movements of the lower extremity during walking.  

• It provides consistent sensors placements on the subject’s lower extremity hence 

minimizing the measurement errors and offering reliable data across the subjects 

and/or experiments.   

• It reduces the overall system setup time.  
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The lower extremity suit has several sets of bucklers and buckler locks, which are 

arranged horizontally and vertically. These sets of bucklers and buckler locks can be 

adjusted in a manner shown in Figure 3.4 according to the length and circumference of 

subject’s lower limbs. 

 

 

 

Figure 3.4 Inertia-Link Lower Extremity Suit. 
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3.3 Inertia-Link USB Transceivers 

Five USB transceivers are utilized to transfer the measurement data from five wireless 

Inertia-Link sensors to the workstation. These transceivers are properly placed inside a 

carrier to reduce the system setup time.  Indirectly, it also increases the mobility of the 

system because it can be easily stored and moved to another experiment site or to another 

workstation. The overall setup of the USB transceivers is presented in Figure 3.5.   

 

 

Figure 3.5 Arrangement of the USB wireless transceivers inside a carrier. 
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Chapter 4                                                                                                   

SOFTWARE ARCHITECTURE  

The gait monitoring system software was developed using LabVIEW 8.5 to enable 

bidirectional communication between the wireless inertial sensors and the workstation, to 

stream the measurement data in real-time, and to cater to different data processes including the 

local-to-global coordinate frame transformation, periodical gait evaluation, and basic 3-D 

animation. This software was developed incorporating an interactive and user-friendly GUI that 

allows novice users to conveniently acquire the measurement data and perform the necessary 

computations.  

Based on its functionality, this software can be categorized into two different operational 

modes: Online periodical gait evaluation mode (Figure 4.1) and offline gait evaluation mode 

(Figure 4.2 and Figure 4.3). The first mode allows the user to collect real-time measurement 

data and to perform periodical gait evaluation while the subject is walking on a treadmill or on 

the ground. The software architecture of this process is depicted in Figure 4.4. Prior to each 

experiment, wireless communications between the workstation and wireless transceivers, and 

between the wireless transceivers and inertial sensors have to be initiated and verified. Once the 

communication links are established, inertial sensors start to measure human lower extremity 

motion and transmit the measurement data in form of wireless data packets to the workstation. 

The workstation then verifies the data packets and converts them into six different entities: X, Y 

and Z accelerations and X, Y and Z angular rates. These data are displayed on their respective 

graphs and are recorded into a measurement file (*.csv). Simultaneously, angular rates are 

collected for duration of five seconds and are stored in a temporary buffer. Gait evaluation is 

then conducted depending on the objectives of the experiments; either evaluation of subject’s 
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gait relative to normal/healthy individual’s gait (Refer to Chapter 4.5), or evaluation of subject’s 

gait asymmetry (Refer to Chapter 4.6). In this thesis, the former evaluation is referred as the gait 

normality test whereas the latter assessment is referred as the gait asymmetry analysis. 

Regardless of the evaluation methods, the results are updated every five seconds and presented 

on relevant graphs so that clinicians and researchers can periodically examine subject’s gait 

when he/she is walking on the treadmill or on the ground (Figure 4.1).  

 

Figure 4.1 Periodical gait evaluation (Gait normality test) during real-time data streaming and 

data visualization. 

When offline gait evaluation mode is selected, two options become available. In the first 

option, the user can examine subject’s gait after the experiment has been conducted. In the 

second option, the user can upload a measurement file recorded from previous experiment to the 

software and perform the necessary analysis. When an experimental data are uploaded to the 

software, they are separated into two components and are displayed individually. First 

component displays subject’s details and the experimental descriptions. Second component 
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displays 3-D acceleration and 3-D angular rate collected throughout the experiment. A Region 

of Interest (RoI) can then be selected. RoI is a subset of the complete experimental data which 

are selected for gait evaluation purposes. Similar to the online gait evaluation mode, gait 

normality test and gait asymmetry analysis are also available in this mode. Another gait 

evaluation method embedded into this mode is the estimation of gait dynamic stability. This 

method examines human gait stability using non-linear time series analysis (Refer to Chapter 

4.7). Once the evaluation is completed, a Hyper Text Markup Language (HTML)-based report 

can be generated for documentation and reporting purposes (Refer to Chapter 4.11). Apart from 

three different gait evaluations, this mode also provides an additional feature that can animate a 

person’s gait in a 3-D plot (Refer to Chapter 4.10).  This feature is provided so that the user can 

view subject’s walking pattern using this software instead of requesting him/her to walk in front 

of the user repetitively. A flowchart of the offline gait evaluation is presented in Figure 4.5. 

 

Figure 4.2 Loading a measurement file into the system software. 
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Figure 4.3 Offline gait evaluation (Gait asymmetry analysis). 

In addition to the software functionalities, it is important to mention that the communication 

between the wireless inertial sensor and its transceiver is based on Inertia-Link data 

communication protocol developed by Microstrain, Inc. [106]. In this protocol, communication 

is established in form of data packets. Each data packet contains the start of packet, delivery 

flags, data type, sensor ID, command data, and checksum. Inertial-Link communication 

protocol will not be discussed in details because it is not the main concern of this thesis. 

However, other functionalities available for the user to perform real-time data streaming and 

periodical gait evaluations are discussed in the following sections. 
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Figure 4.4 General flowchart of the real-time data streaming with periodical gait normality test 

and gait asymmetry analysis. 
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Figure 4.5 General flowchart of the offline gait evaluation. 
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4.1 Verification of the Communication Port 

Ensuring each communication port i.e. status of the USB port for wireless data 

transmission, is the first step in real-time data streaming. For verification, the developed 

software initializes the communication port by sending a ‘Ping’ command, ‘0x01’ to the 

wireless transceiver. As a response, wireless transceiver sends ‘0x01’ to indicate its 

readiness for real-time wireless data transmission or ‘0x21’ to indicate its difficulty in 

communicating with the workstation. A flow chart of this process is presented in Figure 4.6. 

 

Figure 4.6 Flowchart of the communication port verification. 

4.2 Verification of the Wireless Inertial-Link  

This feature ensures each wireless inertial sensor communicating with its respective 

wireless transceiver. Similar to the previous feature, the software initializes the relevant 

communication ports, and sends a ‘Ping’ command (‘0x02’ and sensor unique ID) to the 

sensor. Wireless inertial sensor then responds to the command by sending ‘0x01’ to indicate 

that the communication link between the sensor and the transceiver has been established. If 

the communication link is not established, the wireless transceiver generates an output 

response of ‘0x21’. A flowchart of this feature is illustrated in Figure 4.7.  

Initialize the 

communication port 

Ping the communication port 

Wait for 5 ms 

End 

Start 

Read output 

response 

Communication 

port is ready 

Communication 

port is not ready 

‘0x01’ ‘0x21’ 



37 

 

 

Figure 4.7 Flowchart of wireless sensor verification. 

4.3 Real-time Data Streaming 

The flowchart of the real-time data streaming is presented in Figure 4.8. As the first 

step, wireless sensors and wireless transceivers are configured to ‘Continuous mode’ [106]. 

This mode allows wireless sensors to measure acceleration and angular rate in a pre-

determined sampling rate (200Hz) and continuously transmit them to the workstation. Next, 

the developed software signals the sensors to measure the lower extremity motions by 

sending a ‘Stream’ command. After five milliseconds, the sensors start to measure the 

motions and send the measurement data to the workstation in form of wireless data packets. 

The data packet checksum is then verified to ensure that the workstation receives the correct 

data packet. Data packet is discarded if the checksum is incorrect. Once the verification is 

completed, data packets are separated into six different components: XYZ axes 

accelerations and XYZ axes angular rates based on Inertia-Link data communications 

protocol [106]. These data packets are then converted to single precision floating number 

according to IEEE754 standards. Converted measurement data are displayed on relevant 

graphs and saved into a spreadsheet file (*.csv). Measurement data stored in a spreadsheet 
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file contains the format shown in Figure 4.9. These data are stored sequentially as presented 

in Table 4.1 

 

 

Figure 4.8 Real-time data streaming flowchart. 
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Figure 4.9 Measurement file format.  

 

Table 4.1 Measurement data format in a measurement file 

Body segment Data type Column number 

 Sensor internal sampling clock Column 1 

Abdomen 

Acceleration Column 2 – column 4 

Angular rate Column 17 – column 19 

Right thigh 

Acceleration Column 5 – column 7 

Angular rate Column 20 – column 22 

Left thigh 

Acceleration Column 8 – column 10 

Angular rate Column 23 – column 25 

Right shank 

Acceleration Column 11 – column 13 

Angular rate Column 26 – column 28 

Left shank 

Acceleration Column 14 – column 16 

Angular rate Column 29 – column 31 

 

4.4 Gait Event Identification and Gait Data Segmentation  

Gait event identification is one of the important elements in gait analysis. Gait events 

i.e. HS and TO are commonly used in clinical applications to examine patient’s gait 

before/after medical treatment or surgery, to monitor rehabilitation progress of patients with 

pathologic gait and celebral palsy, and to aid the design and development of prosthetic limb 

and FES system [27],[52]-[54].  
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In this thesis, HMWD is implemented to identify HS, TO and MS in each gait cycle 

[107]. A detailed description of this method is discussed in Chapter 5.2. Determining the 

occurrences of these events allows estimation of Tstride, Tstance, and Tswing. The mathematical 

definitions of these parameters are described in Chapter 5.3. Identification of the gait events 

also allows the data to be segmented on stride-to-stride basis. Given that the segmented data 

have different data length depending on a person’s walking speed and stride length, 

segmented data are linearly interpolated to 100% gait cycle. Detailed descriptions of data 

segmentation and data interpolation are presented in Chapter 5.4.  

During online mode, this feature uses shank angular rate collected during the five 

seconds interval to identify the gait events. This feature is enabled automatically thus no 

user intervention is required. During offline mode, it uses shank angular rate lying within 

RoI to identify the gait events. A general overview of this feature is depicted in Figure 4.10. 

 

 

Figure 4.10 Gait event identification and data segmentation. 

4.5 Gait Normality Test  

Gait normality test provides qualitative and quantitative information of a person’s gait. 

Qualitative information is represented through graphical comparisons between the 

orientation of a person’s lower extremity and the ideal orientations established in [2]-[3], 

[104]. Minor and acceptable discrepancies are expected on a young and healthy individual 

with different anthropometric properties e.g. different height and different weight. An 

illustration of this comparison is shown in Figure 4.11. Green color thick line represents the 
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ideal orientation of human lower extremity. This line serves as the reference to visually 

compare the actual orientations of the lower extremity, which are represented as multicolor 

thinner lines (Each gait cycle is assigned to a unique color). This feature allows clinician or 

biomechanist to examine a person’s walking condition and to determine his/her gait 

normality. On the other hand, quantitative information is presented as the computational 

results of CoD of each body segment, Tstride, Tstance, and Tswing. Definitions of these 

parameters are described in Chapter 5.5. 

 

Figure 4.11 Comparison between ideal (thick green line) and actual (thin multicolor line) 

orientations of the lower extremity. 

During the online mode, angular rates of thigh and shank are periodically stored in a 

temporary buffer. HMWD is then applied to shank angular rate to identify HS, TO and MS. 

Subsequently, temporal parameters are estimated and the angular rate of thigh and shank are 

segmented on stride-to-stride basis. Next, orientations of the lower extremity are estimated 

and compared with the ideal ones. Lastly, CoD is computed to quantify the similarity 

between them. The statistical results are presented to the user in form of the mean and 

standard deviation of CoD, Tstride, Tstance, and Tswing. It is important to note that this process 

has been optimized by minimizing the computations and processing time so that it will not 

affect the real-time data acquisition. A flowchart of this feature is depicted in Figure 4.12 

During the offline mode, data can only be processed after the experiment has been 

completed or when a measurement file is uploaded to the software. The user can then use 

RoI to select the desired measurement data. Subsequently, the software performs similar 

tasks as describe earlier to provide qualitative and quantitative information of a person’s 

gait. A flowchart of the offline gait normality test is presented in Figure 4.13.  
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Figure 4.12 Online periodical gait normality test. 
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Figure 4.13 Offline gait normality test. 
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4.6 Gait Asymmetry Analysis 

Asymmetrical gait is found in several pathological conditions [4],[8]-[9],[12]-[13] [70]-

[76]. Hence, gait asymmetry is regarded as one of the important factors in examining a 

human walking condition and tracking a patient’s rehabilitation progress. Therefore, gait 

asymmetry analysis is implemented as one of the prominent features of this software. The 

intention of this analysis is to determine the bilateral differences between the left and right 

lower extremity in both spatial and temporal parameters. In this thesis, Ccnorm is introduced 

a discrete measure that evaluates the signal patterns generated by left limb and right limb 

motions in each gait cycle. Ccnorm close to one implies that the gait is symmetrical. Detailed 

mathematical definition of Ccnorm is discussed in Chapter 5.7. Furthermore, SInorm is also 

introduced to quantify the differences between left limb and right limb motions throughout 

the gait cycle. SInorm is described in further details in Chapter 5.9. The bilateral differences 

between left and right limbs temporal gait parameters are computed using conventional SI. 

Detailed description of these parameters is presented in Chapter 5.8.   

During online mode, shank (
shank

θ� ) and thigh angular rates ( thighθ� ) are stored in a 

temporary buffer. HMWD is then applied to identify HS and TO and to segment the angular 

rates on stride-to-stride basis. Segmented angular rates are then compared bilaterally to 

obtain Ccnorm, Ts, and SInorm and display them on their respective graphs. The occurrences of 

heel-strike and toe-off are also used to determine the temporal differences between left limb 

and right limb, particularly the differences in duration of stride (SIstride), stance phase 

(SIstance) and swing phase (SIswing). In order to ease data interpretations, mean and standard 

deviation of the SIstride, SIstance, and SIswing and SInorm are presented. A flow chart of the online 

gait asymmetry analysis is presented in Figure 4.14.  

During the offline mode, measurement file must be preloaded into the software. A RoI 

can then be selected to exclude redundant data. Subsequently, the software identifies HS 

and segments the measurement data on stride-to-stride basis. Segmented angular rate of 

thigh and shank are then compared bilaterally to obtain the Ccnorm, Ts and SInorm and display 

them on their respective graphs. At the same time, SIstride, SIstance, SIswing are being calculated 

too. Similarly, statistical results such as mean and standard deviation of Ccnorm, and Ts, and 

mean and variation of SInorm are presented to ease data interpretation. The flowchart of the 

offline gait asymmetry analysis is presented in Figure 4.15 
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Figure 4.14 Online gait asymmetry analysis. 
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Figure 4.15 Offline gait asymmetry.  
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4.7 Estimation of Gait Dynamic Stability  

Gait stability is also a key feature of gait analysis. Hence, an algorithm that quantifies 

human walking stability is implemented as one of the main components of this system. This 

system uses an algorithm developed by Rosenstein et al. [95] to estimate the λ* from 

discrete time-series measurement data. In gait analysis, λ* is a measurement that indicates 

how human body responds to kinematic perturbations (stride-to-stride variability) and 

maintains body balance during walking [85],[91]-[94],[97]-[102]. Instead of using 

kinematic parameters obtained from optical motion capture system, this system uses angular 

rates of the thigh and shank as the key parameters.  

This system employs tools available in TISEAN (Time Series Analysis) package 

[96],[108] to perform various non-linear time series analysis i.e. Mutual Information (MI), 

False Nearest Neighbours (FNN) and estimation of λ*.  It is important to highlight that MI 

and FNN are processes used to obtain the optimum time delay and embedding dimensions 

needed to reconstruct the state space representation of the kinematic variable and to 

estimate λ*.  Preliminary study conducted in this thesis suggested that the time delay of 14 

data points and embedding dimensions of 9 were the optimum parameters. These 

parameters are only valid for male subject with age: 25.3 ± 1.7 years old, height: 173.9 ± 

4.8 cm and weight: 70.5 ± 9.3 kg.  

There are two different measures that are used to represent a person’s gait stability: 
*

Sλ  

and 
*

Lλ .
*

Sλ  corresponds to the ability of human neuromuscular locomotor system in 

maintain short-term gait stability whereas 
*

Lλ  corresponds to ability of human 

neuromuscular locomotor system in maintaining long-term stability. Detailed description of 

FNN, MI and the estimation of 
*

Sλ  and 
*

Lλ  are presented in Chapter 5.10. A flowchart of 

the estimation of λ* is depicted in Figure 4.16.  

