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Abstract 
 
Human crowd modelling has gained importance for floor plan designs and crowd movement 

management. It increases the need for more realistic modelling of human-like behaviours (Helbing, 

2005). The state of the art in modelling studies often focuses on homogeneous crowds. Grouping 

behaviour has been rarely addressed. Social studies show that crowds are often inhomogeneous, 

which are containing different social groups. How groups in crowds interact with each other has 

been rarely investigated. Exploring the interactions of groups in such inhomogeneous crowds 

becomes important to understand its impact on crowd movement. Therefore, this study aims to 

model the dynamics of inhomogeneous crowds including group interactions. 

 

This study starts by building a model that captures the grouping behaviour of individuals in an 

inhomogeneous crowd. The formation of grouping and non-grouping behaviours was investigated 

by simulating the model in a narrowing corridor, a turning corridor, a T-intersection corridor, and 

a corridor with an obstacle. The results of the simulations of grouping and non-grouping behaviours 

were analysed to explore which behaviour was effective for crowd movement. 

 

This study found that grouping behaviour helped to achieve potential flow rates by preventing 

turbulence. In contrast, non-grouping behaviour created turbulent flows of individuals and 

inefficient movement. This study suggests that letting groups stay together is potentially effective 

for crowd management when a large number of individuals are egressing the venue. 
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1 Introduction 
 
Over 70% of the world’s population is predicted to live in cities by 2050 (Weidmann, 2012). Rapid 

urbanisation and population growth will create inevitable challenges in the effort of planning 

infrastructure. The increased migration into central cities will affect the number of public events 

and the increase in the number of participants. Event accidents have been reported as increasing. 

For example, one of the disasters that occurred at the Station Nightclub, USA (2003) caused nearly 

one hundred deaths. Investigators of the disaster found that the rate of egress at the main entrance 

of the building was low because a crowd-crush disrupted the flow through the front exit 

(Grosshandler, 2005). Therefore with the increase of public events and potential accidents, 

optimising indoor floor plans and managing crowd movement becomes important to potentially 

save human lives.  

 

Performing experiments on real-world human crowds to evaluate floor plans and crowd 

management plans is time consuming and expensive. For instance, a seminal study, which tried to 

optimize the widths of subway corridors in 1958, recruited more than 200 male students and 

designed experiments in a school to understand the relationship between speed and passage widths 

before deploying experiments in a subway (Hankin, 1958). Nowadays, urban designers and event 

organizers use crowd behaviour simulations instead of performing experiments with real-world 

human crowds. Crowd behaviour simulations are based on behaviour models that imitate human-

like behaviours. Researchers observe real-world crowds at various places and extract individual’s 

behaviours to produce human-like behaviours of virtual pedestrians in crowd simulations. Using 

crowd behaviour simulations aims to reduce time consuming and costs than deploying experiments 

on real-world crowds. Moreover, simulation also allows urban designers and event organisers to 

evaluate various floor plans before starting to construct them. Typical floor plans, which have been 

used widely, are narrowing corridors, turning corridors, T-intersection of merging flows, and 

corridors with obstacles inside (Helbing, 2002; Moussaid, 2011). 

 

Crowd modelling, the process of building behaviour models to explore how crowd behaviours 

emerge from individuals’ interactions, becomes an important research area for crowd simulation. 

Previous studies have investigated and modelled a number of real-world crowd behaviours. These 

behaviours include individual behaviour, and following behaviour (Helbing, 2000; Pelechano, 

2006). Virtual pedestrians perform these behaviours and avoid collision while they are moving to 

reach an exit door in a floor plan.  Well-established models, which aim to present these behaviours, 

are agent-based (Wijermans, 2013), cellular automata (Vizzari, 2013), and force-based models 

(Helbing, 1995). By using these behaviour models, crowds that are moving and containing these 
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behaviours are simulated to investigate the capacity of proposed infrastructures such as which floor 

plans are effective. The effectiveness of crowd movement in these floor plans is often measured 

by flow rate, which is the average number of pedestrians exiting floor plan per second. 

 

For instance, one of the findings from studies simulating individual behaviour found that placing 

pillars in a narrowing corridor creates a higher flow rate than the flow rate of crowd in the corridor 

without pillars (Helbing, 2005). Moreover, corridors where counter flows often happen should 

have separate obstacles, such as barriers, railings, and columns, to improve the flow rate (Helbing, 

2005). Figure 1 describes these obstacles in corridors. 

 

  

(a) Conventional floor design (b) Improved floor design 

Figure 1. Obstacle design for crossing corridors 

Figure 1.a presents a conventional design at a crossing area. This designs easily creates chaotic and turbulent flow. In 

contrast, Figure 1.b shows an improved design in which barriers and obstacles are added to improve crowd flows 

(Helbing, 2005).  

 

Simulating allows the variation of different settings of corridors and obstacles to be tested. 

Therefore, the author found that obstacles helped to prevent pedestrians from using small space 

of opposite flow for overtaking behaviour. The study also suggested that having two separate doors 

for opposite flows would be better than having only one door with double width (Helbing, 2005). 

Similarly, simulating individual behaviour in crowds has been used for seeking optimal designs for 

football stadiums. For instance, a study developed evacuation scenarios to optimize a stadium’s 

spectator areas (Liu, 2011). Using simulations helped the study’s authors found that the confluence 

at intersection areas had a significant impact on the flow rate. In general, current studies often relies 

on designing obstacles to enhance the flow rate. 
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Real-world crowd simulations are not only used for floor plan designs but also crowd movement 

management. For instance, a study simulated the evacuation of crowds participating a music festival 

event on a ship caused by fires (Ronchi, 2016). The study simulated crowds of unconnected 

individuals and then suggested that evacuation plans should take into account the evacuation time 

at crossing corridors rather than the final evacuation time at main entrances. Due to the fact that 

intersection areas could makes the space clogged and crowd turbulent. 

 

Therefore, simulating human-like behaviours is important for floor plan designs and crowd 

movement management at densely populated places. It allows urban designers to test various 

designs before implementing and event-organisers to examine different crowd movement plans 

without deploying experiments with real-world crowds.  

 

Current studies have mostly investigated the individual behaviour of crowd members (Helbing, 

2002; Hoorgedoorn, 2012). However, in busy public places where individuals do not walk alone, 

real-world crowds often contain more than one social group (Reicher, 2011; Stott, 2007). A crowd 

in large areas like shopping malls and football stadiums typically consists of individuals that belong 

to different communities such as families or different football teams. In this study, the term 

“group” is used to describe individuals who have similar characteristics and tend to stay together 

while moving. In contrast, the term “cluster” refers to a spatial structure of a crowd. These clusters 

may or may not merge together in a crowd. The interaction of different groups in a crowd leads to 

the formation of clusters. The term “inhomogeneous” is used to describe a crowd that contain 

different groups. 

 

For instance, given a crowd of fans supporting two different football teams at a stadium, fans of 

each team have to interact with people who are the same and different team-supporters. Individuals 

in a crowd prefer to stay close to people who are familiar in order to maximize communication 

during movement. Consequently, clusters emerge in crowd movement in which each cluster 

contains people who are the same team-supporters. 

Identifying solutions that can save human lives as many as possible when participants are egressing 

floor plans becomes important. Previous studies often focus on optimising floor plans, and 

exploring the impact of individual and follow behaviours on crowd movement. However, 

investigating how groups in crowds interact with each other has rarely been studied, while grouping 

behaviour often occur in normal conditions and emergency situations. The formation from groups’ 

interactions becomes important to examine its impact on crowd movement. Therefore, this study 

aims to explore the effect of grouping behaviour in crowd movement using typical floor plans, 
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which are narrowing corridors, turning corridors, T-intersection of merging flows, and corridors 

with obstacles inside. The study is expected to answer whether grouping behaviour can potentially 

benefit flowrate and prevent turbulence. 

The scope of this research is at investigating grouping behaviour of individuals in inhomogeneous 

crowds in simulation environment. This research is based on a mathematical model that presents 

the grouping behaviour of individuals in a homogeneous crowd. The model is then extended to 

present the existence of different groups in inhomogeneous crowds. The simulations of grouping 

and non-grouping behaviours are constructed by using the extension version of the model. 

The flow rates of grouping behaviour are compared to the flow rates of non-grouping behaviour 

in typical floor plans. Furthermore, the formation of crowds caused by these behaviours is 

compared to investigate which behaviour is effective for crowd movement. The study contends 

that grouping behaviour generates higher flow rates by reducing turbulence in the crowd 

movement. 

This thesis is organized to seven chapters. Chapter 2 presents background research of the study. 

Chapter 3 proposes research questions and methodology respectively. Chapter 4 details the base 

model of this study. Chapter 5 discusses how to model the existence of groups to form clusters in 

crowd. Chapter 6 analyses the effect of the emergence of clusters in crowd movement. Chapter 7 

summarises the study and presents recommendations for future works. 
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2 Background Study 
 
This chapter draws together related studies that underpin this research. They vary from different 

research studies including social, physical modelling, and computer simulation studies. The reason 

why this study investigates different fields is because human crowd modelling is an interdisciplinary 

research area that often relies on social observations to describe human behaviours and then 

mathematically formulates them in simulation environments based on basic physical modelling 

approaches. 

 

Social studies collect evidence of real-world crowd behaviours and explore them by using social 

factors (Reicher and Drury, 2011), while physical studies propose fundamental approaches that are 

often based on the modelling of other living organisms, such as flocks of birds, and particle systems 

(Reynolds, 1987; Vicsek, 1995; Helbing, 1995). Typical tasks that computer scientists often focus 

on include the construction of simulation models of human-like behaviours and the investigation 

of these models when testing with different floor layout plans (Helbing, 2000; Helbing, 2005; 

Moussaid, 2010; Sun, 2014). Thus, this research investigates these related studies in order to 

propose research questions in next chapters.   

 

Section 2.1 presents the context of typical crowd behaviours that have been found by social studies. 

Section 2.2 details fundamental modelling approaches from physical studies. Section 2.3 presents 

the state of the art of well-known studies that aim to model crowd behaviours in simulation 

environments. 

2.1. Context of Real-world Crowd Behaviours 

Investigating how actual pedestrians in crowds interact with each other is necessary for modellers 

to simulate virtual pedestrians. Modellers often pay more attention to behaviours that occur 

commonly in reality. Therefore, social studies aim to collect evidences, to seek and to explain which 

behaviours arise in both normal and emergency situations. Behaviours that are often found in 

crowd movement are individual, following, rioting, and grouping behaviours (Challenger, Clegg, 

Robinson, 2010). While individual, following, and rioting behaviours typically occur in emergency 

situations, grouping behaviour is often found in both normal conditions and emergency situations.  

This subsection presents brief context of these behaviours and for which situations they apply. It 

aims to explain how current modelling studies formulate these behaviours in simulation 

environment. 
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2.1.1. Individual, following, and rioting behaviours 

Uncontrollable behaviours typically occur in emergency situations such as panic evacuations and 

riotous events, rather than normal situations. Crowd members in such crowds often feel nervous 

and physical dangers potentially occur within crowds (Helbing, 2007; 2012). 

