Desulfurative Chlorination of Alkyl Phenyl Sulfides

Daniele Canestrari[‡], Stefano Lancianesi[‡], Eider Badiola, Chiara Strinna, Hasim Ibrahim,* and Mauro F. A. Adamo*

Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland hasimibrahim@rcsi.ie madamo@rcsi.ie

Supporting Information

Table of Contents

1. General remarks	S1
2. Materials	S1
3. Optimization of Reaction Conditions with Sulfide 3a	S2
4. Procedures for the preparation of alkyl phenyl sulfides	S3
5. Desulfurative chlorination of alkyl phenyl sulfides	\$14
6. Desulfurative chlorination of enantioenriched sulfides	S24
7. Preparation of side products 6, 7 and characterization of 6a	S26
8. References	S30
9. HPLC traces of optically active compounds	S32
10. Copies of ¹ H NMR and ¹³ C NMR Spectra	S42

1. General remarks

¹H, ¹⁹F and ¹³C NMR spectra were recorded on a Bruker 400 spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent signals for ¹H and ¹³C NMR (¹H NMR: 7.26 ppm for CDCl₃; ¹³C NMR: 77.16 ppm for CDCl₃). ¹³C NMR spectra were acquired with ¹H broad band decoupled mode. Coupling constants (*J*) are in Hz. Melting points were measured using a Stuart scientific melting point apparatus and are uncorrected. Infrared spectra (IR) were recorded with KBr discs using a Bruker Tensor27 FT-IR instrument. High resolution mass spectra were obtained on a Waters Micromass GCT Premier MS spectrometer or on a Bruker micrOTOF-Q III LC-MS spectrometer (APCI method). Optical rotations were measured on a Perkin-Elmer 343 polarimeter. The enantiomeric eccess (*ee*) was determined by chiral stationary phase HPLC using a Shimadzu SIL-20AHT HPLC instrument.

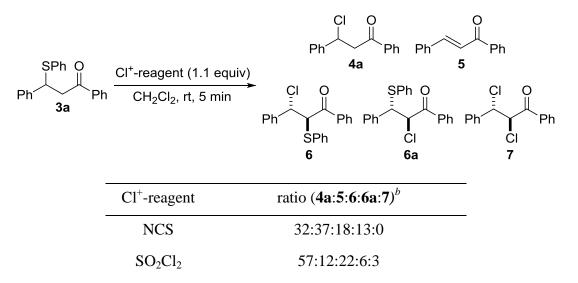
2. Materials

Analytical grade solvents and commercially available reagents were used as received. Dry CH_2Cl_2 was either purchased from commercial sources or freshly distilled over CaH_2 under inert atmosphere. Dry THF was obtained from an Inert Pure Solv Micro drying solvent system. Reactions were monitored by TLC analysis (Merck, silica gel 60 F_{254}). Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm, 230-400 mesh). (Dichloroiodo)benzene was prepared using sodium chlorite according to a modified literature procedure.¹ Cinnamate esters,² sulfide **31** and optically active sulfides (*S*)-**3i**, (*S*)-**3j** and (*S*)-**31** were prepared according to published procedures.³

3. Optimization of Reaction Conditions with Sulfide (3a)

SPh O Ph 3a	PhICl ₂ (1.1 equiv)	Ph H Ph Ph H Ph 4a 5 Cl O Cl O Ph H Ph Ph H Ph SPh Cl 6 7	
entry	solvent	ratio (4a : 5 : 6 : 7) ^b	
1	CH ₂ Cl ₂	76:0:20:4	
2	THF	79:15:6:0	
3	MeCN	complex mixture	
4	EtOAc	68:28:4:0	
5	toluene	80:0:20:0	

CI


Ο

Ο

Table S1. Chlorination of Sulfide (3a) in Non-Purified Solvents^a

^{*a*}Conditions: **3a** (0.5 mmol), PhICl₂ (0.55 mmol), solvent (3 mL, 0.17 M); all reactions proceeded to complete conversion (\geq 98%). ^{*b*}Determined by ¹H NMR of the crude product

Table S2. Chlorination of Sulfide (3a) with NCS and $SO_2Cl_2^a$

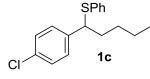
^{*a*}Conditions: **3a** (0.5 mmol), Cl⁺-reagent (0.55 mmol), CH₂Cl₂ (3 mL, 0.17 M); all reactions proceeded to complete conversion (\geq 98%). ^{*b*}Determined by ¹H NMR of the crude product

4. Procedures for the preparation of alkyl phenyl sulfides

4.1. General procedure for the preparation of alkyl phenyl sulfides 1a-d,h-j (GP1)⁴

$$Ar \xrightarrow{\mathsf{OH}} \mathsf{R} \xrightarrow{\mathsf{PhSH} (1.2 \text{ equiv})}_{\mathsf{CH}_2(0.5 \text{ equiv})} \xrightarrow{\mathsf{SPh}}_{\mathsf{Ar}} \xrightarrow{\mathsf{Ar}} \mathsf{R}$$

ZnI₂ (479 mg, 1.5 mmol, 0.5 equiv) was placed in a Schlenk tube and carefully dried under vacuum with a heatgun. Under N₂ atmosphere, dry CH₂Cl₂ (10 mL) and the alcohol (3.0 mmol) were added to the solid. Thiophenol (370 μ L, 396 mg, 3.6 mmol, 1.2 equiv) was added to the obtained suspension and the mixture was stirred at rt until complete consumption of the starting material, as observed by TLC analysis (2-7 h). The reaction mixure was quenched with H₂O (10 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to yield the crude product which was purified by flash column chromatography on silica gel.


Phenyl(1-phenylbutyl)sulfane (1a)

SPh Prepared according to GP1. The reaction was completed within 5 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane) as a colorless oil (552 mg, 76% yield). All analytical data are consistent with those reported in the literature.⁵

(1-(4-Chlorophenyl)ethyl)(phenyl)sulfane (1b)

SPh Prepared according to GP1. The reaction was completed within 6 h. The title compound was isolated by flash column chromatography (silica gel; *n*- C_1 **1b** hexane/Et₂O, 100:0 \rightarrow 99:1) as a colorless oil (291 mg, 39% yield). All analytical data are consistent with those reported in the literature.⁶

(1-(4-Chlorophenyl)pentyl)(phenyl)sulfane (1c)

Prepared according to GP1. The reaction was completed within 5 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/Et₂O, 100:0 \rightarrow 99:1) as a colorless oil (654

mg, 75% yield). IR (neat, cm⁻¹): v 2957, 2931, 2859, 1585, 1490, 1091, 836, 691. ¹H NMR

(400 MHz, CDCl₃): δ 0.85 (t, J = 7.0 Hz, 3H), 1.15–1.37 (m, 4H), 1.78-2.02 (m, 2H), 4.07 (dd, J = 8.8, 6.2 Hz, 1H), 7.12-7.24 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 14.0, 22.5, 29.8, 36.0, 53.2, 127.4, 128.6, 128.8, 129.3, 132.7, 132.7, 134.8, 141.1. HRMS (EI): C₁₇H₁₉ClS [M]⁺ calculated: 290.0896, found: 290.0894.

(1-(4-Methoxyphenyl)pentyl)(phenyl)sulfane (1d)

SPh Prepared according to GP1. The reaction was completed within 4 h. The title compound was isolated by flash column MeO 1d chromatography (silica gel; *n*-hexane/Et₂O, 100:0 \rightarrow 99:1) as a colorless oil (781 mg, 91% yield). All analytical data are consistent with those reported in the literature.⁴

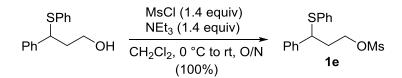
(1-(Naphthalen-1-yl)pentyl)(phenyl)sulfane (1h)

Prepared according to GP1. The reaction was completed within 6 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/Et₂O, 99:1 \rightarrow 95:5) as a colorless oil (689 mg, 75% yield). IR (neat, cm⁻¹): *v* 3102, 2992, 2884, 1583, 1025, 778, 737, 691. ¹H NMR (400 MHz, CDCl₃): δ 0.84 (t, *J* = 7.1 Hz, 3H), 1.24–1.50 (m, 4H), 2.03–2.19 (m, 2H), 5.00 (brs, 1H), 7.12–7.24 (m, 5H), 7.38-7.42 (m, 1H), 7.49–7.56 (m, 3H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.84–7.90 (m, 1H), 8.17 (brs, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 14.1, 22.7, 30.0, 36.0, 125.5, 125.6, 126.2, 127.0, 127.8, 128.9, 129.2, 131.4, 132.2, 134.1, 135.5, 137.6. HRMS (EI): C₂₁H₂₂S [M]⁺ calculated: 306.1442, found: 306.1457.

((4-Bromophenyl)(phenyl)methyl)(phenyl)sulfane (1i)

SPh Prepared according to GP1. The reaction was completed within 5 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/Et₂O, 99:1) as a pale yellow oil (533 mg, 50% yield). IR (neat, cm⁻¹): *v* 3025, 2924, 2854, 1584, 1484, 1451, 1439, 1402, 1072, 1011, 739, 693. ¹H NMR (400 MHz, CDCl₃): δ 5.45 (s, 1H), 7.07–7.44 (m, 14H). ¹³C NMR (101 MHz, CDCl₃): δ 57.1, 121.3, 127.0, 127.6, 128.5, 128.8, 129.0, 130.3, 130.9, 131.8, 135.7, 140.3, 140.6. HRMS (EI): C₁₉H₁₅BrS [M]⁺ calculated: 354.0078, found: 354.0082.

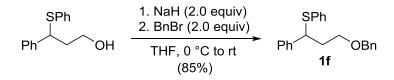
Phenyl(2-phenylpropan-2-yl)sulfane (1j)


SPh Prepared according to GP1. The reaction was completed within 2 h. The title compound was isolated by flash column chromatography (silica gel; *n*-1j hexane/EtOAc, $100:0 \rightarrow 98:2$) as a colorless oil (616 mg, 90% yield). All analytical data are consistent with those reported in the literature.⁷

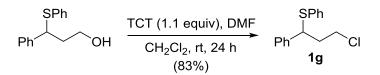
4.2. Synthesis of Sulfides (1e-g)3-Phenyl-3-(phenylthio)propan-1-ol

Ph
$$OEt$$
 $Et_2O, 0 \ C to rt$ $Ph OH$ OEt OE

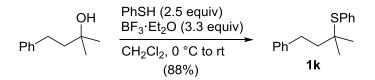
To a stirred solution of sulfide **3d** (572 mg, 2.0 mmol) in dry Et₂O (4 mL) was added dropwise *via* syringe LiAlH₄ (1 mL, 1.0 mmol, 1M solution in Et₂O) at 0 °C. The reaction mixture was allowed to reach rt and stirred for a further 10 h, then carefully quenched with sat. aq. NH₄Cl (10 mL) and extracted with Et₂O (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and the solvent removed *in vacuo*. Purification of the remaining oil by flash column chromatography (silica gel; *n*-hexane/EtOAc, 70:30) afforded the corresponding alcohol as a yellow oil (425 mg, 87% yield). All analytical data are consistent with those reported in the literature.⁸


3-Phenyl-3-(phenylthio)propyl methanesulfonate (1e)

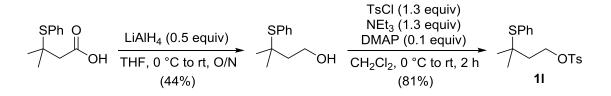
To a stirred solution of 3-phenyl-3-(phenylthio)propan-1-ol (488 mg, 2.0 mmol) and methanesulfonyl chloride (217 μ L, 321 mg, 2.8 mmol, 1.4 equiv) in dry CH₂Cl₂ (5 mL) was added dropwise triethylamine (388 μ L, 283 mg, 2.8 mmol, 1.4 equiv) at 0 °C. The reaction mixture was allowed to reach rt and stirred overnight, then diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with H₂O (3 x


10 mL), brine and dried over Na₂SO₄. The solvent was removed *in vacuo*, giving the title compound as a yellow oil (644 mg, quantitative yield), which was used without further purifications. IR (neat, cm⁻¹): *v* 3028, 2937, 1582, 1351, 1170, 962, 692. ¹H NMR (400 MHz, CDCl₃): δ 2.16-2.54 (m, 2H), 2.90 (s, 3H), 4.13 (ddt, *J* = 8.5, 7.1, 4.2 Hz, 1H), 4.24-4.44 (m, 2H), 7.11-7.38 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ 35.5, 37.3, 49.6, 67.7, 127.8, 127.9, 128.6, 128.8, 129.0, 133.1, 133.8, 140.6. HRMS (EI): C₁₆H₁₈NaO₃S₂ [M + Na]⁺ calculated: 345.0595, found: 345.0588.

(3-benzyloxy-1-phenylpropyl)(phenyl)sulfane (1f)


3-Phenyl-3-(phenylthio)propan-1-ol (243 mg, 1.0 mmol) was dissolved in dry THF (3 mL) at 0 °C, NaH (48 mg, 2.0 mmol, 2.0 equiv) and benzyl bromide (238 μ L, 342 mg, 2.0 mmol, 2.0 equiv) were added and the reaction stirred at rt overnight. The reaction mixture was carefully quenched with sat. aq. NH₄Cl (10 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were dried over Na₂SO₄ and the solvent removed *in vacuo*. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/Et₂O, 99:1) as a colorless oil (284 mg, 85% yield). IR (neat, cm⁻¹): *v* 2992, 1584, 1453, 1103, 1026, 739, 697. ¹H NMR (400 MHz, CDCl₃): δ 2.13-2.22 (m, 1H), 2.30-2.38 (m, 1H), 3.38-3.42 (m, 1H), 3.55-3.59 (m, 1H), 4.41 (dd, *J* = 6.3, 2.6 Hz, 1H), 4.43 (dd, *J* = 19.0, 12.0 Hz, 2H), 7.18-7.37 (m, 15H). ¹³C NMR (101 MHz, CDCl₃): δ 36.4, 50.1, 67.7, 73.1, 127.1, 127.3, 127.7, 127.8, 128.0, 128.5, 128.8, 132.4, 135.0, 138.5, 141.9. HRMS (EI): C₂₂H₂₂OS [M]⁺ calculated: 334.1391, found: 334.1388.

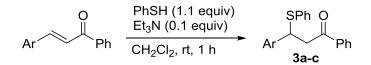
(3-chloro-1-phenylpropyl)(phenyl)sulfane (1g)


2,4,6-Trichloro-[1,3,5]-triazine (TCT, 203 mg, 1.1 mmol, 1.1 equiv) was added to DMF (200 μ L) at rt and the reaction was monitored by TLC analysis until complete disappearance of TCT and the formation of a white solid. CH₂Cl₂ (3 mL) was added, followed by the alcohol (244 mg, 1.0 mmol) and the mixture was stirred at rt for 24 h. The reaction mixture was diluted with H₂O (5 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were washed with sat. aq. Na₂CO₃ (3 x 10 mL), followed by 1M HCl (3 x 10 mL) and brine. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo* to yield the title compound as a colorless oil, which was used without further purifications (218 mg, 83% yield). IR (neat, cm⁻¹): *v* 3059, 2958, 1582, 1438, 1025, 745, 690. ¹H NMR (400 MHz, CDCl₃): δ 2.22-2.53 (m, 2H) 3.40 (ddd, *J* = 11.0, 7.9, 5.8 Hz, 1H), 3.64 (dt, *J* = 11.0, 6.0 Hz, 1H), 4.40 (dd, *J* = 8.6, 6.5 Hz, 1H), 7.12-7.36 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ 38.7, 42.6, 50.4, 127.5, 127.7, 127.9, 128.7, 128.9, 132.7, 134.3, 140.8. HRMS (APCI): C₁₅H₁₅S [M - Cl]⁺ calculated: 227.0889, found: 227.0889.

4.3. Synthesis of (2-methyl-4-phenylbutan-2-yl)(phenyl)sulfane (1k)

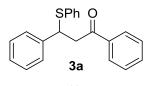
In a Schlenk tube under N₂ atmosphere, the alcohol (510 µL, 493 mg, 3.0 mmol) was dissolved in dry CH₂Cl₂ (50 mL) and thiophenol was added (768 µL, 826 mg, 7.5 mmol, 2.5 equiv). BF₃·Et₂O (1.23 mL, 1.42 g, 10 mmol, 3.3 equiv) was slowly added dropwise *via* syringe at 0 °C and the reaction stirred at 0 °C for 1 h, followed by 6 h at rt. The reaction mixture was quenched with H₂O and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic extracts were washed with 2M NaOH (3 x 15 mL), dried over Na₂SO₄ and the solvent removed *in vacuo*. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 100:0 \rightarrow 90:10) as a colorless oil (676 mg, 88% yield). All analytical data are consistent with those reported in the literature.⁹

4.4. Synthesis of 3-methyl-3-(phenylthio)butyl 4-methylbenzenesulfonate (11)


3-Methyl-3-(phenylthio)butan-1-ol

SPh To a stirred solution of 3-methyl-3-(phenylthio)butanoic acid¹⁰ (420 mg, 2.0 \rightarrow OH mmol) in dry THF (6 mL) was added dropwise *via* syringe LiAlH₄ (1.0 mL, 1.0 mmol, 0.5 equiv, 1M solution in THF) at 0 °C. The reaction mixture was allowed to reach rt and stirred overnight, then carefully quenched with sat. aq. NH₄Cl (5 mL) and extracted with Et₂O (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo* to yield the title compound as a colorless oil, which was used without further purification (172 mg, 44% yield). IR (neat, cm⁻¹): *v* 3346, 3073, 2959, 1126, 1022, 693. ¹H NMR (400 MHz, CDCl₃): δ 1.28 (s, 6H), 1.78 (t, *J* = 6.7 Hz, 2H), 2.04 (brs, 1H), 3.91 (t, *J* = 6.6 Hz, 2H), 7.31-7.47 (m, 3H), 7.50-7.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 29.4, 43.9, 48.0, 60.3, 128.8, 129.1, 131.7, 137.6. MS (EI): *m/z* (%) 163.1 (100) [M – CH₅O]⁻. Anal. Calcd for C₁₁H₁₆OS: C, 67.30; H, 8.22; S, 16.33. Found: C, 67.14; H, 8.35; S, 16.31.

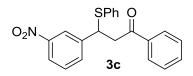
3-Methyl-3-(phenylthio)butyl 4-methylbenzenesulfonate (11)


 29.1, 40.2, 47.3, 68.0, 128.1, 128.8, 129.2, 130.0, 131.4, 133.2, 137.6, 145.0. HRMS (APCI): C₁₈H₂₃O₃S₂ [M + H]⁺ calculated: 351.1093, found: 351.1083.

4.5. General procedure for sulfa-Michael addition to chalcones (GP2)

To a stirred solution of chalcone (5.0 mmol) in CH_2Cl_2 (15 mL) were added thiophenol (561 μ L, 606 mg, 5.5 mmol, 1.1 equiv) and triethylamine (70 μ L, 51 mg, 0.5 mmol, 0.1 equiv) and the reaction mixture was stirred at rt until complete consumption of the starting material was observed by TLC analysis (1 h). The solvent was removed *in vacuo* and the crude reaction mixture was purified by recrystallization from hot MeOH (ca. 100 mL).

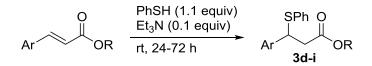
1,3-Diphenyl-3-(phenylthio)propan-1-one (3a)


Prepared according to GP2. The title compound was isolated by recrystallization from hot MeOH as a white solid (1.40 g, 88% yield). All analytical data are consistent with those reported in the

literature.¹¹

3-(4-Fluorophenyl)-1-phenyl-3-(phenylthio)propan-1-one (3b)

SPh O F Brepared according to GP2. The title compound was isolated by recrystallization from hot MeOH as a white solid (1.46 g, 87% yield). Mp: 103-105 °C. IR (KBr, cm⁻¹): v 3071, 2907, 1678, 1512, 1227, 820, 742, 687. ¹H NMR (400 MHz, CDCl₃): δ 3.58 (dd, J = 17.2, 5.8 Hz, 1H), 3.65 (dd, J = 17.2, 8.4 Hz, 1H), 4.95 (dd, J = 8.4, 5.8 Hz, 1H), 6.89-7.02 (m, 2H), 7.21-7.39 (m, 7H), 7.46 (t, J = 7.7 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.80-7.98 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.0. ¹³C NMR (101 MHz, CDCl₃): δ 44.7, 47.6, 115.3 (d, J = 21.5 Hz), 127.7, 128.1, 128.7, 128.9, 129.4 (d, J = 8.1 Hz), 133.0, 133.4, 133.9, 136.6, 137.0 (d, J = 3.2Hz), 161.9 (d, J = 246.0 Hz), 196.8. HRMS (EI): C₂₁H₁₇FOS [M]⁺ calculated: 336.0984, found: 336.0975.


3-(3-Nitrophenyl)-1-phenyl-3-(phenylthio)propan-1-one (3c)

Prepared according to GP2. The title compound was isolated by recrystallization from hot MeOH as a white solid (1.63 g, 90% yield). All analytical data are consistent with those reported in

the literature.¹²

4.6. General procedure for sulfa-Michael addition to cinnamate esters (GP3)

Thiophenol (337 μ L, 364 mg, 3.3 mmol, 1.1 equiv) and triethylamine (42 μ L, 30 mg, 0.3 mmol, 0.1 equiv) were added to the cinnamate ester (3.0 mmol) and the reaction mixture stirred at rt until complete consumption of the starting material was observed by TLC analysis (24-72 h). The crude mixture was purified by flash column chromatography on silica gel to afford the sulfa-Michael adduct.