Due to large computational data and extensive computations involved in estimating λ*, 

this feature is only available in the offline mode. There are several data preprocesses are 

included in this feature. One of the processes is the data segmentation. HMWD is initially 

applied to the shank angular rate [107]. This method identifies the occurrences of HS and 

TO. Since the first 30 continuous strides are needed to estimate λ* [85], only the 

measurement data lying between 2
nd

 HS and 32
nd

 HS are considered (As a standard in gait 

analysis, first gait cycle is neglected).  
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Given that the time to complete one gait cycle varies according to the walking velocity 

while the sampling rate is fixed, segmented angular rate of thigh and shank may have 

different data length. Therefore, measurement data of the first 30 strides are linearly 

interpolated into 3000 data points. This approach preserves the stride-to-stride temporal 

variation, which is one of the important elements of Lyapunov stability analysis [85]. It also 

normalizes the measurement data such that the number of data points is similar for every 

experiment.  

 

 

Figure 4.16 Offline estimation of the maximum Lyapunov exponent. 
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4.8 Sensor Reset  

The main function of ‘Sensor reset’ is to disable real-time data streaming from the 

wireless inertial sensor to the workstation. As the first step, the communication port and 

wireless sensor are reinitialized and reconfigured. Afterward, a reset command is sent to all 

wireless sensors via its respective transceivers. A flowchart of this feature is presented in 

Figure 4.17. 

 

 

Figure 4.17 A flowchart of sensor reset function. 

4.9 Uploading a Measurement File  

Measurement files collected from the previous experiments can be uploaded to the 

software using this feature. It uploads the measurement data, subject’s personal details i.e. 

name, height, weight and age, and the experimental descriptions. It then displays them on 

the software GUI (Figure 4.2). This feature comes with RoI, which allows the user to select 

the desired measurement data and to eliminate redundant data that should not be included in 

gait analysis. Using RoI, user can also exclude the first and last gait cycles as a standard 

procedure.  
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4.10 3-D Animation of the Human Lower Extremity  

This tool provides a 3-D visualization of a person’s walking pattern. Experienced users 

can use this feature to observe a person’s gait and to determine his/her gait normality. In 

this thesis, a simple human stick figure is constructed in 3-D space to reduce unnecessary 

computations and to minimize processing time so that it can be used in a general purpose 

workstation. Computational details of this feature are presented in Chapter 5.6.  

For better visualization, each body segment is assigned to different color. The upper 

body is black; the right thigh is red; right shank is blue; left thigh is green and left shank is 

yellow. An illustration of the 3-D animation of the lower extremity is shown in Figure 4.18. 

This feature is only available offline. The experimental data collected from the previous 

session has to be preloaded into the software to animate the 3-D walking motion.  

 

Figure 4.18 3-D animation of the lower extremity during walking. 

  



51 

 

4.11 Report Generation  

Reporting a person’s gait evaluation result is important in rehabilitations and clinical 

settings. It provides biomechanists, researchers and/or clinicians with a document to present 

their findings to their patients and for further analysis. This document is also widely stored 

as a part of patients’ medical history. For this reason, this system implements a feature that 

can produce a HTML-based report. HTML report is selected because it can be viewed by 

any conventional web browser. More importantly, the file size is relatively small in spite of 

storing several images and tables. A sample of the experimental results presented in a 

HTML report is depicted in Figure 4.19.  

 

Figure 4.19 A sample of HTML report on gait normality test results. 
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Report generated by this feature is different depending on the gait evaluation method 

selected by the user. However, subject’s details and the experimental descriptions are 

retained in the report. Detailed experimental results available in this report are presented in 

Table 4.2.  

 

Table 4.2 HTML-based report content 

Gait normality test Gait asymmetry analysis Gait dynamic stability 

 

� Mean and standard deviation 

of Tstride, Tstance and Tswing 

� Estimated orientation of 

thigh ( thighθ ) in each gait 

cycle  

� Estimated orientation of  

shank (
shank

θ ) in each gait 

cycle  

� Mean and standard deviation 

of CoD 

 

� Mean and standard deviation  

of Tstride, Tstance and Tswing 

� Mean and standard deviation 

of SIstride, SIstance and SIswing 

� Mean and variation of SInorm 

� Mean and standard deviation 

of Ccnorm and Ts 

 

� Mean and standard 

deviation of  
*

Sλ  of thigh 

and shank  

� Mean and standard 

deviation of 
*

Lλ  of thigh 

and shank 
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Chapter 5                      

COMPUTATIONAL METHODS 

Computational methods were implemented into the wireless gait monitoring system to 

obtain the relevant parameters that represent a person’s walking condition and to ease the data 

interpretation. Among them are the computations of CoD, Ccnorm, SInorm, SIstride, SIstance, and 

SIswing. The computational methods embedded into this system are discussed in the following 

sections. 

5.1 Coordinate Frame Transformation 

International Society of Biomechanics (ISB) proposed a general reporting standard for 

joint kinematics in [109]-[110]. This standard makes the application and interpretation of 

biomechanical findings easier and more welcoming to various research groups, 

biomechanists, physicians, physical therapists, and other related interest groups. It also 

allows direct comparisons among the literatures that had been published so far.  

In this thesis, ISB coordinate system is regarded as the global coordinate system {G} 

while sensor coordinate system is regarded as the local coordinate system {S}. A graphical 

representation of {G} and {S} are illustrated in Figure 5.1. In order to define the sensor 

local coordinate frame {S} relative to the global coordinate frame {G}, G

SorgP , a rotation 

matrix, G
S R

 
 has to be defined as follows in (1).   

{ } { , }G G

S SorgS R P=           (1) 
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Since each inertial sensor has its measuring axes pointing to different directions, a 

rotation matrix has to be identified. Details of these rotation matrices are described in 

following sub-sections.  

 

Figure 5.1 An illustration of the sensor local coordinate frame {S} and global coordinate 

frame {G}. 

5.1.1 Upper Body 

To map the sensor coordinate frame which is placed on the abdomen {Sabd} to 

global coordinate frame {G}, {Sabd} is rotated twice. The first rotation is performed 

along the X-axis with a magnitude of π. The second rotation is performed along the Y-

axis with a magnitude of π/2. The rotation matrix,  G
Abd R  with respect to the {G} can be 

defined as (2) and (3):  

( )( )
2

G

Abd XY
R R Rπ π=          (2) 

cos( ) 0 sin( ) 1 0 0 0 0 12 2

0 1 0 0 cos( ) sin( ) 0 1 0

0 sin( ) cos( ) 1 0 0sin( ) 0 cos( )
2 2

G

Abd R

π π

π π

π π π π

 
−         = − = −        −−      

  (3) 
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5.1.2 Right Limb 

Since sensors placed on right thigh and right shank have measuring axes not aligned 

to {G}, a rotation matrix, G

Rl R  is required to align {SRl} to {G}. As illustrated in Figure 

5.1, {SRl} has to be rotated along X-axis with a magnitude of π, thus G

Rl R  can be defined 

as (4) and (5)  

( )
G

Rl XR R π=           (4) 

1 0 0 1 0 0

0 cos( ) sin( ) 0 1 0

0 sin( ) cos( ) 0 0 1

G
Rl R π π

π π

   
   = − = −   
   −   

     (5) 

5.1.3 Left Limb 

Similar to the right limb, sensors placed on the left limb do not have measuring 

axes aligned to {G}, thus a rotation matrix, G

Ll R  is required to rotate the {SLl} along the 

Y-axis with a magnitude of π. G

Ll R  
is expressed in (6) and (7) 

( )
G

Ll YR R π=           (6) 

cos( ) 0 sin( ) 0 0 1

0 1 0 0 1 0

sin( ) 0 cos( ) 1 0 0

G
Ll R

π π

π π

   
   = =   
   − −   

      (7) 

5.2 Hybrid Multi-resolution Wavelet Decomposition Method 

(HMWD) 

The application of wavelet transform in science and engineering began in the early 

1990s with rapid growth in the number of researchers turning their attention to wavelet 

transform analysis. Since then, wavelet transforms are widely used in various fields, ranging 

from engineering, medicine, finance, geophysics to astronomy [111]. In this thesis, wavelet 

transform is coupled with peak-valley detection algorithm to identify HS and TO from 

shank
θ� .This method is called Hybrid Multi-resolution Wavelet Decomposition method 

(HMWD).  
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HMWD is one of the significant outcomes of this thesis. It is a combination of the 

Multi-resolution Wavelet Decomposition method (MWD) proposed by [112] and the peak-

valley detection algorithm (PD+VD). Alternatively, HMWD can be expressed as follows in 

(8).  

HMWD = {MWD,PD+VD}      (8) 

MWD is a method that uses wavelet transform to split the original signal (So) to two 

different components: the low frequency component called approximation signal (A1) and 

high frequency component called detail signal (D1). This method can be repeated n times 

with each successive approximation signal being decomposed to produce the next 

approximation signal (An) and detail signal (Dn), as described in Figure 5.2.  

Mathematically, decomposition of So is expressed as follows in (9).  

So = An + Dn + Dn-1 + … + D1       (9) 

 

 

Figure 5.2 Multi-resolution wavelet decomposition method. 

PD+VD differentiates the MWD output signal twice to produce a signal that has sharp 

spikes. In subsequent step, PD+VD places positive spikes and negative spikes into two 

separate arrays. It then performs local search to identify peaks and valleys that corresponds 

to HS, TO and MS  

In this thesis, HMWD is applied to the right (
Rshank

θ� ) and left shank angular rate (

Lshank
θ� ). The main reason is that 

shank
θ�  contains the three significant attributes 

corresponding to HS, TO and MS [21],[40],[51]. These attributes are depicted in Figure 5.3. 

For clarity, only 
Rshank

θ�  is discussed in this section and it is regarded as 
shank

θ� . Since human 

gait is a periodical movement, this pattern occurs repetitively. When a portion of 
shank

θ�  is 

extracted, two valleys and two peaks can be found. The peaks correspond to MS whereas 

the valleys correspond to HS and TO respectively.  
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Figure 5.3 Shank angular rate with heel-strike, toe-off and mid-swing events. 

Several assumptions are made to identify HS, TO and MS. These assumptions are:  

• HS and TO occur between two successive MS. 

• 
shank

θ� during HS and TO are less than 0 rad/s.  

• 
shank

θ� during MS is greater than 0 rad/s.  

To extract its significant attributes, 
shank

θ�  is decomposed twice using symmlet2 wavelet 

transform. As a result, this process produces three main components: 2
nd

 level 

approximation signal (
2

A
θ�

), 2
nd

 level detail signal (
2

D
θ�

) and 1
st
 level detail signal (

1
D

θ�
).  

From these components, only 
2

A
θ�

 is used to identify HS, TO and MS while the other 

components, 
2

D
θ�  

and 
1

D
θ�

 are discarded. In the subsequent step, second derivatives of 
2

A
θ�

 

are calculated using finite difference equations to produce a series of positive and negative 

spikes as shown in Figure 5.4 . 
2

A
θ�

 first derivative, '

2
A

θ�
 and second derivative, ''

2
A

θ�
 are 

defined as (10) and (11) respectively, where ∆t is 0.005s for sampling rate of 200 Hz 

2( ) 2( 1)'

2( )

t t

t

A A
A

t

θ θ

θ

−
−

=
∆

� �

�
       (10) 

' '

2( ) 2( 1)''

2( )

t t

t

A A
A

t

θ θ

θ

−
−

=
∆

� �

�
        (11) 
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A group of positive spikes and negative spikes that are close to each other are separated 

and stored in different arrays. Subsequently, PD is conducted as a form of local search in 

array containing negative spikes ( ''

2
A

θ�
< 0). This search identifies the occurrence of MS (TMS) 

in each gait cycle m, assuming that 
shank

θ�  during MS, 
_shank MSθ� , is greater than 0 rad/s. PD 

as a function of ''

2
A

θ�
 and 

_shank MSθ�  can be expressed as (12)  

''

( ) _2
( , )MS j shank MST PD A

θ
θ= �

�        (12) 

Afterward, two successive mid-swing events, TMS(m) and TMS(m+1) are set as the main 

reference to identify the occurrences of HS (THS) and TO (TTO). VD is conducted as a form 

of local search in array containing positive spikes ( ''

2
A

θ�
> 0). This search produces a series of 

indicators which shows the potential THS  and TTO in 
Shank

θ� . Assuming that 
shank

θ�  during HS 

(
_shank HSθ� ) and during TO (

_shank TOθ� ) are less than 0 rad/s and they happen in between TMS(m) 

and TMS(m+1), THS and TTO to be identified as the first and last indicators respectively (Figure 

5.4). In general, VD can be expressed as a function of TMS, 
''

2
A

θ�
, 

_shank HSθ�  and 
_shank TOθ�  as 

indicated in (13). A flowchart is presented in Figure 5.5 to further enhance the 

understanding of this method.  

''

( ), ( ) ( ) ( 1) _ _2
( , , , , )HS j TO j MS j MS j shank HS shank TOT VD A T T

θ
θ θ+= �

� �     (13) 

 

Figure 5.4 Identified mid-swing, heel-strike and toe-off in ''

2
A

θ�
 ( ''

2
A

θ�
 is multiplied by 10 to 

improve its visibility). 



59 

 

 

Figure 5.5 A flowchart of Hybrid Multi-resolution Wavelet Decomposition method (HMWD). 

5.3 Estimation of Temporal Gait Parameters  

Identifying THS and TTO allows the estimation of temporal gait parameters i.e. Tstride, 

Tstance, and Tswing. These parameters can be calculated as follow in (14) – (16) for each gait 

cycle m.  

( ) ( 1) ( )stride m HS m HS m
T T T+= −        (14) 

( ) ( 1) ( )swing m HS m TO m
T T T+= −        (15) 

( ) ( ) ( )stance m stride m swing m
T T T= −        (16) 

In addition to these parameters, ratio of Tstance and Tswing over Tstride are also important 

because they provide direct comparison with previously published results. These ratios are 

calculated as follow in (17) and (18)  

( )

( )

( )

stance m

stance m

stride m

T
R

T
=         (17) 

( )

( )

( )

swing m

swing m

stride m

T
R

T
=         (18) 

Multi-resolution 

Wavelet 

Decomposition 

(MWD) 

Double 

differentiation 

Peak  

detection (PD) 

Valley  

detection (VD) 

2
A

θ�
  ''

2
A

θ�
 

Mid-swing 

(TMS) 

Heel-strike 

(THS) 

 

Toe-off 

(TTO) 

shank
θ�  
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5.4 Gait Data Segmentation and Data Interpolation 

Apart from temporal gait parameters, identification of THS in gait cycle allows the data 

to be segmented on stride-to-stride basis: THS(m) to THS(m+1). Data segmentation is important 

as it allows the spatial parameter i.e. the orientation of the lower extremity to be compared 

with previously published results in [2],[3] and [104].  Since each gait cycle possesses 

different time duration depending on the stride length and walking speed, segmented data 

may have different data length. Therefore, to ensure each of them has similar data length 

and to eliminate signal aliasing, angular rate of each body segment is linearly interpolated to 

N = 300 data points, which correspond to 100% gait cycle. Thus, angular rates measured 

from right thigh (
Rthighθ� ), right shank ( Rshankθ� ), and left thigh (

Lthighθ� ), and left shank ( Lshankθ�

) possess the following forms:   

(1) (2) (3) ( ) (300)
,....,, , ,...,

Rthigh Rthigh Rthigh Rthigh Rthigh n Rthigh
θ θ θ θ θ θ=� � � � � �   (19) 

(1) (2) (3) ( ) (300)
,...,, , ,...,

Rshank Rshank Rshank Rshank Rshank n Rshank
θ θ θ θ θ θ=� � � � � �   (20) 

(1) (2) (3) ( ) (300)
,...,, , ,...,

Lthigh Lthigh Lthigh Lthigh Lthigh n Lthigh
θ θ θ θ θ θ=� � � � � �    (21) 

(1) (2) (3) ( ) (300)
,...,, , ,...,

Lshank Lshank Lshank Lshank Lshank n Lshank
θ θ θ θ θ θ=� � � � � �   (22) 

For the estimation of λ*, data segmentation and data interpolation are performed in a 

different way, as mentioned in Chapter 4.7. Measurement data from the first 30 gait cycles 

(excluding first gait cycle) are linearly interpolated to 3000 data points, as follow in (23) – 

(26). This method is intended to preserve stride-to-stride temporal variation which is 

important for Lyapunov stability analysis [85]. It also normalizes the measurement data so 

that the numbers of data points per stride are similar for every experiment.  
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(1) (2) (3) ( ) (3000)
,....,, , ,...,

Rthigh Rthigh Rthigh Rthigh Rthigh n Rthigh
θ θ θ θ θ θ=� � � � � �   (23) 

(1) (2) (3) ( ) (3000)
,...,, , ,...,

Rshank Rshank Rshank Rshank Rshank n Rshank
θ θ θ θ θ θ=� � � � � �   (24) 

(1) (2) (3) ( ) (3000)
,...,, , ,...,

Lthigh Lthigh Lthigh Lthigh Lthigh n Lthigh
θ θ θ θ θ θ=� � � � � �    (25) 

(1) (2) (3) ( ) (3000)
,...,, , ,...,

Lshank Lshank Lshank Lshank Lshank n Lshank
θ θ θ θ θ θ=� � � � � �   (26) 

5.5 Estimation and Evaluation of Human Lower Extremity  

The orientations of the lower extremity i.e. right thigh (θRthigh), right shank (θRshank), left 

thigh (θLthigh) and left shank (θLshank) are the main kinematic parameters considered in both 

online and offline gait evaluations. To obtain these parameters, trapezoidal integration 

method is applied to the segmented angular rates described in (19) – (22). Trapezoidal 

integration method is selected because the input is discrete data with uniform spacing and 

the calculation is simpler than other methods.The estimated orientation is calculated as 

follows in (27), where θ(t) is the estimated orientation at time t, ( )tθ�  is the angular rate of 

either thigh or shank at time t and ∆t is equal to 0.005s.  