 

Individual behaviour is used to describe individuals who behave more individualistically in crowds 

and neglect social norms in evacuation situations (Quarantelli, 1954, 1957). Interactions between 

individuals become more physical (Helbing, 2000). When escape movement routes are limited and 

physical interactions increase, individuals feel trapped and start to push, trample, and crush each 

other (Janis and Leventhal, 1968; Killan, 1972). 

 

Following behaviour is a term used to describe emergency situations where individuals are nervous 

and they lack independence. Consequently, they follow other people in the assumption that they 

can help them escape faster (Almeida, 2011). This behaviour is visualised in Figure 2.  

 

 

Figure 2. Crowd’s following behaviour in a smoke-filled room caused by fire 

In riotous events, several behaviours including avoidance and rioting are exhibited. These 

behaviours are often carried out by antisocial individuals with a mass of followers. Real-world 

crowds in such events comprise rioters, civilians and police in which each individual has different 

actions. Rioters and followers raise the violent attention by throwing fires, smashing cars while 

police try to dominate rioter’s area, to reduce a crowded atmosphere, and to protect civilians 

(Myers, 2004; Torrens, 2013). Participants in riotous events often have geographic behaviours of 

spatial cognition, locomotion, steering and spatial strategy (Davies, 2013). 

 
Individual, following, and rioting behaviours are often used to describe how individuals behave in 

emergency situations rather than in normal conditions. These behaviours often become the main 

focus for modellers when simulating evacuation scenarios.  However, modelling behaviours that 
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occur in normal conditions at densely populated places is also necessary. It allows to create optimal 

urban infrastructure and to plan crowd management scenarios in public events. Therefore, there is 

a need for investigating behaviours that occur more frequently in both normal and emergency 

situations, such as grouping behaviour. 

 

2.1.2. Grouping behaviour 

 
While individual, following, and rioting behaviours often occur in emergency situations, grouping 

behaviour arises more commonly in normal conditions and emergency situations. 

 

A physical crowd often contains more than one social group (Drury, 2004; Cocking, 2008, 2009). 

A group is a social unit comprising members who stand in relationships with other members in the 

same group. Grouping behaviour can be easily seen in normal situations. A social study highlighted 

that the majority, 74%, of crowds at the intersection areas of main roads in UK were with one or 

more friends (Aveni, 1977). People belong to groups because of social ties. Members in a group 

often are family members, colleagues, school mates, or people who have the same characteristics 

or interests. Members of the same group feel more familiar to stay together than staying in different 

groups. Staying together with familiar members helps them to maximize communication, to reduce 

stress levels and depression, and to increase optimism in emergency situations (Haslam, 2005; 

Dougall, 2001). Clusters emerge spatially in crowds because of the existence of these social groups. 

These clusters occur as spatial coherence when people share their social identities in crowds (Drury, 

Cocking, and Reicher, 2009). A cluster in a crowd has a number of individuals who are of the same 

group. 

 

At dense places, such as stadiums and shopping malls, the majority of the public is comprised of 

different groups. A social experiment interviewed participants at an American stadium and found 

that there was only a quarter of the crowd population attending as individual (Aveni, 1977). Other 

social studies have given the same findings (Stott, 2007). For instance, a large crowd in sporting 

events often contains opposing groups that support different sport teams in these events. 

Supporters in each group move collectively against other opposing groups to maintain social 

coherence. Consequently, clusters emerge spatially in the crowd. Figure 3 shows a crowd containing 

fans of two opposing groups at a stadium. The two groups form clusters in which each cluster 

contains fans of the same team. 
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Figure 3. Northern Ireland fans during Sunday's UEFA Euro 2016 Qualifier against Finland 

Two fan groups are supporting Northern Ireland and Finland football teams. Clusters emerge spatially 

in the crowd. Clusters are highlighted in this figure. 

 
Furthermore, grouping behaviour was often seen in previous emergency situations of football 

stadium fires, football stampede disasters, car-bomb and train accidents (Drury, Cocking and 

Reicher, 2009). Evacuees of these situations often felt fearful and shared their social identities to 

each other. Commonly social identities are family roles, and the different types of rescuers such as 

police and fight fighters. Evacuees often sticked to their rescuers when sharing social identities 

(Challenger, Clegg, Robinson, 2010). Strangers even grouped together although they were 

unfamiliar with each other before. Consequently, clusters emerge spatially in such crowds. For 

instance, grouping behaviour was seen during the London bombing of July, 2005 when individual 

commuters helped each other and united into clusters (Drury, 2009). Another evidence of grouping 

behaviour was seen in Boston Marathon bombings caused by terrorist attack on April 15, 2013 

(Dugan, 2015; Price, 2015). Figure 4 was captured by Aaron Tang through a window of his office 

(CNN, 2013). During this evacuation, each cluster in a crowd contained either members of a family, 

or collection of people incorporating and helping each other. 
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Figure 4. Above view at Boston Marathon bombings on April 15, 2013 (CNN, 2013) 

Clusters emerge spatially in the crowd. They are highlighted in this figure. 

 
While individual, rioting, and following behaviours typically occur in emergency situations, social 

studies have provided sufficient evidence for the existence of grouping behaviour in both normal 

conditions and emergency situations. Due to the existence of social groups in crowds, clusters 

emerges spatially during crowd movement. 

Simulating these behaviours is important to explore their impacts on crowd movement, which is 

useful for designing floor plans and planning crowd movement for safety purposes (Helbing, 2005). 

The simulation typically acquires mathematical models that make virtual individuals perform these 

behaviours in different simulation environments. Therefore, the next section aims to present 

fundamental modelling approaches, which are primarily inspired by biological and physical studies.  

2.2. Basic Human Crowd Modelling Approaches 

Modern simulation studies often rely on or are improved from basic modelling approaches that 

were proposed in biological and physical studies. Typically basic modelling approaches, which have 

been applied most in modern studies, are agent-based, cellular automata, and force-based models 

(Hoogendoorn, 2013). This section details these fundamental approaches. 

 

2.2.1. Agent-based Modelling Approach 

The agent-based modelling approaches aim to model autonomous and interacting agents 

(Georgeff, 1989). The approach pays attention to the decision making process of agents. 

Autonomous agents have their own attributes and could be comparable to a real person in the 

simulation environment. Agents react to certain situations and adapt to a dynamic environment. 



10 

 

Agent’s behaviours are regulated by a set of decision rules. In general, designing autonomous agents 

contains two parts: 

 Reflect how agents interact with the virtual world and make different decisions based on 

perception. 

 Describe the agents’ own attributes and abilities so that the crowd simulation is 

heterogonous.  

This model allows to create various agents and to simulate the communicability between agents. 

The following diagram conceptualises the flow chart of an agent-based modelling approach (Macal 

and North, 2011; Winter, 2012). 

 

Figure 5. The flow chart of agent-based modelling approach (Macal and North, 2011) 

During their lifetime, agents interact with the environment and other agents while performing 

desired actions. The heterogeneity between agents makes them have different reactions to 

environment and neighbours, or movement route choice based on their predefined attributes 

(Pelechano, 2006). Crowd’s behaviour emerges when agents interact with their local neighbours. 

An agent-based modelling approach is considered as a natural way to describe crowds and it is 

flexible to define agents (Bonabeau, 2002). However, this approach does not propose a consistent 
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mechanism for defining behaviours rules and agent’s attributes. Therefore, current studies using 

this approach often have different rules and attributes to define agents. (Bonabeau, 2002). 

 

2.2.2. Cellular Automata Modelling Approach 

In contrast to agent-based approaches, cellular automata (CA) based approaches describe space as 

a uniform grid with attributes to each cell. Attributes are updated based on the rules that in the 

relation to neighbourhood of the cell. Movement can only be simulated by cells’ attributes.  For 

instance, moving between cells changes the attribute of the cells to be occupied or unoccupied. 

The CA model was originally proposed by J. Von Neumann to generalise biological systems and it 

has been used in different applications for nearly fifty years (Neumann, 1966). Figure 6 generalises 

the idea of the model. 

 

 

Figure 6. The conceptual idea of the original CA model (Daniel, 2012) 

 
Figure 6 shows the idea of CA model in which cells are in different states “on” 

and “off” to present whether the cells are occupied. CA-based approaches often customise the 

original CA model by contributing more states of each cell and creating field layers of the grid. 

These solutions aim to make the model more flexible for modelling different applications (Hafstein, 

2004). 

 

2.2.3. Force-based Modelling Approach 

In contrast to agent-based and cellular automata modelling approaches, a force-based approach is 

applied more widely to simulate the interactions of individuals in living organisms. It does not 

focus on creating behaviour rules or dividing space into grids. The force-based approach represents 

the motion of individuals in crowds in continuously spatial and temporal space from interacting 

forces. The interactions between individuals in a crowd, and the interactions between individuals 

and environment are considered as social force elements that influence the movement of 
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individuals. For instance, given an individual p, its velocity 𝑣⃗𝑝 at time t is defined by a Langevin 

equation: 

 

𝑑𝑣⃗𝑝

𝑑𝑡
= 𝑓(𝑋, 𝑡) 

(1) 

 

where 𝐹(𝑋, 𝑡) integrates possible forces acting on individual p at time t. Possible forces are various, 

such as: 

 The interaction force caused by other individuals in the crowd 

 The obstacle force that caused by obstacles. This force allows individual p to avoid the 

obstacles 

Force-based approaches are various for modelling the movement of individuals in different living 

organisms, such as flocks of birds or particles, and human crowds. The earliest model in this 

approach simulated the motion of bird flocks, which was named as “Boids” (Reynolds, 1986). The 

later model simulated the interaction between particles in huge flocks (Vicsek, 1995). Another 

model was then designed specifically to simulate human crowd (Helbing, 1995, 2000). This section 

reviews these three models because they are the most typical models that have been used commonly 

by current simulation studies following this approach. 

 

2.2.3.1. Reynold “Boids” Model 

The “Boids” model is the earliest biologically inspired model that simulates flocks based on the 

combination of a finite number of behaviours. The model proposes three simple steering 

behaviours to describe how birds fly together based on their interactions (Reynolds, 1986). Figure 

7 presents these three types of steering behaviours. They are separation, cohesion, and alignment. 

These behaviours create corresponding force directions acting on each bird. 

 

 

Figure 7. Steering behaviours in “boids” model 

 

Separation allows birds steer to avoid collision while cohesion makes birds move toward the 

average position of other birds. Alignment allows birds move in the direction averaged by other 
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birds’ heading directions. This model combines the directions of steering behaviours and then by 

added them together to create the force that cause acceleration for each bird. Table 1 presents the 

parameters of the model and Equations 2-4 present the model. 

 
Table 1 – “Boids” model’s parameters 

Parameter Type 

m Scalar value to present mass of bird 

𝑥⃗ Position vector to present position of bird i 

𝑣⃗ Velocity vector to present position of bird i 

𝑑sepereation Vector presents separation to avoid other birds 

𝑑cohesion Vector presents cohesion to fly toward other birds 

𝑑alignment Vector presents alignment to fly in the direction of other birds 

𝑑steering Vector present the motion of direction caused by steering behaviours 

|𝑓| Scalar value to present the force magnitude that can act on bird 

𝑣𝑚𝑎𝑥  Scalar value to present maximum speed a bird can fly 

 

𝑑steering= 𝑑𝑖
sepereation

+𝑑𝑖
cohesion + 𝑑𝑖

alignment
 (2) 

𝑓(𝑡)= truncate(𝑑steering , |𝑓|) (3) 

𝑎⃗(𝑡)= 𝑓(𝑡)/m (4) 

 

At each simulation step, the model only provides a force strength |𝑓| in the steering direction 

𝑑steering. This force strength can be adjusted adaptively to simulate which behaviour is more 

important. The force then produces an acceleration on each bird that has a weight of mass m. 

