Supplemental Data

Individual CpG Sites that are Associated with Age and Life Expectancy become Hypomethylated upon Aging

Yan Zhang ${ }^{1}$, Jan Hapala ${ }^{2,3}$, Hermann Brenner ${ }^{1,4}$, and Wolfgang Wagner ${ }^{2,3}$
${ }^{1}$ Division of Clinical Epidemiology and Aging research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581/TP4, 69120 Heidelberg, Germany; ${ }^{2}$ Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering University Hospital of the RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen, Germany; ${ }^{3}$ Institute for Biomedical Engineering - Cell Biology, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany; ${ }^{4}$ Network Aging Research (NAR), University of Heidelberg, Bergheimer Strasse 20, 69120 Heidelberg, Germany

Table of Content

Methods 2
Study population 2
DNA methylation measurements 2
Derivation of age predictors 2
Survival analysis and statistics 3
Supplemental figures 3
Figure S1. Predicted ages in participants without diabetes, cardiovascular disease, and cancer. 3
Figure S2. Reanalysis of life-expectancy associated CpGs in the LBC1921 and LBC1936 cohorts. 4
Supplemental tables 5
Supplemental table S1. Association of Weidner model with all-cause mortality. 5
Supplemental table S2. Association of cg05228408 (CLCN6) with all-cause mortality 5
Supplemental table S3: Associations of Weidner-CpGs with all-cause mortality 6
Supplemental table S4: Association of Hannum CpGs with all-cause mortality. 8
Supplemental table S5: Association of Horvath-CpGs with all-cause mortality 9
Supplemental table S6: Overlap of significant CpGs in discovery and validation set. 16
References of supplemental data 16

Methods

Study population

The ESTHER cohort is a large population-based epidemiological study, in which general practitioners (GP) recruited 9,949 adults (age 50-75 years) during regular health check-ups in the German state of Saarland between 2000 and 2002, with the aim of assessing chances of prevention and early detection of chronic diseases [1]. All participants provided written informed consent. The study was approved by the ethics committees of the University of Heidelberg and of the state medical board of Saarland, Germany.

Two subsets of ESTHER participants were selected for genome-wide DNAm analysis:
The discovery set, based on a case-cohort design, included 406 participants, who died during follow-up by March 2013 among 2,499 ESTHER participants recruited between October 2000 and March 2001; furthermore 548 participants were randomly selected among the 2,499 (as the subcohort in the casecohort samples) irrespective of death status during follow-up. Ninety of 406 deaths were also included in the subcohort owing to random selection of subcohort at baseline, and the discovery set therefore includes total of 864 participants.

The validation set consists of 1,000 ESTHER participants who were recruited during the initial enrollment (between July and October 2000) and who were non-overlapping with the case-cohort samples. Of the 1,000 participants, 231 deaths were ascertained during follow-up. Details of study design and data collection were described before [2].

At baseline, all participants completed a standardized self-administered questionnaire and donated biological samples (blood, stool, urine). Comprehensive medical data, such as the results of a physical assessment, medical diagnoses, and drug prescriptions were additionally obtained from the GPs. Prevalent diabetes was defined by physician diagnosis or the use of glucose-lowering drugs. Prevalent cardiovascular disease (CVD) at baseline was defined by either physician-reported coronary heart disease or a self-reported history of a major cardiovascular event, such as myocardial infarction, stroke, pulmonary embolism or revascularization of coronary arteries. Prevalent cancer [ICD-10 codes C00-C99; nonmelanoma skin cancer (C44) was excluded] was ascertained by self-report or record linkage with data from the Saarland Cancer Registry (http://www.krebsregister.saarland.de /ziele/ziel1.html).

DNA methylation measurements

Genomic DNA of blood was extracted using a salting out procedure [3] and DNAm profiles were analyzed using the Infinium HumanMethylation450 BeadChip (Illumina Inc.) in the Genomics and Proteomics Core Facility at the German Cancer Research Center, Heidelberg, Germany. For each of about 480,000 CpGs the DNAm levels were calculated with Illumina's Genomestudio 2011.1, Module M version 1.9.0 as previously described in detail [4]. Data were normalized to internal controls provided by Illumina. In data pre-processing, probes with detection p-value >0.05 and with missing values $>10 \%$ were excluded.

Derivation of age predictors

The epigenetic age-predictors by Hannum and coworkers [5] and Horvath [6] were calculated as described before [2]. The 99-CpG model, i.e. "Weidner predictor", was initially derived from 102 CpGs that revealed linear age-associated changes in 575 DNAm profiles of blood that were generated on Illumina HumanMethylation27 BeadChips (Pearson correlation $R>0.85$ or $R<-0.85$; age range 0 to 78 years) as described in detail before [7, 8].

Survival analysis and statistics

The associations of $\Delta_{\text {age }}$ or of individual CpGs with all-cause mortality were analyzed by weighted Cox regression models that account for the case-cohort sampling design in the discovery set [9, 10], and by multiple Cox regression in the validation set. The models with $\Delta_{\text {age }}$ or methylation β-values of each CpGs as explanatory variables were adjusted for age (continuous) and sex only (model-I); and additionally adjusted for batch effect, and leukocyte composition estimated by Houseman's algorithm [11] (model-II). Multiple testing was corrected for by the Benjamini-Hochberg approach [False Discovery Rate (FDR) <0.05]. The statistical analyses were performed in SAS 9.4 (SAS Institute, Cary, NC). The probability of sampling distribution of significant CpGs was estimated by hypergeometric distribution.