( ) ( 1)

( )
2

t t

t t
θ θ

θ
++

= ∆ ×
� �

         (27) 

For qualitative feedback, orientations of the lower extremity are arranged in array, as 

describe in (28) – (31), where m is the number of gait cycle, n is the number of data points, 

θid_thigh and θid_shank are the ideal orientation of thigh and shank reported in [2],[3],[104]. 

These arrays are then presented with the aid of graphical representations illustrated in 

Figure 4.11.  

_ (1) _ (2) _ (3) _ ( ) _ (300)

(1,1) (1,2) (1,3) (1, ) (1,300)

(2,1) (2,2) (2,3) (2, )

... ...

... ...

... ...

id thigh id thigh id thigh id thigh n id thigh

Rthigh Rthigh Rthigh Rthigh n Rthigh

Rthigh Rthigh Rthigh Rthigh n R

Rthigh

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ =

(2,300)

( ,1) ( ,2) ( ,3) ( , ) ( ,300)

.

.

.

... ...

thigh

Rthigh m Rthigh m Rthigh m Rthigh m n Rthigh mθ θ θ θ θ

 
 
 
 
 
 
 
 
 
 
 

  (28) 
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_ (1) _ (2) _ (3) _ ( ) _ (300)

(1,1) (1,2) (1,3) (1, ) (1,300)

(2,1) (2,2) (2,3) (2, )

... ...

... ...

... ...

id thigh id thigh id thigh id thigh n id thigh

Lthigh Lthigh Lthigh Lthigh n Lthigh

Lthigh Lthigh Lthigh Lthigh n L

Lthigh

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ =

(2,300)

( ,1) ( ,2) ( ,3) ( , ) ( ,300)

.

.

.

... ...

thigh

Lthigh m Lthigh m Lthigh m Lthigh m n Lthigh mθ θ θ θ θ

 
 
 
 
 
 
 
 
 
 
 

  (29) 

_ (1) _ (1) _ (3) _ ( ) _ (300)

(1,1) (1,2) (1,3) (1, ) (1,300)

(2,1) (2,2) (2,3) (2, )

... ...

... ...

... ...

id shank id shank id shank id shank n id shank

Rshank Rshank Rshank Rshank n Rshank

Rshank Rshank Rshank Rshank n R

Rshank

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ =

(2,300)

( ,1) ( ,2) ( ,3) ( , ) ( ,300)

.

.

.

... ...

shank

Rshank m Rshank m Rshank m Rshank m n Rshank mθ θ θ θ θ

 
 
 
 
 
 
 
 
 
 
 

  (30) 

_ (1) _ (1) _ (3) _ ( ) _ (300)

(1,1) (1,2) (1,3) (1, ) (1,300)

(2,1) (2,2) (2,3) (2, )

... ...

... ...

... ...

id shank id shank id shank id shank n id shank

Rshank Rshank Rshank Rshank n Rshank

Rshank Rshank Rshank Rshank n R

Rshank

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ =

(2,300)

( ,1) ( ,2) ( ,3) ( , ) ( ,300)

.

.

.

... ...

shank

Rshank m Rshank m Rshank m Rshank m n Rshank mθ θ θ θ θ

 
 
 
 
 
 
 
 
 
 
 

 (31) 

Quantitative feedbacks are provided in form of Coefficient of Determination (CoD) and 

statistical results of the temporal parameters. Mean stride time ( strideT ), mean stance time (

stanceT ), mean swing time (
swingT ), and their standard deviations (

strideσ ,  
stanceσ , and swing

σ ) 

are calculated to indicate the timing performances of a person’s gait. These statistical 

parameters are calculated as follow in (32) – (37) where M is the total number of gait cycle 

( )

1

1 M

stride stride m

m

T T
M =

= ∑         (32) 

( )

1

1 M

stance stance m

m

T T
M =

= ∑         (33) 
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( )

1

1 M

swing swing m

m

T T
M =

= ∑         (34) 

2

( )

1

1
( )

M

stride stride m stride

m

T T
M

σ
=

= −∑       (35) 

2

( )

1

1
( )

M

stance stance m stance

m

T T
M

σ
=

= −∑       (36) 

2

( )

1

1
( )

M

swing swing m swing

m

T T
M

σ
=

= −∑       (37) 

Additionally, mean orientation 
( )nθ  and standard deviation ( )nθσ  of the orientation of 

the lower extremity are calculated. These parameters are calculated in (38) – (39)  

( ) ( , )

1

1 M

n m n

MM
θ θ

=

= ∑        (38) 

2

( ) ( , ) ( )

1

1
( )

m

n m n n

mM
θσ θ θ

=

= −∑       (39) 

Coefficient of Determination (CoD) is a measure indicating how closely the ideal and 

actual orientations of the lower extremities are related. A value close to zero indicates that 

little relationship exists between the ideal and actual orientation and therefore gait 

abnormality shall be observed, whereas a value close to one indicates that strong 

relationship exists between the ideal and actual orientation and therefore healthy/normal 

gait shall be observed. CoD is calculated as shown in (40) where 
actualθ is the actual 

orientation of the lower extremity, 
actual

θ  is the mean of the actual orientation of the lower 

extremity and 
idealθ  is the ideal orientation of the lower extremity.  

2 2

2

( ) ( )

( )

actual actual ideal actual

actual actual

CoD
θ θ θ θ

θ θ

− − −
=

−

∑ ∑
∑

    (40) 
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5.6 3-D Animation of the Lower Extremity in Walking  

3-D animation of a person’s gait is simulated using a basic stick figure animation, as 

illustrated in Figure 5.6. This stick figure was designed in order to represent the human’s 

lower extremity: upper body, right thigh, right shank, left thigh and left shank. Orientations 

of each body segment on sagittal plane, horizontal plane and frontal plane are taken into 

account to demonstrate the natural and realistic walking movements.  

 

Figure 5.6 Initial positions of the 3-D lower extremity representation.  

Considering that each body segment is able to rotate along three different axes: X-axis, 

Y-axis and Z-axis, a 4x4 transformation matrix is required to obtain the position of lower 

extremity over the time t. This matrix contains Z-Y-X euler angles rotational matrix and 3-

D translational matrix, as expressed in (41), where c is cosine, s is sine, and α, β and γ are 

the rotations along Z-axis, Y-axis and X-axis respectively over time t. The unit for these 

rotations is in radian. x0, y0 and z0 is the origin of the rotation with respect to the origin of 

{G} (0,0,0).  

RIGHT LEFT 

X{G} 

Y{G} 

Z{G} 

P0 (0,0,0) 

0
P1 (0,-1,-1) 

0
P2 (0,-1,1) 

0
P3 (0,-4,-1) 

0
P5 (0,-7,-1) 

0
P4 (0,-4,1) 

0
P6 (0,-7,1) 
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( )

c c c s s s c c s c s s 0

s c s s s c c s s c c s 0

s c s c c 0

0 0 0 1

t

x

y
T

z

α β α β γ α γ α β γ α γ

α β α β γ α γ α β γ α γ

β β γ β γ

− + 
 

+ − =
 −
 
 

  (41) 

For a 3-D animation of the stick figure, the coordinates of P1 to P6 defined by 

transformation matrix T has to be determined individually over time t. The mathematical 

definitions of these coordinates are presented in following sub-sections.  

5.6.1 Upper Body  

As illustrated in Figure 5.6, upper body of the stick figure is made of three 

coordinates in space: 
0
P1, 

0
P2 and P0 as the origin of the rotation. To perform 3-D 

animation of the upper body, the position of 
0
P1 and 

0
P2 over time t are defined as (42) 

– (43)  

0 0

1( ) , , ( ) 1(0)UB UB UBt tP T Pα β γ= ×       (42)  

0 0

2( ) , , ( ) 2(0)UB UB UBt tP T Pα β γ= ×        (43) 

Where  

αUB = estimated orientation of upper body along Z-axis; 

βUB = estimated orientation of upper body along Y-axis; 

γUB = estimated orientation of upper body along X-axis; 

, ,

c c c s s s c c s c s s 0

s c s s s c c s s c c s 0

s c s c c 0

0 0 0 1

UB UB UB

UB UB UB UB UB UB UB UB UB UB UB UB

UB UB UB UB UB UB UB UB UB UB UB UB

UB UB UB UB UB

T
α β γ

α β α β γ α γ α β γ α γ

α β α β γ α γ α β γ α γ

β β γ β γ

− +

+ −
=

−

 
 
 
 
 
 

 

5.6.2 Right Thigh  

Right thigh is defined by two points in space: 
0
P1 and 

0
P3. 

0
P1 is the origin of the 3-

D transformation. Over time t, 
0
P3(t) is defined as (44)  

0 1

3( ) , , ( ) 3(0)RT RT RTt tP T Pα β γ= ×        (44) 

Where  

αRT is the rotation of right thigh along Z-axis; 

βRT is the rotation of right thigh along Y-axis;  
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γRT is the rotation of right thigh along X-axis; 

0

1( )

0

1( )

0

1( )

, ,

c c c s s s c c s c s s

s c s s s c c s s c c s

s c s c c

0 0 0 1

RT RT RT

RT RT RT RT RT RT RT RT RT RT RT RT t X

RT RT RT RT RT RT RT RT RT RT RT RT t Y

RT RT RT RT RT t Z

P

P

P
Tα β γ

α β α β γ α γ α β γ α γ

α β α β γ α γ α β γ α γ

β β γ β γ

−

−

−

− +

+ −
=

−

 
 
 
 
 
 

 

1

3(0)

0

3

0

1

P

 
 
− =
 
 
 

         

 

5.6.3 Right Shank  

Right shank is defined by two points in space: 0

3P  and 0

5P . 0

3P  is the origin of the 

transformation. The coordinate of 0

5( )t
P  over time t is defined as (45)  

0 3

5( ) , , ( ) 5(0)RS RS RSt tP T Pα β γ= ×       (45) 

Where  

αRS is the rotation of right shank along Z-axis; 

βRS is the rotation of right shank along Y-axis;  

γRS is the rotation of right shank along X-axis; 

0

3( )

0

3( )

, , 0

3( )

c c c s s s c c s c s s

s c s s s c c s s c c s

s c s c c

0 0 0 1

RS RS RS

RS RS RS RS RS RS RS RS RS RS RS RS t X

RS RS RS RS RS RS RS RS RS RS RS RS t Y

RS RS RS RS RS t Z

P

P
T

P
α β γ

α β α β γ α γ α β γ α γ

α β α β γ α γ α β γ α γ

β β γ β γ

−

−

−

− +

+ −
=

−

 
 
 
 
 
 

 3

5(0)

0

3

0

1

P

 
 
− =
 
 
 

 

5.6.4 Left Thigh  

Left thigh is defined by two points in space: 0

2P  and 0

4P . 0

2P  is the origin of the 3-

D transformation. 0

4( )t
P  over time t is computed as follows in (46)  

0 2

4( ) , , ( ) 4(0)LT LT LTt tP T Pα β γ= ×        (46) 

Where  
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αLT is the rotation of left thigh along Z-axis; 

βLT is the rotation of left thigh along Y-axis;  

γLT is the rotation of left thigh along X-axis; 

0

2( )

0

2( )

, , 0

2( )

c c c s s s c c s c s s

s c s s s c c s s c c s

s c s c c

0 0 0 1

LT LT LT

LT LT LT LT LT LT LT LT LT LT LT LT t X

LT LT LT LT LT LT LT LT LT LT LT LT t Y

LT LT LT LT LT t Z

P

P
T

P
α β γ

α β α β γ α γ α β γ α γ

α β α β γ α γ α β γ α γ

β β γ β γ

−

−

−

− +

+ −
=

−

 
 
 
 
 
 

   

2

4(0)

0

3

0

1

P

 
 
− =
 
 
 

         

5.6.5 Left Shank  

Left shank is defined by  0

4P  and 0

6P . 0

6P  is the center of 3-D transformation. The 

coordinate of  0

6( )t
P  over the time t is calculated as follows in (47) 

0 4

6( ) , , ( ) 6(0)LS LS LSt tP T Pα β γ= ×       (47)  

Where  

αLS is the rotation of left shank along Z-axis; 

βLS is the rotation of left shank along Y-axis;  

γLS is the rotation of left shank along X-axis; 

0

1( )

0

1( )

, , 0

1( )

c c c s s s c c s c s s

s c s s s c c s s c c s

s c s c c

0 0 0 1

LS LS LS

LS LS LS LS LS LS LS LS LS LS LS LS t X

LS LS LS LS LS LS LS LS LS LS LS LS t Y

LS LS LS LS LS t Z

P

P
T

P
α β γ

α β α β γ α γ α β γ α γ

α β α β γ α γ α β γ α γ

β β γ β γ

−

−

−

− +

+ −
=

−

 
 
 
 
 
 

 

4

6(0)

0

3

0

1

P

 
 
− =
 
 
 
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5.7 Normalized Cross-correlation (Ccnorm) 

Cross-correlation (Cc) is commonly used to determine the similarity of two signals and 

to determine the time delay between them. Cross-correlation of two signals is commonly 

used in radar, digital communications, geology, and other areas in engineering and science. 

In summary, cross-correlation performs the following operations: shifting one of the 

sequences, multiplication of the two sequences, and summing over all values of the product 

sequences [113].  

In this thesis, Cc is computed to determine the bilateral differences between right limb 

and left limb motion in each gait cycle. The angular rate of the right limb (
R

θ� ) is considered 

as the reference signal while the angular rate of the left limb (
L

θ� ) is considered as the target 

signal. Hence, Cc can be computed as follows in (48).  

( ) ( ) ( )
1 ( )

0, 1, 2,..., 1
          

 0 ,   0

N

k R n L n k
n L n k

k N
Cc

if n k or n k N then
θ θ

θ−
= −

= ± ± ± −
=

− ≤ − > =∑ � �
�

 (48) 

Cc produces a distinctive peak, which is affected by the magnitude of 
R

θ�  and 
L

θ� . In 

order to address this limitation, auto-correlation of 
R

θ� , AcR and 
L

θ� , AcL are calculated 

using (49) – (51) to estimate Ccnorm. Ccnorm produces values ranging between zero and one 

where a value approaching one indicates a very strong correlation between 
R

θ�  and 
L

θ� . 

( ) ( ) ( )
1 ( )

0, 1, 2,..., 1
          

 0 ,   0

N

k R n R n k
n R n k

k N
AcR

if n k or n k N then
θ θ

θ−
= −

= ± ± ± −
=

− ≤ − > =∑ � �
�

 (49) 

( ) ( ) ( )
1 ( )

0, 1, 2,..., 1
          

 0 ,   0

N

k L n L n k
n L n k

k N
AcL

if n k or n k N then
θ θ

θ−
= −

= ± ± ± −
=

− ≤ − > =∑ � �
�

 (50) 

(0) (0)

max( )
norm

Cc
Cc

AcR AcL
=

×
       (51) 
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Cc also estimates the time delay between 
R

θ�  and 
L

θ� . Time delay between two signals 

(Ts) is defined as the time when the Cc reaches the maximum value. Ts is computed as 

indicated in (52). A positive Ts indicates that 
L

θ� is leading behind 
R

θ�  whereas a negative Ts 

signifies that 
L

θ�  is lagging behind 
R

θ� . Ts is expressed as the percentage of gait cycle. 