Equations 5-7 present how to update velocity and position for each bird. 

 

𝑣⃗(𝑡 + 1)= 𝑣⃗(𝑡)+ 𝑎⃗(𝑡) (5) 

|𝑣⃗(𝑡 + 1)|=truncate  (𝑣𝑚𝑎𝑥 , |𝑣⃗(𝑡 + 1)|)  (6) 

𝑥⃗(𝑡 + 1)=𝑥⃗(𝑡)+ 𝑣⃗(𝑡 + 1) (7) 

 

The acceleration 𝑎⃗(𝑡) is added to the old velocity to create a new velocity 𝑣⃗(𝑡 + 1) that is then 

truncated by maximum speed 𝑣𝑚𝑎𝑥 . The new position 𝑥⃗(𝑡 + 1) is identified by adding the final 

velocity to the old position 𝑥⃗(𝑡). 

 

The model contributes a new concept in combining basic behaviours to create the movement of 

birds based on interaction forces. It also verifies that the collective motion of flocking organisms 

originates from the interaction of each bird. The model is also simple and well-understood so that 
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future studies can easily integrate other additional behaviours, such as seek and flee, and obstacle 

avoidance (Reynold, 1999). 

 

2.2.3.2. A Vicsek Model 

While “Boids” model focuses on the combination of a finite number of behaviours, Vicsek model 

is the first physical model that pays more attention on the interaction range of particles in a flock, 

due to the fact that nearby particles creates stronger interactions than others that are at further 

positions (Vicsek, 1995). Vicsek and colleagues modelled flocks in a way that a particle aligns its 

direction of motion with its neighbours in a defined radius range R. A particle is propelled by a 

constant speed and the force caused by neighbours within that range plus with a random noise. 

The model is presented in Equations 8. 

𝑣⃗(𝑡 + 1) = 𝑣0  
〈𝑣⃗⃗𝑗(𝑡)〉𝑅 

|〈𝑣⃗⃗𝑗(𝑡)〉𝑅|
 + pertubation 

(8) 

 
The main idea of the model is that at each given time step t, particle i is controlled by interactions 

with its local neighbours in a constant radius R and a perturbation factor. Here 〈𝑣⃗𝑗(𝑡)〉𝑅 denotes 

the averaging of the velocities of neighbours in radius R. The expression 
〈𝑣⃗⃗𝑗(𝑡)〉𝑅 

|〈𝑣⃗⃗𝑗(𝑡)〉𝑅|
  provides a unit 

vector pointing in the average direction of motion. The particle i also has an initial velocity 𝑣0. The 

velocity 𝑣0 is set the same for all particles in a flock. 

 

Although “Boids” and Vicsek models aim to simulate the motion of individuals in a flock based 

on interaction force, they still are different from each other.  

 “Boids” model considers the motion of each bird is caused by the interaction with all others 

in a flock, whereas Vicsek model defines a radius range R for the interaction. 

  “Boids” model uses an independent force strength to produce the magnitude of velocity 

for each bird as presented in Equations 3-5. In contrast, Vicsek model takes into account 

the initial velocity 𝑣0 and a perturbation factor to produce the velocity for each particle. 

 

In the standard version of Vicsek model, Vicsek derived the perturbation factor by adding a 

random angle to the angle corresponding to the average motion direction of particle i’s 

neighbourhood. The angel 𝜗𝑖  of average motion direction and random angle Δ𝑖 at time t are 

represented as in Equations 9-10. 

𝜗𝑖(𝑡) = arctan(
𝑣𝑗,𝑥

𝑣𝑗,𝑦
)  

(9) 

𝜗𝑖(𝑡 + 1) = 𝜗𝑖(𝑡) + Δ𝑖(𝑡) (10) 
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where 𝑣𝑗,𝑥 and 𝑣𝑗,𝑦 are the x and y coordinates of particle jth’s velocity in the neighbourhood of 

particle i. The perturbation Δ𝑖(𝑡) is a random number taken from uniform distribution in the 

interval [−𝜂𝜋, 𝜂𝜋 ]. The randomness of perturbation makes particles have different directions of 

motion. 

 

Finally, Vicsek models contains only two control parameters that are the density 𝜌 (number of 

particles in a volume 𝑅𝑑 (d is the dimension)), and the level of perturbation 𝜂. 

 

The common measurements of particles’ movement are the average momentum of the particles 

𝜙 ≡
1

𝑁
|∑ 𝑣⃗𝑗𝑗 | and the correlation between particles’ velocity directions. The author found that the 

average momentum decreases when decreasing the density or increasing the level of perturbation 

(Bhattacharya and Vicsek, 2010). 

 
To summarise, Vicsek model is used to understand the formation of huge flocks of living 

organisms, such as flocking of birds, or particles, in which the movement of each particle is affected 

by neighbours in a defined radius. The model is well-understood since it only contains two 

parameters. Thus, it can be easily applied to investigate the collective motion of particles when 

varying the model’s parameters. 

 

2.2.3.3. A Social Force Model 

In contrast to the Vicsek Model, a social force model is specifically constructed for modelling 

human crowds (Helbing, Vicsek, and Molnar, 1995; Helbing, 2000). The social force model 

presents the change of an individual’s motion based on forces caused by exiting target, other 

pedestrians, and obstacles. Figure 8 illustrates this idea. 

 

 

 

Figure 8. Social Force Model 
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Acceleration of pedestrian p in crowd is illustrated as follows. 
 

𝑓𝑝⃗⃗⃗⃗ (𝑡)   =  
1

𝜏𝑝
(𝑣𝑝

𝑑(𝑡)𝑒⃗⃗𝑝
𝑑
(𝑡) − 𝑣⃗𝑝(𝑡)) + ∑ 𝑓𝑝𝑞

𝑟𝑒𝑝(𝑡) +  𝑞(≠𝑝) ∑ 𝑓𝑝𝛾(𝑡) 𝛾  

 

 
(11) 

The model represents that a pedestrian p at time t is trying to move with a certain desired speed 

𝑣𝑝
𝑑(𝑡) in a desired direction 𝑒𝑝

𝑑(𝑡) pointing from pedestrian p’s current position to his target 

position. Therefore, pedestrian p tends to correspondingly adapt actual velocity 𝑣⃗𝑝(𝑡) with a certain 

acceleration time 𝜏𝑝. The acceleration time 𝜏𝑝 represents that pedestrian p changes its current 

velocity and return to its desired velocity. Pedestrian p’s acceleration at time t is also influenced by 

repulsive forces coming from surrounding pedestrians and obstacles. They are ∑ 𝑓𝑝𝑞
𝑟𝑒𝑝(𝑡)𝑞(≠𝑝)   and 

∑ 𝑓𝑝𝛾(𝑡)𝛾 , respectively. Repulsive force 𝑓𝑝𝑞
𝑟𝑒𝑝 created by neighbour pedestrian q is given as follows. 

 

𝑓𝑝𝑞
𝑟𝑒𝑝(𝑡) = 𝐴𝑟𝑒𝑝𝑒

(
(𝑅𝑝+𝑅𝑞)−𝑑𝑝𝑞(𝑡)

𝐵𝑟𝑒𝑝
)
𝑢𝑞𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

(12) 

 

where  𝐴𝑟𝑒𝑝 and 𝐵𝑟𝑒𝑝 present the strength of interaction force and how sensitive the repulsive 

force are based on the distance between pedestrians p and q, respectively. 𝑅𝑝 and 𝑅𝑞 parameters 

represent radii of pedestrians p and q, and (𝑅𝑝 + 𝑅𝑞) ≤ 𝑑𝑝𝑞. Literally, the higher 𝐵𝑟𝑒𝑝  value means 

pedestrian p is more uncomfortable and wants to move further away from pedestrian q. The 

exponent function is used to describe that the repulsive force decrease exponentially if  𝑑𝑝𝑞 is high. 

The repulsive force achieves the highest value when pedestrians p and q collide (𝑅𝑝 + 𝑅𝑞 =  𝑑𝑝𝑞).  

Factor 𝑢⃗⃗𝑞𝑝 is the unit vector pointing from pedestrian q to pedestrian p to illustrate the force 

direction making pedestrian p avoid pedestrian q. 

 

The obstacle force between pedestrian p and wall γ in Equation 11 is represented by using Equation 
13. 

 𝑓𝑝γ(𝑡) =
𝑈

𝑅𝑝
𝑒
−𝑑pγ(𝑡)

𝑅𝑝 𝑢γ𝑝⃗⃗ ⃗⃗⃗⃗⃗ 
(13) 

 

where U is a model parameter to represent the strength of obstacle force, and 𝑢⃗⃗γ𝑝 is the unit vector 

pointing from wall γ to pedestrian p to make the agent avoid the wall. 

In nature, the movement of human crowd have been seen in different self-organization 

phenomena, such as lane formation and turbulence. Lane formation emerges at places where two 

flows of pedestrians moving in opposite directions appear spontaneously. The number of lanes 

and their width vary according to pedestrians’ interaction (Helbing, 2005).  A turbulence 

phenomenon leads to unanticipated irregular motion of pedestrians. It is caused by strong and 

rapid changes of interaction forces in crowds especially at high density areas (Helbing, 2002).  

Figure 9 shows these phenomena (Helbing, 2000). 
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(a) Lane formation (b) Turbulence 

Figure 9. Lane formation and turbulence phenomena 

 
The proposed social-force model of Helbing and his colleagues, which is one of the most cited 

works in crowd modelling, has successfully been used to describe and simulate these self-

organization phenomena (Helbing, 2005). 

 

2.3. State of The Art in Modelling Human Crowd Behaviours 

 
Social studies have identified typical crowd behaviours that often are seen in reality, such as 

individual, following, and grouping behaviours. This section examines whether current studies have 

explored the impact of these behaviours on crowd movement. Only well-known studies from the 

three fundamental approaches are selected for reviewing in this section. 

 

2.3.1. Agent Modelling Approach for Representing Following Behaviour 

 
An agent-based modelling approach allows the creation of inhomogeneous agents and that can be 

integrated easily with other systems (Weijmen, 2013; Sun, 2014). Generally, there are agent-based 

studies focusing on the intelligence, reactivity, and communication ability of agents according to 

their predefined social identity or demographical information.  

 

For instance, each agent can be assigned a specific role, which could be trained as leader or 

policemen, untrained leader, or follower. Agents follow leaders while they are moving to reach exit 

gates. Studies using this approach typically investigate the impact of various roles and the number 

of agents of each role on evacuation duration (Pelecheno, 2006; Shendarkar, 2008). Moreover, 

behaviour rules are often defined to formulate the interaction between agents, such as they can 

share route paths that lead to exit gates.  
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In the trend of more agent-based models being proposed, agent attributes and constraint behaviour 

rules between those autonomous agents are conducted incrementally to simulate complex 

scenarios. Current studies in this approach typically focus on the diversity of social roles and 

behavioural rules to improve the intelligence and reactivity of members (Wijermans, 2013). During 

the lifetime of agents in simulations, agents’ priorities are to move close to predefined leaders.  