Supplemental figures

Figure S1. Predicted ages in participants without diabetes, cardiovascular disease, and cancer.
These density distribution curves only comprise participants without the above mentioned chronic diseases in the discovery set (A; 511 participants) and validation set (B; 661 participants) at baseline. Please note that the results look similar to the distributions that comprise the participants with known prevalent diabetes, CVD and a history of cancer at baseline (Figure 1C/D).

Figure S2. Reanalysis of life-expectancy associated CpGs in the LBC1921 and LBC1936 cohorts.
In our previous study, we have tested for association of individual CpGs of the three age-predictors with mortality in the Lothian Birth Cohorts 1921 and 1936 [7]. (A) These data were now correlated with the pvalues of the discovery set of the ESTHER cohort. All four CpGs of the Weidner predictor that revealed significant results in LBC1921 were also significant in the ESTHER discovery set (p-value $=0.0047$). However, the reproducibility between the different datasets was overall rather moderate. (B, C) The Lothian Birth Cohorts have only a very small range of donor-age and therefore we have used the datasets described by Hannum and coworkers [5] to estimate if the CpGs are rather hypermethylated (positive Spearman correlation) or hypomethylated upon aging (negative Spearman correlation). In tendency, significant association with life-expectancy was rather observed in hypomethylated CpGs.

Supplemental tables

Supplemental table S1. Association of Weidner model with all-cause mortality.

Parameter	Hazard ratio	95% Cl	p-value
Discovery set $(n=864)$			
Weidner predictor	1.120	$[0.996 ; 1.261]$	0.058
Age	1.082	$[1.056 ; 1.107]$	$<.0001$
Sex	0.461	$[0.339 ; 0.627]$	$<.0001$
Validation set $(n=1000)$	1.091	$[0.985 ; 1.208]$	0.0949
Weidner predictor	1.118	$[1.092 ; 1.144]$	$<.0001$
Age	0.542	$[0.406 ; 0.725]$	$<.0001$
Sex			
	1.087	$[1.003 ; 1.178]$	0.0412
Overall $(n=1864)$	1.091	$[1.072 ; 1.110]$	$<.0001$
Weidner predictor	0.493	$[0.394 ; 0.617]$	$<.0001$
Age			
Sex			

This analysis has been adjusted for chronological age, gender, batch, and leucocyte distribution. Hazard ratios (HR) were estimated for the association of Δ age (per 5 years of age acceleration) with all-cause mortality. The HR for the "overall" dataset was 1.094 (1.022; 1.171) if only adjusted for age and sex.

Supplemental table S2. Association of cg05228408 (CLCN6) with all-cause mortality.

Parameter	Hazard ratio	95\% CI	p-value
Discovery set ($n=864$)			
CLCN6 predictor	1.211	[1.079; 1.359]	0.0011
Age	1.295	[1.153; 1.455]	<. 0001
Sex	0.529	[0.406; 0.688]	<. 0001
Validation set ($n=1000$)			
CLCN6 predictor	1.114	[0.998; 1.244]	0.055
Age	1.237	[1.11; 1.379]	0.0001
Sex	0.54	[0.413; 0.706]	<. 0001
Overall ($n=1864$)			
CLCN6 predictor	1.140	[1.026; 1.266]	0.0148
Age	1.236	[1.114; 1.372]	0.0001
Sex	0.508	[0.406; 0.634]	<. 0001
Age predictions were cg 05228408). This multiv leukocyte distribution. Haz 5 years of age acceleratio	ulated as follow analysis h ratios (HR) w with all-cause	$75.5497-33$ en corrected timated for the ty.	(beta-valu sex, batc tion of Δa

Supplemental table S3: Associations of Weidner-CpGs with all-cause mortality.
$\left.\begin{array}{llllll}\hline & & & \text { Bonferroni corr. } & & \text { Fonferroni corr. } \\ & \text { Gene } & \text { FDR } & \begin{array}{l}\text { p-value }\end{array} & \begin{array}{l}\text { p-value } \\ \text { CpG ID }\end{array} & \text { name }\end{array}\right)$