( )
100%

max Cc

N

T
Ts ×=        (52) 

5.8 Symmetry Index (SI) for the Temporal Gait Parameters  

One of the popular methods to evaluate the gait asymmetry is the Symmetry Index (SI). 

SI is initially proposed by Robinson et al [78]. SI signifies the symmetrical behavior of 

human walking by calculating the difference between the left and right limbs of a given 

parameter and dividing the result by the bilateral average. Mathematically, SI is described 

as follows in (53).  

( )
100%

0.5( )

R L

R L

X X
SI

X X

−
= ×

+
      (53) 

Since the temporal parameters do not generate index values that are greater than 100%, 

conventional SI is used to determine the differences of Tstride, Tstance and Tswing between left 

limb and right limb. SIstride, SIstance and SIswing are determined following  (54) – (56). It is 

important to highlight that similar to all previous computations, right limb temporal 

parameters are used as the main reference.  

( )
100%

0.5( )

Rstride Lstride

stride

Rstride Lstride

T T
SI

T T

−
= ×

+
     (54) 

( )
100%

0.5( )

Rstance Lstance

stance

Rstance Lstance

T T
SI

T T

−
= ×

+
     (55) 

( )
100%

0.5( )

Rswing Lswing

swing

Rswing Lswing

T T
SI

T T

−
= ×

+
     (56) 
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5.9 Normalized Gait Symmetry Index (SInorm) 

SI suffers from one major drawback. It can generate index value up 13,000% when the 

difference between two sides was divided by a much smaller value [75]. It can occur when 

it is applied to spatial parameters i.e. ground reaction force profiles and the orientation of 

lower extremity. Therefore, SInorm is proposed to overcome this limitation. SInorm is also one 

of the significant outcomes of this research. The main parameters used to determine SInorm 

are 
Rthighθ� , 

Rshank
θ� , 

Lthighθ� , and 
Lshank

θ� . Prior to the computation of the SInorm, the angular rate of 

the lower extremity is normalized using min-max normalization approach. Min-max 

normalization is a transformation procedure that converts the data into a desired range, 

usually from zero to one. However, in this research, the angular rate is transformed to 

values greater than zero.  

For consistency, angular rate of the right limb is regarded as the main reference. 

Normalized angular rate (
norm

θ� ) can be computed as follows in (57), where 
max

θ� is the 

minimum angular rate of the right limb, 
min

θ�  is the maximum angular rate of the right limb. 

( )

( )

( )
1

minn

norm n

max min

θ θ
θ

θ θ

−
= +

−

� �
�

� �
      (57) 

SInorm is computed using (58), where 
Rnormθ� is the normalized angular rate of the right 

limb and 
Lnormθ�  is the normalized angular rate of the left limb. 

( ) ( )

( )

( ) ( )

100%
0.5( )

Rnorm n Lnorm n

norm n

Rnorm n Lnorm n

SI
θ θ

θ θ

−
= ×

+

� �

� �
     (58)

 

5.10 Maximum Lyapunov Exponent (λ*) 

A valid state space is a vector space that contains a sufficient number of independent 

coordinates to define the state of the system unequivocally at any point in time [91],[94]. 

This can be reconstructed from a single time series using the original data and its time-

delayed copies as indicated in (59). 

( ) [ ( ), ( ),..., ( ( 1) )]ES t x t x t x t dτ τ= + + −      (59) 



71 

 

Where S(t) represents the state vector, x(t) is the original one dimensional data, τ is the 

selected time delay and dE is the embedding dimension.  

It is essential to determine the appropriate time delay and embedding dimension in 

order to reconstruct appropriate representation of the dynamical system. In this thesis, τ was 

calculated from the first minimum of MI of the data. MI of the measurement data is 

calculated as follows in (60) [96],[114]. 

,

,

1 1

( )
( ) ( ) ln

j j
h k

h k

h k h k

P
MI P

P P

τ
τ τ

= =

= −∑∑      (60) 

Where Ph and Pk denote the probabilities of a time series value xi in the hth and kth bin 

respectively and Phk is the joint probability that xi is in bin h and xi+τ is in bin k. Choosing an 

appropriate τ is important. If τ is too small, no additional information about the dynamics of 

a system will be contained in the state space. On the contrary, if τ is too large then 

information about the dynamics of the system will be lost and result in random information 

[97],[115]-[116]. Fraser et al. and Kennel et al. indicated that choosing the first minimum 

from MI provides appropriate τ with minimum redundancy [117]-[118]. Since MI is 

calculated using tools available in TISEAN package, several parameters have to be set. 

These parameters are presented in Table 5.1. It is important to highlight that only the 

measurement data of the first 30 strides are taken into account to estimate the λ*. These 

measurement data are linearly interpolated to 3000 data points, thus the number of data 

points used to determine MI is 3000 data points. From the preliminary research work, the 

first minimum was found to be ranging from 10 to 20 samples. For consistency, τ of 14 was 

selected and applied to all reconstructed state space. 

Table 5.1 Parameters set to determine Mutual Information (MI) 

Parameter Value 

Number of data points 3000 

Number of bins 60 

Maximal time delay 100 
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Figure 5.7 Determining the first minimum from MI (a) Thigh and (b) Shank of Participant 

A during walking at 3 km/h. 

As mentioned earlier, dE is one of the essential parameters required to reconstruct the 

state space. An inappropriate dE may result in a projection of the dynamics of the system 

has orbital crossings in the state space due to false neighbors and not due to the actual 

dynamics of the system [114]-[115]. In this thesis, dE was calculated from FNN analysis. 

FNN is known to be efficient in determining the minimal embedding dimension required to 

reveal the deterministic structure of the system in the reconstructed state space [114]-[116]. 

FNN compares the distances between neighboring trajectories in the reconstructed state 

space at successively higher dimensions. Given a point p(i) in the m-dimensional 

embedding space , p(j) is p(i) nearest neighbor if the normalized distance Ri is smaller than 

a given threshold Rt. p(i) is marked as having a false nearest neighbor if Ri is larger than Rt. 

Ri is computed using (61) [96],[114]. 

( ) ( )

i m j m

i

x x
R

p i p j

τ τ+ +−
=

−
       (61) 

dE is selected where the percentage of false neighbors approaches zero to provide a 

sufficient number of coordinates to define the system state at all points in time [118]. 

Similar to MI, several parameters need to be set to perform FNN analysis. These parameters 

are tabulated in Table 5.2. Most of these parameters are self-explanatory except the Theiler 

window. Since the data contains first 30 strides (excluding the first gait cycle), which are 

interpolated to 3000 data points, each stride has approximately 100 data points. Hence, 

Theiler window is set to 100 to eliminate dynamical correlations in the reconstructed state 

space [94],[119]. For consistency, dE of 9 was selected and applied to the all reconstructed 
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state space because the percentages of false neighbor were less than one percent for both 

thigh and shank (Figure 5.8).  

Table 5.2 Parameters used in False Nearest Neighbors analysis (FNN) 

Parameter Value 

Number of data points 3000 

Minimum embedding dimension 1 

Maximum embedding dimension 10 

Time delay 14 

Theiler window 100 

 

Figure 5.8 FNN analysis results of (a) Thigh and (b) Shank. 

Lyapunov exponents quantify the average exponential rate of divergence of neighboring 

trajectories in the state space. They are a sensitivity measure of a system to infinitesimal 

perturbation [101]. For a complete description of the effects to such perturbation, the system 

needs to be described in all direction of the reconstructed state space thus yields to multiple 

Lyapunov exponents,  which are called Lyapunov spectrum. However, in practice, analysis 

of the dynamic stability is restricted to the λ* because maximum Lyapunov exponent 

dominates the behavior of entire system. In gait analysis, the main significance of λ* is that 

it provides a direct indicator of human body dynamic stability [84],[95]-[96]. λ* is defined 

as follows in (62). 

ln ( ) ln *( )
j j

d i C i tλ≈ + ∆       (62) 
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Where ∆t is the sampling time (t = i∆t), dj(i) is the Euclidean distance between the jth 

pair of nearest neighbors after ith discrete time steps and Cj is the initial separation between 

the jth pair of nearest neighbors. The jth pair of nearest neighbors at the ith discrete time 

step is obtained by pairing a data point of a reference trajectory after fixing the ith discrete 

time step and with another data point of the jth nearest neighbor trajectories in the whole 

range of data. Using the algorithm proposed by Rosenstein et al. [95], maximum Lyapunov 

exponent, λ* can be found by estimating the linear slopes of the curves generated by (63). 

1
( ) ln ( )jy i d i

t
=

∆
       (63) 

Where 〈.〉 denotes the average over all values of j. Since each subject exhibited a 

different average stride time, the time axes of these curves are rescaled by multiplying the 

average stride frequency of each subject. A graphical illustration on how to estimate the 

maximum Lyapunov exponent is depicted in Figure 5.9.  

In this thesis, ln ( )
j

d i is computed using tool available in TISEAN package with 

parameters tabulated in Table 5.3. λ* are estimated over two different time scales [91]-

[92],[98],[100]. Short-term λ* (
*

S
λ ) is calculated from the slope of a linear fit to the 

divergence curve between zero and one stride Figure 5.10. Long term λ* (
*

L
λ ) is calculated 

from the slopes between four and ten strides. This slope is estimated using linear least-

squares regression method. The slope, m is calculated as follows:  

1 1 1

2 2

1 1

( )

n n n

i i i i

i i i

n n

i i

i i

n x y x y

m

n x x

= = =

= =

−

=

−

∑ ∑ ∑

∑ ∑
 

Where   i = {1,2,3, …, n}; 

n = number of data points;  

x = data along the horizontal axis; 

y = data along the vertical axis. 

Periodic systems result in zero or negative λ*, whereas non periodic or random systems 

result in a positive λ*. Systems that are more dynamically stable exhibit lower λ* values 

whereas systems that are less dynamically stable exhibit higher λ* values.  
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Table 5.3 Parameters set to estimate y(i) using Rosenstein et al. method [95]. 

Parameter Value 

Number of data points 3000 

Embedding dimension 9 

Time delay 14 

Theiler window 100 

Number of iteration 1000 

 

 

Figure 5.9 Schematic representation of local dynamic stability analysis. (a) original time series 

data i.e. shank angular rate (b) reconstructed state space with embedding dimension dE of 3 and 

time delay τ of 10 (c) A closer view of a section of the reconstructed state space; for each data 

point, the  nearest neighbor is calculated and divergence from this point was calculated as dj(i). 

(d) Average logarithmic rate of divergence, from 
*

S
λ  and 

*

L
λ  which are determined.  
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(a) 

 
(b) 

Figure 5.10 Estimating λ* from (a) Thigh and (b) Shank of Participant A during walking at 3 

km/h. 
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Chapter 6                         

EXPERIMENTAL SETUP  

6.1 Participants 

Eleven young and healthy male subjects with mean age 25.3 ± 1.7 years, mean height 

173.9 ± 4.8 cm, and mean weight 70.5 ± 9.3 kg participated in this study. Participants were 

recruited from School of Engineering, Monash University Sunway campus. Participants 

with any known gait impairments were excluded from this study. Participants were briefed 

on the purpose of experiments and the experimental procedures before giving consent. In 

order to keep participants’ anonymity, participants were labeled as Participant A to 

Participant K. This study was approved by Monash University Human Research Ethics 

Committee. Details of participant’s age, weight and height are presented in Table 6.1.  

Table 6.1 Participants’ details 

Participant Age (years) Weight (kg) Height (m) 

A 26 78 1.77 

B 25 84 1.80 

C 26 60 1.70 

D 27 76 1.75 

E 25 67 1.72 

F 22 62 1.74 

G 27 55 1.70 

H 26 75 1.79 

I 22 67 1.70 

J 22 90 1.70 

K 26 71 1.79 
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6.2 Experimental Procedures  

Experiments were conducted to validate the performances of the system and to study 

the viability of the proposed methods. These experiments were mainly divided into two 

categories: treadmill walking and overground walking. Treadmill walking was an 

experiment where the participant walked on a treadmill for duration of one minute.  On the 

other hand, overground walking was an experiment where the participant walked over a 10 

m walkway.  

To induce abnormal walking patterns, some of the experiments required the participants 

to load their lower shank and to wear a sandal on one side of the foot. Loading one of the 

limbs was intended to change the inertial properties of the loaded limb hence altering the 

spatio-temporal parameters of the loaded limb during walking [120]-[122]. This study 

selected 2.5 kg load to be placed on the left or right lower shank to induce abnormal gait 

(Figure 6.1). As reported in [120], 2.5 kg load shall alter both timing and magnitude of the 

lower limb kinematic parameters. Load less than 2.5 kg may not be sufficient to alter gait 

parameters. In contrast, load higher than 2.5 kg may cause stress at participants’ joints. 

Other than loading one side of the limbs, abnormal gait was also simulated by walking with 

a custom-made sandal that has a thickness of 25 mm on one foot (Figure 6.2). This 

experiment was intended to simulate the gait of patients with leg length discrepancy 

[71],[123] Patients with gait disorder may exhibit one or more similar properties with gait 

simulated by placing a load on one side of the legs or by wearing a sandal on one foot. 

These properties may include Rstance, Rswing, and the timing and magnitude of θthigh, θshank, 

thigh
θ� , and 

shank
θ� .  
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There were total of nine experiments conducted on the treadmill. These experiments 

are:  

• Normal walking at speed 3 km/hr (Norm3) 

• Normal walking at speed 4 km/hr (Norm4) 

• Normal walking at speed 5 km/hr (Norm5) 

• Walking with load placed on the right limb at speed of 3 km/hr (Norm3Wr) 

• Walking with load placed on the right limb at speed of 4 km/hr (Norm4Wr) 

• Walking with load placed on the right limb at speed of 5 km/hr (Norm5Wr) 

• Walking with load placed on the left limb at speed of 3 km/hr (Norm3Wl) 

• Walking with load placed on the left limb at speed of 4 km/hr (Norm4Wl) 

• Walking with load placed on the left limb at speed of 5 km/hr (Norm5Wl) 

 

 

Figure 6.1 A 2.5 kg load is placed on one side of the limbs (right lower shank). 
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Figure 6.2 A custom-made sandal is worn on one side of the feet (right foot). 

There were total of five experiments conducted on the ground. These experiments are:  

• Normal walking at natural pace (Norm) 

• Walking with load placed on the right limb (NormWr) 

• Walking with load placed on the left limb (NormWl) 

• Walking with sandal on the right foot (NormSr) 

• Walking with sandal on the left foot (NormSl) 

In each experiment, subjects were allowed to rest for a maximum time of two minutes 

before the subsequent experiment was conducted. It is important to note that walking 

experiments on a treadmill with sandal on one side of the feet were not conducted in this 

study due to safety concerns and risks that were associated with treadmill walking.  

6.3 Statistical Analysis 

Statistical analysis was conducted to examine whether there is any significant 

differences among the experiments conducted in this research. The alpha level/statistic 

significance was set at 0.01 for all statistical tests. One-way Analysis of Variance 

(ANOVA) was selected to examine the significance of CoD, Ccnorm, Ts and λ* in different 

walking conditions and at different walking speeds. When the null hypothesis was rejected, 

Tukey-Kramer multiple comparison test was conducted in preference to paired t-test to 

identify the difference of a particular variable among the experiments. These tests were 
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conducted using Matlab Statistical Toolbox. Test results were compiled and discussed in 

Chapter 7.  

As a standard procedure in gait analysis, measurement data collected during first stride 

and last stride were neglected. To examine the significant of CoD, Ccnorm, Ts and λ*, first 30 

strides of the measurement data collected from every treadmill experiment were used. When 

the participants walked over a 10 m walkway, inconsistent numbers of strides were found. 

Excluding first stride and last stride, the numbers of strides found to ranging between 6 to 8 

strides. For consistency, only 6 strides were used in order to obtain correct statistical results.  
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Chapter 7                         

EXPERIMENTAL RESULTS 

This chapter compiles and discusses the results of the experiments carried out to evaluate 

the overall system performances. It also presents the signal patterns generated by human lower 

extremity in different walking conditions. Additionally, it provides the statistical results on 

CoD, Ccnorm, Ts, 
*

S
λ , and 

*

L
λ . Lastly, it illustrates how the normal gait is different from 

artificially simulated abnormal gait in both spatial and temporal parameters.  