Ethyl 3-phenyl-3-(phenylthio)propanoate (3d)

SPh O OEt 3d 3dPrepared according to GP3. The reaction was completed within 24 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 95:5) as a colorless oil (704 mg, 82% yield). All analytical data are consistent with those reported in the literature.¹³

Ethyl 3-(phenylthio)-3-(p-tolyl)propanoate (3e)

 $\begin{array}{c} \text{SPh O} \\ \text{OEt} \end{array} \qquad \begin{array}{c} \text{Prepared according to GP3. The reaction was completed in 72 h. The} \\ \text{itle compound was isolated by flash column chromatography (silica gel;$ *n* $-hexane/EtOAc, 98:2) as a colorless oil (711 mg, 79% yield). \\ \text{IR (neat, cm}^{-1}): v 2982, 2925, 1734, 1583, 1514, 1371, 1024, 748, 693. ^1H NMR (400 MHz, CDCl_3): \delta 1.09 (t,$ *J*= 7.1 Hz, 3H), 2.24 (s, 3H), 2.82 (dd,*J*= 15.8, 8.4, Hz, 1H), 2.87 (dd,*J*= 15.8, 7.1 Hz, 1H), 3.91-4.06 (m, 2H), 4.60 (dd,*J* $= 8.4, 7.1 Hz, 1H), 6.98-7.04 (m, 2H), 7.09-7.13 (m, 2H), 7.15-7.21 (m, 3H), 7.25-7.31 (m, 2H). ^{13}C NMR (101 MHz, CDCl_3): \delta 14.1, \\ \end{array}$

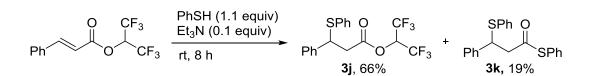
21.1, 41.2, 48.9, 60.6, 127.6, 127.7, 128.9, 129.2, 133.1, 134.1, 137.2, 137.5, 170.8. HRMS (EI): C₁₈H₂₀O₂S [M]⁺ calculated: 300.1184, found: 300.1189.

Ethyl 3-(4-chlorophenyl)-3-(phenylthio)propanoate (3f)

SPh O Prepared according to GP3. The reaction was completed in 24 h. Cl OEt The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2 \rightarrow 95:5) as a colorless oil (904 mg, 94% yield). IR (neat, cm⁻¹) *v*: 3083, 3038, 2906, 1741, 1584, 1492, 1015, 837, 718, 661. ¹H NMR (400 MHz, CDCl₃) δ 1.15 (t, *J* = 7.1 Hz, 3H), 2.85 (dd, *J* = 15.8, 8.8 Hz, 1H), 2.94 (dd, *J* = 15.8, 6.9 Hz, 1H), 4.04 (m, 2H), 4.59 (dd, *J* = 8.8, 6.9 Hz, 1H), 7.12-7.20 (m, 2H), 7.18-7.28 (m, 5H), 7.23-7.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 14.2, 41.0, 48.7, 60.9, 128.2, 128.7, 129.1, 129.2, 133.3, 133.3, 133.7, 139.3, 170.6. HRMS (EI): C₁₇H₁₇ClO₂S [M]⁺ calculated: 320.0638, found: 320.0622.

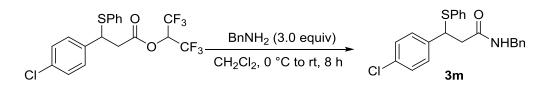
Ethyl 3-(phenylthio)-3-(2,4,5-trifluorophenyl)propanoate (3g)

FSPh O
(OEt)Prepared according to GP3. The reaction was completed in 24 h.
The title compound was isolated by flash column chromatography
(silica gel; *n*-hexane/EtOAc, 98:2→ 95:5) as a colorless oil (612
mg, 60% yield). IR (neat, cm⁻¹): v 3063, 2985, 1737, 1630, 1519,
1334, 751, 693. ¹H NMR (400 MHz, CDCl₃): δ 1.17 (t, J = 7.1 Hz, 3H), 2.85 (dd, J = 16.0,
8.7 Hz, 1H), 2.95 (dd, J = 16.0, 6.9 Hz, 1H), 4.07 (m, 2H), 4.84-4.88 (m, 1H), 6.80-6.87 (m,
1H), 6.99-7.06 (m, 1H), 7.24-7.33 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.0 (dd, J = 21.7, 15.2 Hz), -134.2 (dd, J = 21.7, 4.1 Hz),-118.4 (dd, J = 15.1, 4.1 Hz). ¹³C NMR (101
MHz, CDCl₃): δ 14.2, 40.0, 41.5, 61.1, 105.7 (dd, J = 28.6, 20.8 Hz), 116.6 (dd, J = 19.4, 4.4
Hz), 124.7 (ddd, J = 15.8, 9.2, 4.7 Hz), 128.5, 129.2, 132.6, 133.8, 145.4-148.2 (m), 147.8-
150.7 (m), 155.3 (ddd, J = 246.8, 9.4, 2.7 Hz), 170.1. HRMS (EI): C₁₇H₁₅F₃O₂S [M]⁺
calculated: 340.0745, found: 340.0747.

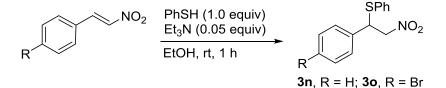

Ethyl 3-(naphthalen-1-yl)-3-(phenylthio)propanoate (3h)

SPh O SPh O OEt 3h Prepared according to GP3. The reaction was completed in 40 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2) as a colorless oil (806 mg, 80% yield). IR (neat, cm⁻¹): v 3049, 2980, 1733, 1578, 1476, 1215, 1161, 769, 737. ¹H NMR (400 MHz, CDCl₃): δ 1.10 (t, J = 7.1 Hz, 3H), 3.11 (d, J = 7.6 Hz, 2H), 3.89-4.14 (m, 2H), 5.50 (t, J = 7.6 Hz, 1H), 7.16-7.25 (m, 3H), 7.23-7.31 (m, 2H), 7.31-7.39 (m, 2H), 7.49 (dd, J = 7.9, 6.7 Hz, 1H), 7.57 (dd, J = 8.4, 6.7 Hz, 1H), 7.74 (dd, J = 5.9, 3.6 Hz, 1H), 7.82-7.89 (m, 1H), 8.29 (d, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 14.1, 41.0, 60.8, 123.3, 124.7, 125.2, 125.8, 126.4, 128.0, 128.4, 128.9, 129.1, 130.9, 133.7, 134.1, 135.9, 171.0. HRMS (EI): C₂₁H₂₀O₂S [M]⁺ calculated: 336.1184, found: 336.1171.

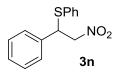
Methyl 3-phenyl-3-(phenylthio)propanoate (3i)


SPh O 3i Wrepared according to GP3. The reaction was completed within 24 h. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 95:5) as a colorless oil (751 mg, 92%) yield). All analytical data are consistent with those reported in the literature.¹⁴

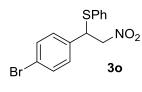
4.7. Synthesis of 1,1,1,3,3,3-hexafluoropropan-2-yl 3-phenyl-3-(phenylthio)propanoate (3j) and S-phenyl 3-phenyl-3-(phenylthio)propanethioate (3k)


Thiophenol (337 µL, 364 mg, 3.3 mmol, 1.1 equiv) and triethylamine (42 µL, 30 mg, 0.3 mmol, 0.1 equiv) were added to 1,1,1,3,3,3-hexafluoropropan-2-yl cinnamate (895 mg, 3.0 mmol) and the reaction mixture was stirred at rt for 8 h. The crude mixture was directly purified by flash column chromatography (silica gel; *n*-hexane/EtOAc, 95:5) to afford as the first fraction sulfide **3j** as a colorless oil (808 mg, 66% yield). All analytical data are consistent with those reported in the literature.³ This was followed by thioester **3k** as a second fraction, isolated as a colorless oil (200 mg, 19% yield). IR (neat, cm⁻¹): *v* 1693, 971, 747, 696 . ¹H NMR (400 MHz, CDCl₃): δ 3.28 (d, *J* = 7.6 Hz, 2H), 4.76 (t, *J* = 7.6 Hz, 1H), 7.21-7.47 (m, 15H). ¹³C NMR (101 MHz, CDCl₃): δ 49.4, 49.5, 127.4, 127.8, 127.9, 128.0, 128.7, 129.1, 129.3, 129.6, 133.3, 133.7, 134.5, 140.0, 194.8. HRMS (EI): C₂₁H₁₈OS₂Na [M + Na]⁺ calculated: 373.0697, found: 373.0707.

4.8. Synthesis of *N*-benzyl-3-(4-chlorophenyl)-3-(phenylthio)propanamide (3m)


Benzylamine (491 µL, 482 mg, 4.5 mmol, 3.0 equiv) was added at 0 °C to a solution of the 1,1,1,3,3,3-hexafluoroester³ (664 mg, 1.5 mmol) in CH₂Cl₂ (10 mL) and the reaction mixture was stirred at rt for 8 h. The solvent was removed *in vacuo* and the crude mixture was purified by flash column chromatography (silica gel; *n*-hexane/EtOAc, 70:30) to afford sulfide **3m** as a white solid (544 mg, 95% yield). Mp: 113-115 °C. IR (KBr, cm⁻¹): *v* 3309, 3094, 1644, 1566, 1493, 1265. ¹H NMR (400 MHz, CDCl₃): δ 2.61 (dd, *J* = 14.4, 9.1 Hz, 1H), 2.83 (dd, *J* = 14.4, 6.3 Hz, 1H), 4.18 (dd, *J* = 14.8, 5.2 Hz, 1H), 4.38 (dd, *J* = 14.8, 6.3 Hz, 1H), 4.67 (dd, *J* = 9.1, 6.3 Hz, 1H), 5.63 (brs, 1H), 6.94 (dd, *J* = 7.2, 2.1 Hz, 2H), 7.12-7.30 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): δ 43.7, 49.2, 127.7, 128.0, 128.8, 128.9, 129.1, 129.2, 133.0, 133.4, 133.6, 137.8, 139.6, 169.4. HRMS (EI): C₂₂H₂₀ClNOS [M]⁺ calculated: 381.0954, found: 381.0964.

4.9. General procedure for the sulfa-Michael addition to nitrostyrenes.


To a stirred solution of β -nitrostyrene (2.5 mmol) in EtOH (5 mL) were added thiophenol (255 μ L, 275 mg, 2.5 mmol, 1.0 equiv) and triethylamine (17 μ L, 13 mg, 0.125 mmol, 0.05 equiv) and the reaction mixture stirred at rt until complete consumption of the starting material was observed by TLC analysis (1 h). The solvent was removed *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel to afford nitro sulfides **3n** and **3o**.

(2-Nitro-1-phenylethyl)(phenyl)sulfane (3n)

The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2) as a white solid (544 mg, 84% yield). All analytical data are consistent with those reported in the literature.¹⁵

(1-(4-Bromophenyl)-2-nitroethyl)(phenyl)sulfane (30)

The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 95:5) as a white solid (735 mg, 87% yield). All analytical data are consistent with those reported in the literature.¹⁵

5. Desulfurative chlorination of alkyl phenyl sulfides

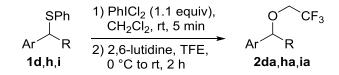
5.1. Synthesis of iodobenzene dichloride

CI-I-CI Prepared by a modified literature procedure.¹ In a one-neck round-bottom flask protected from light by aluminium foil, NaClO₂ (5.66 g, 50 mmol, 5.0 equiv) was added portionwise over 30 min to a vigorously stirred emulsion of iodobenzene (1.12 mL, 2.04 g, 10 mmol) and diluted HCl (20 mL conc. HCl in 50 mL H₂O). The resulting mixture was stirred for a further 3 h. The precipitated yellow solid was collected by filtration in a Buchner funnel and washed with H₂O (500 mL), carefully breaking the clumps eventually formed with a spatula. The yellow solid is then washed with ice cold *n*-hexane (300 mL) and dried overnight at rt in the dark to afford PhICl₂ as a fluffy yellow solid (2.53 g, 92% yield). PhICl₂ was stored protected from light at 0 °C, and used within three weeks of preparation for chlorinations with sulfides **3**.

5.2. General procedures for desulfurative chlorination with PhICl₂

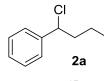
$$R^{1} \xrightarrow{R^{3}} R^{2} \xrightarrow{PhICl_{2} (1.1 \text{ equiv})} R^{1} \xrightarrow{CI} R^{3}$$

Liquid phenyl sulfide (GP4-A)


PhICl₂ (151 mg, 0.55 mmol, 1.1 equiv) was added to a stirred solution of the sulfide (0.50 mmol) in dry CH_2Cl_2 (3 mL) under N_2 atmosphere, which resulted in a color change to

orange. The reaction was stirred at rt for 5 min, concentrated *in vacuo* and purified by flash column chromatography on silica gel to afford the corresponding chlorinated compound.

Solid phenyl sulfide (GP4-B)


Dry CH_2Cl_2 (3 mL) was added to a stirred mixture of the sulfide (0.50 mmol) and PhICl₂ (151 mg, 0.55 mmol, 1.1 equiv) under N₂ atmosphere, which resulted in a color change to orange. The reaction was stirred at rt for 5 min, concentrated *in vacuo* and purified by flash column chromatography on silica gel to afford the corresponding chlorinated compound.

Chlorination followed by solvolysis with 2,2,2-trifluoroethanol $({\rm GP5})^{16}$

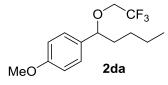
PhICl₂ (151 mg, 0.55 mmol, 1.1 equiv) was added to a stirred solution of the sulfide (0.50 mmol) in dry CH₂Cl₂ (3 mL) under N₂ atmosphere. The reaction was stirred at rt for 5 min and concentrated *in vacuo*. The residue was redissolved in TFE (5 mL) and 2,6-lutidine (175 μ L, 3.0 equiv) was added at 0 °C. The mixture was stirred for 2 h then HCl (5%, 5 mL) and *n*-hexane (20 mL) were added. The aqueous layer was extracted with *n*-hexane (2 x 20 mL) and the combined organic layers washed with HCl (5%, 2 x 5 mL), brine (3 x 10 mL), dried over Na₂SO₄ and concentrated *in vacuo* to yield the crude product which was purified by flash column chromatography on silica gel.

(1-Chlorobutyl)benzene (2a)

Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane) as a colorless oil (60 mg, 71% yield). All analytical data are consistent with those reported in the

literature.¹⁷

1-Chloro-4-(1-chloroethyl)benzene (2b)


Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane) as a colorless oil (63 mg,

72% yield). All analytical data are consistent with those reported in the literature.¹⁸

1-Chloro-4-(1-chloropentyl)benzene (2c)

CI Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane) as a colorless oil (74 mg, 68% yield). IR (neat, cm⁻¹): v 2974, 1597, 1493, 1410, 1094, 1015. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, J = 7.1 Hz, 3H), 1.22-1.49 (m, 4H), 1.94-2.16 (m, 2H), 4.81 (dd, J = 7.9, 6.8 Hz, 1H), 7.28-7.36 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 14.0, 22.2, 29.3, 39.8, 63.0, 128.5, 128.9, 134.0, 140.7. HRMS (EI): C₁₁H₁₄Cl₂ [M]⁺ calculated: 216.0473, found: 216.0469.

1-Methoxy-4-(1-(2,2,2-trifluoroethoxy)pentyl)benzene (2da)

Prepared according to GP5. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2) as a pale yellow oil (104 mg, 75% yield). All analytical data are read in the literature 16

consistent with those reported in the literature.¹⁶

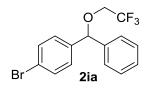
3-Chloro-3-phenylpropyl methanesulfonate (2e)

Prepared according to GP4-A. The title compound was isolated by flash OMs column chromatography (silica gel; *n*-hexane/EtOAc, 80:20) as a yellow oil (116 mg, 93% yield). IR (neat, cm⁻¹): *v* 3031, 2938, 1455, 1351, 1170, 965, 911. ¹H NMR (400 MHz, CDCl₃): δ 2.41-2.54 (m, 2H), 3.03 (s, 3H), 4.32 (dt, *J* = 10.3, 5.2 Hz, 1H), 4.46 (ddd, *J* = 10.2, 7.5, 5.5 Hz, 1H), 5.06 (dd, *J* = 8.4, 6.2 Hz, 1H), 7.31-7.45 (m, 5H). ¹³C NMR (101 MHz, CDCl₃): δ 37.5, 39.3, 59.1, 67.0, 127.0, 129.0, 129.1, 140.5. MS (EI): *m*/*z* (%) 459.4 (100) [2M - HCl]⁻. Anal. Calcd for C₁₀H₁₃ClO₃S (248.72): C, 48.29; H, 5.27; Cl, 14.25; S, 12.89. Found: C, 48.69; H, 5.30; Cl, 13.99; S, 13.23.

(3-(Benzyloxy)-1-chloropropyl)benzene (2f)

CI Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/Et₂O, 99:1) as a colorless oil (95 mg, 73% yield). IR (neat, cm⁻¹): *v* 2991, 1495, 1454, 1361, 1105, 1028, 737, 697. ¹H NMR (400 MHz, CDCl₃): δ 2.25-2.46 (m, 2H), 3.48-3.52 (m, 1H), 3.67-3.71 (m, 1H), 4.50 (dd, *J* = 18.1, 11.8 Hz, 2H), 5.15 (dd, *J* = 8.8, 5.9 Hz, 1H), 7.27-7.43

(m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ 40.2, 60.5, 67.2, 73.3, 127.2, 127.8, 128.4, 128.6, 128.8, 138.4, 141.7. HRMS (EI): C₁₆H₁₇ClO [M]⁺ calculated: 260.0968, found: 260.1028. Anal. Calcd for C₁₈H₁₇ClO (260.76): C, 73.70; H, 6.57. Found: C, 73.12; H, 6.58.


(1,3-Dichloropropyl)benzene (2g)

Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 95:5) as a yellow oil (79 mg, 84% yield). All analytical data are consistent with those reported in the literature.¹⁹

1-(1-(2,2,2-Trifluoroethoxy)pentyl)naphthalene (2ha)

Prepared according to GP5. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2) as a yellow oil (104 mg, 70% yield). IR (neat, cm⁻¹): *v* 3066, 2960, 2863, 1511, 1279, 1162, 982, 968, 801, 779. ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, *J* = 7.1 Hz, 3H), 1.29-1.44 (m, 3H), 1.48-1.62 (m, 1H), 1.90 (ddd, *J* = 14.6, 10.2, 4.9 Hz, 1H), 2.01 (ddd, *J* = 17.9, 9.3, 4.9 Hz, 1H), 3.58-3.68 (m, 1H), 3.72-3.82 (m, 1H), 5.12 (dd, *J* = 8.2, 4.9 Hz, 1H), 7.42-7.57 (m, 4H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.89 (dd, *J* = 6.6, 2.9 Hz, 1H), 8.14 (d, *J* = 7.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ -74.0. ¹³C NMR (101 MHz, CDCl₃): δ 14.1, 22.7, 28.5, 37.4, 66.3 (q, *J* = 34.4 Hz), 82.2, 123.3, 124.5, 125.6, 125.9, 126.3, 128.6, 129.1, 131.0, 134.1, 136.6 HRMS (EI): C₁₇H₁₉F₃O [M]⁺ calculated: 296.1388, found: 296.1390.

1-Bromo-4-(phenyl(2,2,2-trifluoroethoxy)methyl)benzene (2ia)

Prepared according to GP5. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2) as a yellow oil (136 mg, 79% yield). IR (neat, cm⁻¹): v 3089, 3066, 2938, 1488, 1454, 1278, 1166, 1118, 755, 700. ¹H NMR (400 MHz, CDCl₃):

δ 3.76 (q, *J* = 8.6 Hz, 2H), 5.44 (s, 1H), 7.15-7.21 (m, 2H), 7.23-7.34 (m, 5H), 7.39-7.45 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -73.8. ¹³C NMR (101 MHz, CDCl₃): δ 66.2 (q, *J* = 34.3 Hz), 84.1, 122.2, 124.2 (q, *J* = 278.8 Hz), 127.3, 128.6, 128.8, 129.0, 131.9, 139.9, 140.0. HRMS (EI): C₁₅H₁₂BrF₃O [M]⁺ calculated: 344.0024, found: 344.0019.

(2-Chloropropan-2-yl)benzene (2j)

CI Prepared according to GP4-A. ¹H NMR yield was determined by adding i,1,2,2-tetrachloroethane (53 µL, 84 mg, 0.50 mmol, 1.0 equiv) as internal standard (5.92 ppm, 2H) to the crude product redissolved in CDCl₃ (85% yield). All analytical data are consistent with those reported in the literature.²⁰

(3-Chloro-3-methylbutyl)benzene (2k)

CI Prepared according to GP4-A. Styrene (63 μ L, 57 mg, 0.55 mmol, 1.1 equiv) was added *via* syringe to quench the reaction. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane) as a colorless oil (27 mg, 30% yield). All analytical data are consistent with those reported in the

literature.²¹

3-Chloro-3-methylbutyl 4-methylbenzenesulfonate (2l)

Prepared according to a modified GP4-A. To an oven-dried 25 mL Schlenk CL tube containing a stirred solution of the sulfide 11 (175 mg, 0.5 mmol) in dry TsO 21 CH₂Cl₂ (3 mL) was added via syringe a solution of PhICl₂ (151 mg, 0.55 mmol, 1.1 equiv) in dry CH₂Cl₂ (3 mL) rapidly (ca. 5 sec/mL) under N₂ atmosphere. After stirring for 10 s, the reaction was quenched with H₂O (6 mL) and extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were washed with H₂O (2 x 5 mL), brine, dried over Na₂SO₄ and the solvent removed *in vacuo*. Purification of the remaining oil by flash column chromatography (silica gel; n-hexane/Et₂O, 95:5) afforded the title compound as a yellow oil (80 mg, 58% yield). IR (neat, cm⁻¹): v 2923, 2853, 1598, 1456, 1361,1174, 968. ¹H NMR (400 MHz, CDCl₃): δ 1.57 (s, 6H), 2.13 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H), 4.26 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H), 4.26 (t, J = 6.8 Hz, 2H) 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 21.8, 33.0, 44.2, 67.6, 68.0, 128.1, 130.1, 133.0, 145.1. HRMS (APCI): C₁₂H₁₆ClO₃S [M - H]⁺ calculated: 275.0467, found: 275.0439.