 

However, in reality, it is highlighted that evacuees often see the group that they belong to and being 

different from other group (Drury, Cocking, and Reicher, 2009), agent-based studies rarely 

investigate the interaction of individuals from different groups. Therefore, investigating the impact 

of grouping on crowd movement requires exploration. 

 

2.3.2. A Cellular Automata Modelling Approach for Representing Following 

Behaviour 

 
In a cellular automata approach, geometrical layout is divided into cells. By using CA-based 

approaches, modelling crowd behaviours typically acquires the presence of objects such as 

obstacles, and exit gates. Obstacles can occupy more than one cell. Every cell in the space can be 

in different states including free, obstacle, or occupied. Equations 14-16 presents possible states 

and neighbourhoods of each cell (Vizzari, 2013). 

Environment = 𝑐0, 𝑐1, 𝑐2, 𝑐3, … where ∀𝑐𝑖:  𝑐𝑖  ∈ Cell (14) 

neighbours (𝑐) = {𝑁(𝑐), 𝑆(𝑐), 𝐸(𝑐),𝑊(𝑐), 𝑁𝐸(𝑐), 𝑆𝐸 (𝑐), 𝑁𝑊(𝑐), 𝑆𝑊(𝑐)}   (15) 

State(𝑐) = 𝑠: 𝑠 ∈ {Free, Obstacle, Occupied}   (16) 

 

Moreover, every cell has variables of path field, obstacle field, and density field (Suma, 2011). Path 

field identifies the distance from current cell to destination cell. Obstacle field indicates for every 

cell the distance from an obstacle or a wall. Density field estimates the crowd density in the 

surroundings at the current time step t. Variables at each cell are updated according to a set of local 

rules or its neighbour cells at each time t. 

 

There are other studies that integrate CA-based model and agent-based model to simulate agents 

(Burstedde, 2001). In these studies, an agent has attributes as follows: 

 Id: identification number of that agent i 

 State: represents agent’s current cell that and direction followed in last movement 

 Actions: is the set of possible actions when the agent at a specific cell 

 Destination: reflects the current path field of the cell where agent i is in 
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The relation between a cell’s information and individuals within that cell is modelled. This model 

is sufficient to store sequential states of each cell over the time. Figure 10 presents the integration 

of agent-based and CA-based approaches to simulate a crowd. 

 

 

Figure 10. The integration of CA-based and agent-based modelling approaches 

 
Following behaviour is represented by estimating the probability of a cell c that allows agent i to 

move towards other members in a crowd (Vihas, 2012; Vizzari, 2013). These studies then often 

investigate the correlation between crowd population size and crowd average speed in various floor 

plans. However, studies using CA modelling approach remain the limitations of the original CA 

model that only allows agents to move into neighbour cells rather than cells at further distances. 

Therefore, this approach is rarely applied to simulate human crowd self-organization phenomena 

while the force-based approach is more suitable to produce crowd phenomena (Hoogendoorn, 

2013).  

 

2.3.3. A Force-based Approach for Representing Following Behaviour 

Modelling the following behaviour of members in a small crowd (up to four members) has been 

proposed by adding a new force element into the social force model (Moussaid and Helbing, 2010). 

This force makes members follow the crowd’s centre position instead of being attracted by each 

other. Individual in crowd continuously adjusts its position to reduce its head direction and 

maintain the crowd’s centre of mass, but also to avoid other crowd member’s positions. Equation 

17 describes this force.  

𝑓𝑝(𝑡) =  𝑓𝑝
𝑣𝑖𝑠
(𝑡) + 𝑓𝑝

𝑎𝑡𝑡
(𝑡) + 𝑓𝑝

𝑟𝑒𝑝
(𝑡) 

 (17) 

 
In order to maximize communication when walking in crowd, individual p at time t turns his vision 

direction to capture their members. Thus,  𝑓𝑝
𝑣𝑖𝑠
(𝑡) vision force is included to help individual p 
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adjust position to reduce head rotation. At the same time, individual p keeps a certain distance from 

the crowd’s centre of mass by the force 𝑓𝑝
𝑎𝑡𝑡
(𝑡). A repulsive force 𝑓𝑝

𝑟𝑒𝑝
(𝑡) is added to support 

pedestrian p to avoid other crowd members.  

 

In reality, the formation of small crowd varies from V-line, U-like, line-abreast, to river-abreast 

(Helbing, 2005). By tuning parameters of 𝑓𝑝
𝑣𝑖𝑠

, this model produces successfully these formations. 

By forcing members to follow a crowd’s centre point, the study investigated the impact of crowd’s 

population on crowd speed movement. It found that increasing crowd’s population size decreased 

crowd’s average speed.  

 

However, the study only investigated a small crowd of up to four members while actual crowds in 

sport-like events may contain larger crowds. While social studies find that a crowd often contains 

more than one group and members of each group tend to stay together, this study only investigated 

a small size of a homogeneous crowd without investigating the interaction of members from 

different groups. Therefore, investigating the impact of a crowd that contains more than one group 

on crowd movement is necessary. 

 
In comparison with CA-based and agent-based approaches, force-based approaches are potential 

to produce the emergence of self-organization phenomena of human crowds (Hoogendoorn, 

2013). Therefore, the research of this thesis applied force-based approaches to understand the 

formation of groups in inhomogeneous crowds. 
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3 Research Questions and Methodology 
 
Evidence from previous reports of emergency situations and dense places in Section 2.1.2 showed 

that crowds often consist of individuals from different social groups. Social studies investigating 

crowds highlight that individuals prefer to stay close to people who are familiar in order to 

maximize communication and reduce stress during emergency situations. Consequently, clusters 

emerge in inhomogeneous crowds as spatial coherence. The state of the art in modelling studies, 

presented in Section 2.3, have mostly investigated individual and following behaviours, but these 

behaviours typically occur in emergency situations. The research of this thesis investigates grouping 

behaviour because this behaviour is applicable to be occurred in both normal and emergency 

stations. As discussed in Chapter 2, how groups in crowds interact with each other has rarely been 

investigated. Exploring the emergence of clusters in inhomogeneous crowds becomes important 

to examine the impact of grouping behaviour on crowd movement. Therefore, this study defines 

two following research questions to explore the effect of grouping. 

3.1. Research Questions 

Question 1: How to model the existence of groups and their impact on behaviour of individuals? 

 

Question 2: What group-level behaviours, specifically clustering, emerge from the model?  

 
The first question aims to model the interaction between individuals in crowds that contain 

different groups. Afterwards, the proposed model is applied to investigate the emergence of 

clusters in inhomogeneous crowds in typical floor plan layouts. This task aims to resolve the latter 

question. 

 

3.2. Research Methodology 

This research is framed by the design science methodology, in comparison to research in other fields 

such as social science and political science that often rely on behavioural science and participatory science. 

While the later science paradigms explore “what is true”, design science focuses instead on “what is 

effective” (Hevner, 2004). The two main activities during the research are building artefacts and 

subsequently evaluate them. This research focuses on building a mathematical model and applying 

it to evaluate the effect of grouping behaviour in simulation environment of evacuation scenarios.  

There are additional research activities introduced in a design science framework including theorising 

about and justifying the artefacts (March and Smith, 1995). Theorising is used to describe “the 

construction of theories that explain how or why something happens”. (March and Smith, 1995). 
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This research study theorises the impact of grouping behaviour on crowd movement, by comparing 

the simulations of grouping behaviour to those of non-grouping behaviour. This study conducts 

metrics to perform the comparison and subsequently explains the impact. Although out of the 

scope of this study, justifying theory will further require actual data acquisition to calibrate the 

proposed model and subsequently validate it. 

 

Table 2 – The main artefacts being designed during this research, the table adapted from (March and Smith, 1995) 

 Research Activities 

Build Evaluate Theorise Justify 

 

 

Research Outputs 

Constructs     

Model     

Method     

Instantiation     

 

Table 2 shows a matrix that defines the research activities and outputs which can be carried during 

a research. Ticked cells represents artefacts that will be produced in this research. The following 

paragraphs align the artefacts in the design science context to this research and describe what this 

research expects to produce in each corresponding artefact. 

 

Building the Construction In the design science paradigm, constructs provide supports to define 

and communicate problems and their solutions (Schon, 1983).  Human crowd modelling 

approaches, which have been introduced in previous chapter, can be performed by various 

approaches ranging from defining agent’s behaviours rules to formulating social interaction forces. 

This research follows force-based approach and uses social forces to define the interaction between 

individuals in homogeneous and inhomogeneous crowds. The approach is chosen because it is 

simple and has been considered as sufficient to simulate commonly observable human crowd’s 

phenomena (Hoogendoorn, 2013). 

 

Building the Model A model is a “set of proposition or statement expressing relationships among 

constructs” (March and Smith, 1995). This study extends a force-based model that presents 

grouping behaviour of individuals in a homogeneous crowd (Mogilner, Edelstein-Keshet, 2003). 

In such homogeneous crowd, individuals are mutually attracted to each other. The base model has 

been used widely for modelling other systems including self-propelled particles, schooling fish, and 

other living organisms (Viscido, 2005; Orsogna, 2006; Johnson, 2008; Lukeman, 2010). Chapter 4 

details the base model. The simulation of the model is observed to evaluate whether the movement 
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of individuals in such homogeneous crowds is similar with the description of grouping behaviour 

in reality. 

 

The focus of this study is on inhomogeneous crowds that contain more than one group. Research 

Question 1 focuses on how to build a model that can reasonably formulate grouping behaviour in 

such crowds. The base model is extended to present the existence of groups in such 

inhomogeneous crowds. A new parameter is integrated into the base model to allow individuals 

differentiate in-group and out-of-group interactions. The extended model does not change the 

force calculating mechanism of the base model. It is subsequently evaluated by tuning the additional 

parameter to verify its sufficiency when simulating grouping behaviour in inhomogeneous crowds. 

It is expected to present the emergence of clusters in simulations when simulating such crowds.  

 

Evaluating the Model The homogeneity of clusters formatted in inhomogeneous crowds is 

measured to explore how individuals interact with in-group and out-of-group members. Chapter 5 

addresses this research question. 

 

Building the Method  A method is a “set of steps or an algorithm used to perform a task” (March 

and Smith, 1995). To investigate grouping behaviour in evacuation simulation scenarios, this study 

defines targets such as exiting doors to allow individuals in such inhomogeneous crowds move 

forward to reach the targets.  This study develops a comparison between grouping and non-

grouping behaviour to investigate the effect of grouping in crowd movement. Non-grouping 

behaviour formulates the asymmetrical attraction of individuals in crowds. Chapter 6 resolves the 

second research question. Section 6.1 develops an algorithm to present the symmetrical attraction. 

 

Instantiating the Method In design science framework, it is important to prove that an artefact 

is able to be implemented in a working system (Hevner, 2004). In this study, the comparison 

between grouping and non-grouping behaviours is deployed through simulation environments. 

Monash Cluster Campus facility is employed to perform parallel simulations. Four floor plans are 

constructed to simulate crowd evacuation scenarios. These floor plans are narrowing corridor, 

turning corridor, T-intersection corridor, and corridor with obstacle in the middle. They have been 

used widely in previous studies to investigate crowd dynamics (Helbing, 2002; Moussaid, 2011). 