7.1 Identification of Gait Events  

As described in Chapter 5.2, 
shank

θ�  produces a periodical signal that has several 

distinctive peaks and valleys. HMWD uses this property to identify MS, HS and TO. 
shank

θ�  

collected from different walking conditions are presented in Figure 7.1. It could be observed 

that despite having slightly different waveforms, HMWD was able to identify these gait 

events. Moreover, it identified those events correctly even though the timings and 

magnitudes of MS, HS and TO were different across the experiments. Lastly, the 

experimental results showed that HMWD did not disrupt real-time data streaming and no 

data loss was found when the system operated within the permissible transmission range. 

Experiments carried out in this thesis demonstrated the effectiveness of HMWD in 

periodically identifying gait events without disrupting the real-time data streaming.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7.1 
shank

θ�  with MS (marked with ‘x’), HS (marked with’.’), and TO (marked with 

‘□’) events during (a) Normal overground walking (b) Normal treadmill walking (c) Single 

limb-loaded overground walking (d) Single limb-loaded treadmill walking (e) Overground 

walking with sandal on one foot (f) Single limb-loaded treadmill walking. 

7.2 Gait Normality Test Results  

7.2.1 Qualitative Evaluation Results  

Evaluating the normality of the participant’s gait is one of the significant aspects of 

this thesis. Gait normality test examines participant’s gait against the ideal gait of a 

normal and healthy individual published in [2],[3], and [104]. It also indicates how well 

the developed system discriminates normal and abnormal gait. As mentioned earlier, 

this test contains two main elements: qualitative and quantitative evaluations.  

Qualitative evaluation is achieved through a graphical comparison between the 

participant’s gait and the ideal gait of a healthy individual, as illustrated Figure 7.2, 

Figure 7.3, Figure 7.4, and Figure 7.5. For clarity, only Participant A’s right limb 

experimental results are presented and discussed in this thesis. Nevertheless, similar 

observations were found on the left limb.  

As shown in Figure 7.2, Figure 7.3, Figure 7.4, and Figure 7.5, a thick green line is 

displayed on every graph. This thick line represents the ideal orientation of the lower 

extremity obtained from [2],[3], and [104]. This line is displayed along with the actual 

orientation of the participant’s lower extremity i.e. multicolor thin lines. Presenting both 
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orientations within a same graph allow clinicians and biomechanists to distinguish 

normal and abnormal gait. They can also use qualitative evaluation results to assist 

them to devise an appropriate treatment that can improve patient’s walking condition.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 7.2 Participant A’s θthigh during normal overground walking; θthigh during 

walking with a load placed on (b) right limb (c) left limb; θthigh during walking with sandal 

on (d) right foot (e) left foot (Thick green line represents θid_thigh; red thin line represents 

θRthigh; and blue dash line represents θLthigh). 

Figure 7.2 and Figure 7.3 show θRthigh and θRshank during normal overground walking. 

When the participant walked on the ground with normal posture (Figure 7.2(a) and 

Figure 7.3(a)), θRthigh and θRshank were similar to θid_thigh and θid_shank with minor variations. 

The mean difference between participant’s thigh orientations and the ideal one, 
thighθ∆  

was approximately 0.037 rad. The mean difference between participant’s shank 

orientation and the ideal one, 
shank

θ∆  was approximately 0.004 rad. When participant 

walked on the treadmill, 
thighθ∆  and 

shank
θ∆  were found to be approximately 0.038 rad 



85 

 

and 0.002 rad respectively (Figure 7.4(a) – Figure 7.4(c) and Figure 7.5(a) – Figure 

7.5(c)). Comparing Figure 7.2(a) with Figure 7.4(a) – Figure 7.4(c) and Figure 7.3(a) 

with Figure 7.5(a) – Figure 7.5(c), it was apparent that variations of θRthigh and θRshank 

found during treadmill walking were less than the variations found during overground 

walking. These results were consistent with findings published in [91] that treadmill 

walking could reduce the gait variability.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 7.3 Participant A’s θshank during normal overground walking; θshank during 

walking with a load placed on (b) right limb (c) left limb; θshank during walking with 

sandal on (d) right foot (e) left foot. (Thick green line represents θid_shank; red thin line 

represents θRshank; and blue dash line represents θLshank). 

Other than normal gait, experimental results obtained from artificially simulated 

abnormal gait are also presented in Figure 7.2, Figure 7.3, Figure 7.4, and Figure 7.5. 

When the participant walked with a load placed on one side of the limbs, the loaded 

limb exhibited smaller thigh movement throughout the gait cycle (Figure 7.2(b) and 

Figure 7.4(d) – Figure 7.4(f)). 
thighθ∆  was found to be approximately 0.040 rad when 
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the participant walked on the ground and approximately 0.042 rad when participant 

walked on the treadmill. The largest differences (
thighθ∆ ≈ 0.13 rad) occurred during the 

swing phase in overground and treadmill walking. This was expected as the load placed 

on the lower shank resisted the swinging motion of the thigh to move forward. On the 

other hand, non-loaded limb exhibited lower 
thighθ∆ of approximately 0.038 rad and 

0.039 rad during overground and treadmill walking respectively (Figure 7.2(c) and 

Figure 7.4 (g) – Figure 7.4 (i)). Apart from the differences in its magnitude throughout 

the gait cycle, it was apparent that θRthigh were slightly shifted to the left when the 

participant walked on the ground and on the treadmill. This time shift implied that the 

loaded limb exhibited shorter stance phase than the non-loaded limb. These findings 

agreed with the experimental results described later in Chapter 7.2.2. Similar 

observation was also found in θRshank. Loaded shank exhibited smaller movement than 

non-loaded shank throughout the gait cycle. 
shank

θ∆  was approximately 0.005 rad and 

0.003 rad when the participant walked on the ground and on a treadmill respectively 

(Figure 7.3(b) and Figure 7.5(d) –  Figure 7.5(f)). On the other hand, the non-loaded 

shank exhibited smaller 
shank

θ∆  of approximately 0.004 rad and 0.002  rad during 

overground walking and treadmill walking respectively (Figure 7.3(c) and Figure 7.5(g) 

– Figure 7.5(i)).  

In another experiment, when participant was requested to walk with a sandal on one 

foot, slight differences were found in θRthigh and θRshank. Affected limb (limb that wore a 

sandal on its foot) exhibited smaller thigh and shank motions throughout the gait cycle. 

thighθ∆  and 
shank

θ∆  were approximately 0.038 rad and 0.005 rad (Figure 7.2(d) and 

Figure 7.3(d)). Similar to the previous experiments, θthigh and θshank also exhibited 

significant time shift to the left. These occurrences indicated that the duration of stance 

phase was shorter than normal walking. On the contrary, non-affected limb exhibited 

θRthigh and θRshank that were similar to θid_thigh and θid_shank. thighθ∆  and 
shank

θ∆  were 

approximately 0.037 rad and 0.0047 rad (Figure 7.2(e) and Figure 7.3(e)). No time shift 

was found on θthigh and θshank.  

 

 



87 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h)  (i) 

Figure 7.4 Participant A’s θthigh during treadmill walking at (a) 3 km/h (b) 4 km/h (c) 5 km/h; 

θthigh during walking with a load on the right limb at (d) 3 km/h (e) 4 km/h (f) 5 km/h; θthigh 

during walking with a load on the left limb at (g) 3 km/h (h) 4 km/h (i) 5 km/h (Thick green line 

represents θid_thigh; red thin line represents θRthigh; and blue dash line represents θLthigh). 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 7.5  Participant A’s θshank during treadmill walking at (a) 3 km/h (b) 4 km/h (c) 5 km/h; 

θshank during walking with a load on the right limb at (d) 3 km/h (e) 4 km/h (f) 5 km/h; θshank 

during walking with a load on the left limb at (g) 3 km/h (h) 4 km/h (i) 5 km/h. (Thick green 

line represents θid_shank; red thin line represents θRshank; and blue dash line represents θLshank). 
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7.2.2 Quantitative Evaluation Results  

Quantitative evaluation, which is considered as a part of the gait normality test, is 

required to assist the data interpretation and to provide numerical representations of a 

person’s gait. Quantitative evaluation provides two different parameters: temporal gait 

parameters and CoD. Temporal parameters are estimated based on the identification of 

HS and TO. These parameters include Tstride, Tstance, and Tswing. Mean of these 

parameters: 
stride

T , 
stance

T , and 
swing

T  are presented in Table 7.1 and Table 7.2. Table 7.1 

presents the temporal gait parameters from the overground walking experiments. Table 

7.2 presents the temporal gait parameters compiled from the treadmill walking 

experiments. 

Table 7.1 Mean temporal gait parameters during overground walking 

   
Norm NormWr NormWl NormSr NormSl 

stride
T (s) 

Right 1.0749 1.2099 1.1758 1.2491 1.2487 

Left 1.0840 1.1650 1.2073 1.2816 1.2219 

Stance 

Right stance
T  (s) 0.6441 0.7081 0.7191 0.7203 0.7546 

stance
R  (%) 59.92 58.53 61.16 57.67 60.43 

Left stance
T  (s) 0.6527 0.7146 0.7109 0.7706 0.7209 

stance
R  (%) 60.21 61.34 58.88 60.13 59.00 

Swing 

 

Right swing
T  (s) 

0.4416 0.5018 0.4567 0.5288 0.4941 

swing
R  (%) 

40.08 41.47 38.84 42.33 39.57 

Left swing
T  (s) 0.4313 0.4504 0.4964 0.511 0.5010 

  swing
R  (%) 

39.79 38.66 41.12 39.87 41.00 

 

In normal overground walking, participants took less time to complete one gait 

cycle compared to other walking conditions. All participants took an average of 1.0749s 

and 1.0840s for the right limb and left limb respectively to complete one gait cycle. In 

other walking conditions, which were intended to simulate abnormal gait, all 

participants took longer time to complete one gait cycle.
 stride

T  increased to maximum 

value of 1.2487s and 1.2816s for right limb and left limb respectively. This was 

expected as there was a resistance hindering the lower extremity motions in every gait 

cycle. More importantly, significant differences in 
stride

T  can be observed between left 

limb and right limb. Placing a load on one side of the limbs caused the loaded limb to 

exhibit greater 
stride

T  than the non-loaded limb. The discrepancy of 
stride

T  between the 
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loaded limb and non-loaded limb was approximately 0.04s. Similar observations were 

found when participants walked with a sandal on one side of the feet. The affected limb 

exhibited greater 
stride

T  than the non-affected limb with difference of approximately 

0.03s. ANOVA results of Tstride, Rstance and Rswing are presented in Figure 7.6, Figure 7.7, 

and Figure 7.8. 

(a)  (b) 

Figure 7.6 Overground walking Tstride (a) right limb; (b) left limb during different 

walking conditions with p < 0.01. 

(a)  (b) 

Figure 7.7 Overground walking Rstance (a) right limb; (b) left limb during different 

walking conditions with p < 0.01. 
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(a)  (b) 

Figure 7.8 Overground walking Rswing (a) right limb; (b) left limb during different 

walking conditions with p < 0.01. 

Having determined 
stride

T , 
stance

T , and 
swing

T , mean of Rstance (
stance

R ) and mean of  

Rswing (
swing

R ) were calculated so that temporal gait parameters obtained from the 

experimental study can be directly compared with other literatures. When the 

participants walked over the 10 m walkway with normal posture, 
stance

R  lasted 

approximately 60 % whereas 
swing

R  lasted approximately 40%. These results agreed with 

findings published in [2]-[3], and [137]-[139]. When the participants walked on the 

ground with a load placed on one side of the limbs, the loaded limb exhibited smaller 

stance
R  than the non-loaded limb with difference of approximately 2.5%. It also exhibited 

greater 
swing

R  than the non-loaded limb. Similar observations were found when the 

participants walked on the ground wearing sandal on one side of the foot. The affected 

limb or limb that wore a sandal on its foot exhibited smaller 
stance

R  and greater 
swing

R  

than the non-affected limb with difference of approximately 2%.  
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Table 7.2 Mean temporal gait parameters during treadmill walking 

Norm3 Norm4 Norm5 

Norm 

3Wr 

Norm 

4Wr 

Norm 

5Wr 

Norm 

3Wl 

Norm 

4Wl 

Norm 

5Wl 

stride
T (s) 

Right 1.2830 1.1207 1.0189 1.2189 1.1149 1.0332 1.2259 1.1239 1.0349 

Left 1.2066 1.1828 1.0212 1.2197 1.1156 1.033 1.2257 1.1232 1.0344 

Stance 

Right stance
T  (s) 

0.7513 0.6473 0.5805 0.6333 0.5963 0.5546 0.6952 0.6298 0.5883 

stance
R  (%) 

58.56 57.76 56.97 51.92 53.45 53.69 56.72 55.98 56.87 

Left stance
T  (s) 

0.6987 0.6851 0.5839 0.6954 0.6347 0.5768 0.6342 0.5891 0.5673 

stance
R  (%) 

57.91 57.92 57.18 57.05 56.93 55.83 51.73 52.42 54.82 

Swing 

Right swing
T  (s) 

0.5758 0.4734 0.4384 0.5864 0.5193 0.4784 0.5305 0.5423 0.4461 

swing
R  (%) 

41.44 42.24 43.03 48.08 46.55 46.31 43.28 44.02 43.13 

Left swing
T  (s) 

0.5079 0.4977 0.4373 0.5235 0.4802 0.4919 0.5917 0.5687 0.4676 

swing
R  (%) 

42.09 42.08 42.82 42.95 43.07 44.17 48.27 47.58 45.18 

 

Walking on a treadmill and on the ground are different [91],[137]-[139]. When a 

person walks on a treadmill, his/her temporal gait parameter, particularly Tstride greatly 

depends on the treadmill speed. Slow walking generally takes longer time to complete 

one gait cycle. In contrast, fast walking takes shorter time to complete one gait cycle. 

Similar conditions can be found in Table 7.2. When participants walked on the 

treadmill at speed of 3 km/h with normal posture, they took an average of 1.2830s and 

1.2066s for right limb and left limb to complete one gait cycle. While they walked on a 

similar treadmill with speed of 5 km/h, 
stride

T  decreases to 1.0189s and 1.0212s for right 

limb and left limb respectively. Similar observations were found when the participants 

walked abnormally with a load placed on one side of the limbs. The slower they 

walked, the longer they took to complete one gait cycle.  

Observing the changes of 
stance

R  in Table 7.2, it was apparent that the left limb and 

right limb exhibited similar 
stance

R  and 
swing

R  during normal treadmill walking regardless 

of the walking speeds. However, during other walking conditions, particularly when the 

participants walked with a load placed on one side of the limbs, the loaded limb 

exhibited smaller 
stance

R  than the non-loaded limb. While participants were walking on a 

treadmill with speed of 3 km/h, 
stance

R were found to be 58.56% and 57.91% for right 

limb and left limb respectively.  During similar walking speed, placing a load on left 

limb caused left limb to experience smaller 
stance

R  (
stance

R = 51.73%) than right limb (

stance
R = 56.72%). When a load was placed on the right limb, left limb exhibited greater 
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stance
R  (

stance
R = 57.05%) than the right limb (

stance
R = 51.92%). The opposite effect was 

found in 
swing

R  when participants walked with a load placed on one side of the limbs. 

The loaded limb exhibited greater 
swing

R  while the non-loaded limb exhibited smaller

swing
R . ANOVA results of Tstride, Rstance and Rswing are presented in  

(a)  (b) 

Figure 7.9 Tstride (a) right limb; (b) left limb during treadmill walking at speed of 3 km/h 

with p < 0.01. 

(a)  (b) 

Figure 7.10 Rstance (a) right limb; (b) left limb during treadmill walking at speed of 3 

km/h with p < 0.01. 
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(a)  (b) 

Figure 7.11 Rswing (a) right limb; (b) left limb during treadmill walking at speed of 3 

km/h with p < 0.01. 

(a)  (b) 

Figure 7.12 Tstride (a) right limb; (b) left limb during treadmill walking at speed of 4 

km/h with p < 0.01. 

(a)  (b) 

Figure 7.13 Rstance (a) right limb; (b) left limb during treadmill walking at speed of 4 

km/h with p < 0.01. 
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(a)  (b) 

Figure 7.14 Rswing (a) right limb; (b) left limb during treadmill walking at speed of 4 

km/h with p < 0.01. 

(a)  (b) 

Figure 7.15 Tstride (a) right limb; (b) left limb during treadmill walking at speed of 5 

km/h with p < 0.01. 

