SUPPLEMENTARY MATERIAL

Two New Biphenyls from the Stems of Garcinia tetralata

Bing-Kun Ji^a, Xue-Mei Gao^{a,*}, Di Cui^a,Shan-Shan Wang^a, Wen-Zhong Huang^b,

Yin-Ke Li^c, Shuang-Xi Mei^d, Zhi Yang^d, Gan-Peng Li^a, Meng-Yuan Jiang^a,

Yong-Hui He^a, Zhi-Yong Jiang^a, Gang Du^a, Xiao-Xia Pan^a, Wen-Xing Liu^a, and

Qiu-Fen Hu^a

^a Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs

Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu

University, Kunming 650031, P. R. China

^b Department of Chemical Science and Technology, Kunming University, Kunming

650031, P. R. China

^c Collge of Resource and Environment, Yuxi Normal University, Yuxi 653100, P.R.

China

^d Yunnan Bai Yao Group Innovation and R&D Center, Yunnan Baiyao Industry Co.,

Ltd, Kunming 650031, P. R. China

Abstract

Two new biphenyls (1 and 2) and three known xanthones (3-5) were isolated from the

ethanol extract of the stems of Garcinia tetralata. Structural elucidations of 1-2 were

elucidated by spectroscopic methods including extensive 1D- and 2D-nuclear magnetic

resonance spectroscopy techniques. Compounds 1- 2 showed anti-rotavirus activities

with SI above 10.

Keywords: *Garcinia tetralata*, biphenyls, anti-rotavirus activity

1

Contents of Supporting Information

No.	Contents:	Pages:
Figure S1	¹³ C NMR spectrum of compound (1)	3
Figure S2	¹ H NMR spectrum of compound (1)	4
Figure S3	HSQC spectrum of compound (1)	5
Figure S4	HMBC spectrum of compound (1)	6
Figure S5	¹ H- ¹ H COSY spectrum of compound (1)	7
Figure S6	ESI-MS spectrum of compound (1)	8
Figure S7	¹³ C NMR spectrum of compound (2)	9
Figure S8	¹ H NMR spectrum of compound (2)	10
Figure S9	ESI-MS spectrum of compound (2)	11
Figure S10	The key HMBC and COSY correlations of compound 1.	12

Figure S1. 13 C NMR spectrum (125 MHz, C_5D_5N) of compound (1)

Figure S2. ¹H NMR spectrum (500 MHz, C₅D₅N) of compound (1)

Figure S3. HSQC spectrum (600 MHz, C₅D₅N) of compound (1)

Figure S4. HMBC spectrum (500 MHz, C₅D₅N) of compound (1)

Figure S5. $^{1}\text{H-}^{1}\text{H COSY}$ spectrum (500 MHz, $C_{5}D_{5}N$) of compound (1)

Figure S6. ESI-MS spectrum of compound (1)

Figure S7. ¹³C NMR spectrum (125 MHz, CD₃OD) of compound (2)

Figure S8. ¹H NMR spectrum (500 MHz, CD₃OD) of compound (2)

 $Figure \ S9. \ {\sf ESI\text{-}MS} \ spectrum \ of \ compound \ (2)$

Figure S10. The key HMBC and COSY correlations of compound **1**.