cg06493994	SCGN	0.25725	1	0.03892	0.428147
cg17431739	MSRB2	0.25725	1	0.34121	1
cg17421623	KTELC1	0.27897	1	0.34121	1
cg08090640	IFI35	0.28799	1	0.63483	1
cg24178740	FEV	0.29605	1	0.80100	1
cg07211259	PDCD1LG2	0.29605	1	0.37529	1
cg25947945	LAD1	0.29605	1	0.89052	1
cg26610808	BLOC1S2	0.29605	1	0.90063	1
cg08209133	SLC10A4	0.29605	1	0.84482	1
cg07621046	C10orf82	0.29605	1	0.46745	1
cg25538571		0.30763	1	0.66243	1
cg16744741	PRKG2	0.34258	1	0.37529	1
cg06638433	IGF2BP1	0.36477	1	0.87896	1
cg01739167	CHRNE	0.36477	1	0.19568	1
cg25431974	ECEL1	0.36858	1	0.36167	1
cg24713204	ZNF471	0.37185	1	0.84482	1
cg21801378	BRUNOL6	0.37268	1	0.66243	1
cg14456683	ZIC1	0.37493	1	0.84482	1
cg27320127	KCNK12	0.41984	1	0.56733	1
cg04036898	POMGNT1	0.41984	1	0.84482	1
cg12883767	SLC26A10	0.41984	1	0.59331	1
cg04123409	SDS	0.41984	1	0.26414	1
cg24768561	AGAP1	0.49247	1	0.85844	1
cg25809905	ITGA2B	0.53147	1	0.50408	1
cg22736354	NHLRC1	0.54848	1	0.56733	1
cg13870866	TBX20	0.55756	1	0.22514	1
cg02844545	GCM2	0.59681	1	0.94806	1
cg05488632	EPHX3	0.60043	1	0.85844	1
cg13129046	C10orf35	0.61427	1	0.85844	1
cg25762706	STMN4	0.61427	1	0.66243	1
cg15538427	LRRN4CL	0.61473	1	0.41396	1
cg21870884	GPR25	0.61559	1	0.85844	1
cg07810156	PDZK1IP1	0.69495	1	0.25290	1
cg06291867	HTR7	0.73641	1	0.66243	1
cg22580512	NCOR2	0.74499	1	0.80183	1
cg02489552	CCDC105	0.75504	1	0.96761	1
cg02228185	ASPA	0.78967	1	0.85844	1
cg13870494	MAMDC2	0.86030	1	0.37529	1
cg13807496	ALX4	0.86030	1	0.85844	1
cg00489401	FLT4	0.88016	1	0.85844	1
cg14918082	KCNAB3	0.90502	1	0.48906	1
cg21296230	GREM1	0.91609	1	0.03854	0.385405
cg05331214	SCN7A	0.95150	1	0.34103	1
cg00059225	GLRA1	0.96415	1	0.56733	1
cg16352283	FAM46B	0.96415	1	0.85844	1
cg07388493	NDUFS5	0.96845	1	0.41136	1

Adjusted for gender and chronological age.

Supplemental table S4: Association of Hannum CpGs with all-cause mortality.

CpG ID	Gene name	FDR discovery set	Bonferroni corr. p-value discovery set	FDR validation set	Bonferroni corr. p-value validation set
cg10501210		0.00609	0.00912	0.22364	1
cg20822990	ATP13A2	0.00609	0.01218	0.09914	0.89224
cg07082267		0.00811	0.02434	0.74143	1
cg19283806	CCDC102B	0.01354	0.05415	0.89530	1
cg02046143	IGSF9B	0.02079	0.10891	0.98181	1
cg04416734	ALDOA	0.02079	0.12473	0.38152	1
cg02867102		0.02961	0.24280	0.02252	0.07453
cg09809672	EDARADD	0.02961	0.26091	0.37331	1
cg25428494	HPSE	0.02961	0.26645	0.89530	1
cg16867657	ELOVL2	0.03136	0.31356	0.57828	1
cg22016779	DNER	0.04902	0.53924	0.96173	1
ch_2_30415474F		0.06843	0.84016	0.00133	0.00133
cg22796704	ARHGAP22	0.06843	0.92301	0.28200	1
cg19722847	IPO8	0.06843	0.95806	0.50083	1
cg16054275	F5	0.06847	1	0.61660	1
cg07955995	KLF14	0.07473	1	0.89823	1
cg20426994	KLF14	0.07740	1	0.89823	1
cg04474832	ABHD14B	0.08882	1	0.95229	1
cg07583137	CHMP4C	0.10474	1	0.51300	1
cg06685111	HCG18	0.10474	1	0.89823	1
cg02085953	ARID5A	0.10474	1	0.74143	1
cg08234504		0.10474	1	0.96173	1
cg20052760		0.10474	1	0.02252	0.09009
cg22512670	RPS6KA1	0.10474	1	0.22364	1
cg14361627	KLF14	0.10474	1	0.89823	1
cg06874016	NKIRAS2	0.10958	1	0.40261	1
cg06419846	CD248	0.11550	1	0.89530	1
cg22285878	KLF14	0.11965	1	0.61660	1
cg23744638		0.13911	1	0.37331	1
cg21139312	MSI2	0.13975	1	0.00291	0.00582
cg14556683	EPHX3	0.13975	1	0.76789	1
cg08097417	KLF14	0.17022	1	0.89530	1
cg13001142	STXBP5	0.17022	1	0.96418	1
cg02650266		0.17022	1	0.49640	1
cg00748589		0.20400	1	0.95229	1
cg08540945		0.20479	1	0.58183	1
cg06493994	SCGN	0.24701	1	0.04387	0.30706
cg05442902	MGC16703	0.29585	1	0.50083	1
cg07553761	TRIM59	0.29585	1	0.89530	1
cg23606718	FAM123C	0.29585	1	0.96173	1
cg03399905	ANKRD34C	0.29585	1	0.89823	1
cg03473532	MKLN1	0.29585	1	0.50083	1
cg03032497		0.34102	1	0.95229	1
cg04400972	TRIM45	0.34102	1	0.89530	1
cg16419235	PENK	0.34636	1	0.74972	1
cg04940570	TEAD1	0.34636	1	0.49640	1
cg07927379	C7orf13	0.36531	1	0.81331	1
cg22158769	LOC375196	0.41298	1	0.96173	1
cg23500537		0.41489	1	0.61660	1
cg07547549	SLC12A5	0.45361	1	0.96173	1
cg22213242	CD248	0.53422	1	0.89530	1
ch_13_39564907R		0.53422	1	0.04387	0.24180
cg00481951	SST	0.55241	1	0.28200	1