(a)  (b) 

Figure 7.16 Rstance (a) right limb; (b) left limb during treadmill walking at speed of 5 

km/h with p < 0.01. 
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(a)  (b) 

Figure 7.17 Rswing (a) right limb; (b) left limb during treadmill walking at speed of 5 

km/h with p < 0.01. 

As mentioned in previous chapters, CoD determines the normality of a person’s gait 

by comparing θthigh and θshank  against θid_thigh and θid_shank. The overall CoD experimental 

results of each body segment i.e. right thigh, right shank, left thigh and left shank are 

depicted in Figure 7.18 and Figure 7.19. It could be clearly observed that in normal 

overground and treadmill walking, CoD values were close to one (0.94 < CoD < 1.0). In 

contrast, in artificially simulated abnormal gait, CoD was less than 0.94. It was also 

apparent that when participants walked with load placed on one side of the limbs or 

when they walked with a sandal on one side of the feet, the affected limb i.e. thigh and 

shank exhibited lower CoD. Lower CoD signified that the movement patterns of the 

participants’ thigh and shank were different from movement patterns of thigh and shank 

of a healthy individual. These differences are illustrated in Figure 7.2, Figure 7.3, 

Figure 7.4, and Figure 7.5.  

On the other hand, non-affected limb exhibited CoD that were close to one. 

Although only minor differences between the participants’ lower extremity motion and 

the ideal lower extremity motions were found on this limb, these results were expected 

because the inertial property of the non-affected limb was not altered significantly and 

there was no abnormality encumbering its motion during walking. Statistical test results 

revealed that significant difference between the affected limb and non-affected limb 

was less than 0.01. Based on Tukey-kramer test results, when the participants walked 

on the ground and/or on the treadmill, the affected limb exhibited CoD value that was 

approximately 0.90 whereas the non-affected limb exhibited greater CoD (CoD ≈ 0.95).   
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These experimental results demonstrated the capability of CoD in distinguishing 

normal and abnormal gait. They also established normative CoD data for normal 

overground and treadmill walking. Lastly, these results also indicated that this system 

was able to determine CoD periodically without disrupting real-time data streaming.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.18 CoD of (a) Right thigh (b) Right shank (c) Left thigh (d) Left shank during different 

overground walking conditions. 
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(a) 

 
(b) 

 
(c) 

 
 (d) 

Figure 7.19 CoD of (a) Right thigh (b) Right shank (c) Left thigh (d) Left shank during different 

treadmill walking conditions.  
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7.3 3-D walking Animation  

Simulating a 3-D walking animation allows clinicians and researchers to visually 

examine a person’s gait. For experienced personnel in biomechanics and gait analysis, this 

feature helps them to determine whether the subject has normal and healthy gait. It also 

allows them to examine whether patient rehabilitation program has progressed well. In this 

thesis, 3-D animation of the lower extremity was successfully replicated using basic stick 

figure and the estimated orientations of the lower extremity. Screenshots of the 3-D 

animation of Participant A’s walking movements are shown in Figure 7.20.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.20 3-D animation of Participant A’s walking movements during: (a) Mid-

stance (b) Toe-off (c) Heel-strike (d) Mid-swing. 
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7.4 Gait Asymmetry Experimental Results  

7.4.1 Normalized Cross-correlation (Ccnorm) Experimental Results  

Ccnorm provides a discrete measure that signifies the similarity of angular rate 

waveforms generated by the left and right limbs in walking. Ccnorm results collected 

from the overground walking experiments are compiled and presented in Figure 7.21 

and Figure 7.22. Experimental results from the treadmill walking are depicted in Figure 

7.23 and Figure 7.24.  

 
 

(a) 
 

(b) 

 
 

(c) 
 

(d) 

Figure 7.21 (a) Ccnorm-thigh during overground walking conditions with (b) Tukey-

Kramer comparison test result; (c) Ccnorm-shank during different overground walking 

conditions with (d) Tukey-Kramer comparison test result. 

When the participants walked on the ground, Ccnorm were close to one. However, 

when the participants walked with a load placed on one side of the limbs or with a 

sandal on one foot, asymmetrical gait was simulated. Experimental results indicated 

that asymmetrical gait had Ccnorm-thigh of less than 0.9 and Ccnorm-shank of less than 0.95. 

This was anticipated as significant bilateral differences existed in the lower extremity 

motion. These findings agreed with results depicted in Figure 7.2, Figure 7.3, Figure 
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7.4, and Figure 7.5. The larger the bilateral difference, the lower the Ccnorm value was.  

ANOVA test result indicated significant difference (p <0.01) in Ccnorm under different 

walking conditions. Tukey-Kramer comparison test revealed that Ccnorm-thigh was able to 

clearly distinguish the differences between symmetrical and asymmetrical gait, except 

when asymmetrical gait was induced by placing a load on the left limb. This incident 

might happen because participants’ neuromuscular system performed better in 

minimizing gait asymmetry when a load was placed on the left limb.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.22 (a) Tsthigh during different overground walking conditions  with (b) Tukey-

Kramer comparison test result; (c) Tsshank during different overground walking 

conditions with (d) Tukey-Kramer comparison test result. 

In contrast to Ccnorm, |Ts| increased when the participants walked abnormally 

(Figure 7.22). In normal walking, Ts has average value of approximately 1.20% gait 

cycle for both thigh and shank. However, greater Ts was found in asymmetrical gait. 

This was predictable as timing differences existed in asymmetrical gait. ANOVA test 

result revealed that there was a significant difference in Tsthigh (p<0.01) and Tsshank  

(p<0.01). Tukey-Kramer comparison test indicated that Tsthigh and Tsshank in normal 

walking was statisically different from walking with a load placed on the left limb, as 

observed in Figure 7.22(b) and Figure 7.22(d). Furthermore, when left limb motion was 
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affected (a load was placed on the left limb or left foot wear a sandal), Ts was positive. 

On the contrary, Ts was negative when right limb motion was affected.  

Similar observations of Ccnorm and Ts were found when the participants walked on a 

treadmill. Regardless of the walking speeds, Ccnorm was close to one (Figure 7.23) when 

participants walked with normal posture. However, when the participants walked with a 

load placed on one side of the limbs, Ccnorm decreased and it was found to be less than 

0.93 and 0.96 on thigh and shank respectively. ANOVA test revealed that there were 

significant differences between symmetrical and asymmetrical gait (p<0.01). Tukey-

Kramer test result indicated that Ccnorm-thigh was greater than 0.93 and Ccnorm-shank was 

greater than 0.965 in symmetrical gait. it also revealed that Ccnorm-thigh was less than 0.93 

and Ccnorm-shank was greater than 0.96 in asymmetrical gait.  

Significant difference was also found in Ts (p<0.01) when the participants walked 

on the treadmill with a load placed on one side of the limbs. When participants walked 

normally on a treadmill,  Ts were found to be greater than -2% gait cycle and less than 

2% gait cycle. On the contrary, when a load was placed on left limb, Ts were found to 

be ranging from 2% to 5% of the gait cycle. When the right limb was loaded, Ts varied 

between -2% to -5% of the gait cycle. Tukey-Kramer comparison test results revealed 

that when a load was placed on left limb, Ts should be greater than zero and when a 

load was place on the right limb, Ts should be less than zero.  

The experimental results demonstrated the capability of Ccnorm and Ts in 

distinguishing symmetrical and asymmetrical gait. They also established normative data 

of Ccnorm and Ts for overground walking and treadmill walking. Lastly these results also 

showed that asymmetrical gait induced by placing a load on one limb and by wearing a 

sandal on one foot was reflected in Ccnorm and Ts.   
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(a) 

 

 
 (b) 

 
(c) 

 
(d) 

Figure 7.23 (a) Ccnorm-thigh during different treadmill walking conditions with (b) Tukey-

Kramer comparison test result; (c) Ccnorm-shank during different treadmill walking 

conditions with (d) Tukey-Kramer comparison test result. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.24 (a) Tsthigh during different treadmill walking conditions with (b) Tukey-Kramer 

comparison test result; (c) Tsshank during different treadmill walking conditions with (d) Tukey-

Kramer comparison test result. 

 

  



105 

 

7.4.2 Symmetry Index for Duration of Stride (SIstride), Stance Phase 

(SIstance) and Swing Phase (SIswing) 

Participants’ SIstride, SIstance and SIswing are presented in Figure 7.25 and Figure 7.26. 

Figure 7.25 shows that in average, SIstride ranges between ±5% during normal 

overground walking. This was expected as there was no resistance encountered by the 

limb. These results agreed with findings presented in Table 7.1. On the contrary, when 

participants walked with a load placed on one side of the limbs or sandal on one side of 

the feet, |SIstride| was slightly larger than 5%.  

Similar observations were found in SIstance and SIswing. When participants walked 

normally on the ground, SIstance and SIswing ranged between ±10%. These results were 

consistent with results compiled in Table 7.1. However, when there was a resistance 

encumbering thigh and shank movements, greater |SIstance| and |SIswing| were found. 

|SIstance| was found having maximum value of 35% whereas |SIswing| had a maximum 

value of 40%  

 
 (a) 

 
(b) 

  
(c) 

 

Figure 7.25 (a) SIstride (b) SIstance (c) SIswing on different overground walking conditions. 

For clarity of this thesis, only 4 Km/h treadmill walking experimental results are 

compiled and presented in Figure 7.26. Based on Figure 7.26(a), SIstride was fairly 

consistent regardless of the walking conditions. It fluctuated between -1.2% and 0.6%. 



106 

 

These values were significantly smaller than SIstride found in overground walking. 

Nevertheless, this was expected as the participants had to walk on a speed similar to the 

treadmill speed. Similar SIstride were found when participants walked on the treadmill at 

speed of 3 Km/h and 5 Km/h.  

  
(a) 

 
(b) 

 
 (c) 

 

Figure 7.26 (a) SIstride (b) SIstance (c) SIswing on different treadmill walking conditions. 

Despite the consistency found in SIstride, SIstance and SIswing generated greater 

magnitude when load was placed on one side of the limbs (Figure 7.26(b) and Figure 

7.26(c)). SIstance was found to be less than -5% and SIswing was greater than 5% when 

load was placed on the right limb. When the load was placed on the left limb, SIstance 

was greater than 5% and SIswing was less than -5%. These results agreed with findings 

presented in Table 7.2, which reported that Tstance of the loaded limb were less than 

Tstance of the non-loaded limb and Tswing of the loaded limb were greater than Tswing of the 

non-loaded limb. These differences caused SIstance to be less than zero and SIswing to be 

greater than zero when a load was placed on the right limb. On the contrary, SIstance were 

greater than zero and SIswing were less than zero when a load was placed on the left limb. 

Similar SIstance and SIswing were found when participants walked at different walking 

speeds i.e. 3 Km/h and 5 Km/h.  
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7.4.3 Normalized Symmetry Index (SInorm) in Different Walking 

Conditions  

Figure 7.27 demonstrates the variation of SInorm over one complete gait cycle in 

normal overground walking. It could be observed that SInorm-thigh and SInorm-shank exhibited 

different magnitudes at different gait phases. Maximum SInorm-thigh occurred during pre-

swing (50% - 60% gait cycle) whereas maximum SInorm-shank occurred during initial 

swing (65% - 75% gait cycle). During the rest of the gait phases, SInorm varied between 

±15%.  

 
(a) 

 
(b) 

Figure 7.27 SInorm during normal overground walking: (a) SInorm-thigh (b) SInorm-shank. 

When asymmetrical gait was induced by placing a load on one side of the limbs, 

SInorm-thigh and SInorm-shank exhibited unique waveforms that were different from normal 

overground walking (Figure 7.28). When loading one side of the limbs, thigh exhibited 

greatest SInorm during four different gait phases: loading response (0% - 10% gait cycle), 

pre-swing (45% - 55% gait cycle), mid-swing (75% - 85% gait cycle) and terminal 

swing (90% - 100% gait cycle). At the same time, shank exhibited greatest SInorm during 

the initial swing (60% - 70% gait cycle). It is important to highlight that regardless of 

the loading side, SInorm exhibited similar waveform but opposite in sign. This behavior 

is one of the merits possessed by SInorm. Asymmetry found in healthy individuals 

(Figure 7.15 and Figure 7.18) is mainly caused by the difference in the left and right 

lower extremity motions during walking. Detailed descriptions of its merits are 

presented in Chapter 8.4.3. The location of the sensors on both legs will not create any 

asymmetry.  
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(a) (b) 

(c) (d) 

Figure 7.28 SInorm during single limb loaded overground walking (a) SInorm-thigh while 

loading right limb (b) SInorm-shank while loading right limb (c) SInorm-thigh while loading left 

limb (d) SInorm-shank while loading left limb. 

When asymmetrical gait was induced by wearing a sandal on one foot, thigh and 

shank also exhibited unique SInorm (Figure 7.29).  Thigh exhibited the greatest bilateral 

differences at two different gait phases: loading response (0% - 10% gait cycle) and 

pre-swing (45% - 55% gait cycle). Accordingly, shank exhibited the greatest bilateral 

differences during initial swing (60% - 70% gait cycle). Similar to previous findings, 

SInorm exhibited similar waveform with opposite sign when sandal was worn on the 

opposite side.  

Unlike overground walking, treadmill walking generated a more consistent SInorm-

thigh (Figure 7.30).  SInorm-thigh was ranging between ±5% throughout the gait cycle. 

However, SInorm-shank did not exhibit similar behaviour. SInorm-shank exhibited relatively 

larger magnitude during initial swing (65% - 75% gait cycle) and terminal swing (90% - 

100% gait cycle). Similar waveforms were found in SInorm-shank regardless of the walking 

environments i.e. overground walking and treadmill walking.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.29 SInorm during overground walking with sandal on one side of the feet: (a) 

SInorm-thigh with sandal on right foot (b) SInorm-shank with sandal on right foot (c) SInorm-thigh 

with sandal on left foot (d) SInorm-shank with sandal on left foot. 

Walking on the treadmill with load placed on one side of the limbs generated 

unique waveform on SInorm-thigh and SInorm-shank (Figure 7.31). Participants experienced 

gait asymmetry during several gait phases. Thigh exhibited the largest asymmetry 

during mid-stance (10% gait cycle), pre-swing (45% - 55% gait cycle), mid-swing (75% 

- 85% gait cycle) and terminal swing (90% - 100% gait cycle). Shank exhibited the 

largest asymmetry during 60% - 70% of the gait cycle.  

These experimental results demonstrated capability of SInorm in defining gait 

asymmetry. These results also established normative data for overground walking and 

treadmill walking. More importantly, these results showed that SInorm did not suffer 

from the artificial inflation and it was able to determine gait asymmetry throughout the 

gait cycle.  
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(a) 

 
 (b) 

Figure 7.30 SInorm during normal treadmill walking: (a) SInorm-thigh (b) SInorm-shank. 

  



111 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.31 SInorm during single limb loaded treadmill walking: (a) SInorm-thigh while loading right 

limb (b) SInorm-shank while loading right limb (c) SInorm-thigh while loading left limb (d) SInorm-shank 

while loading left limb. 

7.5 Maximum Lyapunov Exponent (λ*) Experimental Results  

Since 30 consecutive strides were required to estimate 
*

S
λ  and 

*

L
λ , only experimental 

results carried out on the treadmill are presented in this thesis (Figure 7.32 and Figure 7.33). 

One of the significances of these experimental results is the linear relationship between 

walking speed and 
*

S
λ . When participants walked at speed of 3 km/h, 

*

S
λ for thigh and 

shank were ranging from ≈0.30 to ≈0.44 and from ≈0.63 to ≈0.74 respectively. When the 

participant walked at speed of 5 km/h, thigh 
*

S
λ  increased and were found to be ranging 

from ≈0.30 to ≈0.45. Shank 
*

S
λ

 
also increased and were calculated to be ranging from ≈0.75 

to ≈0.87.  Similar observations were found in other experimental results, particularly when 
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participants walked with a load placed on one side of the limbs. These findings were 

consistent with the results reported in [85],[98],[153].  

However, when a load was placed on one side of the limbs, the loaded limb exhibited 

smaller 
*

S
λ  whereas the non-loaded limb exhibited greater

*

S
λ . These results were expected 

as over short period of time, particularly during the first few strides, participants’ 

neuromuscular locomotor system tried to maintain walking stability despite the significant 

differences between left limb and right limb inertial properties. One way ANOVA test 

result revealed the statistical difference of 
*

S
λ  in different walking conditions was less than 

0.01. 

In contrast to
*

S
λ , 

*

L
λ  exhibited different behavior. 