 

Evaluating the Method and Instantiation Once non-grouping behaviour is developed, this 

study proposes metrics to conduct the comparison. The flow rates of these two behaviours are 

compared in typical floor plans to explore the effectiveness of the emergence of clusters in crowd 

movement. Other metrics, used in this study, are flowrate percentage difference, turning angles of 
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crowds during movement, and networks of individuals’ strongest attractors. These metrics are 

applied to analyse the difference in flowrates of the two behaviours in typical floor plans. At the 

time when this study is undertaken, previous human crowd modelling studies have not provided a 

list of measurements to evaluate the grouping behaviour. Therefore, this study expects the 

proposed metrics will become a good reference resource for future studies. Section 6.2 presents 

these metrics. Proposed metrics are implemented to measure real-time simulations. Section 6.3 

presents source codes developed to perform simulations. Simulation videos of the behaviours are 

also attached in the section. At the time when this research is taken, human crowd modelling studies 

do not have a public source code simulating grouping behaviour. Therefore, this study expects the 

simulation source code will become a reference for future studies. 

 

Theorising about the Method  The final stage of this research is to theorise the effect of grouping 

in crowd movement.  Section 6.4 investigates forces affecting on each individual in inhomogeneous 

crowds when they are grouping to their groups.  It aims to explain how the emergence of clusters 

caused by grouping behaviour is effective in comparison with the emergence of crowds caused by 

non-grouping behaviour. 
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4 Modelling the Grouping Behaviour of 

Individuals in a Homogeneous Crowd 

 
This chapter introduces a base model that is then applied to resolve the proposed research 

questions. The model is another version of force-based models, but it specialises to present the 

grouping behaviour of individuals in a homogeneous crowd (Mogilner, Edelstein-Keshet, 2003). 

The model assumes that individuals in a homogeneous crowd prefer to stay together and avoid 

dispersion. When individuals are far from each other, they speed up from distant positions and 

slow down when they are closer. 

 

The outcome of the model is that individuals keep a well-spaced distance from each other to avoid 

overlap at a state of equilibrium. A tight cluster of the crowd is formed at that state. This formation 

also maintains equidistant space for separation when the number of individuals in the crowd 

increases. Such equidistant space is not only observed in human groups but also in other ecological 

systems, such as flocks of gulls, anchovy schools, sandhill cranes, whenever a crowd is sedentary 

or moving in the same environmental conditions (Mogilner, 2003). 

 

Given an individual p in a homogeneous crowd, the total interaction force acting on individual p is 

caused by other individuals q. Equation 18 presents the acceleration of individual p based on the 

force. 

𝑑𝑣𝑝

𝑑𝑡
= 𝑓(𝑋𝑝, 𝑡) =∑ 𝑓𝑞𝑝(𝑡) 𝑞(≠𝑝)  

(18) 

 

The interaction force of an individual q acting on individual p is presented by using exponential 

functions. The force is denoted as 𝑓𝑞𝑝(𝑡) and formulated using Equation 19. 

𝑓𝑞𝑝(𝑡) = (𝑅𝑒
(−
|𝑥(𝑡)|
𝑟

)
− 𝐴𝑒

(−
|𝑥(𝑡)|
𝑎

)
) 𝑢⃗⃗𝑞𝑝 

(19) 

where 

R, r Magnitude, respectively range of repulsive force  

A, a Magnitude, respectively range of attractive force  

x Distance between individuals q and p at time t 

𝑢⃗⃗𝑞𝑝 Unit vector point from pedestrian q to pedestrian p 

The parameters, R, r, A, and a, are constant according to the model’s parameter setting. In contrast, 

the distance x is changeable over time based on the distance between the individuals.  

Parameters R and A present the magnitudes of repulsive and attractive forces respectively. Range 

parameters, r and a, present how fast their corresponding forces increase according to the distance 
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x. Given a system of two individuals moving to each other in one dimensional space as shown in 

Figure 11, parameter pairs (R, A) and (r, a) are controlled such that the individuals perform 

grouping behaviour and the distance x > 0 when the repulsion and the attraction are equal to each 

other. 

 

Figure 11. A two- individual system in one dimensional space 

An online simulation of this system can be viewed at 
https://sites.google.com/site/vietquangvo/home#1d_system  

 
The condition (R >A and r > a) is necessary such that individuals move close to each other and 

maintain a minimal separation distance at the state of equilibrium. Figure 12 explains why this 

condition is essential for grouping behaviour. In this figure, the change of the distance x is 

examined according to basic settings, which are (R>A and r > a), (R<A and r < a), (R<A and r > 

a), and (R > A and r < a). 

 
(a) R>A and r > a 

 
 (b) R<A and r < a 

  
(c) R<A and r > a 

 
 (d) R>A and r < a 

Figure 12. The distance between two individuals through parameter settings of base model  

 

https://sites.google.com/site/vietquangvo/home#1d_system
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Figure 12.a presents the distance x when setting R>A and r > a. It shows that the repulsive force 

dominates the attractive force. Therefore, individuals move away rather than move close to each 

other. For that reason, this setting is not suitable.  

 

In contrast, Figure 12.b shows the domination of attractive force even when individuals collide at 

x=0 by setting R<A and r < a. This setting explains that individuals continue to move towards 

each other despite the distance x=0. Therefore, this setting is unrealistic.  

 

Figure 12.c describes the distance x when setting R<A and r > a. At this setting, the long range of 

repulsion r makes individuals move away from each other when the distance x is large, while 

attractive force represses repulsive force when x ≤ 0. Thus, this setting is not capable of presenting 

grouping behaviour that exhibits a distance x > 0 to when individuals maintain a space for 

separation. 

 

Figure 12.d shows the last setting that represents R>A and r < a. At this setting, long range 

attraction makes individuals move close to each other. A certain minimal separation distance x > 

0 is maintained because of the domination of repulsion magnitude R and short-ranged repulsion r. 

In Figure 12.d, the separation distance is identified when attractive and repulsive forces cancel each 

other. At this separation distance, individuals stop moving towards each other. This separation 

distance is called as comfortable distance 𝛿. 

 

Validating the above parameter pairs concludes that the parameter setting (R>A and r < a) is 

necessary for the base model to present the grouping behaviour of individuals in a homogeneous 

crowd. Other studies also verify that a short-range repulsion r and a longer-range attraction a are 

sufficient to generate observable movement patterns in animal groups (Katz, 2011). 

 
The base model is a background of this research before extending into a further modelling step 

that focuses on inhomogeneous crowds. In essence, mathematical models need to be simulated to 

observe and explore how individuals in crowds behave dynamically. Therefore, this research 

applied Runge-Kutta level 4 numerical solver (RK4) to simulate the motion of individuals in a 

crowd over time (Fehlberg, 1969). 

 

The RK4 method has been used widely to simulate particle systems and planets in universe due to 

the method’s precision (Fehlberg, 1969). Given a particle that is at the position 𝑥⃗(𝑡) and has the 

velocity 𝑣⃗(𝑡)  at time t, RK4 method approximates the new position 𝑥⃗(𝑡 + Δt) and the new velocity 
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𝑣⃗(𝑡 + Δt) at time (𝑡 + Δt) based on the force function 𝑓 acting on that particle. Equation 20 

presents the motion equation of the particle. 

{
 
 

 
 
𝑑𝑥⃗

𝑑𝑡
= 𝑣⃗              

𝑑𝑣⃗

𝑑𝑡
= 𝑓(t, 𝑥⃗, 𝑣⃗)

 

 

 
(20) 

 

In RK4 method, the new position 𝑥⃗(𝑡 + Δt) and the new velocity 𝑣⃗(𝑡 + Δt) is updated by the 

present position 𝑥⃗(𝑡) and velocity 𝑣⃗(𝑡)  plus the weighted average of four increments. Each 

increment is the product of the time step Δt, and the corresponding slopes estimated from the 

system presented the Equation 20. Equations 21-26 summarise how to calculate 𝑥⃗(𝑡 + Δt)  and 

𝑣⃗(𝑡 + Δt). 

 

𝑣⃗(𝑡 + Δt) = 𝑣⃗(𝑡) +  
1

6
(𝑣𝑘1 +  2𝑣⃗𝑘2 +  2𝑣⃗𝑘3 +  𝑣⃗𝑘4) 

(21) 

𝑥⃗(𝑡 + Δt) = 𝑥⃗(𝑡) +  
1

6
(𝑥𝑘1 +  2𝑥⃗𝑘2 +  2𝑥⃗𝑘3 +  𝑥⃗𝑘4) 

(22) 

 
where 

 

 

𝑣⃗𝑘1 = Δt 𝑓(𝑡, 𝑥⃗𝑡 , 𝑣⃗𝑡)  

𝑥⃗𝑘1 = Δt𝑣⃗𝑡 

 

 

(23) 

𝑣⃗𝑘2 = Δt 𝑓(𝑡 +
Δt

2
,  𝑥⃗𝑡 +

1

2
𝑥⃗𝑘1 , 𝑣⃗𝑡 +  

1

2
𝑣⃗𝑘1) 

𝑥⃗𝑘2 = Δt (𝑣⃗𝑡 +  
1

2
𝑣⃗𝑘1) 

 

 

(24) 

𝑣⃗𝑘3 = Δt 𝑓(𝑡 +
Δt

2
,  𝑥⃗𝑡 +

1

2
𝑥⃗𝑘2 , 𝑣⃗𝑡 +  

1

2
𝑣⃗𝑘2) 

𝑥⃗𝑘3 = Δt (𝑣⃗𝑡 +  
1

2
𝑣⃗𝑘2) 

 

 

(25) 

𝑣⃗𝑘4 = Δt 𝑓(𝑡 + Δt,  𝑥⃗𝑡 + 𝑥𝑘3 , 𝑣⃗𝑡 +  𝑣⃗𝑘3) 

𝑥⃗𝑘4 = Δt (𝑣⃗𝑡 +  𝑣⃗𝑘3) 

 

 

(26) 

 

In this research, the base model was simulated to investigate how individuals behave in a 

homogeneous crowd by using RK4 method. Figure 13 shows different values of the comfortable 

distance 𝛿, which is the separation distance between individuals, at the state of equilibrium when 

setting with different combinations of parameters R and A. 
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(a) R = 35, A = 20; 𝛿 = 5.43 

 

 
(b) R = 40, A = 20; 𝛿 = 8.25 

 
(c) R = 35, A = 18; 𝛿= 7.63 

 
(d) R = 40, A = 22; 𝛿= 6.36 

 

Figure 13. The comfortable distances 𝛿 of a homogeneous crowd at different combinations (R, A) 

Figure 13 shows the formation of a crowd containing N=50 individuals at the state of equilibrium 

at four different parameter combinations (R, A). The same settings for parameters 𝒓 and 𝒂 were 

used for the four cases:  𝒓 = 2.0 and 𝒂 = 2.8. The increase of repulsive strength 𝑹 through Figures 

13.a and 13.b generated a higher distance 𝛿 between individuals. Particularly, the distance 𝛿 

increased from 5.43 to 8.25. This results conclude that the distance 𝛿 is proportional to repulsive 

strength R. 