cg19935065	DNTT	0.55241	1	0.28200	1
cg00486113	PSORS1C1	0.55241	1	0.89530	1
cg22736354	NHLRC1	0.57001	1	0.61544	1
cg09651136	PKM2	0.58038	1	0.49223	1
cg03607117	SFMBT1	0.62580	1	0.51256	1
cg23091758	NRIP3	0.62580	1	0.50083	1
cg25478614	SST	0.66985	1	0.28200	1
cg06639320	FHL2	0.67171	1	0.22364	1
cg24079702	FHL2	0.70653	1	0.28200	1
cg01528542		0.70760	1	0.38344	1
cg11067179	CD248	0.74989	1	0.61660	1
cg14692377	SLC6A4	0.74989	1	0.96418	1
cg22454769	FHL2	0.75452	1	0.55204	1
cg25410668	RPA2	0.81926	1	0.95229	1
cg04875128	OTUD7A	0.82899	1	0.89530	1
cg08415592	APOL1	0.83801	1	0.09432	0.75456
cg18473521	HOXC4	0.88294	1	0.89823	1
cg21296230	GREM1	0.88294	1	0.04387	0.27640

Adjusted for gender and chronological age.

Supplemental table S5: Association of Horvath-CpGs with all-cause mortality.

cg19722847	IPO8	0.17508	1	0.69717	1
cg04528819	KLF14	0.19053	1	0.94664	1
cg14992253	ElF3I	0.19053	1	0.89967	1
cg10940099	CD164	0.19053	1	0.84853	1
cg14727952	BIRC2	0.19053	1	0.29217	1
cg12941369	PDCD6IP	0.19053	1	0.55865	1
cg02275294	SOAT1	0.19384	1	0.37686	1
cg06836772	PRKAA2	0.19634	1	0.77491	1
cg23124451	CBX7	0.19634	1	0.83108	1
cg11314684	AKT3	0.19634	1	0.26606	1
cg01560871	C10orf27	0.19634	1	0.38421	1
cg25771195	C16orf80	0.19634	1	0.77491	1
cg21096399	MCAM	0.19634	1	0.75311	1
cg04474832	ABHD14B	0.19634	1	0.94664	1
cg02085507	TRIP10	0.20824	1	0.51561	1
cg06810647	CRAMP1L	0.20824	1	0.69717	1
cg21950518	IL6ST	0.21096	1	0.95772	1
cg09418283	PAWR	0.21266	1	0.89000	1
cg08331960	SLC9A3R2	0.21266	1	0.77491	1
cg19046959	COL8A2	0.21551	1	0.19730	1
cg01262913	DSCR9	0.21989	1	0.84493	1
cg27544190	C21orf63	0.22630	1	0.69717	1
cg25101936	ZBTB16	0.24524	1	0.89967	1
cg18440048	ZNF70	0.24988	1	0.37686	1
cg26372517	TFAP2E	0.25477	1	0.68165	1
cg17338403	SLCO3A1	0.25477	1	0.69717	1
cg10486998	GALR1	0.26030	1	0.92610	1
cg26394940	C22orf26	0.26030	1	0.75311	1
cg00431549	MGP	0.26030	1	0.01323	0.02647
cg02154074	HTRA2	0.26057	1	0.77491	1
cg15341340	DNASE2	0.26057	1	0.93442	1
cg05847778	BBS5	0.26336	1	0.90978	1
cg04452713	DST	0.27613	1	0.97679	1
cg20914508	GAP43	0.29538	1	0.60719	1
cg25928579	HOXB8	0.29538	1	0.89000	1
cg16899442	CCDC78	0.29538	1	0.77491	1
cg22171829	PDK4	0.29538	1	0.37686	1
cg13302154	MGP	0.29538	1	0.29217	1
cg11653266	MRPL38	0.29598	1	0.86682	1
cg23092072	AFF1	0.30288	1	0.93560	1
cg08965235	LTBP3	0.30639	1	0.89258	1
cg21370143	MYBPC3	0.30639	1	0.07808	0.77389
cg04999691	C7orf29	0.30639	1	0.75311	1
cg19305227	SLC28A2	0.30639	1	0.66831	1
cg03103192	SPATA18	0.30946	1	0.76787	1
cg27494383	LTK	0.30946	1	0.45387	1
cg26456957	PPP1R12C	0.31908	1	0.87638	1
cg11932564	TNFRSF13C	0.31908	1	0.76787	1
cg19761273	CSNK1D	0.33114	1	0.07808	0.64336
cg14423778	MBNL1	0.33114	1	0.38421	1
cg14894144	LAMA3	0.33495	1	0.84853	1
cg14258236	OR5V1	0.33495	1	0.69717	1
cg14329157	WDR69	0.34362	1	0.76787	1
cg06117855	CLEC3B	0.35287	1	0.73798	1
cg25552492	LGI3	0.35287	1	0.53642	1
cg02827112	SMARCAD1	0.38276	1	0.54454	1
cg22190114	NLRP8	0.38364	1	0.94755	1
cg06144905	PIPOX	0.38364	1	0.40559	1