*

L
λ  were similar in all treadmill 

walking experiments and no statistical differences were found in 
*

L
λ (p>0.01). These were 

anticipated as treadmill walking could reduce gait variability and improved gait dynamic 

stability [91]. More importantly, over long period of time, the participants’ neuromuscular 

locomotor systems might have accustomed to the load placed on either side of the limb. 

Thus, they did not encounter much difficulty in maintaining walking stability. These results 

agreed with findings reported in [94],[99]. 

It is important to note that by comparing similar walking speeds, (Figure 7.32(a) and 

Figure 7.33(a)), one can notice that 
*

S
λ  and 

*

L
λ  found in thigh was smaller than 

*

S
λ  and 

*

L
λ  

found in shank (p<0.01).These results were expected as the superior body segment i.e. thigh 

was less sensitive to small perturbations, thus its motion was more stable than the inferior 

body segment i.e. shank. These results were consistent with findings reported in [98]-[99].  

From the experimental results, it can be deduced that instead of kinematic parameters 

collected from accelerometer [91],[94] and optical motion capture system[92]-[93],[97]-

[102], gyroscope output i.e. angular rate can also be used as the main variable. Additionally, 

these results also established normative data to estimate dynamic stability using gyroscope 

outputs.  
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Figure 7.32 (a) Experimental results of thigh 
*

S
λ  with (b) Tukey-Kramer comparison test result; 

(c) Experimental results of thigh 
*

L
λ

 
with (d) Tukey-Kramer comparison test result. 
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Figure 7.33 (a) Experimental results of shank 
*

S
λ  with (b) Tukey-Kramer comparison test 

result; (c) Experimental results of shank 
*

L
λ

 
with (d) Tukey-Kramer comparison test result. 

 



115 

 

Chapter 8                               

DISCUSSIONS 

Experimental results showed that the wireless gait monitoring system performed well in 

capturing human lower extremity motion in both overground walking and treadmill walking. 

Gait data captured by the wireless inertial sensors were successfully transmitted to their 

respective wireless transceivers without any disturbances. Moreover, the periodical gait 

evaluation did not disrupt the real-time data acquisition and data visualization. The 

measurement data were also completely stored in the spreadsheet file without any data loss. 

These outcomes proved the viability of the system for various clinical applications and research 

in human gait analysis.  Following sections highlight the significances of the methodologies 

used in this thesis to quantify and evaluate human walking condition. 

8.1 Wireless Gyroscope as the Main Sensing Device  

Optical motion capture system and force plates are the common methods to quantify 

human motion during walking. However, these approaches pose several limitations. Prior to 

each experiment, they have to be properly calibrated. Reflective markers have to be placed 

on the right locations to obtain accurate and reliable data. As one of the consequences, the 

time needed to set up the experiment is long. Moreover, the data processing is tedious and 

time-consuming. Hence, it is difficult to perform online data processing and provide 

immediate feedback to the clinician/researcher regarding the subject’s walking condition.  

Due to these limitations, wireless gyroscope was introduced to capture human lower 

extremity motion in real-time. Unlike the conventional instruments, gyroscope is 
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inexpensive, small, light-weight, and relatively easier to use. Other miniature inertial 

sensors, such as accelerometers, magnetometers and their variants also have similar 

features.  

Nevertheless, accelerometer possesses several limitations when it is used to capture 

human motion. Firstly, accelerometer is sensitive to linear acceleration. Due to this 

characteristic, accelerometer may unintentionally measure the vibration of human body 

during walking. This vibration can vary greatly depending on the method used to place the 

accelerometer on human body and the accelerometer location on human body. Secondly, 

consistency of the measurement data collected using accelerometer greatly depends on the 

skills of assessor in placing the accelerometer in different body segments. Inconsistent 

location of the accelerometer on human body may lead to significant measurement error.  

Other inertial sensor i.e. magnetometer also has its own drawback when it is used to 

capture human motion. Magnetometer is sensitive to nearby ferromagnetic materials that 

can distort the signal and lead to less accurate readings [1],[32],[49]. Bachmann et al. 

studied the capability of the inertial/magnetic sensor in measuring the angular displacement 

in the presence of ferromagnetic materials and electrical appliances such as computer 

monitor (CRT), electrical power supply, metal filing cabinet and small space heater with fan 

[125]. They reported that the direction of local magnetic field can be altered by the presence 

of surrounding ferromagnetic materials and electrical appliances hence it causes the sensor 

to be susceptible to errors (Figure 8.1). In an indoor environment i.e. gait laboratory which 

generally contains numerous sources of magnetic interference, it can be difficult to 

determine which objects are the major contributors to magnetic field deflections. This 

matter arises because magnetic field can vary greatly depending on the distances among 

ferromagnetic materials. Therefore, it can be deduced that magnetometer is not a suitable 

measuring device to capture human motion in clinical settings and rehabilitations.  

Considering these limitations, gyroscope is a better option among the other miniature 

inertial sensors. Unlike accelerometer, gyroscope is less noisy and not affected by linear 

acceleration and/or gravity [51]. It produces similar results regardless of the minor 

differences in the attachment site on human body [21].  Moreover, it cannot be influenced 

by surrounding ferromagnetic materials and/or electrical appliances. Lastly, no calibration 

is required prior to every experiment.  
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Figure 8.1 Deviation of the magnetic field vector in the horizontal plane versus distance 

from (a) CRT monitor (b) electrical power supply (c) small space heater with fan [125]. 

Gyroscope’s output can be easily interpreted corresponding to different gait events [51]. 

Observing thigh
θ�  and 

shank
θ�  in each gait cycle (Figure 8.2), 

shank
θ�  is negative during stance 

phase and it is rather positive during swing phase. Just before HS, 
shank

θ�  becomes negative. 

During heel-strike, there is a change of slope sign of the 
shank

θ�  from positive to negative. 

This is expected since the shank slows down to stop after the HS. Besides that, there is also 

a flexion of the knee which is marked by negative 
shank

θ�  and negative thigh
θ� . After HS, 

shank rotates clockwise around the ankle and generates negative 
shank

θ� . During MS, knee 

becomes straight causing 
shank

θ�  close to zero. Afterward, shank continues its clockwise 

rotation and accelerates its rotation at toe-off. This event causes positive slope at thigh
θ�  and 

shank
θ� . Knee then extends and moves the shank from backward to forward. This motion 

generates a maximum 
shank

θ�  of approximately 5 rad/s. In this way, thigh
θ�  and 

shank
θ�  can 

provide comprehensive information regarding the thigh and shank flexion and extension 

throughout the gait cycle.  

Gyroscope equipped with wireless technology also offers several advantages. It allows 

subject to move freely without being obstructed by wires that connect the sensors to the 

workstation. Subject’s movement space is also not restricted by the length of the wires. This 

technology allows human motion to be captured in both indoor and outdoor environments.  
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Figure 8.2 Typical thigh and shank angular rate at different gait events and gait phases.  

Wireless gyroscopes were attached to a suit made of bulk straps and Velco
TM

 straps. 

The use of this suit considerably reduces the overall system setup time. In average, the 

overall setup time was less than two minutes. This suit also ensured the consistency of the 

gyroscopes placements on human body hence minimizing the measurement errors. In 

addition, this suit can be worn by a human subject regardless of his/her body height, weight, 

age and the circumferences of hip and lower limbs because it can be easily adjusted 

according to the his/her anthropometry properties.  

8.2 Gait Event Identification  

Identification of gait events is an important starting point for gait analysis [126]. As 

mentioned in Chapter 1.1, HS is generally considered as the start of a gait cycle and the 

beginning of the stance phase whereas TO is considered as the beginning of the swing phase. 

Definition of these events is widely used to estimate Tstride, Tstance, and Tswing to allow the time 

normalization of data per gait cycle hence facilitates comparison between different subjects and 

different walking conditions [126]-[127]. In practical, gait event is widely used to aid evaluation 

of treatments for pathological gait, particularly children with cerebral palsy [124] and the 

development of gait assistive devices such as prosthetic limb [128] and FES system [27]-

[28],[52]-[54]. 

Identification of the gait event often relies on kinematic parameters derived from the optical 

motion capture system. However, this approach is only reliable when it is applied to a normal 
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and healthy individual [129]-[132]. To address this drawback, many researchers integrated 

additional instrument i.e. force platform to define the gait events. As mentioned in Chapter 2.1 

and Chapter 8.1, optical motion capture system and force platform pose several limitations. 

Ghousssayni et al. also indicated that the use of optical motion capture system and force 

platform are subjected to the lack of automation, skills of the assessor in conducting the gait 

analysis, and encumbrance for the patient (The patient needs to control his walking speed or 

step length) [58]. More importantly, both systems are having difficulty in identifying 

consecutive gait cycles for long period of time because the optical motion capture system can 

only capture human motion in a laboratory and force platform can only capture one gait cycle at 

a time. Therefore, wireless gyroscope was used in this thesis to periodically identify the gait 

events during walking. 

Knowing that 
shank

θ�  can be used to identify gait events i.e. HS, TO and MS, this thesis 

developed HMWD to automate the identification of these events in both overground and 

treadmill walking. By automating this process, developed system can rapidly estimate Tstride, 

Tstance, and Tswing. Moreover, it is not susceptible to the assessor’s skill in defining the gait events 

as gyroscope is not affected by minor differences in attachment locations. It is also not sensitive 

to any linear acceleration and/or gravity. Apart from these advantages, HMWD itself possesses 

several novelties. One of the novelties is the use of 2
nd

 order Symmlet wavelet to decompose the 

angular rate of the shank as opposed to the 5
th
 order Coiflet wavelet proposed in [51]. The other 

novelty is that HMWD only decomposes the angular rate into two scales rather than ten scales. 

Therefore, HMWD requires fewer calculations and consumes less computational time. These 

superiorities were justified, especially when HMWD periodically identified the gait events 

without disrupting the real-time data acquisition and data visualization (Figure 8.3).  
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Figure 8.3 Periodical gait event identification during real-time data acquisition. 

Another novelty of this method is that HMWD uses spatial-based local search to identify 

the local minima (HS and TO) within two successive MS.. This approach enables HMWD to be 

a time-independent method. Hence, it can facilitate the identification of gait events in various 

walking conditions regardless of the subject’s walking speed and stride time. This was verified 

by the experimental results compiled in Chapter 7.1.   

HMWD may suffer from slight systematic delay/error (approximately 10 ms) while 

defining HS and TO.  This delay had been studied and reported in [51] thus no further study 

was conducted in this thesis to re-examine the systematic delay. However, it is necessary to 

mention this error is acceptable [51] considering the sampling rate of 200Hz (5ms per sample) 

and it can be compared favorably with other methods that use more expensive and complex 

instruments i.e. optical motion capture system and force platform. Using 50Hz optical motion 

capture system, Stanhope et al, reported that their algorithm suffered an error greater than 20 ms 

in more than 20% of the cases [134]. Mickelborough et al, reported that their method was only 

accurate within 30 ms [135]. Combining kinematic and kinetic parameters collected from 

optical motion capture system and force platform, Hansen et al found that their algorithm had an 

average error of 8.3 ms and 16.7 ms for HS and TO respectively [136].  
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8.3 Gait Normality Test 

Temporal gait parameters i.e. duration Tstride, Tstance, and Tswing provide overall walking 

capability of a person. However, it is possible for certain patients with pathological 

conditions walk with right temporal gait parameters while having significantly abnormal 

joint motions. Therefore, there is a need for a motion capture system or a gait monitoring 

system to measure and record the human lower extremity movements, to provide sufficient 

information reflecting a person’s walking conditions, and to determine whether his/her 

walking pattern is normal by comparing his/her movement patterns to the normative data.  

Optical motion capture system has been commonly used in human gait analysis to 

quantify human lower extremity motion in walking. Optical motion capture system is a 

reflective marker based system that captures the movements of the markers placed on 

various parts of human body. However, this system suffers from several drawbacks as 

addressed in Chapter 2.1 and Chapter 8.1. To overcome these drawbacks, this thesis 

developed a gait monitoring system that uses wireless gyroscopes to capture human motion 

during walking. One of the merits of this system is that it can estimate the orientation of 

human lower extremity during walking. Hence, it allows these orientations to be compared 

with the ideal orientation of human lower extremity established in [2],[3], and [104]. More 

importantly, since its output is not as complicated as the output generated by an optical 

motion capture system, gyroscope based gait monitoring system can process the gait data 

and to present the gait analysis results periodically in every five seconds.  

It is necessary to point out that a five second time frame is selected due to the optimal 

time required for the software to process the gait data and display the gait analysis results 

during the real-time data acquisition and data visualization. However, this time frame can 

be adjusted to cater for different needs of the gait analysis. It can also be adjusted according 

to the workstation computing capability. It is possible to be shortened if the workstation has 

higher computing capability than the workstation used in this thesis (CPU processor: Intel 

Core2 Duo E6750 @ 2.66 GHz; RAM: 4 GB). On the contrary, it can also be lengthened if 

the workstation has lower computing capability. A screenshot of the periodical gait 

normality test during real-time data streaming and data visualization is presented in Figure 

8.4 
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Figure 8.4 Periodical gait normality test during real-time data acquisition and data visualization. 

Providing sufficient qualitative and quantitative feedbacks in a relatively short period of 

time allows clinician/researcher to understand his/her patient’s walking condition and 

subsequently to advise appropriate treatment that can improve the patient’s gait. This 

feature offers great benefits for patients who are under recovery process from hip or knee 

arthroplasty surgery, paraplegic patients who use FES system, and patients that have 

injury(s) that may disrupt their walking patterns. 

In this system, qualitative feedback is obtained through visual comparison between the 

ideal and the actual orientations of the lower extremity, as illustrated in Figure 7.2, Figure 

7.3, Figure 7.4, and Figure 7.5. This feedback offers clear and comprehensible information 

on the subject’s gait relative to the gait of a normal and healthy individual. Through direct 

observation and comparison of each gait cycle to the reference profiles, researchers, 

clinicians and even someone who does not have good technical background, can identify 

the similarities and differences between  the ideal and actual orientation of the thigh and 

shank.   

Visual representation offered by the developed system may provide less accurate 

assessment concerning subject’s walking condition therefore quantitative information is 

provided too. This information is computed and derived statistically, such as 
stride

T , 
stance

T , 
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and 
swing

T  and CoD. The temporal gait parameters are taken into consideration as they hold 

crucial information closely related to pathological gait [72]-[73]. Normal  and healthy gait 

has stance phase lasting approximately 60% of the gait cycle and swing phase lasting 

approximately 40% of the gait cycle during overground walking [2]-[3]. Stance phase is 

expected to be shorter (approximately 58%) and swing phase is expected to longer 

(approximately 42%) during treadmill walking [137]-[139]. Stolze et al. [140] explained 

that during walking on a treadmill or overground the timing of the stance and swing phase 

may be handled in a different way by the locomotor pattern generator. A variety of factors 

from afferent system could be involved including the differences in the behavioral context 

i.e. anxiety and caution during treadmill walking. Their experimental results was further 

justified by findings published in  [139],[141]-[145], which elaborated that a sensory 

mismatch between the lack of optical flow and the information from the vestibular system 

and proprioceptive inputs from the limbs and trunk may play a role in the differences of the 

gait patterns between these two walking conditions. Regardless of the walking conditions, 

results compiled in Chapter 7.2 are similar to findings reported in [2]-[3],[137]-[139]. These 

results also demonstrated that developed system is capable of estimating various temporal 

gait parameters in both overground walking and treadmill walking.  

On the contrary, abnormal gait may have shorter or longer Tstance and Tswing depending 

on the patient’s pathological condition [12], [17],[70],[73],[146]. Yogev et al. found out 

patients with Parkinson’s disease prolonged their stance phase (mean: 62%) hence 

shortened their swing phase (mean: 38%) [17]. Nolan et al. reported that trans-tibial 

amputees had longer stance phase up to 65% of the gait cycle and shorter swing phase [70]. 

On the other hand, trans-femoral amputees had shorter stance phase of approximately 56% 

of the gait cycle. While investigating vertical ground reaction force profile of stroke 

patients, Kim and Eng experimental results revealed that stroke patients exhibited longer 

stance phase (mean: 71%) and shorter swing phase (mean: 29%) on the nonparetic side of 

the limb [73].  

Since no patients are involved in this thesis, abnormal gait was simulated by placing a 

load on one side of the limbs (lower shank) and by wearing a sandal on one side of the feet. 

The experimental results indicated that all participants tended to walk slower due to the 

resistance imposed to one side of the limbs. The affected limb exhibited shorter stance 

phase and longer swing phase than the non-affected limb. These incidents were expected as 
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the inertial property of the affected limb had been altered. Thus, apparent differences could 

be observed between the affected limb and the non-affected limb.  