 

In Figures 13.a and 13.c, the distance 𝛿 increased from 5.43 to 7.63 when parameter A dropped 

from 20.0 to 18.0. On the other hand, the higher value of 𝑨 made individuals stay closer to form a 

tight cluster. In detail, this increase made  𝛿 descend from 8.25 to 6.36 through Figures 13.b and 

13.d. Therefore, this results shows the inverse proportion between  𝛿 and attractive magnitude 𝑨. 

 

To summarise, this chapter introduces the base model that presents how individuals perform 

grouping in a homogeneous crowd. A tight cluster of the crowd is formed when individuals come 
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close to each other and maintain separation at the state of equilibrium. The condition (R >A and 

r < a) is essential to simulate grouping behaviour that make individuals move close to each other 

and maintain a separated distance at the state of equilibrium. By using RK4 method to simulate the 

model, this research shows that the comfortable distance 𝛿 is directly and inversely proportional 

to parameter R and parameter A, respectively. This chapter is an essential background before 

resolving the first question, which formulates the existence of groups in inhomogeneous crowds. 
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5 Modelling the Existence of Groups in An 

Inhomogeneous Crowd 

This chapter addresses the first research question that focuses on how to model the existence of 

groups to form clusters in an inhomogeneous crowd. The base model, which was presented in 

Chapter 4, considers a homogeneous crowd in which all members of the crowd are equally attracted 

to each other. However, this research investigates inhomogeneous crowds that contain different 

groups. An individual in such an inhomogeneous crowd differentiates in-group and out-of-group 

interactions. This research aims to model how members of these different groups in the crowd 

behave dynamically and form clusters during crowd movement. 

 

The modelling task is performed by using two steps. The first step, which is presented in Section 

5.1, extends the base model to differentiate in-group and out-of-group interactions. The second 

step, which is presented in Section 5.2, is the integration of autonomous movement. The 

investigation of this model’s behaviours in floor plan layouts is presented in the next chapter 6. 

 

5.1. Modelling the Interaction between In-group Members and Out-

of-group Members 

In an inhomogeneous crowd, a group is a collection of individuals who have similar characteristics 

and tend to stay together while moving. A cluster is also a collection of individuals, however, it 

emerges spatially in the crowd because individuals of the same groups prefer to avoid out-of-group 

members. Social studies, which were presented in Section 2.1.2 of the Background Study Chapter, 

showed that members of the same group feel more familiar to stay together than staying in different 

groups. Consequently, clusters emerge as spatial coherence. Therefore, members of every group in 

an inhomogeneous crowd are modelled in the way that they are more repulsed by out-of-group 

members than in-group members. Moreover, members of a group are less attracted by out-of-

group members than in-group members. 

 
The base model, which was presented in Equation 19, integrates a new additional parameter 𝑐 to 

present the interaction between members of different groups. In particular, Equations 27-28 

presents the social force of individual q acting on individual p. 
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𝑓𝑞𝑝(𝑡) = {
(𝑅𝑒

(−
|𝑥|

𝑟
)
− 𝐴𝑒

(−
|𝑥|

𝑎
)
) 𝑢⃗⃗𝑞𝑝,  𝑖𝑓 𝑝,  𝑞 ∈ 𝑠𝑎𝑚𝑒 𝑔𝑟𝑜𝑢𝑝

(𝑅̂𝑒
(−

|𝑥|

𝑟
)
− 𝐴̂𝑒

(−
|𝑥|

𝑎
)
) 𝑢⃗⃗𝑞𝑝,    𝑖𝑓 𝑝,  𝑞 ∉ 𝑠𝑎𝑚𝑒 𝑔𝑟𝑜𝑢𝑝

 

 

(27) 

where  𝑅̂ =  𝑐𝑅, 𝐴̂ =  𝑐−1𝐴; 𝑐 ≥ 1 (28) 

R, r Magnitude, respectively range of repulsion for in-group member 

A, a Magnitude, respectively range of attraction for in-group member 

𝑅̂ Magnitude of repulsion for out-of-group member 

 𝐴̂ Magnitude of attraction for out-of-group member 

 c Relative strength of in-group and out-of-group interactions  

 

The interaction force between individual q and individual p is computed through a condition using 

Equation 27. If  individual q and individual p are in the same group, their interaction is based on 

repulsive magnitude R and attractive magnitude A. Otherwise, out-of-group repulsive magnitude 

𝑹̂ and out-of-group attractive magnitude 𝑨̂ are used. Equation 28 presents the role of  parameter 

c. The parameter increases the out-of-group repulsive magnitude 𝑹̂ and reduces out-of-group 

attractive magnitude 𝑨̂ based on magnitudes R and A. 

 

To investigate whether the clusters emerging from the model's behaviour are consistent with the 

group membership, this study applied the purity measure (Amigo, 2009). The measure computes 

the homogeneity of  clusters. Its value is always in the interval [0, 1]. High purity value means that 

groups in an inhomogeneous crowd are well separated. When purity value is equal to 1, individuals 

in such crowd are completely separated into clusters in which each cluster contains individuals that 

are from the same group. This measurement is described in Equation 29. 

𝑃𝑢𝑟𝑖𝑡𝑦 =
1

𝑁
∑𝑚𝑎𝑥𝑗

𝐾

𝑖=1

|𝑐𝑖 ∩ 𝑔𝑗| 
(29) 

where 
N The number of individuals in the crowd 

K The number of clusters formed from the interaction of different groups 

𝑐𝑖 Cluster i 

𝑔𝑗 Group j 

 
When parameter 𝒄 =1, individuals do not differentiate in-group and out-of-group interactions since 

𝑅̂ =  𝑐𝑅 and 𝐴̂ =  𝑐−1𝐴. Therefore, a tight cluster, which contains members of  different groups, 

is formed at the state of  equilibrium. Figure 14 shows this formation of  groups in an 

inhomogeneous crowd. 
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Figure 14. The formation of two groups in an inhomogeneous crowd when setting  

A=20, R = 40, 𝒄 =1.0   

Each group contained 50 members. At the state of equilibrium, the average distance between individuals 

was 8.4 and purity was 0.5 after simulated 20 times. 

 

However, when c > 1, members of  each group avoid out-of-group members while they are 

attracted by in-group members. Consequently, an inhomogeneous crowd forms clusters. Figure 15 

shows instances of  this formation when setting different values of  parameter 𝒄. 

 
(a) 𝑐 =1.2 

 

 
 

(b) 𝑐 =2.5 

 

Figure 15. The formation of groups formed clusters 

The simulation of clusters formed from different groups can be viewed at  
https://sites.google.com/site/vietquangvo/home#groups  

 
The DBSCAN clustering algorithm was used to automatically detect clusters in inhomogeneous crowds. This 

algorithm is suitable for this analysis because it does not require the number of clusters in advance (Ester, 1996). 

The Convex-hull algorithm is also used to detect individuals at the boundary of each cluster. 

 
Figure 16 presents purity values for 27 representation parameter combinations (A, R, c). 

 

https://sites.google.com/site/vietquangvo/home#groups
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Figure 16. Purity measurement at different parameter combinations of (A, R, c) 

In Figure 16, the first subplot resulted when the setting was 𝑐 =1.2. The second and the last 

subplots were at  𝑐 = 1.5 and 𝑐 = 2.0, respectively. Overall, the emerging clusters become 

increasingly purer with increasing c and increasing R because these parameters are proportional to 

the out-of-group interaction magnitude 𝑹̂. In contrast, the increase of parameter A can potentially 

generate a lower purity when parameters c, R are at low values. However, the impact of parameter 

A on purity values decreases when parameters c and R at higher values. 

 

To summarise, this research introduces a new parameter 𝒄, 𝒄 > 1.0,  to explain the separation of 

groups in inhomogeneous crowds through the formation of clusters. Higher values of parameters 

R and 𝒄 make groups more separated. The purity of  clusters in crowds can be controlled by 

parameters (A, R, c). 

 

5.2. Modelling Autonomous Movement of Individuals in a Crowd 

This research uses target and obstacle forces to capture autonomous movement of individuals. 

These forces allow individuals to move towards a target, and to avoid obstacles. Figure 17 details 

all forces acting on an individual that causes its movement. 

 

 

Figure 17. Social forces acting on individual p 

In Figure 17, individual p is attracted and repulsed by individual q and individual k respectively. In-

group force is the sum of the forces caused by in-group members whereas out-of-group force is 

the sum of the forces caused by out-of-group members. Other forces, which are target and obstacle 
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forces, allow individual p to move towards the target and to avoid the wall. These social forces are 

formulated similarly with the interaction force between individuals based on their distance. Target 

force only has an attractive component to describe that each individual prefers to reach a specific 

target, such as an exit. This force has magnitude and a range of attraction. Obstacle force is caused 

by each wall or obstacle in floor plans. The force contains a magnitude and a range of repulsion to 

make individuals avoid that wall or obstacle. 

Overall, the motion of individual p, which contains interaction forces, target force, and obstacle 

force, is given in Equations 30-33. 

𝑑𝑣𝑝

𝑑𝑡
= 𝑓(𝑋𝑝, 𝑡) =𝑓

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) + ∑ 𝑓𝑞𝑝(𝑡) 𝑞(≠𝑝) +∑ 𝑓𝑤𝑎𝑙𝑙(𝑡) 𝑤  
(30) 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = −𝑆𝑒
(−
|𝑑𝑠𝑝(𝑡)|

𝑠
)
𝑢⃗⃗𝑠𝑝 

where 

(31) 

𝑆, 𝑠 Magnitude, respectively range of target force  

𝑑𝑠𝑝(t) Distance between target and pedestrian p at time t 

𝑢⃗⃗𝑠𝑝 Vector point from target to pedestrian p 

The target force 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 is computed using the distance between individual and target. However, 

this study only considers the simplest form of the force that does not depend on the distance 

between individual and target to investigate the effect of grouping behaviour. This simple form is 

presented in Equation 32 and explains that all individuals have the same constant desire force to 

reach the target over time. 

 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) = −𝑆𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑢⃗⃗𝑠𝑝            (32) 

 

The interaction force 𝑓𝑞𝑝 between individual q and individual p is computed by using Equation 27-

28.  The obstacle force 𝑓𝑤𝑎𝑙𝑙 is computed from the sum of walls of floor plan layouts using 

Equation 33.  

𝑓𝑤𝑎𝑙𝑙(𝑡) = 𝑊̂𝑒
(−
|𝑑𝑤𝑝(t)|

𝑤̂
)
𝑢⃗⃗𝑤𝑝 

where 

 

 (33) 

𝑊̂, 𝑤̂ Magnitude, respectively range of obstacle force 

𝑑𝑤𝑝(𝑡) Distance between current wall w and pedestrian p at time t. The distance is the length of the 

vector pointing perpendicularly from the individual’s position to the wall’s vector 

𝑢⃗⃗𝑤𝑝 Vector point from wall w to pedestrian p 

To summarise, an individual p is affected by the interaction force of in-group and out-of-group 

members, and subjected to additional forces comprising target and obstacle forces. The model is 

then used to investigate how groups interact in crowd movement. 
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6 The Emergence of Clusters in Crowd 

Movement 

This chapter investigates the emergence of clusters from the interactions between individuals and 

groups in crowd movement. The model presented in the previous chapter is used for this 

investigation. Grouping and non-grouping behaviours are simulated to investigate which behaviour 

exhibits the emergence of clusters in different floor plans. The difference between the simulations 

of two behaviours is analysed to explore how the emergence of clusters is effective in crowd 

movement. 