cg02335441	NEK11	0.40063	1
cg13682722	C14orf102	0.40142	1
cg27319898	ZNF804B	0.41046	1
cg24899750	SNRPB2	0.41046	1
cg03286783	CASC4	0.41046	1
cg08030082	POMC	0.41046	1
cg12946225	HMG20B	0.41046	1
cg26845300	SNX9	0.41046	1
cg10376763	TNP1	0.41046	1
cg05755779	COLEC10	0.41046	1
cg17729667	NINL	0.41046	1
cg18031008	MRPS21	0.41108	1
cg22289837	САЗ	0.41850	1
cg23662675	ZMYND8	0.41850	1
cg18328933	ABHD14B	0.41850	1
cg01656216	ZNF438	0.41850	1
cg16419345	ACOX1	0.43139	1
cg06738602	PTGER2	0.43139	1
cg17099569		0.43191	1
cg23941599	FEM1C	0.43529	1
cg19346193	BCCIP	0.44211	1
cg12351433	LHCGR	0.44521	1
cg14723032	PITPNM3	0.44521	1
cg14409958	ENPP2	0.44521	1
cg06493994	SCGN	0.44521	1
cg15974053	HSD17B14	0.45652	1
cg16150435	C6orf15	0.45652	1
cg22637507	ALKBH3	0.45652	1
cg19420968	HCRTR1	0.45652	1
cg26453588	BIK	0.47043	1
cg06361108	CCNF	0.47313	1
cg07291563	GRWD1	0.47746	1
cg03891319	ACY1	0.50639	1
cg17589341	SLC14A1	0.50639	1
cg15185286	AIG1	0.50639	1
cg20305610	PDLIM5	0.50639	1
cg03270204	DDR1	0.50639	1
cg22006386	CATSPERG	0.50639	1
cg02217159	KHDRBS2	0.50639	1
cg09722397	GRIN2C	0.50639	1
cg14308452	PRR22	0.50639	1
cg05442902	MGC16703	0.51174	1
cg16168311	APOA1BP	0.51769	1
cg19853760	LGALS1	0.51769	1
cg00168942	GJD4	0.52814	1
cg00091693	KRT20	0.53579	1
cg14408969	C8orf40	0.53579	1
cg17063929	NOX4	0.55122	1
cg19706682	LRRC50	0.55858	1
cg26003813	PLK1	0.55858	1
cg17960516	DOK7	0.56253	1
cg07158339	FXN	0.56713	1
cg16744741	PRKG2	0.56713	1
cg17285325	TYMP	0.57519	1
cg24834740	PPP1R16B	0.58197	1
cg27092035	ARL10	0.58352	1
cg19514928	TMEM56	0.61160	1
cg26005082	MIR7-3	0.61861	1

0.84853	1
0.77491	1
0.89194	1
0.83108	1
0.83108	1
0.97679	1
0.91858	1
0.69717	1
0.77491	1
0.93120	1
0.77491	1
0.73520	1
0.68342	1
0.89000	1
0.53140	1
0.77491	1
0.89258	1
0.88086	1
0.77491	1
0.79584	1
0.58615	1
0.40559	1
0.83108	1
0.83108	1
0.10904	1
0.92610	1
0.77491	1
0.45105	1
0.58615	1
0.89967	1
0.89000	1
0.31673	1
0.08132	1
0.83108	1
0.69717	1
0.75311	1
0.77491	1
0.77491	1
0.97531	1
0.50111	1
0.83108	1
0.69717	1
0.38421	1
0.89258	1
0.98840	1
0.84137	1
0.84853	1
0.46005	1
0.51108	1
0.76787	1
0.98840	1
0.92610	1
0.57546	1
0.37686	1
0.69717	1
0.94662	1
0.45105	1
0.42951	1
	1