As mentioned earlier, other than temporal gait parameters, the developed system 

determines the CoD of the thigh and shank motion during walking. CoD compares the 

participant’s movement pattern to the normative data. Unlike other gait analysis methods 

[64]-[68] (Characteristics of these approaches are discussed in Chapter 2.3), CoD is 

relatively simpler and does not require significant amount of time to examine the normality 

of a person’s walking pattern. However, it is important to highlight that CoD cannot 

determine the underlying causes of the gait pathology. It was practically designed to be an 

initial clue that may assists clinicians, biomechanists or researchers to determine the 

normality of a person’s gait.  

Viability of CoD was tested on both normal and abnormal walking. The experimental 

results were satisfactory. They revealed that CoD was greater than 0.95 during normal 

walking whereas CoD was less than 0.95 during abnormal walking. The greater the 

differences between participant’s lower extermity motion and the ideal lower extremity 

motion, the lower the CoD was. In addition, the experimental results also indicated that 

when the participants walked abnormally, only the affected limb i.e. thigh and shank 

exhibited lower CoD whereas the non-affected limb exhibited CoD was similar to CoD 

found in normal walking. These results were expected as the inertial properties of the lower 

limb had been altered and the affected limb experienced significant resistance hindering its 

movements to move forward and to maintain the overall body balance. It is worth noting 

that the statistical significance of CoD in discriminating abnormal gait is 0.01, which is 

relatively better than other approaches. More importantly, CoD can be implemented as one 

of the online processes without disrupting the real time data acquisition/data visualization 

(Figure 8.4). Schöllhorn who compiled all recent findings on the applications of artificial 

neural networks in clinical biomechanics reported that the discrimination rate between 

normal and abnormal gait can be as low as 40% [147]. Deluzio and Astephen who used 

PCA compare patients with end-stage knee osteoarthritis to asymptomatic control subjects 

reported that their method has misclassification rate of 8% [148]. Lafuente et al. applied 

Bayesian quadratic classifier to discriminate lower limb arthrosis patients and healthy 

subjects. Their experimental results indicated this classifier only has discrimination rate of 

75% [14].  
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8.4 Gait Asymmetry  

Gait asymmetry is typically found in amputee patients [12]-[13],[70], patients with limb 

length discrepancy [71], cerebral palsy [4],[69] and hemiplegic [8]-[9]. These pathological 

conditions generate significant differences in both spatial and temporal gait parameters. 

These differences include differences in Tstride, Tstance and Tswing [72]-[73], differences in 

ground reaction force profile [73]-[75] and differences in the range of motion [76]. Hence, 

gait asymmetry is commonly used as a strong indicator in rehabilitation and clinical 

settings.  

So far, the research directions had been concentrated on the ground reaction force 

profiles, the orientation of the lower extremity and EMG (Electromyography) activities of 

the muscles while the use of angular rate of the lower extremity to identify gait symmetry 

has not been reported by any researcher yet.  Therefore, this research introduces several 

new approaches i.e. SInorm and Ccnorm that use thigh
θ�  and 

shank
θ�  to determine gait asymmetry. 

These approaches are relatively simpler and consume less computational time than other 

methods proposed in [76],[82]-[83]. Thus, these approaches can be implemented as one of 

the online processes without disrupting real-time data acquisition and data visualization of 

the system.  

Since SInorm and Ccnorm are new methods, this thesis also established a normative data 

that can be used to differentiate normal/symmetrical gait and abnormal/asymmetrical gait. 

The experimental study indicated that SInorm and Ccnorm could give slightly different results 

when the participants walked on the ground and on a treadmill, therefore one must exercise 

great care when using these approaches to determine gait asymmetry. The normative data 

for both walking conditions are presented in Figure 7.21, Figure 7.23, Figure 7.27, and 

Figure 7.30  

8.4.1 Normalized Cross-correlation (Ccnorm) 

In practice, human locomotory system may be regarded as a highly organized 

system. However, it is not a perfect one. Adjustments in human motion control system 

have to be continuously made to maintain speed, direction and body balance even 

though he/she is walking on an even surface [149]. Thus no identical movement pattern 

can be observed in every successive gait cycles. Similar concept is applicable to the left 
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and right limbs movement patterns. Gait asymmetry also exists in healthy individuals 

[77].  

Experimental results compiled in Chapter 7.4.1 shows that Ccnorm in normal 

overground walking and treadmill walking was close to one. Ccnorm was greater than 0.9 

and 0.95 on thigh and shank respectively when a person walked on the ground. Ccnorm 

was greater than 0.93 and 0.96 on thigh and shank respectively when he walked on a 

treadmill. In contrast, asymmetrical walking exhibited lower Ccnorm value due to large 

differences between left limb and right limb motions. The lower Ccnorm value, the 

greater the asymmetrical gait was. This was expected as there were significant 

differences between normal and abnormal gait simulated in this thesis. Loaded limb 

exhibited lower Ccnorm (Ccnorm-thigh <0.93 and Ccnorm-shank <0.96) than non-loaded limb. 

This finding correlates with results reported by Haddad et al. [120]. Even though they 

used different method to determine gait asymmetry, they did found out that placing a 

load on one side of the limbs could create asymmetrical gait. In the other experiments 

conducted in this thesis, participant’s thigh and shank also exhibited lower Ccnorm 

(Ccnorm-thigh <0.86 and Ccnorm-shank <0.94) when they walked on the ground wearing 

sandal on one side of the feet. These results correlates with findings published by 

[71],[123],[150] which indicates that gait asymmetry can be clearly observed in patients 

with leg length discrepancy.  

Cc byproduct, Ts indicates whether the motion of the left limb synchronize with the 

right limb.  In normal walking Ts was ranging between -0.4% to 1.9% gait cycle while 

value greater than 1.9% or less than -0.4% was expected in asymmetrical walking. 

Positive Ts signifies that the left limb is leading ahead the right limb. Larger positive Ts 

also indicates that there is significant abnormality on the left limb, as indicated in 

Figure 7.22 and Figure 7.24. Vice versa, negative Ts indicates that the left limb is 

lagging behind the right limb and there is abnormality on the right limb. Hence, in 

practical, Ts can serve as an important indicator for many neurological diseases such as 

Parkinson disease and Huntington’s disease.  
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8.4.2 Temporal Gait Asymmetry  

The experimental results compiled in Chapter 7.4.2 indiated that SIstride, SIstance and 

SIswing were ranging from -5% to 5% in normal walking. These results were anticipated 

as they were similar to findings reported in [70],[73],[149],[151]. However, when the 

participants walked abnormally, SIstance and SIswing were out of the normal range (|SIstance| 

> 5% and |SIswing| >5%). The main reason is that each limb has different Tstance and Tswing. 

The affected limb exhibited shorter Tstance and longer Tswing compared to the non-affected 

limb. Since right limb was the main reference, positive SIstance was found when a load 

was placed on participant’s right limb and when participant wore a sandal on his right 

foot.  

In clinical settings, patients with pathologic gait experienced greater SIstance and 

SIswing as well. Nolan et al. reported that trans-tibial amputees exhibited SIstance greater 

than 5.15% and SIswing less than -10.30% [70]. They also discovered that trans-femoral 

amputees exhibited SIstance greater than 23.92% and SIswing less than -42.17%. While 

studying gait asymmetry in chronic stroke patients, Kim and Eng found that these 

patients had an average SIstance of 13.6% and average SIswing of 27.3% [73]. In one of the 

most recent publications, Patterson et al. reported that SIstance and SIswing had average 

value of 2.36% and 3.60% respectively in healthy individuals [152]. On the contrary, 

stroke patients exhibited larger SIstance and SIswing with average value of 18.61% and 

31.58% 

8.4.3 Normalized Symmetry Index (SInorm)  

Providing single value indicator such as Ccnorm and Ts to define gait asymmetry in 

walking may not be sufficient, thus SInorm is proposed to provide information regarding 

the timing and magnitude of movement deviations between the left and right limbs in 

each gait cycle. SInorm is chosen instead of conventional SI because it can eliminates the 

artificial inflation that may lead to large SI value (SI > 100%). A graphical illustration is 

presented in Figure 8.5 to describe this inflation. This effect generally occurs when one 

of the variables has positive value whereas the other has negative value and when the 

average of these values is very small or close to zero.  

Proposed SInorm bounds the index value to be less than ±100%. In normal walking 

SInorm varies from -27% to 15% throughout the gait cycle during overground walking 

and varies between from -15% to 15% during treadmill walking. SInorm collected from 
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these experiments can be regarded as the normative data of normal and healthy 

individuals.  

 

Figure 8.5 Artificial inflation when applying conventional SI to determine gait 

asymmetry. 

Many authors argued that quantification of gait asymmetry using SI is greatly 

influenced by the side chosen as the reference value [80]. However, unlike conventional 

SI, SInorm is not influenced by any side because choosing a different side as a reference 

still gives similar result but opposite in sign. Thus when it is interpreted correctly, SInorm 

is still a valid indicator to determine gait asymmetry in walking. More importantly, 

SInorm is not only applicable to the angular rate of the lower extremity; other kinematic 

and kinetic parameters can also be used as the main variables to determine gait 

asymmetry. Since it is adopted from conventional SI, it can be easily implement in 

various clinical applications, particularly those who had implemented SI to track 

patient’s rehabilitation progress.  

 

Figure 8.6 Applying SInorm with different references. 
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8.5 Gait Dynamic Stability  

Since human walking is not strictly periodic, traditional linear analysis may not be a 

suitable tool to examine human gait [95]. It can mask the true structure of motor variability 

if few strides are averaged to generate a mean picture of the subject’s gait. Moreover, 

temporal variations of the gait may be lost. In contrast, nonlinear analysis focuses on how 

variations change in the human gait over the time [91],[94]-[95]. As one of the methods 

available in the nonlinear time analysis,  λ* can estimate human dynamical stability during 

walking by measuring the local divergences of human motion in a state space. More 

importantly, λ* quantifies how the neuromuscular locomotor system responds to 

perturbations. Due to these reasons, many researchers have adopted this approach [91]-

[99],[101],[153]. Their findings suggested that positive λ* is an indication of chaotic 

characteristic lying between completely periodic and completely random characteristics. 

Lower positive may indicate that human lower extremity has higher resistance to stride-to-

stride variability and is less flexible and adaptable when variations from one stride to 

another occur [94]-[95],[99]. 

As mentioned in Chapter 5.10, two different time scales were used in this thesis to 

determine the dynamic stability of human walking: 
*

S
λ  and 

*

L
λ . 

*

S
λ

 
corresponds to short-

term stability because it only examines the stability over first gait cycle. On the other hand, 

*

L
λ  corresponds to long-term stability as it evaluates the stability over fourth to the tenth 

gait cycles.  

Despite using different method to capture human motion during walking, the 

experimental results are similar to the findings reported in [85],[98],[153]. All participants 

exhibited lower 
*

S
λ  for both thigh and shank when they walked slower. They exhibited 

larger
 

*

S
λ  when they walked faster. Thus, it can be deduced that the human neuromuscular 

locomotor systems can control kinematic disturbances better during slow walking than 

during fast walking [85]. These results agreed with basic clinical intuition that patients with 

higher risk of falling walk slower to improve their stability [153]. However, 
*

L
λ  exhibited 

different behavior, 
*

L
λ

 
had the lowest values when the participants walked at speed of 4 

km/h. These results signified that over the long period of time, participants controlled their 

neuromuscular locomotor system better when they walked at this speed. These results were 

consistent with findings reported in [94],[99]. When asymmetrical gait is simulated during 
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the experimental study, loaded limb exhibited lower 
*

S
λ  and 

*

L
λ  than the non-loaded limb. 

These results suggested that due to changes in the loaded limb inertial properties, non-

loaded limb neuromuscular system was challenged to balance perturbations induced on the 

other limb, which in turn increased both 
*

S
λ  and 

*

L
λ of the non-loaded limb. Apart from 

these observations, the experimental results also revealed that thigh exhibited lower 
*

S
λ  and 

*

L
λ  than the shank during walking. These findings are consistent with results published 

[85],[94],[98].  

The experimental study demonstrated the capability of the developed system in 

estimating gait dynamic stability. This study also indicated that human walking is not 

strictly periodic, thus non-linear time analysis is necessary to assess walking stability. 

Moreover, it demonstrates that angular rate of human lower extremity is a valid kinematic 

parameter to estimate λ*. Lastly, this study also established normative baseline of normal 

and healthy individuals walking in different conditions i.e. on the ground and on the 

treadmill, and at different walking speed i.e. 3 km/h, 4km/h and 5 km/h. With satisfactory 

outcomes, this system is expected to be employed in clinical research to assist clinicians and 

biomechanists to further study the influences of 
*

S
λ  and 

*

L
λ  in walking stability, particularly 

on which neuromuscular locomotor system is responsible for changes in 
*

S
λ  and 

*

L
λ  thus 

allows clinicians and biomechanists to devise appropriate strategies that can improve human 

walking stability and reduce the risk of falls in elderly.  
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Chapter 9                               

CONCLUSION  

Human gait analysis is an effective tool in determining patients’ pathological conditions, 

particularly patients with celebral palsy, hemiplegic, osteoarthritis and Parkinson disease. It also 

holds significant role in the design and development of many gait assistive devices such as 

prosthetic limb and FES system. Until recent years, optical motion capture system and force 

platform were the most common tools to capture human gait. However, these tools are 

expensive, bulky and can only capture human motion in a dedicated environment i.e. laboratory. 

With recent advancements in MEMS technology and wireless data communication, inertial 

sensors, such as accelerometer, gyroscope and magnetometer gain tremendous popularity 

among clinicians and researchers. Hence, this thesis developed a gait monitoring system that 

used wireless gyroscopes to capture human motion in real-time. It also used several 

computational methods to periodically evaluate a person’s gait when he/she is walking on the 

ground or on a treadmill.  

Several evaluation methods were introduced in this thesis to examine three different aspects 

of human gait. These evaluations include gait normality test, analysis of gait asymmetry and 

estimation of gait dynamic stability. First evaluation, ‘Gait normality test’ produces a series of 

results such as Tstride, Tstance, Tswing, and CoD. Temporal gait parameters are taken into account 

because they hold crucial information closely related to pathological gait. CoD is a new method 

used to distinguish the normal and abnormal gait. CoD is close to one when the gait is normal. 

Second evaluation, ‘Gait asymmetry analysis’ examines whether there is a significant difference 

between the left and right limbs motions in each gait cycle. It uses angular rates measured by 
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the wireless gyroscopes to determine Ccnorm, Ts and SInorm. Ccnorm is a dimensionless parameter 

that evaluates the waveforms generated by human lower extremity motions. Ts denotes the 

synchronization between the left and right limbs. SInorm determines the timing and magnitudes of 

the bilateral differences in each gait cycle. Last evaluation, ‘Estimation of gait dynamic 

stability’ examines a person’s walking stability using nonlinear time series analysis. It uses λ* 

to determine the ability of human neuromuscular locomotor system in maintaining body balance 

during walking.  

An experimental study was conducted to examine the capability of the system. Since no 

patient with any pathological condition was involved in this study, abnormal gait was simulated 

on healthy individual by altering the inertial property of the lower limb. This was done by 

placing a load on one side of the limbs and by wearing a sandal on one side of the feet. As 

expected, artificially simulated abnormal gait produced results that were significantly different 

from normal gait. These results demonstrated the viability of this system to be deployed in 

various clinical settings and rehabilitations. More importantly, they also validated the 

computational methods i.e. CoD, Ccnorm, Ts, SInorm, and λ*, CoD, Ccnorm, Ts, SInorm, and λ* to 

examine different aspects of human gait. Lastly, these results also established normative data of 

CoD, Ccnorm, Ts, SInorm, and λ*, which could be used as references to determine a person’s 

walking condition.  

As one of future research directions, developed system is expected to be deployed in a 

hospital and/or a health institution to quantify patient’s lower extremity motion during walking 

and to examine patient’s walking conditions. Having this system in a health institution will be 

beneficial for clinicians and researchers. Clinicians can use this system to determine the severity 

of patient’s condition and to examine the effectiveness of the patient’s rehabilitation program. 

Researchers can use this system to characterize different pathologic gaits and to study their 

underlying causes. They can also use this system to devise appropriate treatments that can 

improve a person’s gait to be more adaptive, consumes less energy and minimizes the risk of 

fall. Lastly, this system can be used to design and develop better assistive devices for amputees, 

stroke patients and other patients who require the use of FES systems.  
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