Section 6.1 describes how these behaviours were simulated differently using the model. Section 6.2 

details floor plan layouts, and metrics to investigate the difference between the simulations of these 

behaviours. Sections 6.3 and 6.4 present and analyse the comparison results from the simulations 

of these behaviours, respectively. 

6.1. Simulations of Grouping and Non-grouping Behaviours 

The simulation of  grouping behaviour contained different predefined groups in an inhomogeneous 

crowd. Grouping behaviour allowed individuals of the same group to move towards each other, 

and individuals of different groups to avoid each other. For instance, Figure 18 demonstrates 

grouping behaviour of individuals of the same group. Individuals contain bidirectional interactions 

when they are performing grouping behaviour. 

 

Figure 18. Grouping behaviour in a long corridor 

The simulation was captured in a long corridor with setting A=2.0, R=40, and c =1.4. The red and black colours 

signify group membership. The blue arrows represent the attraction of individuals in the same group. The green 

arrows shows the repulsion of individuals in different groups. 

In contrast to the simulation of  grouping behaviour, groups were not defined in the simulation of  

non-grouping behaviour. Non-grouping behaviour did not show bidirectional interactions between 

individuals in a crowd. Individuals selected and followed random attractors. For instance, Figure 
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19 shows non-grouping behaviour of  individuals in a crowd in which they are not attracted 

mutually. 

 

 

Figure 19. Non-grouping behaviour in a long corridor 

The simulation was captured in a long corridor with setting A=2.0, R=40, and c =1.4. Individuals are in the same 

black colour because of the nonexistence of groups. Individuals do not interact mutually with each other. 

 

Overall, the difference between group and non-grouping behaviours was highlighted at the way 

individuals interact with each other. Grouping behaviour maintained bidirectional interactions 

between individuals, which were either in-group or out-of-group interactions, by defining groups. 

On the other hand, non-grouping behaviour showed unidirectional interactions between them and 

did not contain groups. Non-grouping behaviour made an attractor of  an individual was not 

attracted symmetrically by that individual. 

 

In order to focus on the investigation of  the difference, other factors in the simulations of  grouping 

and non-grouping behaviours needed to be the same.  The model presented in Equation 30 shows 

that the motion of  each individual depends on the interaction with in-group and out-of-group 

members. Therefore, the simulations of  grouping and non-grouping behaviours needed to keep 

the same number of  attractors for every individual over time. The following pseudocode details 

this condition, named condition1. 

Condition1: The number of attractors of each individual 
 

Input:       i) Simulation at time t  

   ii) Crowd at time t, C(t) = {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1 , … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁} 

   iii) 𝑠1 ← Simulation of grouping behaviour of crowd C 

   iv) 𝑠2 ← Simulation of non-grouping behaviour of crowd C 
 

Output:  The number of attractors of every individual is the same for 𝑠1 and 𝑠2 over time t  
Steps: 

1)           for each 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖 ∈ 𝐶(𝑡): 
2)                  𝑎𝑡𝑡1= number_of_attractors(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖 , 𝑠1)  

3)                  𝑎𝑡𝑡2= number_of_attractors(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖 , 𝑠2)  

4)                  𝑎𝑡𝑡1 = 𝑎𝑡𝑡2 
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Moreover, the simulations of  grouping and non-grouping behaviours were not limited at a finite 

number of  individuals in a crowd.  A constant flow of  individuals was applied in the simulation of  

each behaviour. It aimed to ensure that every individual was attracted constantly to others who 

were in the front and behind them. Additional individuals were periodically generated to maintain 

a constant flow of  an infinite number of  individuals.  The following algorithms present how to set 

attractors for each individual in the simulation of  each behaviour over time. These algorithms were 

designed to maintain the condition1. 

 

Algorithm1: The attractor setting for individuals in the simulation of grouping behaviour 
 

Input:     i)   Simulation time t , simulation time step Δt >0 
 

               ii)   k ← the number of groups in crowd 
 

               iii)  Groups G= {𝑔𝑟𝑜𝑢𝑝1, … , 𝑔𝑟𝑜𝑢𝑝𝑘} 
 

 iv) Crowd C(t=0) = {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁} 
 

        in which {

{𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁/𝑘}  ∈  𝑔𝑟𝑜𝑢𝑝1
…

{𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑘−1)𝑁/𝑘 , … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁}  ∈  𝑔𝑟𝑜𝑢𝑝𝑘

 

 

v) M ← list of additional individuals {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑝}  

     
 

Output:  The number of individuals in C is increased by adding M periodically into groups G 
                The number of attractors of every individual is the same over time (t + Δt) 
                The symmetrical interactions between individuals are maintained in C(t + Δt) 
Steps:                 
1)           while(Δt >0) 
2)                 for each list of p/k individuals from M 
3)                     add this list into crowd C by assigning it to each group in G  
4)                     update attractors of individuals in each group in G from newly added individuals    
5)                update the number of individuals in C with N = N + p     

6)                𝑡 = 𝑡 + Δt 
 

 

The above algorithm presents the attractor setting for the simulation of grouping behaviour. For 

each time step Δt, a new additional individual in the list M receives N/k attractors. Due to the 

existence of groups in a crowd, individuals were mutually attracted and repulsed by in-group and 

out-of-group members, respectively. In this research, the simulation of grouping behaviour in the 

crowd of only one group was not considered. This case was not useful to investigate the emergence 

of clusters because a single group always forms a cluster. A singular group does not contain out-

of-group interactions.  

 

The following algorithm presents the attractor setting for the simulation of non-grouping 

behaviour. The algorithm creates asymmetrical interactions between individuals over time and 
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maintains the condition1. Specifically, the algorithm ensures that a new additional individual in the 

list M receives N/k attractors for each time step Δt. 

 

Algorithm2: The attractor setting for individuals in the simulation of non-grouping behaviour 
 

Input:     i)   Simulation time t , simulation time step Δt > 0 
 

                ii) k ← the number of attractor to be assigned to every individual for each Δt 
                    k is the same number with the number of groups in the simulation of grouping behaviour 
 

 ii) Crowd C(t=0) = {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑁} 
 
        in which each individuals has k random attractors from N individuals 
 

v) M ← list of additional individuals {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1, … , 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑝} 

 
Output:  The number of individuals in C is increased by adding M periodically into C 
               The number of attractors of every individual is the same over time (t + Δt) 
               The asymmetrical interaction between individuals are maintained in C(t + Δt) 
Steps: 
1)           while(Δt >0) 
2)                 for each individual from M 
3)                     add this individual into C  
                        select randomly N/k attractors from C for it  
                        assign this individual as a new attractor for randomly N/k individuals from C 
4)                update the number of individuals in C with N = N + p     

5)                𝑡 = 𝑡 + Δt 
 

 

To summarise, the proposed algorithms were used to simulate grouping and non-grouping 

behaviours. The simulation of grouping behaviour contained groups to present bidirectional 

interactions between individuals. The simulation of non-grouping behaviour did not contain 

groups. The simulations of  grouping and non-grouping behaviour were performed and compared 

with different floor plans. The comparison aimed to investigate which behaviour exhibited the 

emergence of  clusters and analyse its impact on crowd movement. 

 

6.2. Floor Plans and Metrics for Investigating Grouping and Non-

grouping Behaviours 

The comparison between grouping and non-grouping behaviour was experimented with four 

commonly used floor plans, which are narrowing corridor, turning corridor, T-intersection 

corridor, and the corridor with obstacle. Figures 20-23 show these layouts. In each layout, shaded 

regions, marked by dashed lines, are the areas where individuals are generated periodically to create 

a constant flow of individuals. 
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Figure 20. Narrowing corridor 

 

 
 

Figure 21. Turning corridor  

 

 
Figure 22. T-intersection  

 

 
Figure 23. Corridor with obstacle  

 

The results of the simulations of grouping and non-grouping behaviours were compared at 

different combinations of parameters (A, R, c). These parameters were employed because they 

reflect the strength of interaction forces between individuals. Each combination value of these 
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parameters was simulated fifty times. Monash Campus Cluster was occupied to perform parallel 

computations. However, each simulation was limited in a 120 second duration because the 

increase of the number of individuals over time and other computational tasks take more 

resources. Other parameters in the model were kept constant in the simulations, a=2.8, r=2.0. 

These values were chosen because the constraint a > r presented in Chapter 4. 

The following metrics were used to analyse the difference between grouping and non-grouping 

behaviours. 

 Flow rate distribution:  Flow rate represents the average number of individuals exiting the 

floor plan per second. Flow rate distributions when simulating these two behaviours were 

compared by using the Man-Whitney u-test, which is a non-parametric hypothesis testing. 

 The percentage flow rate difference, ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒: This metric aimed to identify which floor 

plan had the largest difference when simulating these two behaviours. It also allows to 

explore how the difference varied according to the combinations of parameters (A, R, c). 

 Turning angle distribution: Turning angle of each individual at time t, 𝜃(𝑡), is the angle 

between velocity vector 𝑣⃗𝑖 (𝑡) and target vector 𝑣⃗𝑖𝑒 (𝑡) pointing from the current position 

of that individual to a target point. Turning angle distribution comprises the turning angles 

of all individuals involved in fifty simulation trials for each behaviour. Kullback-Leiber 

(KL) distance was then computed to investigate how much the turning angle distributions 

of these behaviours differ. 

 Network of  the most influential attractors presents attractors that exert the strongest force 

of  each individual over time. The networks of the simulations of these two behaviours 

were constructed to identify which behaviour made an individual switched fewer attractors 

over time. 

 
 

6.3. Results of the Difference between Grouping and Non-grouping 

Behaviours 

In this section, the comparison results between the simulations of grouping and non-grouping 

behaviours are presented for each floor plan. This work aims to explore which behaviour is 

consistently effective for crowd movement in both floor plans. The simulation source code and 

data visualisation used for this experiment can be downloaded at: 

https://github.com/vietvomonash/EffectofGrouping 

https://github.com/vietvomonash/EffectofGrouping
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6.3.1. The Difference in Narrowing Corridor 

Figure 24 shows the observation when simulating two behaviours with setting 𝑨 = 20, 𝑹 = 40, 

and  𝒄 = 1.4. Figure 24.a presents the movement caused by grouping behaviour. Figure 24.b shows 

the movement of non-grouping behaviour. 

 

(a) Crowd movement of grouping behaviour 

 
(b) Crowd movement of non-grouping behaviour  

 

Figure 24. Observation of grouping and non-grouping behaviours in a narrowing corridor 

Simulation videos of these behaviours in a narrowing corridor can be viewed at 
 https://sites.google.com/site/vietquangvo/home#narrowing_corridor  

 
The colours signify group membership. In Figure 24.a, different groups are defined in the simulation 
of grouping behaviour. In contrast, groups are not defined in the simulation of non-grouping 
behaviour in Figure 24.b. 