cg14424579	AGBL5	0.62436	1	0.77491	1
cg05675373	KCNC4	0.62839	1	0.86632	1
cg21801378	BRUNOL6	0.62851	1	0.80710	1
cg25159610	PLK2	0.63603	1	0.68165	1
cg24116886	DEFB127	0.63609	1	0.89000	1
cg26162695	ELAC2	0.64156	1	0.77437	1
cg09509673	CCR10	0.64156	1	0.86682	1
cg21460081	HOXB4	0.64156	1	0.83108	1
cg13269407	C22orf26	0.64914	1	0.77491	1
cg25505610	EIF3M	0.65471	1	0.51472	1
cg04126866	C10orf99	0.65471	1	0.58615	1
cg25148589	GRIA2	0.65471	1	0.83108	1
cg18983672	FOXE3	0.67187	1	0.81193	1
cg03760483	ALOX12	0.68335	1	0.69717	1
cg04094160	ZBTB5	0.68510	1	0.88684	1
cg15262928	TIMM17A	0.68727	1	0.83108	1
cg22809047	RPL31	0.69058	1	0.37686	1
cg22449114	TCF15	0.70205	1	0.79584	1
cg14175438	FAM3C	0.70205	1	0.76787	1
cg09133026	RPS6KL1	0.70205	1	0.97679	1
cg20100381	NAE1	0.70494	1	0.88086	1
cg09191327	PRDM12	0.71651	1	0.56810	1
cg20795863	NEU2	0.71651	1	0.79584	1
cg20240860	ACCS	0.71699	1	0.89000	1
cg13547237	C11orf68	0.73633	1	0.77491	1
cg19478743	ZMYND15	0.73633	1	0.83108	1
cg00864867	PAWR	0.73679	1	0.96337	1
cg27169020	BNC1	0.73849	1	0.93560	1
cg16034652	BTBD7	0.73849	1	0.07808	0.67746
cg18139769	SGCE	0.73849	1	0.45883	1
cg08124722	CCL7	0.74223	1	0.89000	1
cg10865119	C6orf122	0.74223	1	0.74119	1
cg07498421	CRADD	0.74223	1	0.70676	1
cg22197830	TXNDC15	0.74223	1	0.77491	1
cg22901840	DIRAS3	0.74223	1	0.75311	1
cg14501253	C8orf79	0.74445	1	0.97679	1
cg16494477	FGF18	0.76398	1	0.97679	1
cg27413543	SEC31A	0.76398	1	0.97679	1
cg17853587	NDST3	0.76433	1	0.77491	1
cg01234063	ST3GAL4	0.76433	1	0.69717	1
cg13038560	C2orf60	0.76433	1	0.97679	1
cg24580001	CCDC88B	0.76462	1	0.93560	1
cg18956095	ZHX1	0.76462	1	0.88684	1
cg17655614	CDH1	0.76462	1	0.45883	1
cg25809905	ITGA2B	0.76799	1	0.72526	1
cg01873645	FAM108B1	0.77031	1	0.75276	1
cg09885951	CENPF	0.77031	1	0.97679	1
cg03167275	CXADR	0.77180	1	0.75744	1
cg16579101	NOP2	0.77207	1	0.80710	1
cg22736354	NHLRC1	0.78228	1	0.76787	1
cg01485645	MLLT6	0.78543	1	0.93560	1
cg23517605	TUBB2B	0.79843	1	0.99377	1
cg03019000	TEX264	0.80002	1	0.05279	0.21115
cg25070637	SDC2	0.80008	1	0.76787	1
cg11388238	KCTD18	0.80030	1	0.37686	1
cg06993413	DPP8	0.80064	1	0.07808	0.78075
cg08090772	ADHFE1	0.80254	1	0.56676	1
cg12985418	MIB1	0.80254	1	0.83848	1

cg08370996	NR2F2	0.80428	1	0.84399	1
cg19008809	SFMBT1	0.80695	1	0.83108	1
cg10045881	CHI3L2	0.81962	1	0.29217	1
cg23180365	GLB1	0.82543	1	0.92610	1
cg12373771	CECR6	0.83203	1	0.77491	1
cg26620959	SYNE1	0.83203	1	0.97679	1
cg27377450		0.83203	1	0.75311	1
cg09118625	DIRAS3	0.83203	1	0.69717	1
cg01584473	MUC17	0.83203	1	0.77491	1
cg02332492	C8G	0.83203	1	0.88684	1
cg13129046	C10orf35	0.83203	1	0.89000	1
cg14658362	RBPMS	0.83203	1	0.94664	1
cg09722555	CCL27	0.83203	1	0.89258	1
cg19167673	PDGFB	0.83203	1	0.75276	1
cg25683012	BAZ2A	0.83203	1	0.77491	1
cg18180783	MYOZ1	0.83203	1	0.89000	1
cg02479575	MIR7-3	0.83203	1	0.89000	1
cg09019938	PRKG1	0.83203	1	0.89000	1
cg07285276	RAPGEF1	0.83420	1	0.89967	1
cg21870884	GPR25	0.83420	1	0.90657	1
cg08413469	DEPDC1	0.83420	1	0.38421	1
cg11025793	IER2	0.85153	1	0.18635	1
cg15703512	C16orf65	0.86317	1	0.34299	1
cg24450312	RASSF5	0.86317	1	0.98781	1
cg10345936	SLC36A2	0.86317	1	0.89000	1
cg13899108	PDE4C	0.86317	1	0.80007	1
cg05365729	LOXL2	0.86317	1	0.93560	1
cg24081819	EPHX2	0.86317	1	0.69717	1
cg20524216	C3orf75	0.86317	1	0.83108	1
cg00374717	ARSG	0.86317	1	0.58267	1
cg24254120	RFC3	0.86317	1	0.97679	1
cg27015931	C16orf65	0.86317	1	0.78704	1
cg14597908	GNASAS	0.86317	1	0.45883	1
cg15661409	C14orf105	0.86317	1	0.97679	1
cg13836627	TJP1	0.86317	1	0.92610	1
cg26297688	C12orf23	0.86317	1	0.76787	1
cg20295671	YPEL1	0.86317	1	0.73798	1
cg16408394	RXRA	0.86317	1	0.94664	1
cg03682823	SGCE	0.86317	1	0.37686	1
cg25781123	THUMPD3	0.86317	1	0.89258	1
cg15547534	C7orf47	0.86317	1	0.83108	1
cg05903609	PRPF8	0.86317	1	0.37686	1
cg18984151	C3orf75	0.86317	1	0.88684	1
cg19044674	LEPRE1	0.86317	1	0.97679	1
cg13975369	TSGA14	0.86317	1	0.83108	1
cg02331561	ABCA17P	0.86485	1	0.75311	1
cg09785172	WFS1	0.86485	1	0.89000	1
cg25166896	C22orf25	0.86485	1	0.94664	1
cg00436603	CYP2E1	0.86683	1	0.69717	1
cg06044899	TMSL3	0.86683	1	0.45105	1
cg05960024	CLOCK	0.86683	1	0.89000	1
cg01027805	ZNF219	0.86683	1	0.83108	1
cg16358826	GABRA4	0.87269	1	0.88684	1
cg23786576	ATPAF1	0.87269	1	0.83108	1
cg04268405	CHST3	0.87269	1	0.77491	1
cg20828084	KIAA1199	0.87269	1	0.93560	1
cg06926735	UBE2V1	0.87269	1	0.83108	1
cg05590257	PLD6	0.87269	1	0.79584	1

