Supporting information for: Charge Carrier Trapping at Surface Defects of Perovskite Solar Cell Absorbers: A First-Principles Study

Hiroki Uratani^{*,†,‡} and Koichi Yamashita^{*,†,‡}

†Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan ‡CREST-JST, 7 Gobancho, Chiyoda-ku, 102-0076 Tokyo, Japan

E-mail: uratani@tcl.t.u-tokyo.ac.jp; yamasita@chemsys.t.u-tokyo.ac.jp

1 Determination of the Kohn-Sham states associated with VBM, CBM, and defect states.

The Kohn-Sham states associated with the VBM, CBM, and defect states are determined by their (i) absolute energy levels: the VBM and CBM of defect-containing systems must be located near those of non-defect-containing systems, (ii) occupation numbers: for p-type defects, the defect states or VBM must be unoccupied, and for n-type defects, the defect states or CBM must be occupied, and (iii) orbital shapes: the Kohn-Sham orbitals corresponding to the defect states must be localized. The orbital energy levels, occupation numbers, and orbital shapes (charge density distribution derived from the orbitals) of considered systems calculated by HSE (a = 0.43) with SOC are shown in Figure S1-S16. The orbital energy levels are referenced to calculated vacuum level of each system. The occupation numbers are assigned by the Gaussian smearing method, which is a conventional technique for periodic DFT calculations. In this method, the occupation number f is determined by the function

$$f = \frac{1}{2} \left(1 - \operatorname{erf}\left[\frac{\epsilon - \mu}{\sigma}\right] \right), \tag{1}$$

where ϵ is the orbital energy and μ is the Fermi level. The parameter σ was set to be 0.05 eV. The orbital shapes are shown as yellow isosurfaces. Note that the blue isosurfaces indicates unphysical negative charge density, which is a common artifact originating in the PAW method.

Figure S1: "MAI" surface.

Figure S2: $\mathrm{V_{I}}$ on "MAI" surface.

Figure S3: V_{MA} on "MAI" surface.

Figure S4: Pb_i on "MAI" surface.

Figure S5: Pb_{MA} on "MAI" surface.

Figure S6: Pb_I on "MAI" surface.

Figure S7: "Flat" surface.

Figure S8: I_{i} on "flat" surface.

Figure S9: V_I on "flat" surface.

Figure S10: Pb_i on "flat" surface.

Figure S11: V_{Pb} on "flat" surface.

Figure S12: "Vacant" surface.

Figure S13: I_i on "vacant" surface.

Figure S14: V_I on "vacant" surface.

Figure S15: Pb_i on "vacant" surface.

Figure S16: V_{Pb} on "vacant" surface.

2 Defect formation energy calculations.

The defect formation energy was calculated following the strategy of Yin et al.^{S1} Here, μ_{I} , μ_{Pb} , and μ_{MA} are the chemical potential of I, Pb, and MA, respectively, referenced to the state of I₂(g), Pb(s), and MA(s) summarized in Table SI, respectively. The calculations were conducted with GGA-PBE functional without the inclusion of spin-orbit coupling, 500 eV of a plane-wave cutoff, and a convergent k-point mesh. The structures were relaxed until the Hellmann-Feynman force become below 0.005 eV / Å. We define ΔH_1 , ΔH_2 , and ΔH_3 Table SI: Calculated total energy of each species. a:bcc phase, following Cs.^{S1} b: Rock-salt phase.^{S1,S2} c: Tetragonal phase.

Total energy (eV)
-2.65
-3.56
-37.75
-42.23
-8.62
-50.89

as the change in enthalpy corresponding to the reactions

$$MA(s) + Pb(s) + \frac{3}{2}I_2(g) \rightarrow MAPbI_3(s),$$
 (2)

$$MA(s) + \frac{1}{2}I_2(g) \rightarrow MAI(s),$$
 (3)

$$Pb(s) + I_2(g) \rightarrow PbI_2(s),$$
 (4)

respectively. Hence, $\Delta H_1 = -5.60 \text{ eV}$, $\Delta H_2 = -3.15 \text{ eV}$, and $\Delta H_3 = -2.41 \text{ eV}$. Assuming equilibrium among MAI, PbI₂, and MAPbI₃, μ_{I} , μ_{Pb} , and μ_{MA} must satisfy

$$\mu_{\rm MA} + \mu_{\rm Pb} + 3\mu_{\rm I} = \Delta H_1 = -5.60 \,\mathrm{eV},$$
(5)

$$\mu_{\rm MA} + \mu_{\rm I} < \Delta H_2 = -3.15 \,\mathrm{eV},$$
 (6)

$$\mu_{\rm Pb} + 2\mu_{\rm I} < \Delta H_3 = -2.41 \,\mathrm{eV},$$
(7)

$$\mu_{\rm MA}, \quad \mu_{\rm Pb}, \quad \mu_{\rm I} < 0. \tag{8}$$

The range of (μ_{Pb}, μ_I) which can satisfy Eqs. 5-8 is shown by red area in Figure S17 and consistent with previous works.^{S1,S3} The points A, B, and C in Figure S17 correspond to the I-rich, moderate, and Pb-rich condition in the main text, respectively. The defect formation

Figure S17: The range of (μ_{Pb}, μ_I) which can satisfy Eqs. 5-8 (red area). A, B, and C are the I-rich condition ($\mu_I = 0 \text{ eV}$, $\mu_{Pb} = -2.44 \text{ eV}$, and $\mu_{MA} = -3.15 \text{ eV}$), the moderate condition ($\mu_I = -0.61 \text{ eV}$, $\mu_{Pb} = -1.21 \text{ eV}$, and $\mu_{MA} = -2.57 \text{ eV}$), and the Pb-rich condition ($\mu_I = -1.22 \text{ eV}$, $\mu_{Pb} = 0 \text{ eV}$, and $\mu_{MA} = -1.93 \text{ eV}$), respectively.

energy is calculated as

$$E_{\text{defect}} - \left(E_{\text{non-defect}} + \Delta n_{\text{I}} \left[\mu_{\text{I}} + \frac{1}{2} E_{\text{I}_2} \right] + \Delta n_{\text{Pb}} \left[\mu_{\text{Pb}} + E_{\text{Pb}} \right] + \Delta n_{\text{MA}} \left[\mu_{\text{MA}} + E_{\text{MA}} \right] \right).$$
(9)

 E_{defect} is calculated total energy of the defect-containing system, and $E_{\text{non-defect}}$ is that of the non-defect-containing system, i.e. "MAI", "flat", or "vacant" termination without defects. $\Delta n_{\text{I}}, \Delta n_{\text{Pb}}, \text{ and } \Delta n_{\text{MA}}$ are the change in number of I, Pb, and MA associated with the defect formation, respectively. $E_{\text{I}_2}, E_{\text{Pb}}$, and E_{MA} are calculated total energy of $\text{I}_2(\text{g})$, Pb(s), and MA(s) summarized in Table SI, respectively.

References

- (S1) Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH₃NH₃PbI₃ perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903/1–063903/4.
- (S2) Hendricks, S. B. The crystal structures of the monomethyl ammonium halides. Z. Kristallogr. 1928, 67, 106–118.
- (S3) Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. Termination Dependence of Tetragonal CH₃NH₃PbI₃ Surfaces for Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 2903–2909.