SUPPLEMENTARY MATERIAL Two New Biphenyls from the Stems of Garcinia tetralata Bing-Kun Ji^a, Xue-Mei Gao^{a,*}, Di Cui^a,Shan-Shan Wang^a, Wen-Zhong Huang^b, Yin-Ke Li^c, Shuang-Xi Mei^d, Zhi Yang^d, Gan-Peng Li^a, Meng-Yuan Jiang^a, Yong-Hui He^a, Zhi-Yong Jiang^a, Gang Du^a, Xiao-Xia Pan^a, Wen-Xing Liu^a, and Qiu-Fen Hu^a ^a Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650031, P. R. China ^b Department of Chemical Science and Technology, Kunming University, Kunming 650031, P. R. China ^c Collge of Resource and Environment, Yuxi Normal University, Yuxi 653100, P.R. China ^d Yunnan Bai Yao Group Innovation and R&D Center, Yunnan Baiyao Industry Co., Ltd, Kunming 650031, P. R. China Abstract Two new biphenyls (1 and 2) and three known xanthones (3-5) were isolated from the ethanol extract of the stems of Garcinia tetralata. Structural elucidations of 1-2 were elucidated by spectroscopic methods including extensive 1D- and 2D-nuclear magnetic resonance spectroscopy techniques. Compounds 1- 2 showed anti-rotavirus activities with SI above 10. **Keywords**: *Garcinia tetralata*, biphenyls, anti-rotavirus activity 1 ## Contents of Supporting Information | No. | Contents: | Pages: | |------------|--|--------| | Figure S1 | ¹³ C NMR spectrum of compound (1) | 3 | | Figure S2 | ¹ H NMR spectrum of compound (1) | 4 | | Figure S3 | HSQC spectrum of compound (1) | 5 | | Figure S4 | HMBC spectrum of compound (1) | 6 | | Figure S5 | ¹ H- ¹ H COSY spectrum of compound (1) | 7 | | Figure S6 | ESI-MS spectrum of compound (1) | 8 | | Figure S7 | ¹³ C NMR spectrum of compound (2) | 9 | | Figure S8 | ¹ H NMR spectrum of compound (2) | 10 | | Figure S9 | ESI-MS spectrum of compound (2) | 11 | | Figure S10 | The key HMBC and COSY correlations of compound 1. | 12 | Figure S1. 13 C NMR spectrum (125 MHz, C_5D_5N) of compound (1) **Figure S2.** ¹H NMR spectrum (500 MHz, C₅D₅N) of compound (1) **Figure S3.** HSQC spectrum (600 MHz, C₅D₅N) of compound (1) **Figure S4.** HMBC spectrum (500 MHz, C₅D₅N) of compound (1) **Figure S5.** $^{1}\text{H-}^{1}\text{H COSY}$ spectrum (500 MHz, $C_{5}D_{5}N$) of compound (1) Figure S6. ESI-MS spectrum of compound (1) Figure S7. ¹³C NMR spectrum (125 MHz, CD₃OD) of compound (2) **Figure S8.** ¹H NMR spectrum (500 MHz, CD₃OD) of compound (2) $Figure \ S9. \ {\sf ESI\text{-}MS} \ spectrum \ of \ compound \ (2)$ **Figure S10.** The key HMBC and COSY correlations of compound **1**.