cg16241714	CEBPD	0.87366	1	0.92597	1
cg07663789	NPR3	0.87366	1	0.69717	1
cg19569684	MGC29506	0.87366	1	0.94664	1
cg04005032	OSBPL10	0.87366	1	0.93120	1
cg10281002	TBX5	0.87366	1	0.88684	1
cg05294243	KLK13	0.87366	1	0.40559	1
cg01027739	DOLPP1	0.87366	1	0.69717	1
cg13319175	CAPZB	0.88378	1	0.96884	1
cg09869858	P11	0.88378	1	0.77491	1
cg02489552	CCDC105	0.88378	1	0.98289	1
cg02047577	UCKL1AS	0.88378	1	0.92597	1
cg12413566	XIRP1	0.88378	1	0.97679	1
cg21395782	NDUFA13	0.88686	1	0.89000	1
cg12830694	PPP1R14A	0.91426	1	0.75311	1
cg01353448	C7orf16	0.91426	1	0.83108	1
cg06462291	NT5DC3	0.91426	1	0.76787	1
cg06513075	NAT10	0.91426	1	0.77491	1
cg07595943	ADAD2	0.91787	1	0.77491	1
cg01407797	CCDC117	0.91787	1	0.73798	1
cg06952310	NCAN	0.91819	1	0.94664	1
cg20692569	FZD9	0.91846	1	0.97679	1
cg26043391	FBXO28	0.92017	1	0.83108	1
cg06121469	SPG11	0.92387	1	0.93560	1
cg03947362	C2orf60	0.92872	1	0.96337	1
cg08771731	LOC285696	0.92872	1	0.93560	1
cg08251036		0.92872	1	0.89000	1
cg02972551	KDM3A	0.93453	1	0.93560	1
cg24058132	GALC	0.94642	1	0.83108	1
cg24888049	FES	0.96322	1	0.89000	1
cg19692710	DNAJB13	0.96824	1	0.83108	1
cg07849904	MN1	0.97089	1	0.84625	1
cg03578041	LARP6	0.97089	1	0.81661	1
cg20761322	CIB2	0.97089	1	0.83108	1
cg05250458	ZNF177	0.97390	1	0.83108	1
cg25411725	SLC22A13	0.99182	1	0.78363	1
cg15381769	PTPRK	0.99182	1	0.85533	1
cg25657834	NTSR2	0.99182	1	0.45105	1
cg13216057	DKK3	0.99322	1	0.83108	1
cg21211748	E2F2	0.99322	1	0.93120	1
cg22568540	NCRNA00181	0.99322	1	0.98781	1
cg06557358	TMEM132E	0.99322	1	0.94664	1
cg26842024	KLF2	0.99322	1	0.86030	1
cg01570885	FAM50B	0.99322	1	0.69717	1
cg07455279	NDUFA3	0.99322	1	0.94664	1
cg04431054	PRRC1	0.99322	1	0.45883	1
cg02654291	C9orf64	0.99322	1	0.83108	1
cg26045434	HR	0.99322	1	0.99096	1
cg00945507	SEC61G	0.99322	1	0.24277	1
cg24262469	TIPARP	0.99322	1	0.51472	1
cg22920873	C7orf55	0.99322	1	0.29217	1
cg20947775	SCD5	0.99322	1	0.98781	1
cg09441152	PQLC1	0.99322	1	0.83108	1
cg15988232	CSPG5	0.99322	1	0.83848	1
cg13460409	DSCR6	0.99322	1	0.83108	1
cg06688848	RSPRY1	0.99322	1	0.83108	1
cg13854874	CHAF1B	0.99322	1	0.37686	1
cg02071305	VPS18	0.99322	1	0.97679	1
cg18573383	KCNC2	0.99322	1	0.84493	1