1-Chloroadamantane (2m)

Prepared according to GP4-B. Adamantan-1-yl(phenyl)sulfane²² (244 mg, 1.0 mmol) was allowed to react with PhICl₂ (303 mg, 1.1 mmol, 1.1 equiv) in dry CH₂Cl₂ (6 mL). The reaction mixture was quenched with H₂O (5 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were washed with brine,

dried over Na_2SO_4 and the solvent was removed *in vacuo*. The title compound was isolated

by flash column chromatography (silica gel; *n*-hexane) as a white solid (118 mg, 69% yield). All analytical data are consistent with those reported in the literature.²³

3-Chloro-1,3-diphenylpropan-1-one (4a)

Clower Prepared according to GP4-B. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/Et₂O, 90:10) as a white solid (103 mg, 84% yield). All analytical data are consistent with those reported in the literature.²⁴

3-Chloro-3-(4-fluorophenyl)-1-phenylpropan-1-one (4b)

CI O Prepared according to GP4-B. The title compound was isolated by recrystallization (CH₂Cl₂/*n*-hexane, 1:3) as a white solid (96 mg, 73% yield). Mp: 113-115 °C. IR (KBr, cm⁻¹): *v* 2909, 1687, 1605, 1511, 1365, 1225, 839, 765, 689. ¹H NMR (400 MHz, CDCl₃): δ 3.62 (dd, *J* = 17.3, 6.2 Hz, 1H), 3.93 (dd, *J* = 17.3, 7.6 Hz, 1H), 5.60 (dd, *J* = 7.6, 6.2 Hz, 1H), 6.99-7.12 (m, 2H), 7.42-7.54 (m, 4H), 7.54-7.64 (m, 1H), 7.95 (dd, *J* = 8.3, 1.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -113.1. ¹³C NMR (101 MHz, CDCl₃): δ 48.4, 56.8, 115.7 (d, *J* = 21.7 Hz), 128.2, 128.8, 128.9 (d, *J* = 8.9 Hz), 133.7, 136.4, 136.9 (d, *J* = 3.3 Hz), 162.6 (d, *J* = 247.9 Hz), 195.6. HRMS (EI): C₁₅H₁₂CIFO [M]⁺ calculated: 262.0561, found: 262.0552.

3-Chloro-3-(3-nitrophenyl)-1-phenylpropan-1-one (4c)

CI O Prepared according to GP4-B. The title compound was isolated by recrystallization (CH₂Cl₂/*n*-hexane, 1:3) as a white solid (62 mg, 43% yield). Mp: 111-114 °C. IR (KBr, cm⁻¹): v 3069, 2921, 1684, 1530, 1447, 1417, 1350, 713, 685. ¹H NMR (400 MHz, CDCl₃): δ 3.72 (dd, J = 6.8, 17.5 Hz, 1H), 3.98 (dd, J = 17.5, 7.0 Hz, 1H), 5.68 (dd, J = 7.0, 6.8 Hz, 1H), 7.47-7.61 (m,

4H), 7.84 (d, J = 7.7 Hz, 1H), 7.89-8.00 (m, 2H), 8.18 (dd, J = 8.2, 2.2 Hz, 1H), 8.39 (t, J = 2.0 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 48.3, 56.1, 122.4, 123.6, 128.3, 129.0, 129.9, 133.6, 134.0, 136.2, 143.3, 148.6, 195.2. HRMS (APCI): C₁₅H₁₂NO₃ [M - Cl]⁺ calculated: 254.0817, found: 254.0822.

Ethyl 3-chloro-3-phenylpropanoate (4d)

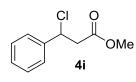
 $Cl ext{O}$ Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 80:20) as a yellow oil (87 mg, 82% yield). All analytical data are consistent with those reported in the literature.²⁵

Ethyl 3-chloro-3-(p-tolyl)propanoate (4e)

CI O Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 80:20 \rightarrow 70:30) as a colorless oil (96 mg, 85% yield). IR (neat, cm⁻¹): *v* 3027, 2996, 2903, 2861, 1727, 1642, 1514, 1033. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.1 Hz, 3H), 2.35 (s, 3H), 3.01 (dd, *J* = 15.9, 5.9 Hz, 1H), 3.17 (dd, *J* = 15.9, 9.0 Hz, 1H), 4.16 (dq, *J* = 7.1, 2.7 Hz, 2H), 5.33 (dd, *J* = 9.0, 5.9 Hz, 1H), 7.14-7.20 (m, 2H), 7.28-7.33 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 14.3, 21.3, 45.0, 58.3, 61.1, 127.0, 129.6, 137.6, 138.8, 169.7. HRMS (EI): C₁₂H₁₅ClO₂ [M]⁺ calculated: 226.0761, found: 226.0761.

Ethyl 3-chloro-3-(4-chlorophenyl)propanoate (4f)

Prepared according to GP4-A. The title compound was isolated by OEt flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 80:20) **4f** as a pale yellow oil (99 mg, 80% yield). IR (neat, cm⁻¹): *v* 2984, 1738, 1497, 1095, 1017. ¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, *J* = 7.1 Hz, 3H), 3.00 (dd, *J* = 16.0, 6.3 Hz, 1H), 3.15 (dd, *J* = 16.0, 8.6 Hz, 1H), 3.96-4.31 (m, 2H), 5.31 (dd, *J* = 8.6, 6.3 Hz, 1H), 7.28-7.52 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 14.2, 44.9, 57.2, 61.2, 128.5, 129.1, 134.6, 138.9, 169.3. HRMS (EI): C₁₁H₁₂Cl₂O₂ [M]⁺ calculated: 246.0214, found: 246.0213.


Ethyl 3-chloro-3-(2,3,5-trifluorophenyl)propanoate (4g)

CI O Prepared according to GP4-A. The title compound was isolated by F GEt flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 90:10 \rightarrow 70:30) as a colorless oil (96 mg, 72% yield). IR (neat, cm⁻¹): *v* 1737, 1631, 1520, 1431, 882. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.1 Hz, 3H), 3.02 (dd, *J* = 16.2, 6.3 Hz, 1H), 3.13 (dd, *J* = 16.2, 8.5 Hz, 1H), 4.16 (m, 2H), 5.55 (dd, *J* = 8.5, 6.3 Hz, 1H), 6.94 (dt, *J* = 9.7, 6.7 Hz, 1H), 7.32 (ddd, *J* = 10.6, 8.5, 6.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 14.2, 43.7, 50.1 (d, *J* = 3.0 Hz), 61.4, 106.1 (dd, *J* = 28.0, 21.0 Hz), 116.7 (ddd, J = 20.4, 4.5, 1.5 Hz), 124.2 (ddd, J = 15.3, 9.6, 4.8 Hz), 147.1 (ddd, J = 246.2, 12.7, 3.6 Hz), 150.3 (ddd, J = 253.6, 14.4, 12.4 Hz), 154.8 (ddd, J = 248.5, 9.5, 2.8 Hz), 168.9. HRMS (EI): C₁₁H₁₀ClF₃O₂ [M]⁺ calculated: 266.0321, found: 266.0314.

Ethyl 3-chloro-3-(naphthalen-1-yl)propanoate (4h)

Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 70:30) as a colorless oil (106 mg, 81% yield). IR (neat, cm⁻¹): v 2984, 2939, 1737, 1599, 1512, 1372, 1032, 948, 779, 735. ¹H NMR (400 MHz, CDCl₃): δ 1.26 (t, *J* = 7.1 Hz, 3H), 3.26 (dd, *J* = 16.0, 5.0 Hz, 1H), 3.40 (dd, *J* = 16.0, 9.4 Hz, 1H), 4.16-4.29 (m, 2H), 6.22 (dd, *J* = 9.4, 5.0 Hz, 1H), 7.43-7.59 (m, 2H), 7.57-7.66 (m, 1H), 7.69 (d, *J* = 7.2 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 8.24 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 14.2, 43.9, 54.5, 61.2, 123.0, 124.4, 125.4, 126.1, 126.9, 129.2, 129.6, 130.3, 134.0, 135.6, 169.9. HRMS (EI): C₁₅H₁₅ClO₂ [M]⁺ calculated: 262.0761, found: 262.0763.

Methyl 3-chloro-3-phenylpropanoate (4i)

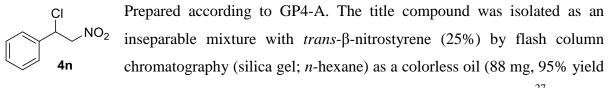
Prepared according to GP4-A. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/EtOAc, 98:2) as a colorless oil (85 mg, 86% yield). All analytical data are consistent with literature ²⁶

those reported in the literature.²⁶

1,1,1,3,3,3-Hexafluoropropan-2-yl 3-chloro-3-phenylpropanoate (4j)

S-Phenyl 3-chloro-3-phenylpropanethioate (4k)

Prepared according to GP4-B; the reaction was quenched with styrene (63 µL, 57 mg, 0.55 mmol, 1.1 equiv) prior to evaporation of the solvent. The title compound was isolated by flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 80:20) as a pale yellow oil (108 mg, 78% yield). IR (neat, cm⁻¹): *v* 1703, 1478, 1455, 1441, 1175, 979, 747, 697. ¹H NMR (400 MHz, CDCl₃): δ 3.31 (dd, *J* = 15.6, 5.9 Hz, 1H), 3.50 (dd, *J* = 15.6, 8.6 Hz, 1H), 5.39 (dd, *J* = 8.6, 5.9 Hz, 1H), 7.26-7.51 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ 52.8, 57.7, 127.1, 128.9, 128.9, 129.4, 129.8, 134.5, 140.0, 193.6. HRMS (EI): C₁₅H₁₃ClOS [M]⁺ calculated: 276.0376, found: 276.0375.

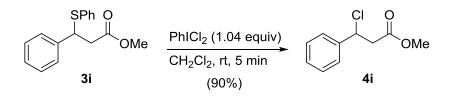

N-(3-Chloro-3-phenylpropanoyl)benzamide (4l)

CI O Prepared according to GP4-B. The title compound was isolated by flash column chromatography (silica gel; CH₂Cl₂/EtOAc, 95:5) as a white solid (98 mg, 72% yield). Mp: 125-127 °C. IR (neat, cm⁻¹): v 3278, 1635, 1572, 1454, 1424, 1029, 695, 643. ¹H NMR (400 MHz, CDCl₃): δ 2.91 (dd, J = 14.5, 5.7 Hz, 1H), 2.99 (dd, J = 14.5, 8.8 Hz, 1H), 4.44 (d, J = 5.7 Hz, 2H), 5.46 (dd, J = 8.8, 5.7 Hz, 1H), 5.77 (brs, 1H), 7.13-7.19 (m, 2H), 7.27-7.42 (m, 8H). ¹³C NMR (101 MHz, CDCl₃): δ 43.8, 47.5, 59.2, 127.0, 127.6, 127.8, 128.7, 128.8, 128.9, 137.9, 140.6, 168.8. HRMS (EI): C₁₆H₁₆CINO [M]⁺ calculated: 273.0920, found: 273.0927.

N-Benzyl-3-chloro-3-(4-chlorophenyl)propanamide (4m)

CI O Prepared according to GP4-B. The title compound was isolated by flash column chromatography (silica gel; CH₂Cl₂/EtOAc, 95:5) as a white solid (116 mg, 75% yield). Mp: 126-128 °C. IR (neat, cm⁻¹): v 3304, 1643, 1557, 1493, 1090, 839. ¹H NMR (400 MHz, CDCl₃): δ 2.86 (dd, J = 14.5, 6.0 Hz, 1H), 2.98 (dd, J = 14.5, 8.6 Hz, 1H), 4.36-4.47 (m, 2H), 5.42 (dd, J = 8.6, 6.0 Hz, 1H), 5.82 (brs, 1H), 7.09-7.19 (m, 2H), 7.22-7.42 (m, 7H). ¹³C NMR (101 MHz, CDCl₃): δ 43.9, 47.6, 58.3, 127.8, 128.5, 128.9, 129.1, 134.6, 137.8, 139.2, 168.3. HRMS (EI): C₁₆H₁₅Cl₂NO [M]⁺ calculated: 307.0531, found: 307.0524.

(1-Chloro-2-nitroethyl)benzene (4n)



based on 4n). All analytical data are consistent with those reported in the literature.²⁷

1-Bromo-4-(1-chloro-2-nitroethyl)benzene (40)

Cl Prepared according to GP4-A. The title compound was isolated by recrystallization (CH₂Cl₂/*n*-hexane, 1:3) as a white solid (73 mg, 55% yield). Mp: 79-81 °C. IR (neat, cm⁻¹): *v* 1552, 1375, 1073, 1012, 825, 717, 519. ¹H NMR (400 MHz, CDCl₃): δ 4.76 (dd, J = 13.5, 6.0 Hz, 1H), 4.89 (dd, J = 13.5, 8.8 Hz, 1H), 5.52 (dd, J = 8.8, 6.0 Hz, 1H), 7.30-7.33 (m, 2H), 7.51-7.61 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 56.1, 80.6, 124.1, 129.0, 132.7, 135.0. MS (EI): *m/z* (%) 227 (100) [M – HCl]⁺, 184 (32) [M – Br]⁺. Anal. Calcd for C₈H₇BrClNO₂ (264.50): C, 36.33; H, 2.67; N, 5.30. Found: C, 36.53; H, 2.61; N, 5.07.

5.3. Large scale chloriantion of β -sulfido ester (3i)

To an oven-dried 100 mL Schlenk tube containing a stirred solution of sulfide **3i** (1.43 g, 5.0 mmol) in dry CH₂Cl₂ (25 mL) was added PhICl₂ (1.43 g, 5.2 mmol, 1.04 equiv) under N₂ atmosphere, which resulted in a color change to orange. After stirring the reaction mixture for 5 min at rt, styrene (630 μ L, 572 mg, 5.5 mmol, 1.1 equiv) was added *via* syringe to quench the liberated PhSCl, which led to an immediate fading of the orange color. Evaporation of the solvent *in vacuo* and purification by flash column chromatography (silica gel; *n*-hexane/EtOAc, 99:1) gave chloride **4i** as a colorless oil (893 mg, 90% yield). All analytical data are consistent with those reported in the literature.²⁶

6. Desulfurative chlorination of enantioenriched sulfides

6.1. Synthesis of enantioenriched sulfides

(S)-3-Phenyl-3-(phenylthio)propan-1-ol

SPh The procedure was similar to that of (±)-3-phenyl-3-(phenylthio)propan-1-Ph OH ol. (S)-**3j** (326 mg, 0.8 mmol) was reacted for 3 h with LiAlH₄ (400 μ L, 0.4 mmol, 0.5 equiv, 1M solution in THF) in dry THF (2 mL) to give the title compound (195 mg, quantitative yield).⁸

(-)-(S)-3-Phenyl-3-(phenylthio)propyl methanesulfonate (-)-(S)-1e

The procedure was identical to that of (\pm) -1e. (*S*)-3-Phenyl-3-Ph OMs (phenylthio)propan-1-ol (146 mg, 0.6 mmol) was reacted with methanesulfonyl chloride (62 µL, 92 mg, 0.8 mmol, 1.4 equiv) and triethylamine (111 µL, 81 mg, 0.8 mmol, 1.4 equiv) in CH₂Cl₂ (2 mL) to give the title compound (164 mg, 85% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 85:15, 0.4 mL/min, 210 nm): t_r (major) = 34.3 min; t_r (minor) = 35.9 min: 97% *ee*. $[\alpha]_D^{20} = -105.4$ (*c* 0.13, CHCl₃).

(-)-(S)-(3-Chloro-1-phenylpropyl)(phenyl)sulfane (-)-(S)-1g

SPh The procedure was identical to that of (\pm) -**1g**. (*S*)-3-Phenyl-3-(phenylthio)propan-1-ol (326 mg, 0.8 mmol) in CH₂Cl₂ (3 mL) was reacted with TCT (166 mg, 0.9 mmol, 1.1 equiv) in DMF (160 µL) to give the title compound (160 mg, 76% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK OD-H, *n*-hexane/*i*-PrOH, 98:2, 0.5 mL/min, 220 nm): t_r (major) = 15.8 min; t_r (minor) = 17.1 min: 97% *ee*. $[\alpha]_D^{20} = -112.0$ (*c* 0.10, CHCl₃).

6.2. Synthesis of enantioenriched chlorides

(+)-(R)-Methyl 3-chloro-3-phenylpropanoate (+)-(R)-4i

PrOH, 97:3, 0.75 mL/min, 210 nm): t_r (major) = 7.5 min; t_r (minor) = 10.1 min: 84% *ee*. $[\alpha]_D^{20} = +66.4$ (*c* 2.4, CHCl₃).

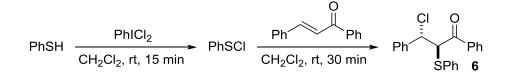
(+)-(R)-1,1,1,3,3,3-Hexafluoropropan-2-yl 3-chloro-3-phenylpropanoate (+)-(R)-4j

 $\begin{array}{ccc} \underset{r}{\underset{l}{\text{C}}}{\underset{l}{\text{C}}} & \underset{r}{\underset{l}{\text{C}}} & \underset{r}{\underset{l}{\text{C}}} & \underset{r}{\underset{l}{\text{C}}} & \underset{r}{\underset{l}{\text{C}}} & \underset{r}{\underset{r}{\text{The procedure was identical to that of of (\pm)-4j. (S)-3j (204 mg, 0.5 mmol)} & \underset{r}{\underset{r}{\text{mol}}} & \underset{r}{\underset{mol}} & \underset{r}{\underset{mol}} & \underset{r}{\underset{mol}} & \underset{r}{\underset{mol}} & \underset{mol}{\underset{mol}} & \underset{mol}{\underset$

(+)-(*R*)-*N*-Benzyl-3-chloro-3-phenylpropanamide (+)-(*R*)-4l

 $\begin{array}{l} \begin{array}{c} \underset{(+)}{(+}{\underset{(+)}{(+)}{\underset{(+)}{\atop_{(+)}{\atop_{(+)}{(+}{\\{(+)}{\atop_{(+)}{\atop_{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{\atop_{(+)}{(+}{\\{(+)}{(+)}{(+}{\\{(+)}{(+)}{(+}{\\{(+)}{(+)}{(+}{,}{\\{(+)}{(+}{,}{\\{(+)}{(+}{,}{\\{(+)}{(+}{,}{\\{(+)}{(+)}{(+}{,}{\\{(+)}{(+)}{(+}{,}{\\{(+)}{(+)}{(+)}{(+}{,}{\\{(+)}{(+)}{(+)}{(+)}{(+}{,}{\\{(+)}{(+}{,}{\\{(+)}{(+}{+}{\\{(+)}{(+}{,}{($

(+)-(*R*)-3-Chloro-3-phenylpropyl methanesulfonate (+)-(*R*)-2e

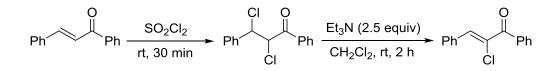

The procedure was identical to that of (\pm) -2e. (*S*)-1e (161 mg, 0.5 mmol) Ph OMs (+)-(*R*)-2e was reacted with PhICl₂ (151 mg, 0.55 mmol, 1.1 equiv) in dry CH₂Cl₂ (6 mL) to give the title compound (116 mg, 93% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 90:10, 1.0 mL/min, 210 nm): t_r (major) = 14.4 min; t_r (minor) = 15.5 min: 69% *ee*. $[\alpha]_D^{20} = +50.7$ (*c* 0.14, CHCl₃).

(+)-(*R*)-(1,3-Dichloropropyl)benzene (+)-(*R*)-2g

The procedure was identical to that of of (±)-2g. (S)-1g (144 mg, 0.55 mmol) Ph C_{I} was reacted with PhICl₂ (165 mg, 0.6 mmol, 1.1 equiv) in dry CH₂Cl₂ (6 mL) (+)-(*R*)-2g to give the title compound (87 mg, 84% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK OD-H, *n*-hexane/*i*-PrOH, 98:2, 0.5 mL/min, 220 nm): t_r (minor) = 15.6 min; t_r (major) = 17.2 min: 63% *ee.* $[\alpha]_{D}^{20} = +49.1$ (*c* 0.22, CHCl₃). Enantioenriched (+)-(*R*)-2g has previously been described.²⁸

7. Preparation of side products (6), (7) and characterization of (6a)

7.1. Synthesis of anti-3-chloro-1,3-diphenyl-2-(phenylthio)propan-1-one (6)

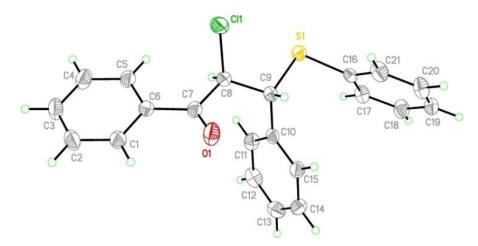


To an oven-dried 50 mL Schlenk tube containing a stirred solution of thiophenol (112 µl, 121 mg, 1.1 mmol, 1.1 equiv) in dry CH₂Cl₂ (6 mL) was added PhICl₂ (302 mg, 1.1 mmol, 1.1 equiv) at rt under N₂ atmosphere. After 15 min, *trans*-chalcone (208 mg, 1.0 mmol) was added to the orange solution and the reaction stirred for a further 30 min. The solvent was removed *in vacuo* and the title compound isolated by recrystallization from *n*-hexane (50 mL, -20 °C) as a white solid (205 mg, 58% yield). Mp: 79-81 °C. IR (neat, cm⁻¹): *v* 1552, 1375, 1073, 1012, 825, 717, 519. ¹H NMR (400 MHz, CDCl₃): δ 5.04 (d, *J* = 11.1 Hz, 1H), 5.44 (d, *J* = 11.1 Hz, 1H), 6.80-6.90 (m, 2H), 7.05-7.15 (m, 2H), 7.19-7.28 (m, 1H), 7.36-7.40 (m, 3H), 7.43-7.56 (m, 4H), 7.58-7.68 (m, 1H), 7.96-8.08 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 58.5, 61.3, 128.7, 128.8, 128.9, 128.9, 129.0, 129.1, 129.2, 131.5, 133.7, 135.0, 136.3, 138.4, 193.6. HRMS (EI): C₂₁H₁₇ClOS [M]⁺ calculated: 352.0689, found: 352.0690.