cg04836038	DOCK9	0.99541	1	0.98781	1
cg00075967	STRA6	0.99841	1	0.83108	1
cg12768605	LYPD5	0.99841	1	0.92597	1
cg27016307	HRC	0.99841	1	0.84399	1
cg22613010	CLCN2	0.99841	1	0.45105	1
cg05921699	CD79A	0.99841	1	0.77491	1
cg01644850	ZNF551	0.99841	1	0.77491	1
cg14163776	ACAP2	0.99841	1	0.97679	1
cg10523019	RHBDD1	0.99841	1	0.97679	1
cg08186124	LZTFL1	0.99841	1	0.76787	1
cg07337598	ANXA9	0.99841	1	0.77491	1
cg11299964	MAPKAP1	0.99918	1	0.83108	1
cg02388150	SFRP1	0.99918	1	0.83108	1
cg22432269	CYFIP1	0.99918	1	0.38421	1
cg19273182	PAPOLG	0.99918	1	0.97679	1
cg03588357	GPR68	0.99918	1	0.77491	1
cg07770222	C8orf31	0.99918	1	0.56676	1
cg01968178	REEP1	0.99918	1	0.40144	1
cg27202708	C1orf65	0.99918	1	0.89000	1
cg04084157	VGF	0.99918	1	0.97679	1
cg03565323	ZNF287	0.99918	1	0.76787	1
cg07388493	NDUFS5	0.99918	1	0.63560	1
cg16547529	KLHL35	0.99918	1	0.60350	1
cg17408647	C7orf44	0.99918	1	0.89967	1
cg21378206	IL1F5	0.99918	1	0.90978	1
cg22679120	SNX8	0.99918	1	0.80849	1
cg14060828	PTH2	0.99918	1	0.84853	1
cg10377274	PATE1	0.99918	1	0.89967	1
cg14654875	NAT15	0.99918	1	0.56676	1
cg10920957	JPH3	0.99918	1	0.51523	1
cg02580606	KRT33B	0.99918	1	0.92597	1
cg08434234	DGKI	0.99918	1	0.98781	1
cg20999813	USP10	0.99918	1	0.83108	1
cg12616277	ESYT3	0.99918	1	0.83108	1
Adist		1			

Adjusted for gender and chronological age.

Supplemental table S6: Overlap of significant CpGs in discovery and validation set.

	Weidner	Hannum	Horvath
total CpGs	99 (61 hypo; 38 hyper)	71 (31 hypo; 40 hyper)	353 (186 hypo; 167 hyper)
significant CpGs in discovery set	27 (26 hypo; 1 hyper $^{\text {8 }}$)	11 (10 hypo; 1 hyper ${ }^{\text {\# }}$)	3 (3 hypo; 0 hyper)
significant CpGs in validation set	11 (9 hypo; 2 hyper)	7 (4 hypo; 3 hyper)	3 (3 hypo; 0 hyer)
overlap	7 (7 hypo; 0 hyper $^{\text {\% }}$)	1 (1 hypo; 0 hyper)	1 (1 hypo; 0 hyper)
p -value for overlap	0.0073	0.414	0.025

This table depicts the number of CpGs of the three age-predictors (with numbers of CpGs that reveal ageassociated hypo- or hyper-methylation upon aging). The number of CpGs that reached statistical significance in the training and validation set of the ESTHER cohort are indicated. We determined the overlap of these two independent datasets and estimated the significance (p-value) by hypergeometric distribution. This measure indicates if the same CpGs are associated with life-expectancy in different datasets.
Furthermore, the probability was estimated for the distribution of hypo- and hypermethylated CpGs (hypogeometric distribution; ${ }^{\S}$ p-value: $3.3^{\star} 10^{-6}$; ${ }^{\%} p$-value: $0.029 ;{ }^{\#} p$-value $=0.0007$). These p-values were calculated for each of the two datasets and the overlap separately.

References of supplemental data

1. Saum KU, Dieffenbach AK, Muller H, Holleczek B, Hauer K, Brenner H. Frailty prevalence and 10-year survival in community-dwelling older adults: results from the ESTHER cohort study. Eur J Epidemiol 2014;29:171-179.
2. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics 2016;8:64.
3. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215.
4. Florath I, Butterbach K, Muller H, Bewerunge-Hudler M, Brenner H. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 2014;23:1186-1201.
5. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol Cell 2013;49:459-367.
6. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14:R115.
7. Lin Q, Weidner CI, Costa IG, Marioni RE, Ferreira MR, Deary IJ, Wagner W. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging (Albany NY) 2016;8:394-401.
8. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 2014;15:R24.
9. Kulathinal S, Karvanen J, Saarela O, Kuulasmaa K. Case-cohort design in practice - experiences from the MORGAM Project. Epidemiol Perspect Innov 2007;4:15.
10. Zhang Y, Breitling LP, Balavarca Y, Holleczek B, Schottker B, Brenner H. Comparison and combination of blood DNA methylation at smoking-associated genes and at lung cancer-related genes in prediction of lung cancer mortality. Int J Cancer 2016;139:2482-2492.
11. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 2014;30:1431-1439.