7.2. anti-2,3-Dichloro-1,3-diphenylpropan-1-one (7)

 $\begin{array}{c|c|c|c|c|c|c|} \hline CI & O & Isolated from a large scale chlorination of sulfide$ **3a**(2.5 mmol) by flash column chromatography (silica gel;*n* $-hexane/Et₂O 90:10) as a white solid (21 mg, 3% yield). All analytical data are consistent with those reported in the literature.²⁹ \\ \end{array}$

7.3. Synthesis of *syn*-2-chloro-1,3-diphenyl-3-(phenylthio)propan-1-one (6b)(Z)-2-Chloro-1,3-diphenylprop-2-en-1-one

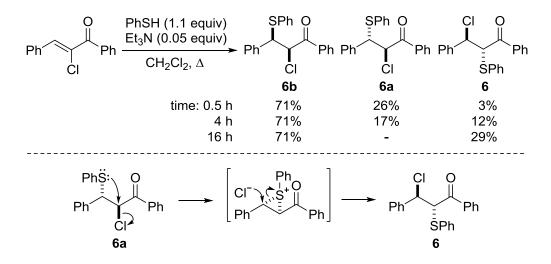


In a 25 mL round-bottom flask, SO_2Cl_2 (10 mL) was added to *trans*-chalcone (1.04 g, 5.0 mmol) and the reaction mixture stirred at rt for 30 min. Concentration *in vacuo* yielded 2,3-dichloro-1,3-diphenylpropan-1-one as crude product. This material was dissolved in CH₂Cl₂ (15 mL), triethylamine (1.73 mL, 1.26 g, 12.5 mmol, 2.5 equiv) was added and the reaction mixture stirred at rt for 2 h. The reaction was quenched with HCl (5%, 10 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were washed with H₂O (3 x 10 mL), brine and dried over Na₂SO₄. The solvent was removed *in vacuo* and the title compound isolated by flash column chromatography (silica gel; *n*-hexane/CH₂Cl₂, 3:1) as a pale yellow oil (1.08 g, 89% yield). All analytical data are consistent with those reported in the literature.³⁰

syn-2-Chloro-1,3-diphenyl-3-(phenylthio)propan-1-one (6b)

To a stirred solution of (*Z*)-2-chloro-1,3-diphenylprop-2-en-1-one (485 mg, 2.0 mmol) in CH₂Cl₂ (6 mL) were added thiophenol (225 μ L, 242 mg, 2.2 mmol, 1.1 equiv) and I₂ (51 mg, 0.2 mmol, 0.1 equiv) at 0 °C and the reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was quenched with sat. aq. Na₂S₂O₃ (10 mL) and extracted with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to yield the crude product, which contained *syn*-chloro sulfide **6b** as the sole stereoisomeric product. Recrystallization (CH₂Cl₂/*n*-hexane, 1:5) gave the title compound as a white solid (578 mg, 82% yield). *Syn* configuration was confirmed by X-ray analysis of crystals obtained from CH₂Cl₂/*n*-hexane. Mp: 134-136 °C. IR (KBr, cm⁻¹): *v* 3060, 3030, 1686, 1594, 1449, 1273, 974. ¹H NMR (400 MHz, CDCl₃): δ 4.90 (d, *J* = 10.0 Hz, 1H), 5.54

(d, J = 10.0 Hz, 1H), 7.06-7.16 (m, 5H), 7.17-7.24 (m, 3H), 7.27-7.33 (m, 2H), 7.41 (t, J = 7.8 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.81 (d, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 56.9, 59.3, 127.9, 128.2, 128.4, 128.6, 128.8, 128.9, 128.9, 133.2, 134.0, 134.1, 134.9, 138.7, 192.1. HRMS (APCI): C₂₁H₁₇OS [M - Cl]⁺ calculated: 317.1000, found: 317.0995.



Molecular structure of **6b** with atomic displacement parameters shown at 50% probability.³¹

7.4. ¹H NMR characterization of *anti*-3-chloro-1,3-diphenyl-2-(phenylthio)propan-1-one (6a) observed in the chlorination of sulfide (3a) with NCS and SO₂Cl₂

The synthesis of the unstable *anti*-chloro sulfide **6a** was attempted by several methods. Attempted α -chlorination of sulfide **3a** by a deprotonation/chlorination sequence using several bases gave *trans*-chalcone - the product of a retro sulfa-Michael addition.

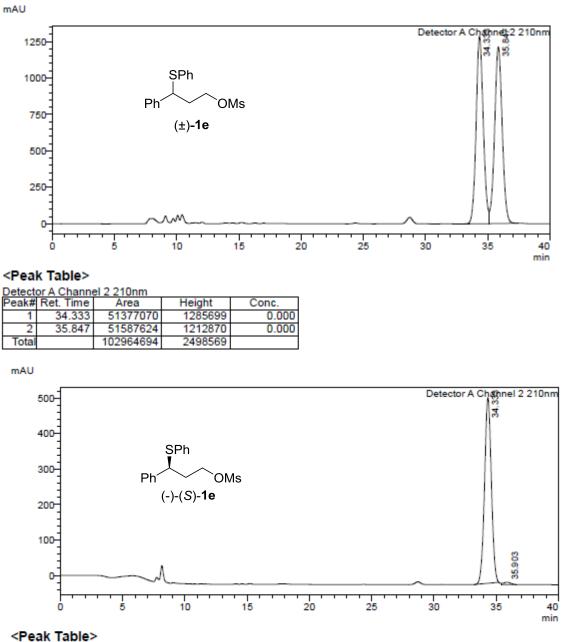
Triethylamine catalyzed 1,4-addition of PhSH to (*Z*)-2-chloro-1,3-diphenylprop-2-en-1-one gave an insperable mixture of *syn*-chloro sulfide **6b**, *anti*-chloro sulfide **6a** and its rearranged thermodynamically more stable *anti*-chloro sulfide **6**.³² After stirring at reflux for 16 h, **6b**

and 6 were the only detectable chloro sulfide products.

To a stirred solution of (*Z*)-2-chloro-1,3-diphenylprop-2-en-1-one (121 mg, 0.5 mmol) in CH₂Cl₂ (3 mL) were added thiophenol (56 μ L, 61 mg, 0.55 mmol, 1.1 equiv) and triethylamine (3.5 μ L, 2.5 mg, 0.025 mmol, 0.05 equiv) and the reaction mixture was stirred at reflux for 16 h. Aliquots (150 μ L) were removed *via* syringe at regular intervals for NMR monitoring. The aliquot was concentrated *in vacuo*, 1,1,2,2-tetrachloroethane (50 μ L, 0.5 M solution in CDCl₃, 0.025 mmol) was added as standard and the mixture dissolved in CDCl₃ before recording a ¹H NMR spectrum for product ratio analysis. The reaction mixture was concentrated *in vacuo* to afford an inseparable mixture of chloro sulfides **6b** and **6**. Characteristic signals for **6a**: ¹H NMR (400 MHz, CDCl₃): δ 4.86 (d, *J* = 11.0 Hz, 1H), 5.53

(d, *J* = 11.0 Hz, 1H).

8. References

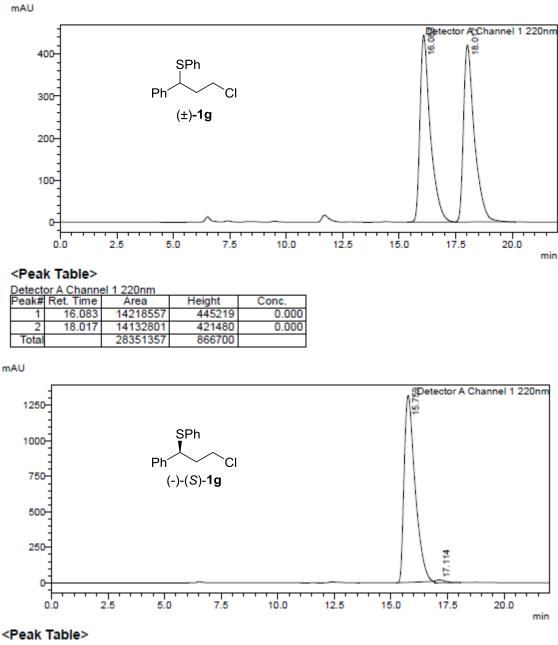

- 1. Zhao, X.-F.; Zhang, C. Synthesis 2007, 2007, 551–557.
- List, B.; Doehring, A.; Fonseca, M. T. H.; Wobser, K.; van Thienen, H.; Torres, R. R.; Galilea, P. L. Adv. Synth. Catal. 2005, 347, 1558–1560.
- 3. Fang, X.; Li, J.; Wang, C.-J. Org. Lett. 2013, 15, 3448–3451.
- 4. Guindon, Y.; Frenette, R.; Fortin, R.; Rokach, J. J. Org. Chem. 1983, 48, 1357–1359.
- 5. Miyake, H.; Yamamura, K. Bull. Chem. Soc. Jpn. 1986, 59, 89–91.
- Cabrero-Antonino, J. R.; Leyva-Pérez, A.; Corma, A. Adv. Synth. Catal. 2012, 354, 678–687.
- 7. Girijavallabhan, V.; Alvarez, C.; Njoroge, F. G. J. Org. Chem. 2011, 76, 6442–6446.
- Rizzo, P. V. S., Boarin, L. A., Freitas, I. O. M., Gomes, R. S., Beatriz, A., Rinaldi, A. W., Domingues, N. L. C. *Tetrahedron Lett.* 2014, 55, 430-434.
- 9. Babin, D.; Fourneron, J. D.; Harwood, L. M.; Julia, M. Tetrahedron 1981, 37, 325–332.
- Gao, S.; Tseng, C.; Tsai, C. H.; Yao, C. *Tetrahedron* 2008, 64, 1955-1961.
 Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67, 3700–3704.
- 12. Guha, C.; Mondal, R.; Pal, R.; Mallik, A. K. J. Chem. Sci. 2013, 125, 1463-1470.
- Chu, C.-M.; Huang, W.-J.; Lu, C.; Wu, P.; Liu, J.-T.; Yao, C.-F. *Tetrahedron Lett.* 2006, 47, 7375–7380.
- 14. Nishimura, K.; Tomioka, K. J. Org. Chem. 2002, 67, 431-434.
- 15. Choudhary, G.; Peddinti, R. K. Green Chem. 2011, 13, 276-282.
- 16. Shi, L.; Horn, M.; Kobayashi, S.; Mayr, H. Chem. Eur. J. 2009, 15, 8533-8541.
- 17. Mayr, H.; Striepe, W. J. Org. Chem. 1983, 48, 1159-1165.
- Onishi, Y.; Ogawa, D.; Yasuda, M.; Baba, A. J. Am. Chem. Soc. 2002, 124, 13690– 13691.
- Ayala, C. E.; Villalpando, A.; Nguyen, A. L.; McCandless, G. T.; Kartika, R. Org. Lett.
 2012, 14, 3676-3679.
- 20. Strazzolini, P.; Giumanini, A. G.; Verardo, G. Tetrahedron 1994, 50, 217–254.
- 21. Someya, H.; Yorimitsu, H.; Oshima, K. Tetrahedron 2010, 66, 5993–5999.
- 22. Movassagh, B.; Soleiman-Beigi, M. Monatsh. Chem. 2009, 140, 409-411.
- 23. Wang, Z.; Zhu, L.; Yin, F.; Su, Z; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258–4263.
- 24. Miyahara, Y.; Ito, Y. N. J. Org. Chem. 2014, 79, 6801-6807.

- Yasuda, M.; Yamasaki, S.; Onishi, Y.; Baba, A. J. Am. Chem. Soc. 2004, 126, 7186– 7187.
- 26. Tan, E. W.; Chan, B.; Blackman, A. G. J. Am. Chem. Soc. 2002, 124, 2078–2079.
- 27. Taniguchi, T.; Fujii, T.; Ishibashi, H. J. Org. Chem. 2010, 75, 8126-8132.
- Zenzola, M.; Degennaro, L.; Trinchera, P.; Carroccia, L.; Giovine, A.; Romanazzi, G.; Mastrorilli, P.; Rizzi, R.; Pisano, L.; Luisi, R. *Chem. Eur. J.* 2014, 20, 12190-12200.
- 29. Xue, H.; Tan, H.; Wei, D.; Wei, Y.; Lin, S.; Liang, F.; Zhao, B. *RSC Adv.* **2013**, *3*, 5382–5385.
- 30. Concellón, J. M.; Huerta, M. Tetrahedron 2002, 58, 7775-7780.
- 31. CCDC 1469634 contains the supplementary crystallographic data for **6b**.
- 32. Göttlich, R. Science of Synthesis 2007, 35, 219–223.

9. HPLC traces of optically active compounds

HPLC traces of (±)-1e and (-)-(*S*)-1e

CHIRALPAK IB-H, n-hexane/i-PrOH, 85:15, 0.4 mL/min, 210 nm

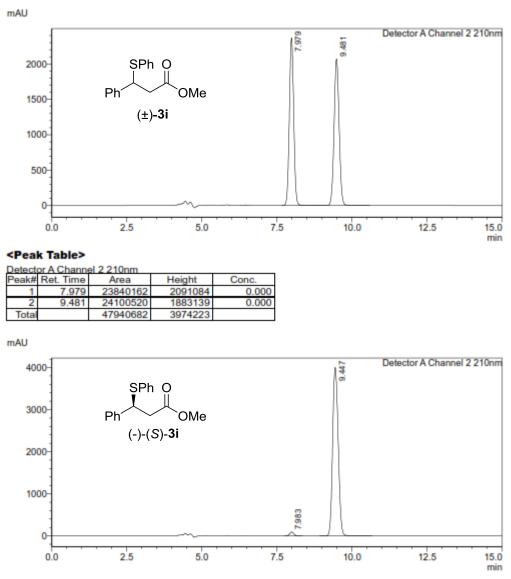


Detector A Channel 2 210nm

Detector A Channel 2 2 Tohm				
Peak#	Ret. Time	Area	Height	Conc.
1	34.333	19875117	523820	0.000
2	35.903	263142	6432	0.000
Total		20138259	530252	

HPLC traces of (±)-1g and (-)-(S)-1g

CHIRALPAK OD-H, n-hexane/i-PrOH, 98:2, 0.5 mL/min, 220 nm

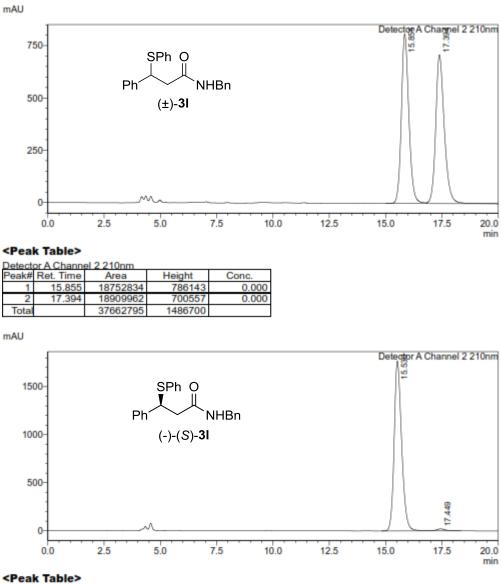


ctor A Channel 1 220nm

Detector A Channel 1 220nm				
Peak#	Ret. Time	Area	Height	Conc.
1	15.759	44373241	1317215	0.000
2	17.114	592667	21029	0.000
Total		44965908	1338244	

HPLC traces of (±)-3i and (-)-(S)-3i

CHIRALPAK IB-H; n-hexane/iPrOH, 97:3; 0.75 mL/min; 210 nm

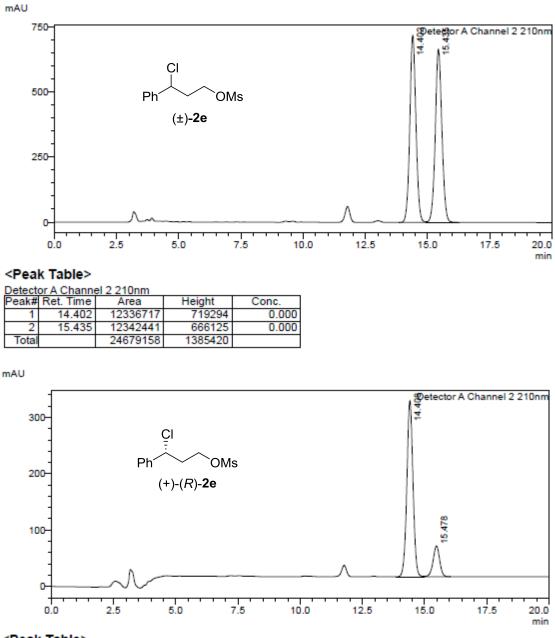


<Peak Table>

Detector A Channel 2 210nm				
Peak#	Ret. Time	Area	Height	Conc.
1	7.983	860711	75460	0.000
2	9.447	51658038	3771772	0.000
Total		52518749	3847232	

HPLC traces of (±)-3l and (-)-(S)-3l

CHIRALPAK IB-H; n-hexane/iPrOH, 85:15; 0.75 mL/min; 210 nm

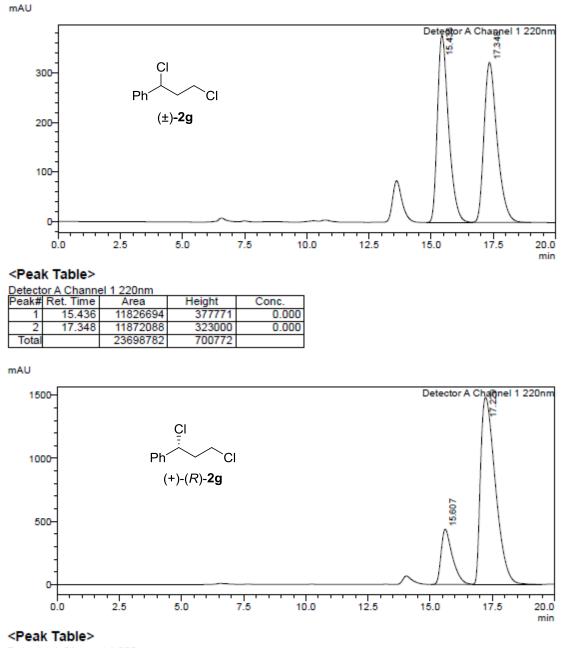


Delect	or A Channi			
Peak#	Ret. Time	Area	Height	Conc.
1	15.530	40768598	1726860	0.000
2	17.449	552034	20136	0.000
Total		41320632	1746995	

2 240---

HPLC traces of (±)-2e and (+)-(*R*)-2e

CHIRALPAK IB-H, n-hexane/i-PrOH, 90:10, 1.0 mL/min, 210 nm



<Peak Table>

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	14.408	5354557	312112	0.000		
2	15.478	997364	54565	0.000		
Total		6351921	366677			

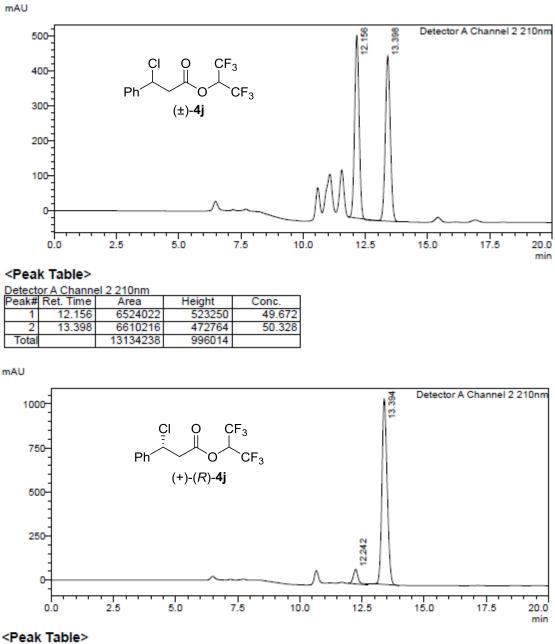
HPLC traces of (\pm) -2g and (+)-(R)-2g


CHIRALPAK OD-H, n-hexane/i-PrOH, 98:2, 0.5 mL/min, 220 nm

Detector A Channel 1 220nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	15.607	13818207	437180	18.298		
2	17.229	61698910	1482809	81.702		
Total		75517117	1919988			

HPLC traces of (±)-4i and (+)-(R)-4i

CHIRALPAK IB-H; n-hexane/i-PrOH, 97:3; 0.75 mL/min; 210 nm

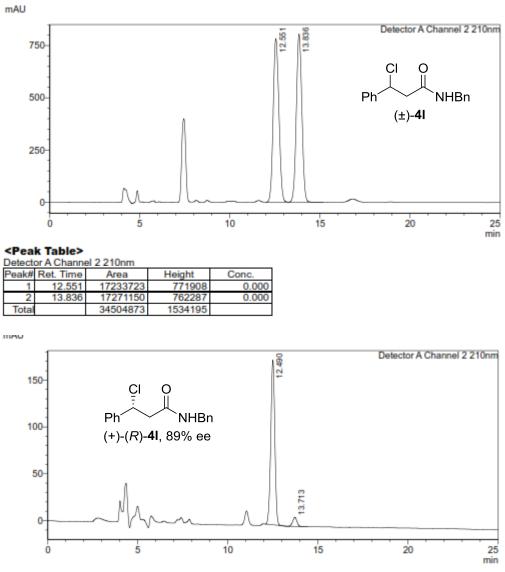

<Peak Table>

Detect	or A Chann	erzziunm		
Peak#	Ret. Time	Area	Height	Conc.
1	7.523	15060226	1383198	0.000
2	10.130	1309328	109250	0.000
Total		16369554	1492448	

040

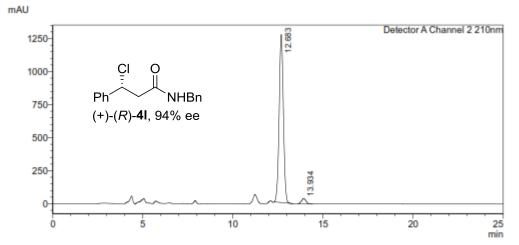
HPLC traces of (±)-4j and (+)-(R)-4j

CHIRALPAK IB-H, n-hexane/i-PrOH, 98:2, 0.5 mL/min, 210 nm



Detector A Channel 2 210nm

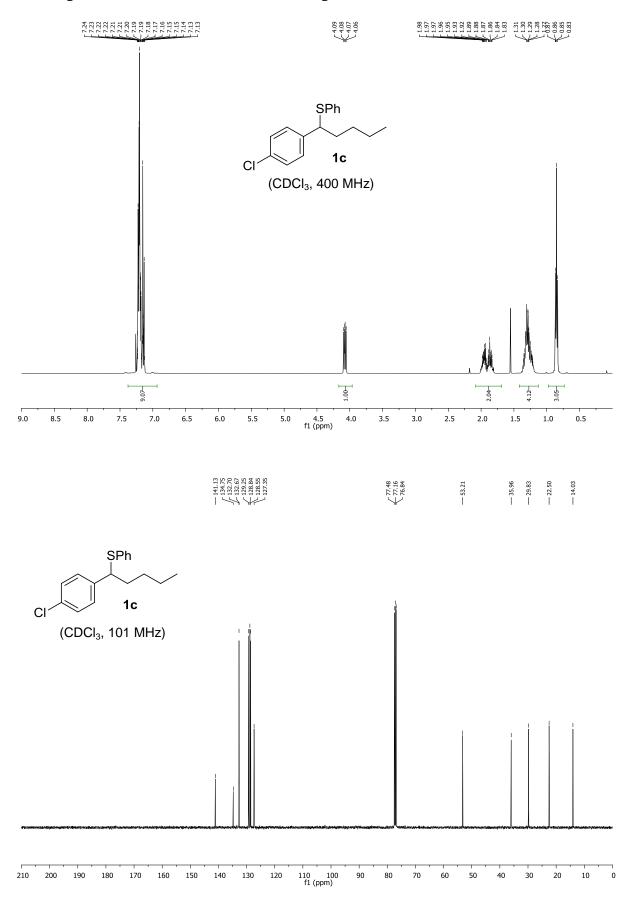
Detector A channel 2 2 form						
Peak#	Ret. Time	Area	Height	Conc.		
1	12.242	1139453	82666	6.847		
2	13.394	15502395	1053761	93.153		
Total		16641848	1136427			

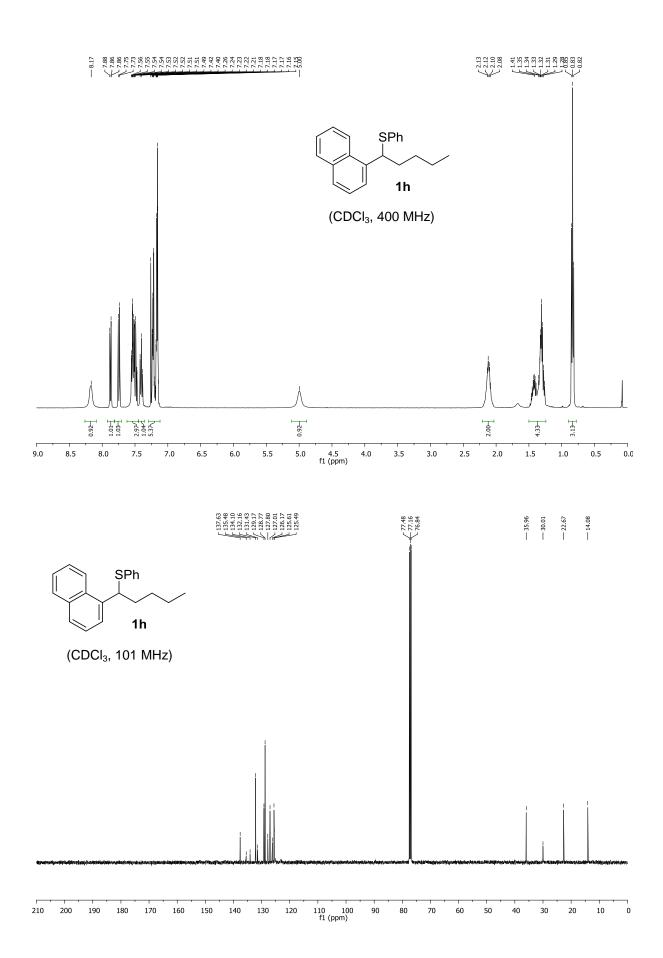

HPLC traces of (\pm) -4l and (+)-(R)-4l

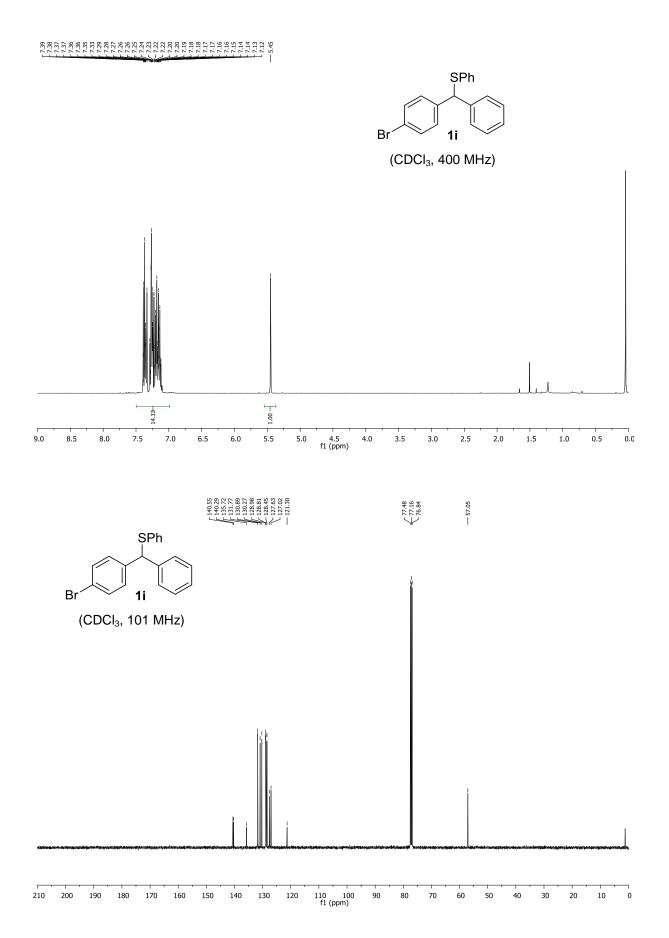
CHIRALPAK IB-H; n-hexane/EtOH, 90:10; 0.75 mL/min; 210 nm

<Peak Table>

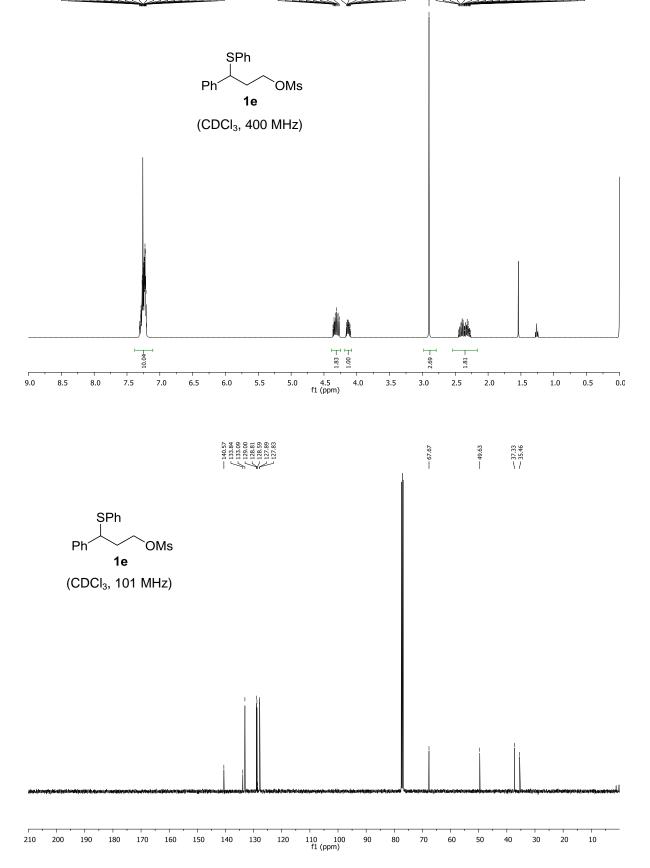
Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	12.490	2728125	162577	0.000		
2	13.713	158969	9474	0.000		
Total		2887094	172051			

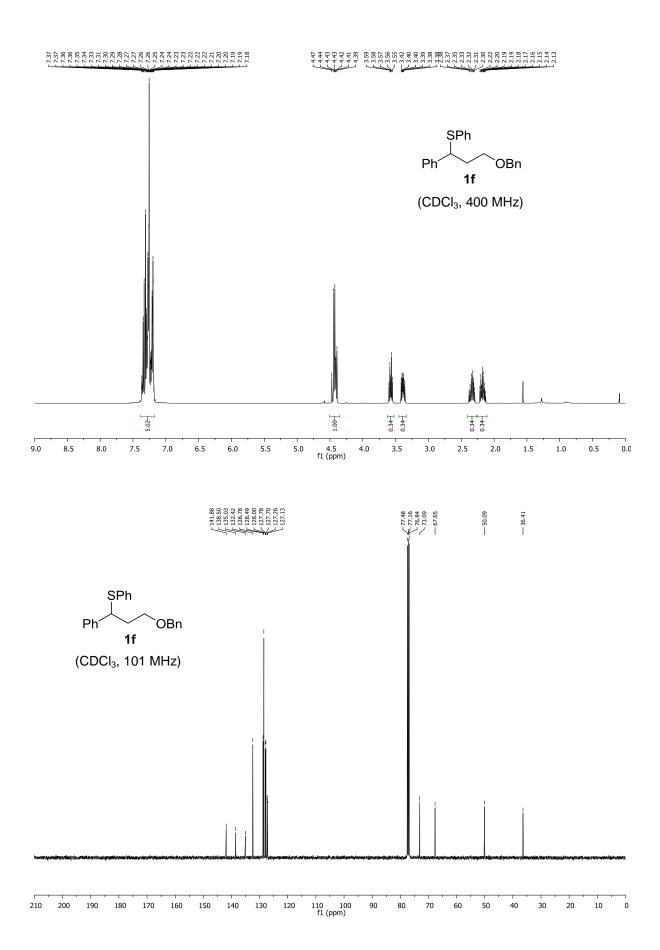


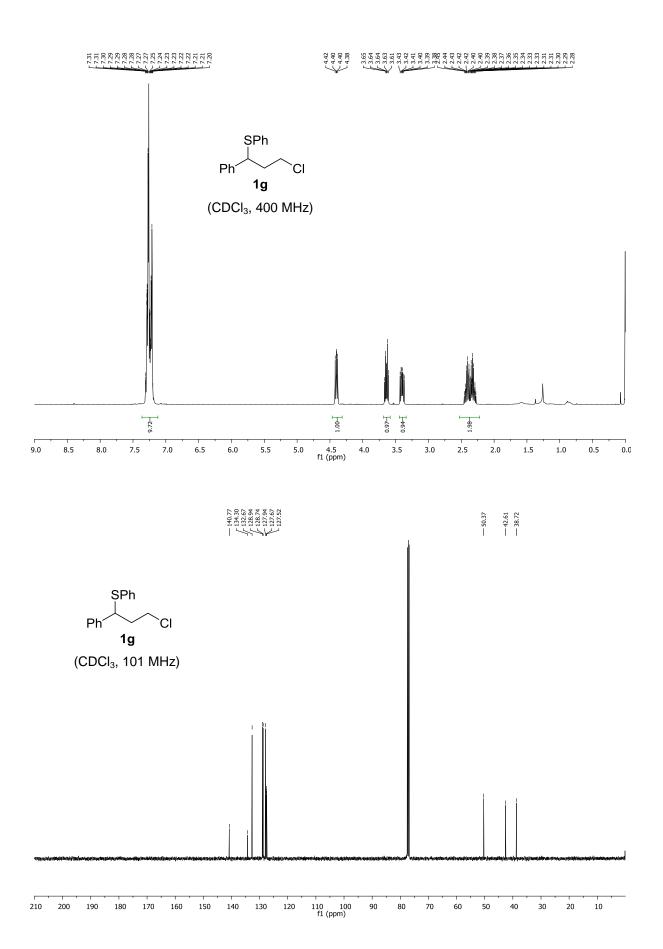

<Peak Table>

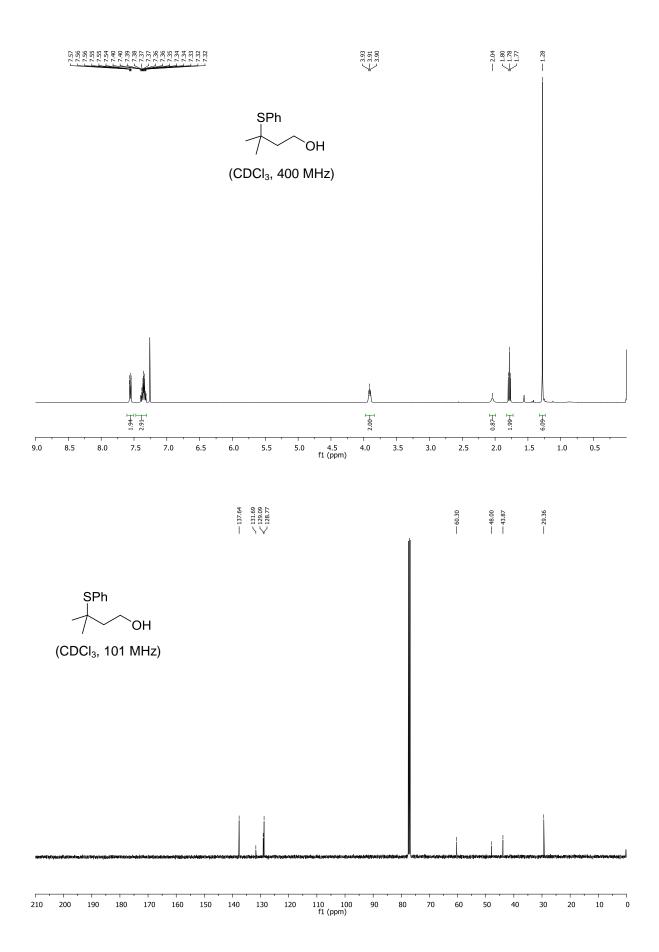

Detector A Channel 2 210nm

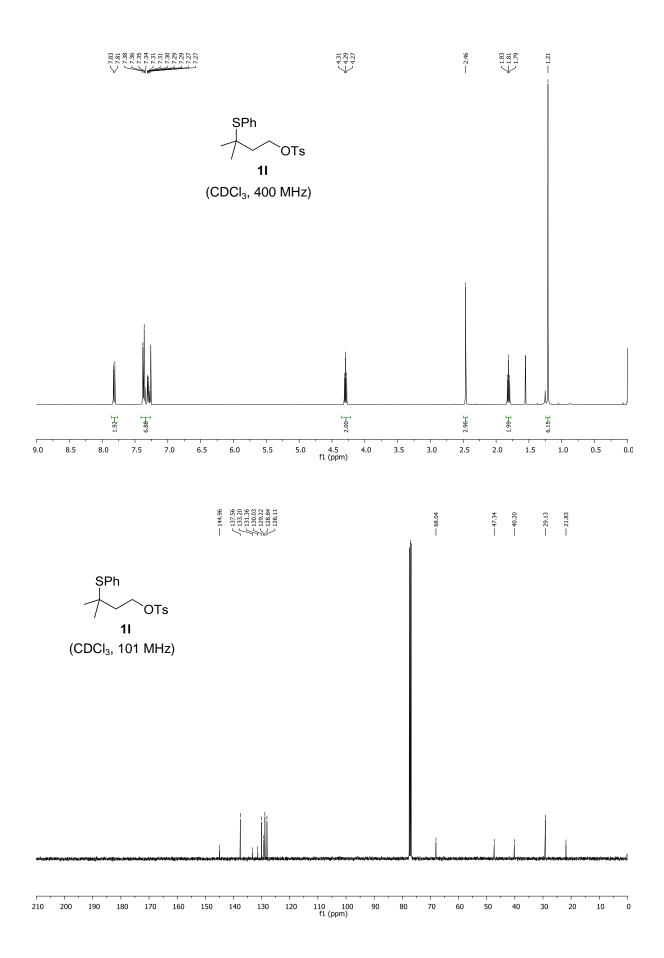
Peak#	Ret. Time	Area	Height	Conc.
1	12.683	20655202	1192055	0.000
2	13.934	677996	38229	0.000
Total		21333198	1230284	

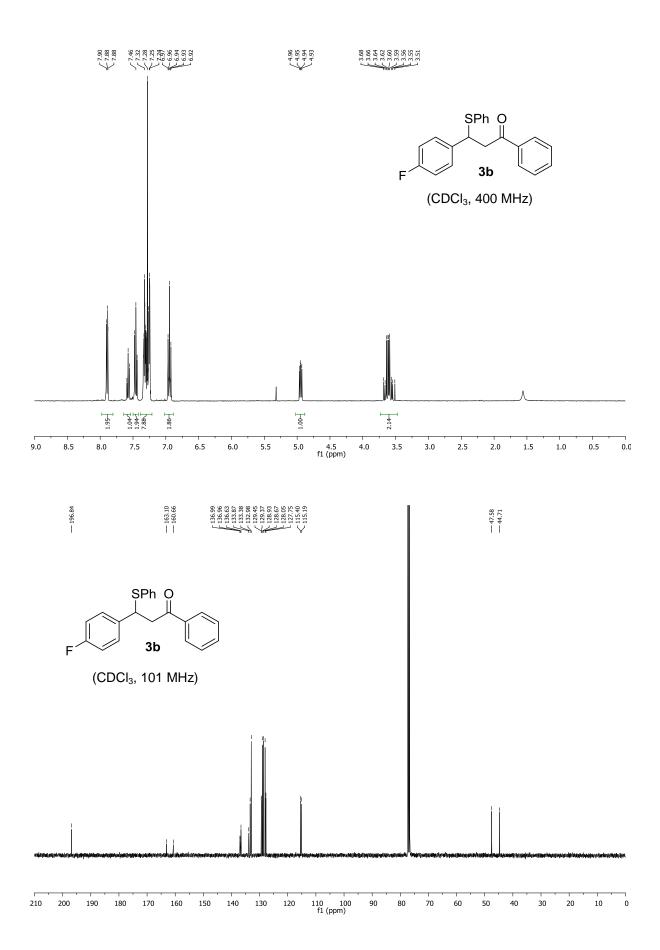

10. Copies of ¹H NMR and ¹³C NMR Spectra

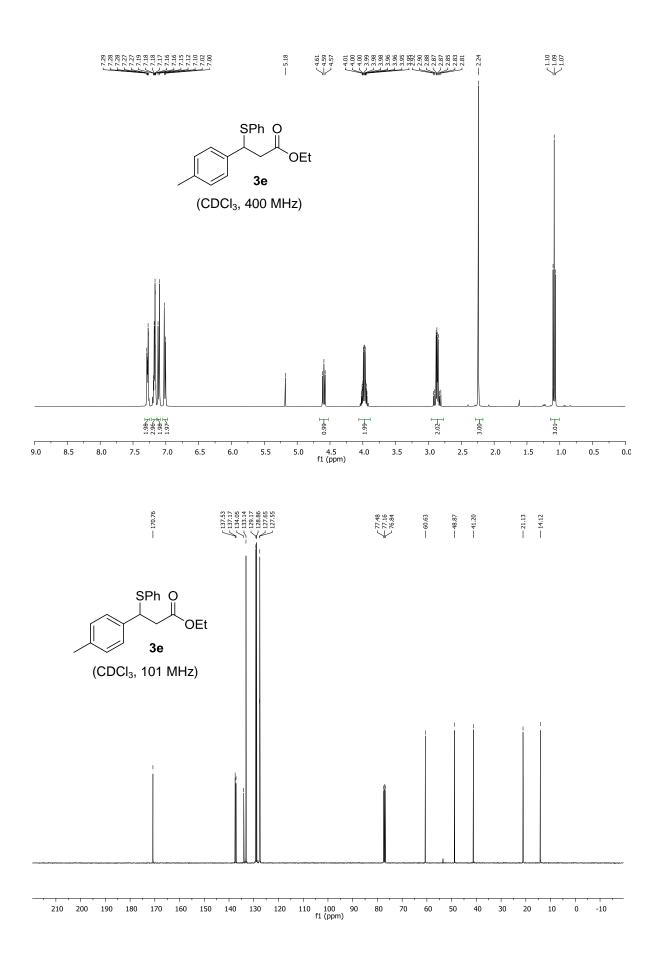


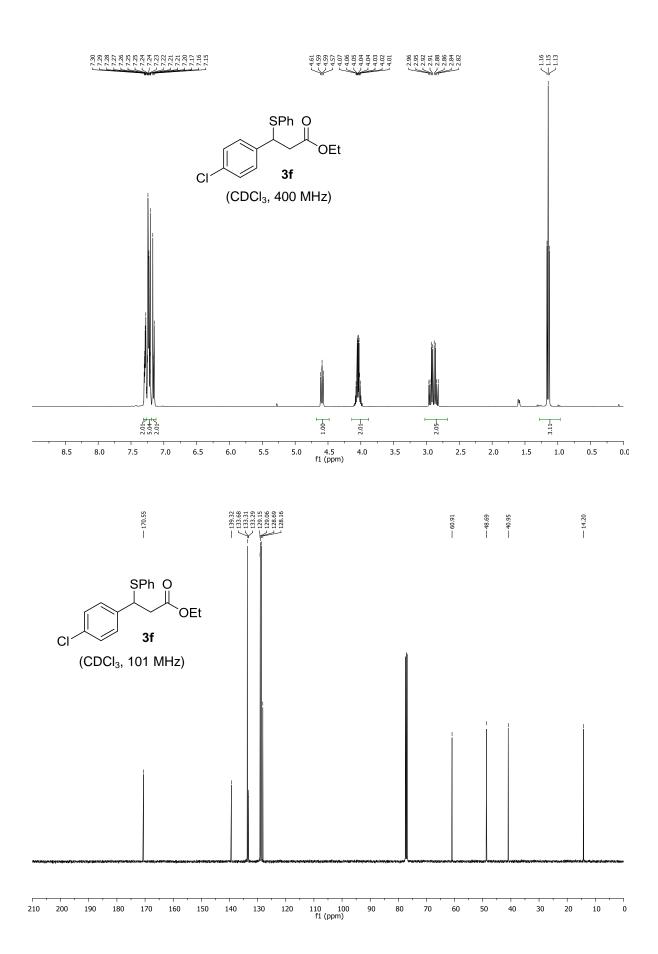


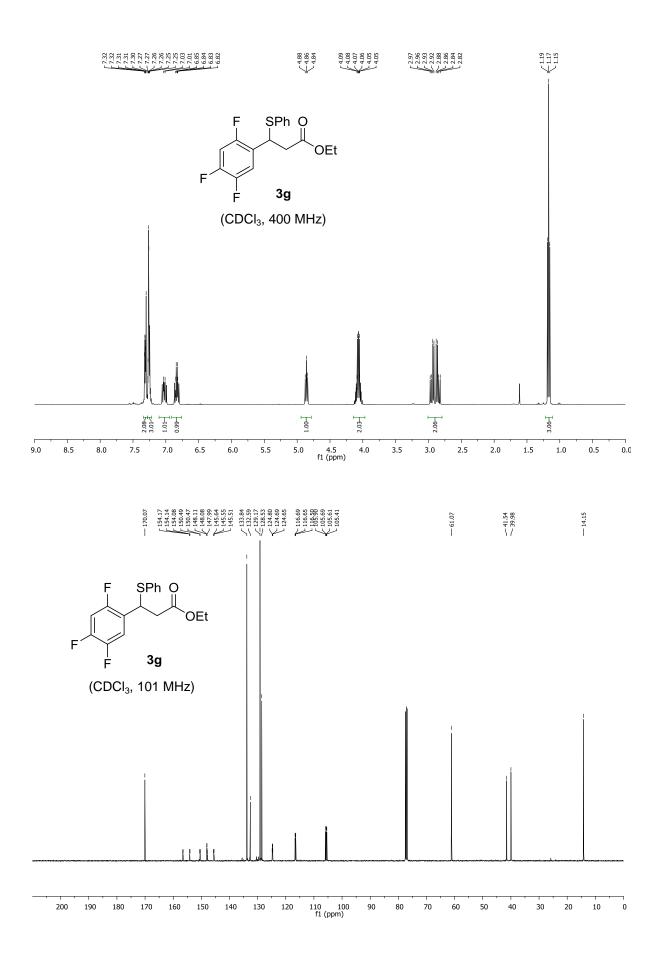


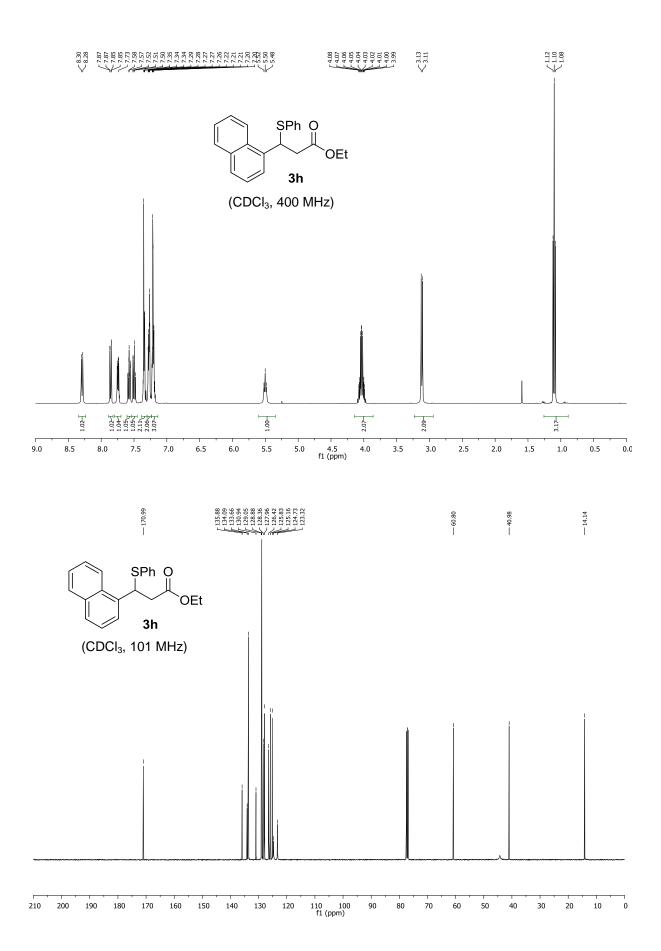


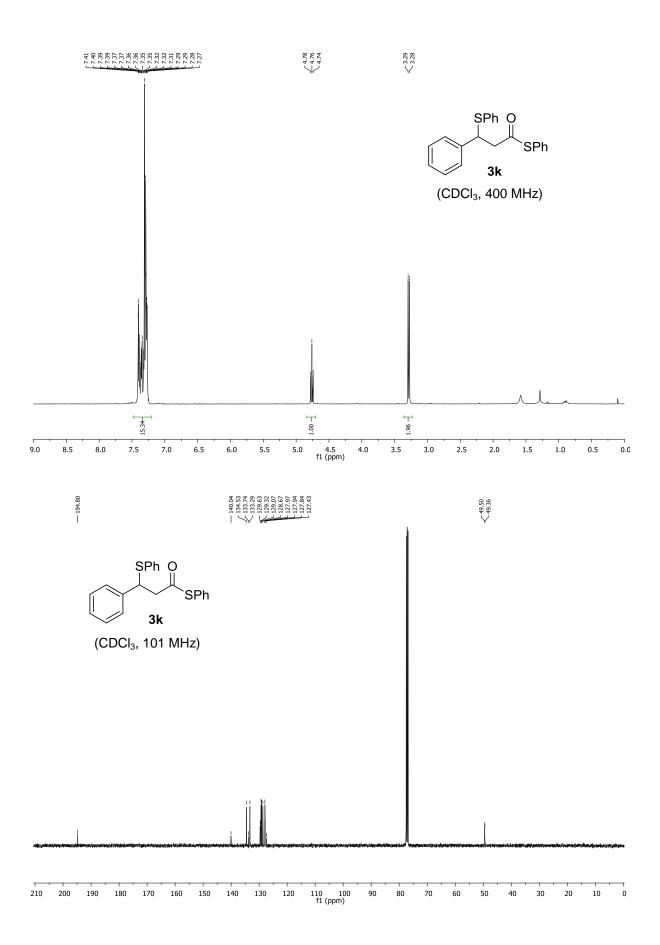


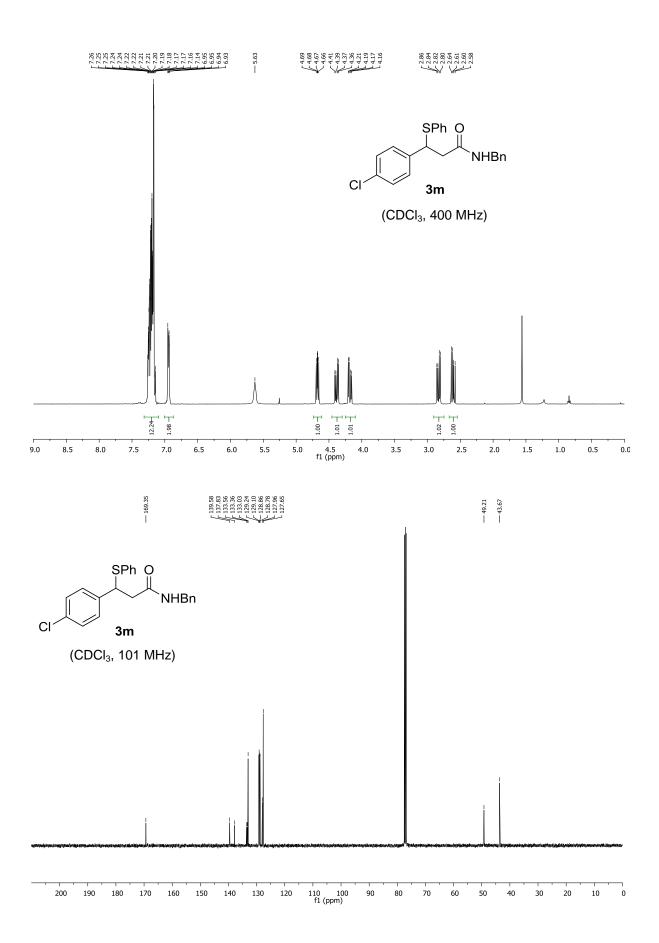


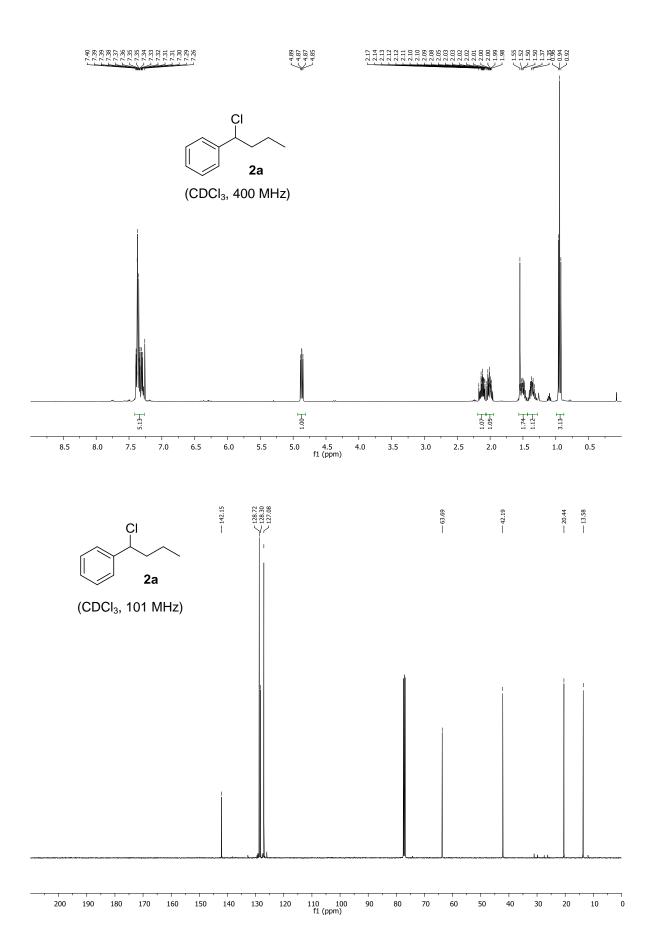


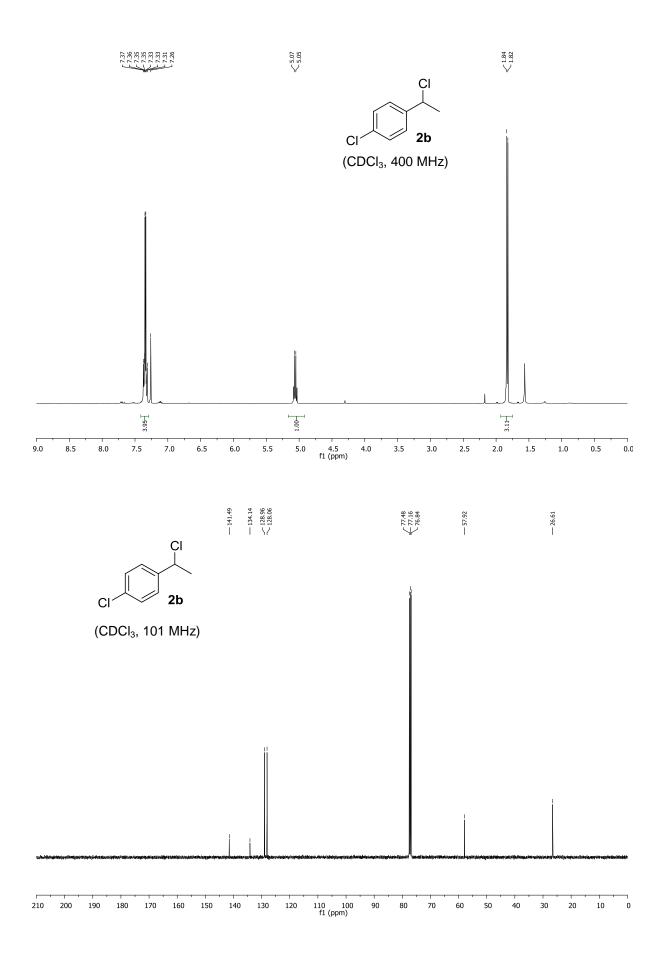


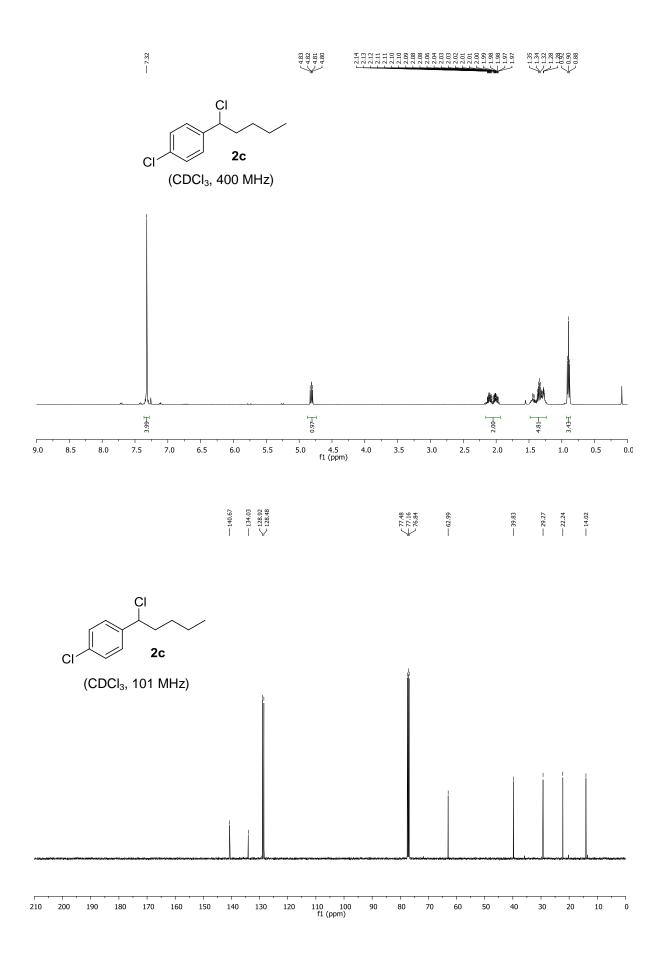


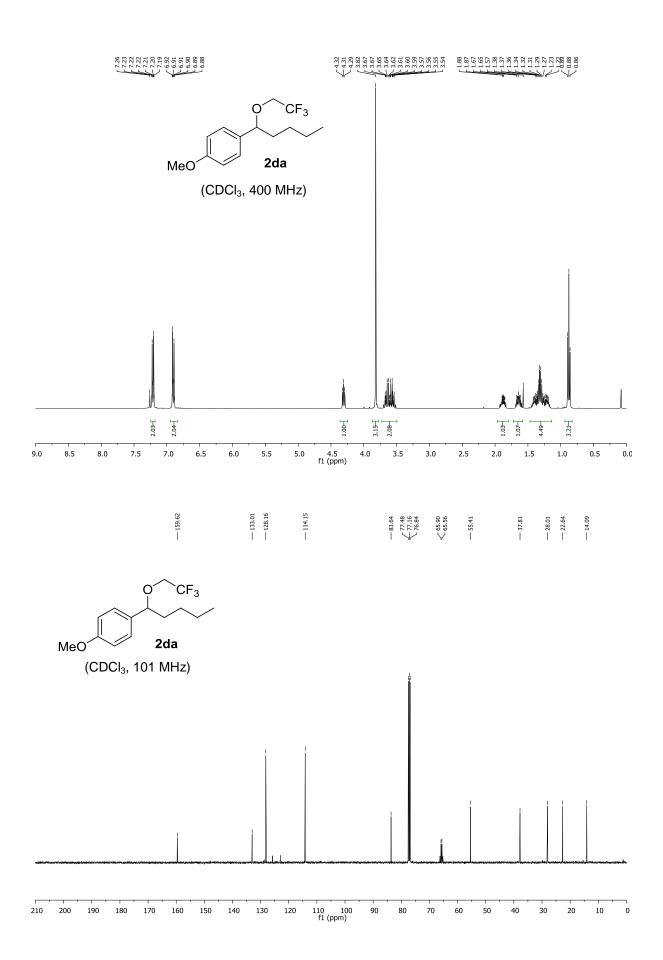


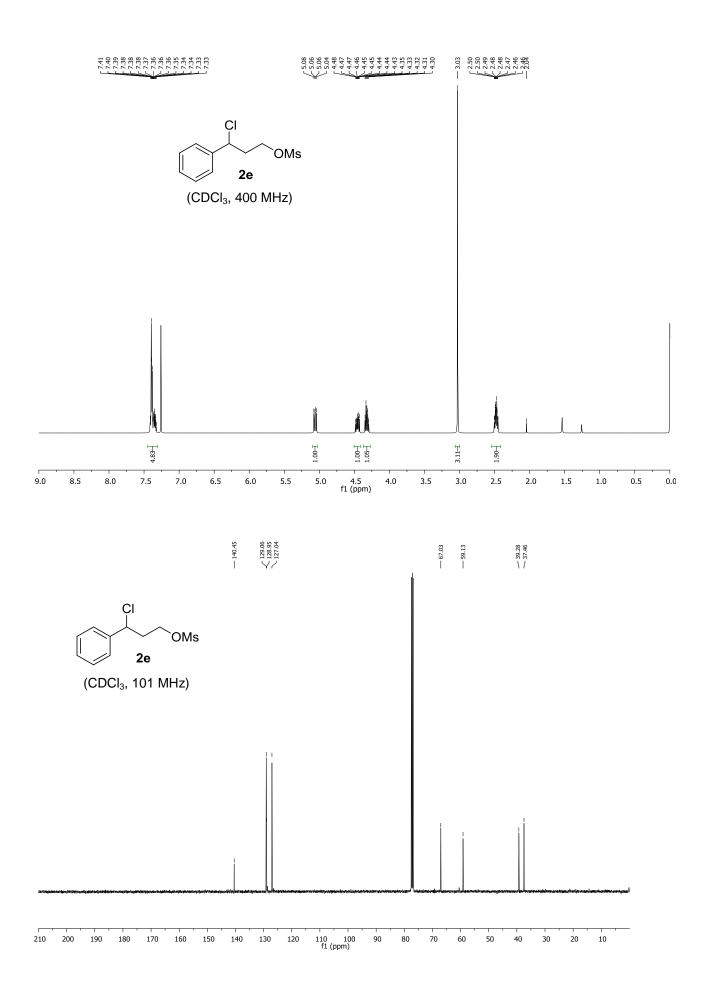


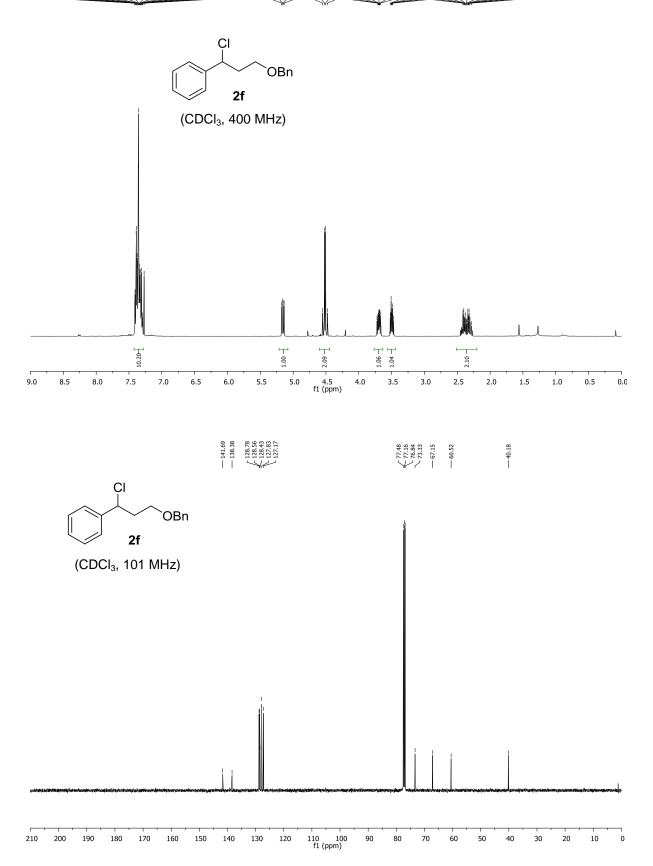


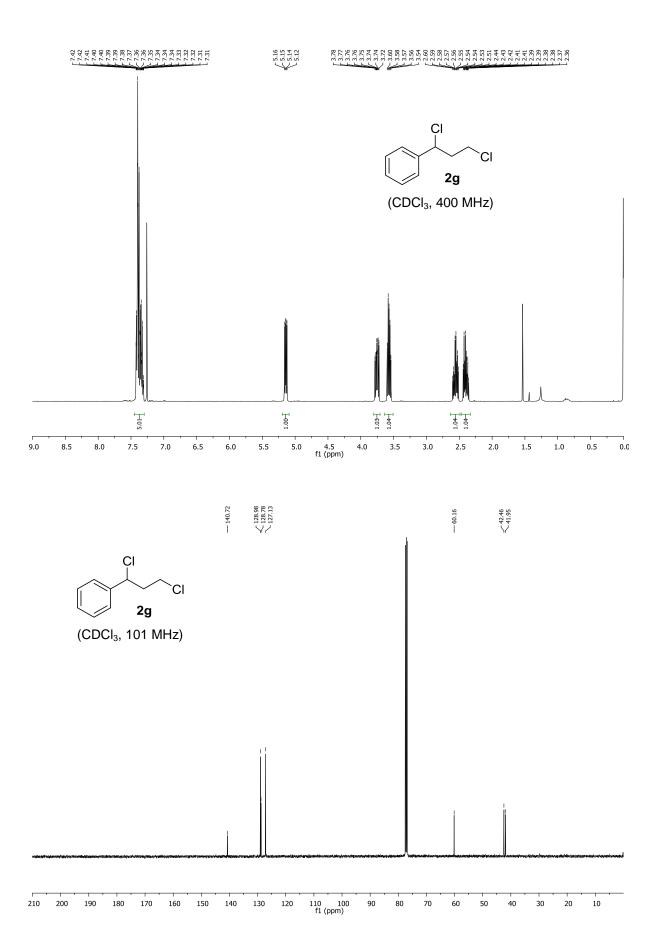


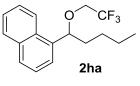


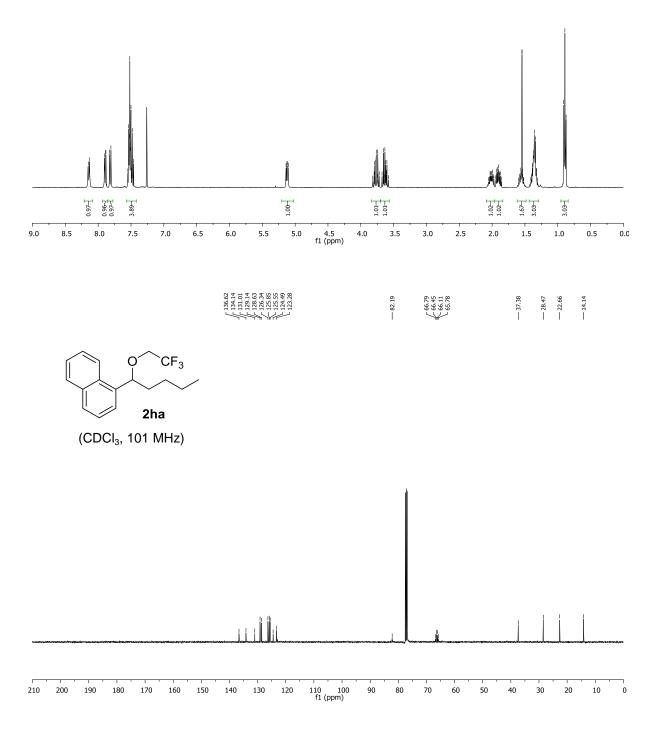


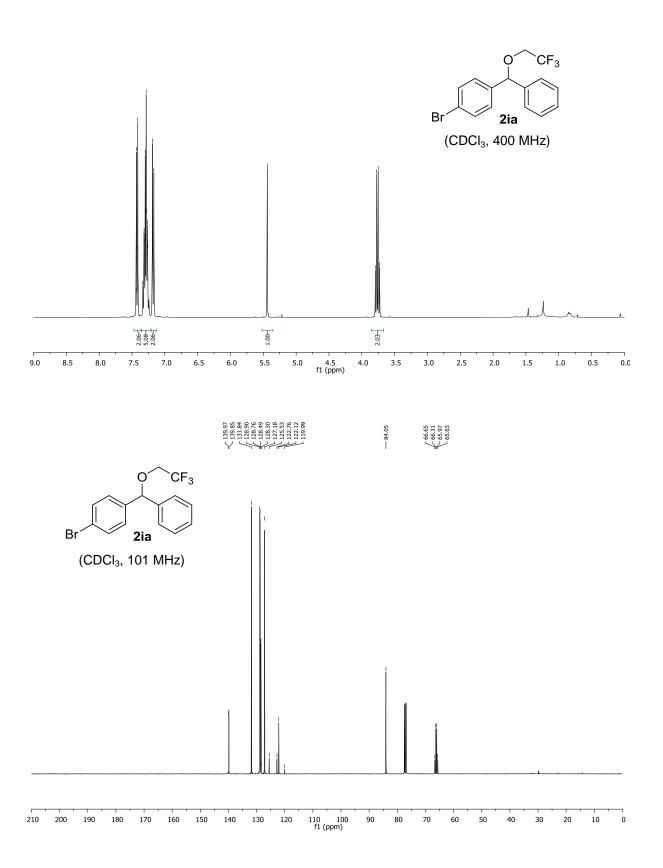


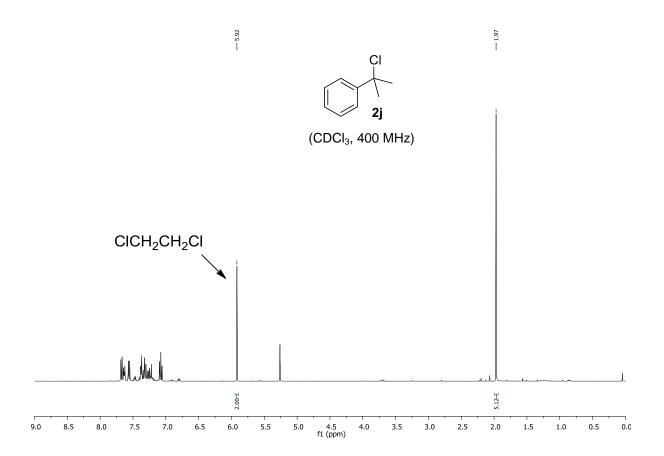


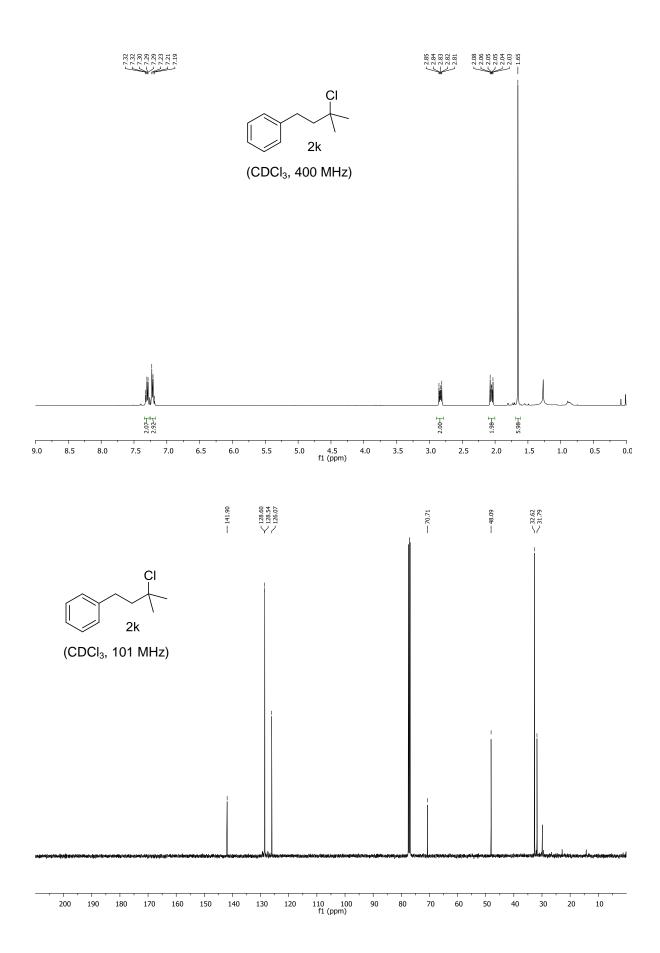


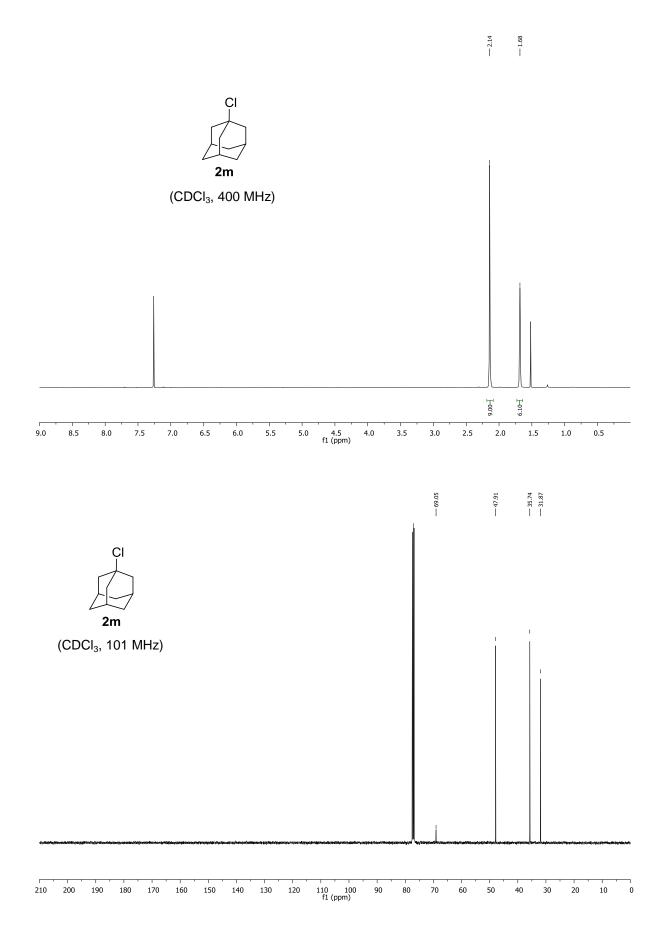

 $\begin{array}{c} 7.41\\ 7.42\\$

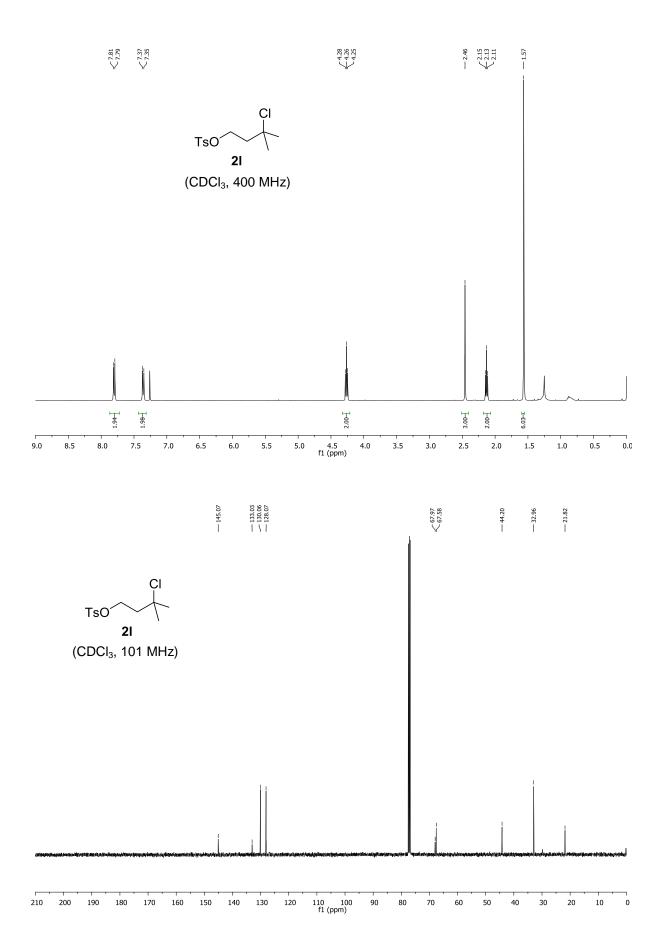


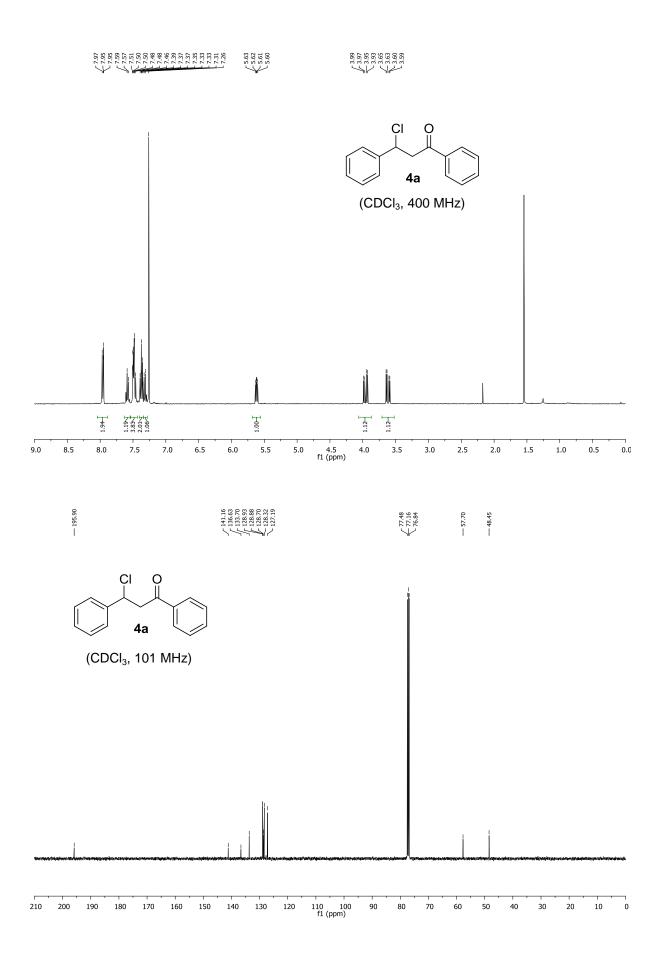


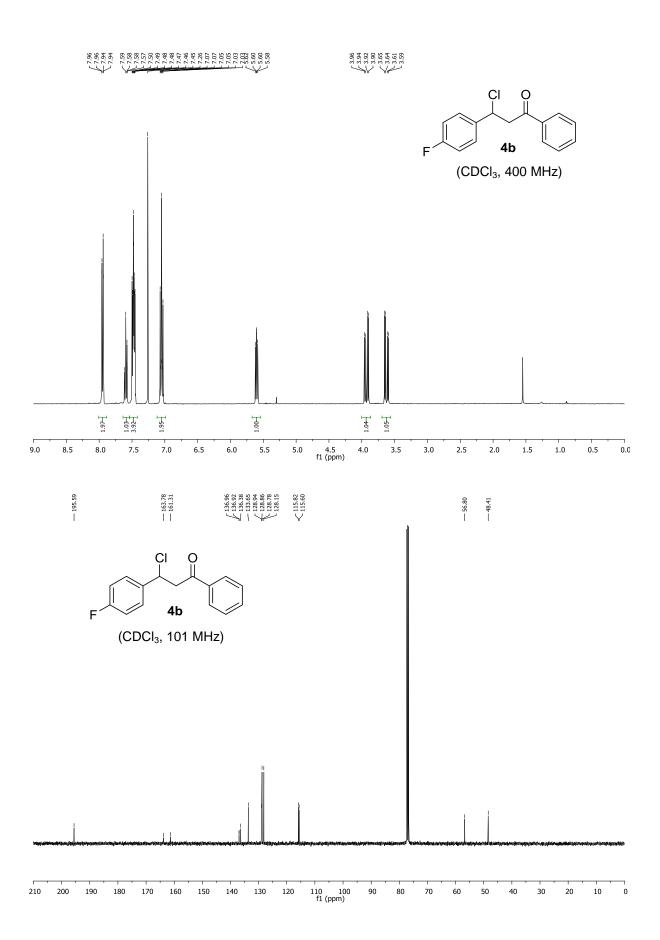


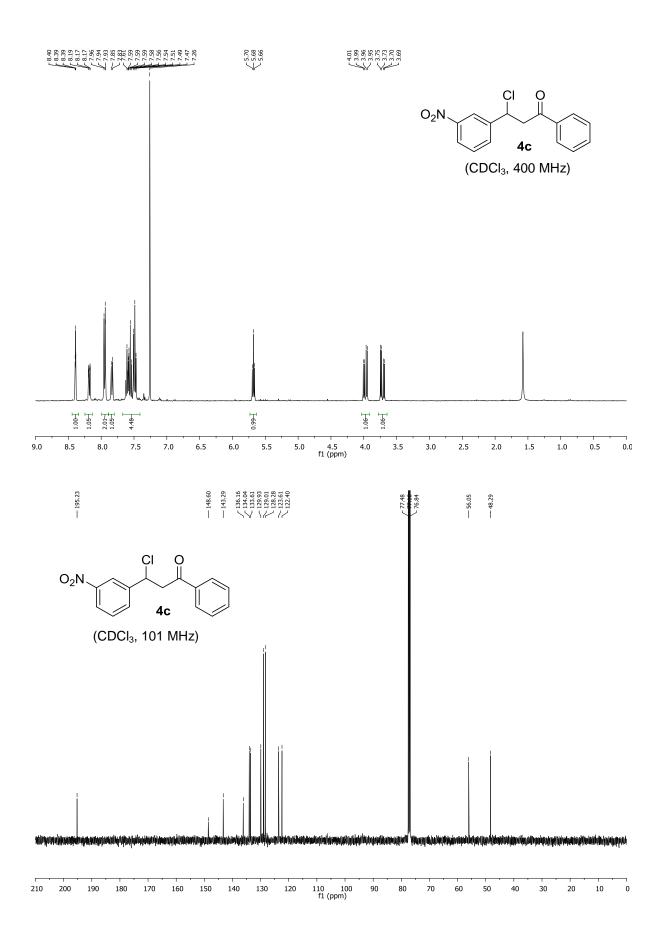

5.14 5.13 5.12 5.11

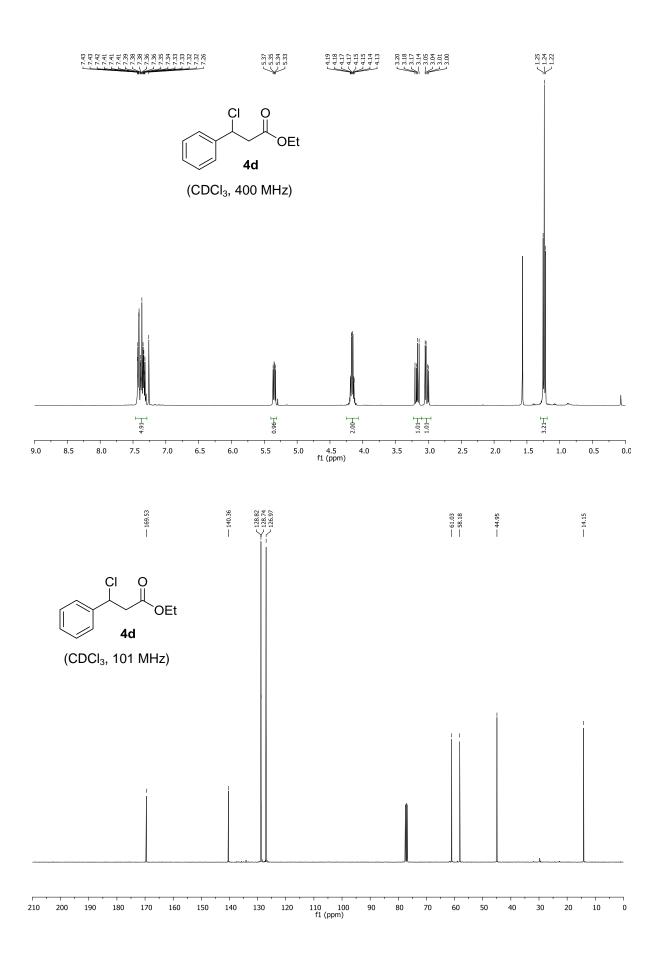

(CDCI₃, 400 MHz)

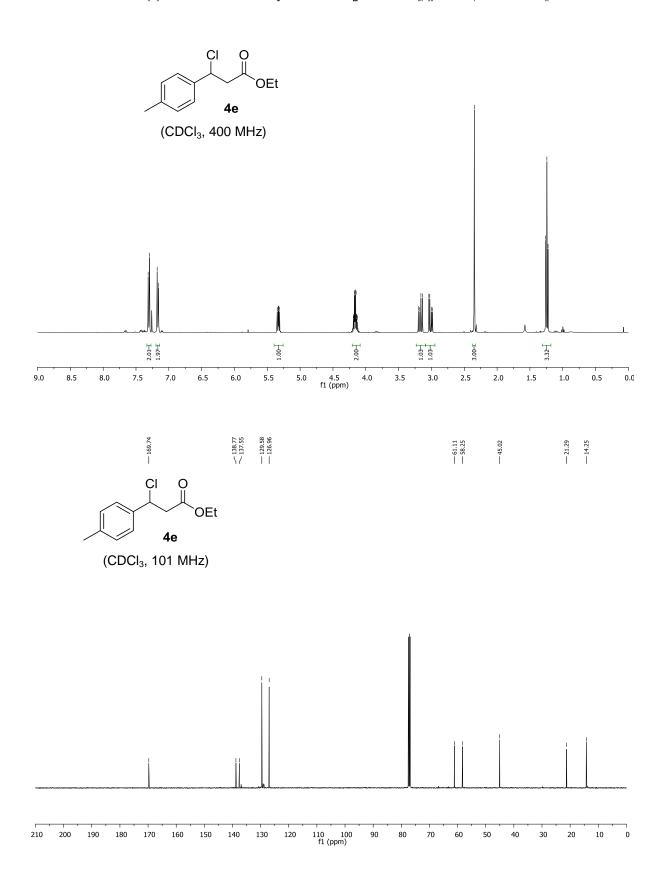


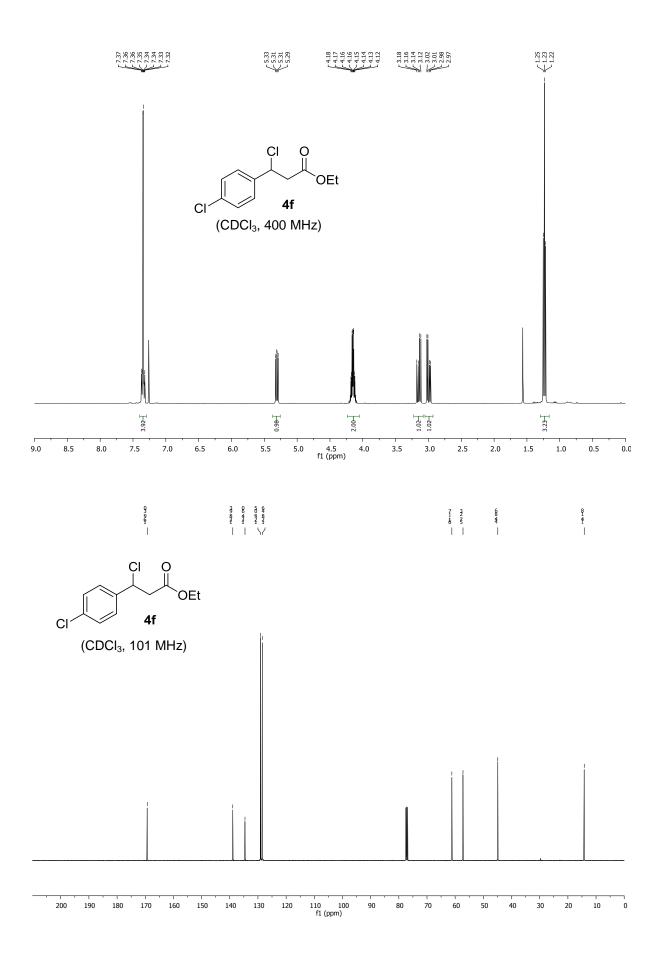


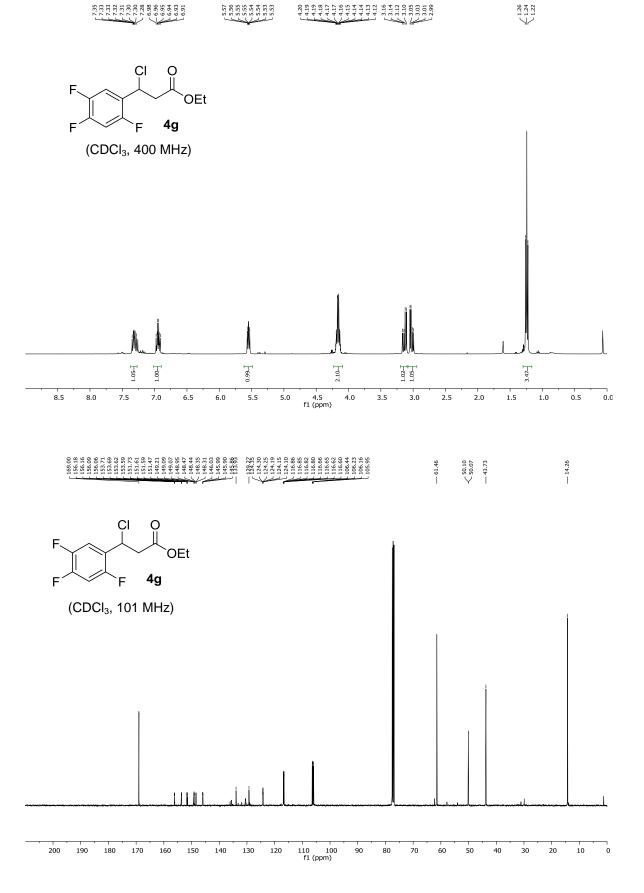


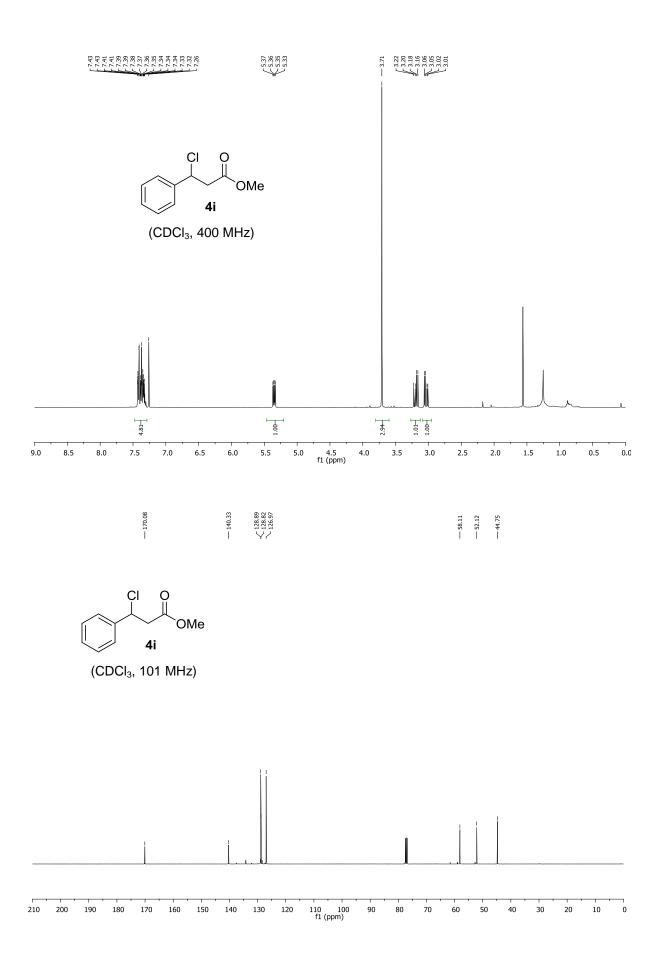



S68

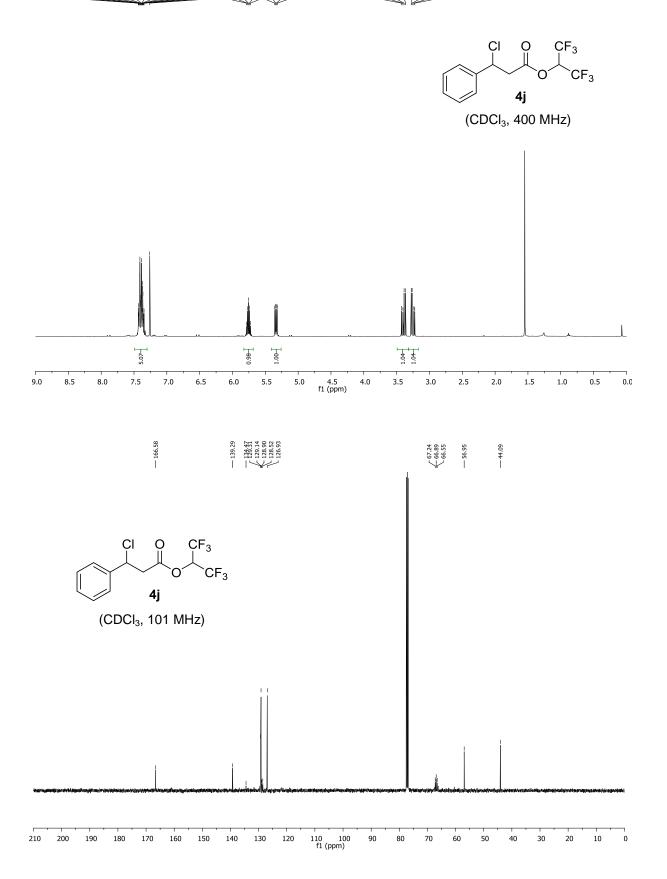


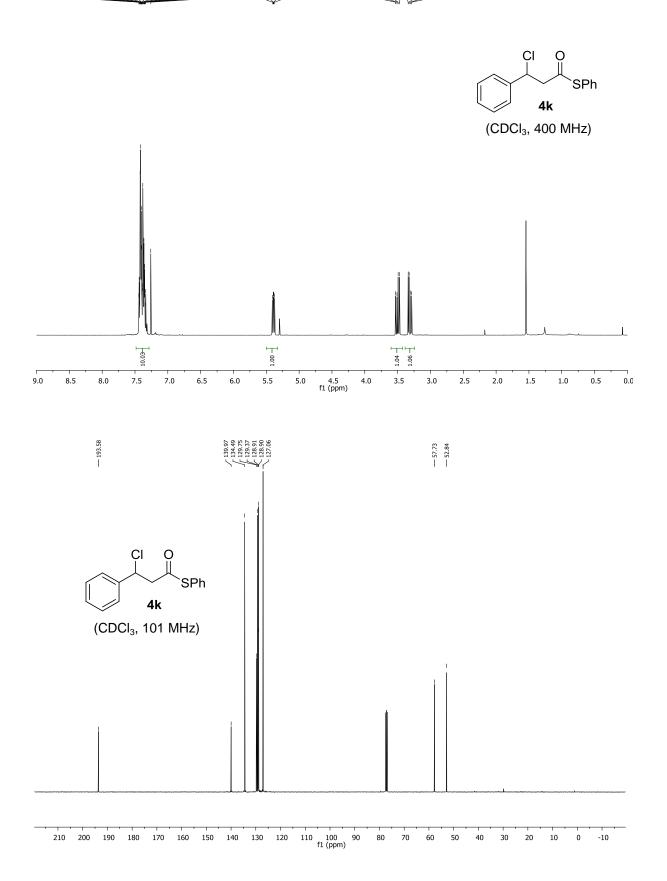


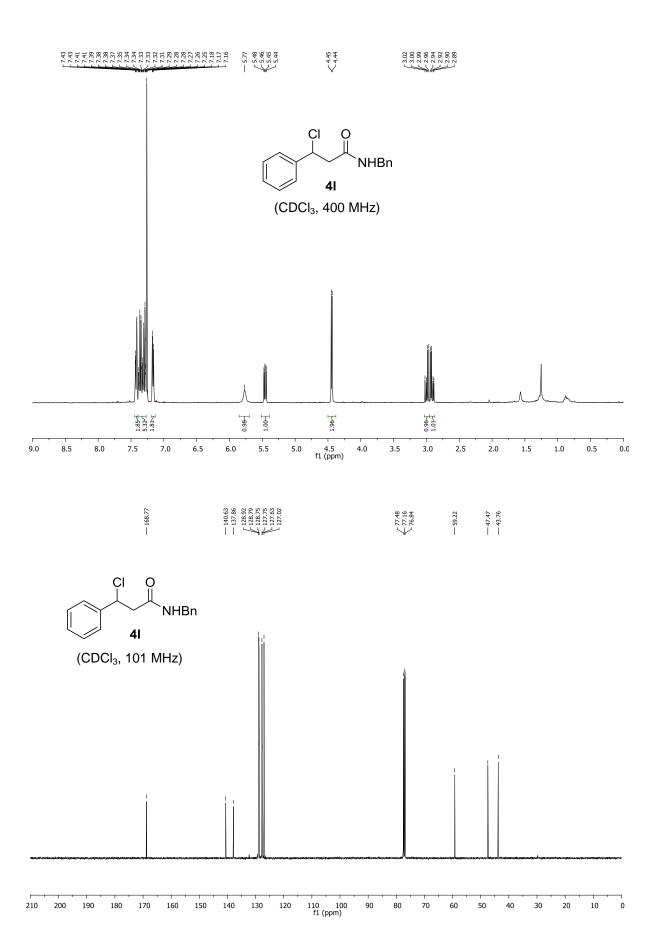


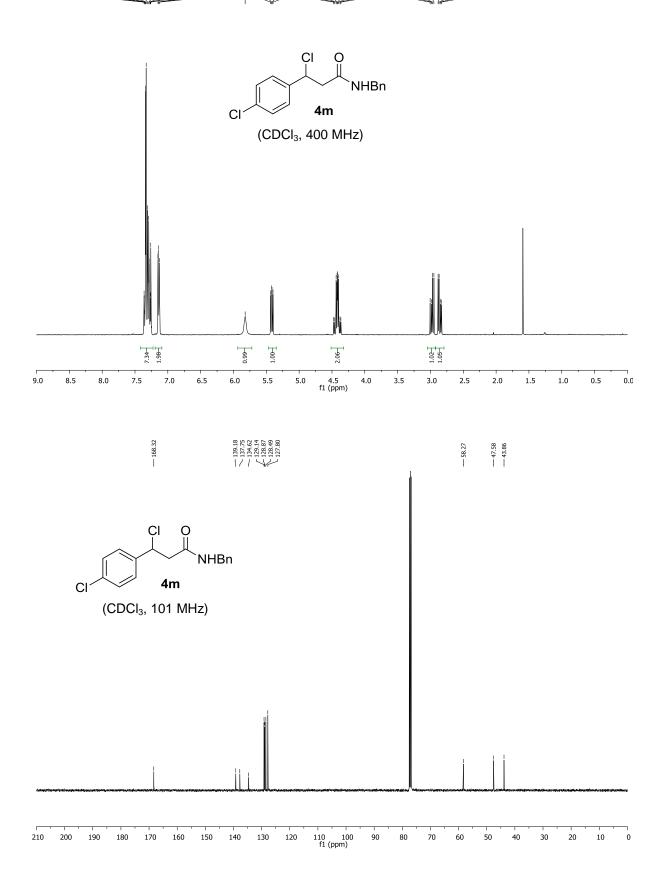


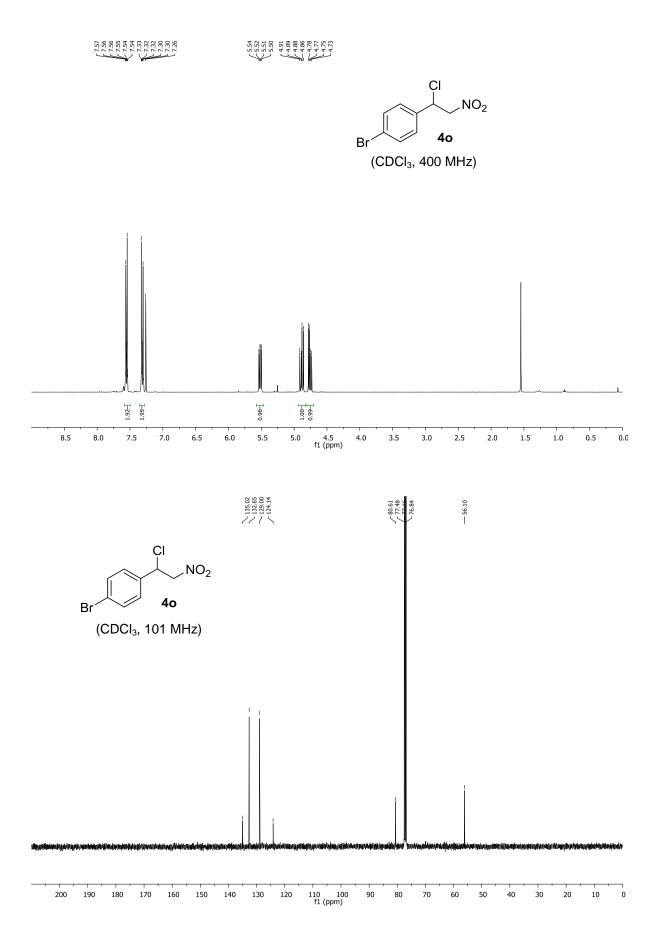
9.0

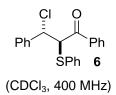

 $\underbrace{}_{1.26}^{1.28}$

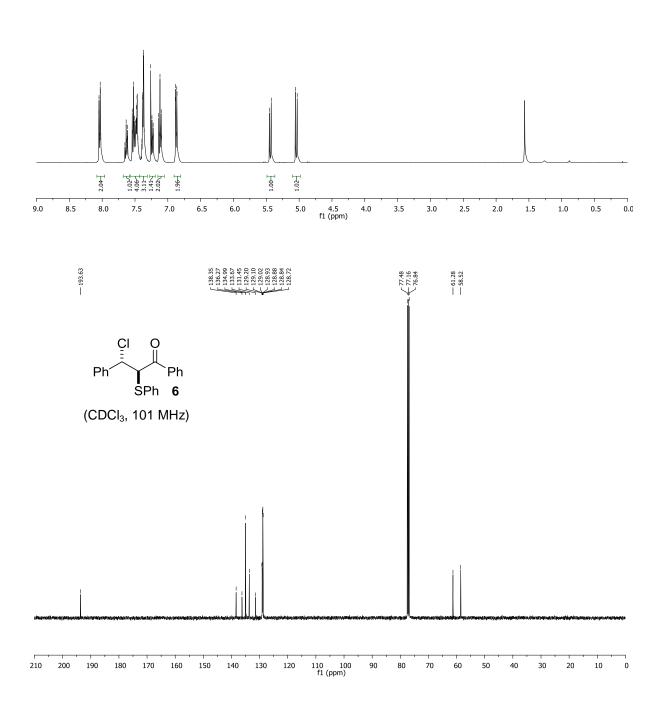

ÇΙ 0 OEt 4h (CDCI₃, 400 MHz) <u>H96.0</u> 2.00H 3.43– 1.02 H96-0 4.5 f1 (ppm) 7.0 8.0 7.5 5.5 5.0 3.5 2.5 2.0 1.5 1.0 0.0 8.5 6.5 6.0 4.0 3.0 0.5 135.56 134.01 134.01 129.63 129.63 129.15 126.13 126.13 126.13 126.13 126.13 126.13 126.13 126.13 --- 61.22 --- 54.48 --- 43.90 ĊI Ö OEt 4h (CDCI₃, 101 MHz)

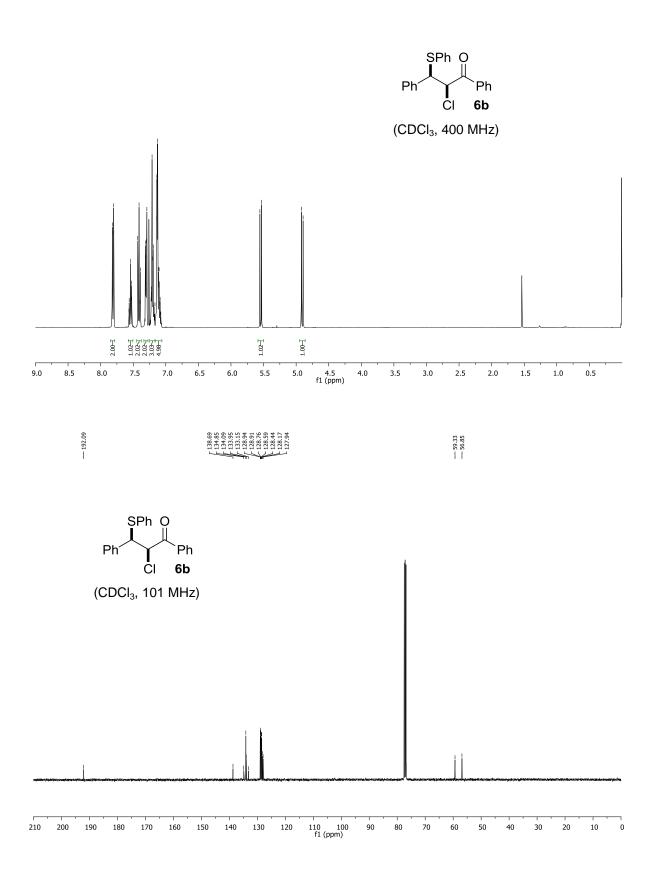



3.22 3.26 3.26 3.26 3.26 3.27 3.22 3.22








S84

S85

7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.53 7.54 7.53 7.54 7.53 7.54 7.53 7.54 7.54 7.54 7.54 7.54 7.55 7.54 7.55 7.54 7.55 7.54 7.55 7.54 7.55