 

Figure 24.a shows clusters form from groups while Figure 24.b does not shows clusters. The 

simulations of grouping and non-grouping behaviours were monitored at different parameter 

combinations to compare their flow rates. Figure 25 presents the flow rate distributions at the 64 

combinations of parameters (A, R, c). 

https://sites.google.com/site/vietquangvo/home#narrowing_corridor
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Figure 25. Flowrate distributions in the narrowing corridor 

The blue colour presents the flowrate distributions of grouping behaviour while the red colour presents 

the distribution of non-grouping behaviour. Each row represents a certain value of parameter A while 

each column stands for a particular value of parameter R. 

 

Overall, the flowrate of grouping behaviour was higher than the flow rate of non-grouping 

behaviour. For instance, at R=34.0, A=24.0, 𝑐 = 1.4, the average flowrate of grouping behaviour 

was 0.85 while non-grouping only resulted at 0.7. All mean differences are significant at the 5% 

level. The flowrate percentage difference ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  of the behaviours were calculated in the heat 

map presented in Figure 26. In this figure, each subplot presents the difference at a certain value 

of parameter c of different combinations of A and R. 
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Figure 26. The heat map of the flowrate percentage difference in the narrowing corridor  

 

The flowrate percentage difference varied in the range from 2.5% to 20%. The difference showed 

that grouping behaviour created significantly higher flow rates than non-grouping behaviour. At 

each value of parameter c, increasing attractive magnitude A makes ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  increase while the 

increase of repulsive strength R makes ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  descend. For instance, at c = 1.4,  ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒   

increased from 2.5 percent to 20.0 percent when attractive magnitude A increased from 16.0 to 

24.0. In contrast, a decrease was observed from 5.0 to 2.5 percent when repulsive strength R 

increased from 34.0 to 42.0. The increase of parameter c makes the variation of ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 smaller. 

For example, ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 varied in the range of 2.5% to 20% at c = 1.4, while that value varied in 

the range 2.5 to 7.5% at c= 2.0. 

 

To examine how the movement of individuals contributed to the difference in the flowrates of 

grouping and non-grouping behaviours, the movement of individuals were monitored over time 

by measuring their turning angles. Their turning angle distribution was then compared with a 

testing distribution. The testing distribution was extracted from the forward movement of a small 

crowd to exit a narrowing corridor. The angle 𝜃 between velocity vector 𝑣⃗𝑖  (𝑡) and target vector 

𝑣⃗𝑖𝑒 (𝑡) of every individual was close to 0 degree. Figure 27 presents the turning angle and the 

testing distribution. 
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(a) Turning angle close to 0 degree 
 

(b) Testing distribution 

Figure 27. A testing distribution in the narrowing corridor 

The Kullback-Leiber (KL) distance was then applied to measure the distance between the turning 

distribution of each behaviour and the testing distribution. For instance, Figure 28 presents the 

turning angle distributions when simulating two behaviours with setting 𝑨 = 24, 𝑹 = 42, c=1.4. 

 
Figure 28. The turning angle distribution of grouping and non-grouping behaviours in the narrowing 

corridor 

At this parameter combination, the turning angle distribution of grouping behaviour was almost 

the same with the testing distribution. The KL distance was calculated at 0.03. In contrast, angle 

degrees of non-grouping behaviour varied greatly from 0 degree to 180 degree. Noticeably, there 

were angle degrees at 160 to 180. These degrees confirmed that there was a number of individuals 

that moved backward instead of exiting the corridor. The KL distance of non-grouping behaviour 

was computed at 1.16, higher than the KL distance of grouping behaviour. This results showed 

that the movement of grouping and non-grouping behaviour was different. KL distances at other 

parameter combinations are shown in Figures 29-32. Each figure contains the heat map of KL 

distances at a certain value of parameter c. 
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(a) Grouping Behaviour (b) Non-grouping Behaviour 
 

Figure 29. The heat map showing the KL distances in the narrowing corridor when setting c=1.4 

 
 

 
(a) Grouping Behaviour (b) Non-Grouping Behaviour 

 

Figure 30. The heat map showing the KL distances in the narrowing corridor when setting c=1.6 

 
 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 31. The heat map showing the KL distances in the narrowing corridor when setting c=1.8 
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(a) Grouping Behaviour (b) Non-grouping Behaviour 
 

Figure 32. The heat map showing the KL distances in the narrowing corridor when setting c=2.0 

 

Overall, the turning distribution of grouping behaviour was different from the turning angle 

distribution of non-grouping behaviour. The KL distances of grouping behaviour was very low, 

around 0.2, across all parameter combinations. In contrast, the KL distances of non-grouping 

behaviour varied more greatly. Moreover, the increase of attractive magnitude A in the simulation 

of non-grouping behaviour created higher KL distances. This result showed that individuals’ 

turning angles were more different from 0 degree, which stands for forward movement.  

 

To investigate how individuals behaved in narrowing corridor, the network of the strongest 

attractors of each individual over time was constructed. Figure 33 shows the networks of the two 

behaviours. Each node in a network represents an individual. The degree of each node is equivalent 

to the number of times an individual switched its attractors. 

 

 

 

(a) Grouping behaviour (b) Non-grouping behaviour 

Figure 33. The influence networks of two behaviours in the narrowing corridor with setting  

A=24.0, 𝑹 = 34.0, and  𝒄 = 1.4 
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Figure 33 clearly shows that the network of grouping behaviour was seen in clusters. This results 

represented that individuals were in clusters to exit the narrowing corridor. An individual switched 

on average 3.46 attractors. In contrast, the network of non-grouping behaviour did not create 

clusters and its degree was significantly higher, at 7.33. The result showed that individuals switched 

more attractors during crowd movement of non-grouping scenario. 

 

In general, the results from the proposed metrics in narrowing corridor showed that grouping 

behaviour was effective for crowd movement. When individuals performed grouping behaviour, 

clusters emerged and created an ordered movement. The emergence allowed individuals stay 

together with their in-group members while they are moving in the corridor. In contrast, non-

grouping behaviour created turbulence because individuals move irrationally to re-arrange their 

crowd flow over time. Specifically, they frequently switch their attractors. 

6.3.2. The Difference in Turning Corridor 

This section presents the difference between grouping and non-grouping behaviours in a turning 

corridor. Figure 34 shows the simulation of these behaviours with setting 𝑨 = 20, 𝑹 = 40, and 

𝒄 = 1.4. The observation of the simulation was similar to the observation in the narrowing 

corridor, clusters emerged when individuals mutually grouped to in-group members. In contrast, 

non-grouping behaviour did not show the emergence of clusters. 

 

 

 

(a) The movement of grouping behaviour 
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(b) The movement of non-grouping behaviour 

 

Figure 34. The observation of grouping and non-grouping behaviours in a turning corridor 

Simulation videos of these behaviours in a turning corridor can be viewed at 
https://sites.google.com/site/vietquangvo/home#turning_corridor  

 

The flow rate distributions of two behaviours were monitored at the 64 combinations of 

parameters (A, R, c). Figure 35 presents this result. In general, the flowrate of grouping behaviour 

was higher than the flow rate of non-grouping behaviour. 

 

Figure 35. Flowrate distributions of two behaviours in the turning corridor 

The blue colour presents the flowrate distributions of grouping behaviour while the red colour 

presents the distribution of non-grouping behaviour. Each row represents a certain value of 

parameter A while each column stands for a value of parameter R. 

https://sites.google.com/site/vietquangvo/home#turning_corridor
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The flowrate percentage difference ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  of two behaviours were summarized in the heat map 

presented in Figure 36. 

 
Figure 36. The heat map of the flowrate percentage difference in the turning corridor  

Overall, the flowrate percentage difference varied in the range from 2% to 10%. The difference 

showed that grouping behaviour created significantly higher flow rates than non-grouping 

behaviour. 

 

The testing distribution of a small crowd was obtained in Figure 37. The distribution contained 

turning angles in the range from 0 to 90 degree to describe turning movement. 

 

 

 

(a) Turning angle between 𝑣⃗𝑖  (𝑡) and target 

vector 𝑣⃗𝑖𝑒  (𝑡) 
 

(b) Testing distribution 

Figure 37. The testing distribution in the turning corridor 
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The KL distances between the turning angle distributions of each behaviour and the testing 

distribution were analysed to investigate how individuals moved in the turning corridor. Figures 

38-41 presents the heat map of the KL distances of each behaviour. 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 38. The heat map showing the KL distances in the turning corridor with setting c=1.4 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 39. The heat map showing the KL distances in the turning corridor with setting c=1.6 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 40. The heat map showing the KL distances in the turning corridor with setting c=1.8 
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(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 41. The heat map showing the KL distances in the turning corridor with setting c=2.0 

 

Overall, the turning angle distribution of grouping behaviour was almost the same with the testing 

distribution because their KL distances were very small at all parameter combinations. In contrast, 

the turning angle distribution of non-grouping behaviour were significantly different from the 

testing turning angle distribution. Moreover, the increase of attractive magnitude A in this scenario 

created higher KL distances. This result showed that a higher attractive magnitude made individuals 

moved more differently. 

 

To investigate how individuals behaved in the corridor, the network of the strongest attractors of 

each individual over time was constructed. Figure 42 shows the networks of the simulations of 

grouping and non-grouping behaviours. 

 

  

(a) Grouping behaviour 

 

(b) Non-grouping behaviour 

Figure 42. The influence networks of two behaviours in the turning corridor with setting 

 A=20.0, R=36.0, 𝑐 = 1.4 
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In the network of grouping behaviour, clusters were formed. This result showed that individuals 

were in clusters when they were moving to exit the turning corridor. An individual switched on 

average 2.23 attractors. In contrast, the degree in the network of non-grouping behaviour was 

significantly higher at 3.68. Clusters were not observed in this network. This result showed that the 

movement of non-grouping behaviour created turbulence. 

6.3.3. The Difference in T-intersection Corridor 

This section presents the difference between grouping and non-grouping behaviours in a T-

intersection corridor. Figure 43 shows the simulations of the behaviours with setting 𝑨 = 20, 𝑹 =

40, and 𝒄 = 1.4. 

 

 

 

(a) The movement of grouping behaviour 

 

 
 

(b) The movement of non-grouping behaviour 

 

Figure 43. The observation of grouping and non-grouping behaviours in a T-intersection corridor 

Simulation videos of these behaviours in a T-intersection corridor can be viewed at 
https://sites.google.com/site/vietquangvo/home#intersection_corridor  

 
Figure 43.a shows the emergence of clusters caused by grouping behaviour. In contrast, Figure 

43.b does not show the emergence of clusters caused by non-grouping behaviour. Figure 44 

https://sites.google.com/site/vietquangvo/home#intersection_corridor


54 

 

presents the flow rate distributions when simulating each behaviour in the corridor at the 64 

combinations of parameters (A, R, c). 

 

 

Figure 44. The flowrate distributions of two behaviours in the T-intersection corridor 

The blue colour presents the flowrate distributions of grouping behaviour while the red colour 

presents the distribution of simulations of non-grouping behaviour. In this figure, each row 

represents a certain value of parameter A while each column stands for a value of parameter R. 

 

In general, the flowrate of grouping behaviour was higher than the flow rate of non-grouping 

behaviour. Figure 45 summarizes the flowrate percentage difference between two behaviours. The 

difference varied in the range from 2% to 36 %. 
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Figure 45. The heat map of the flowrate percentage difference in the T-intersection 

At each value of parameter c, increasing attractive magnitude A makes ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  increase while 

the increase of repulsive strength R makes ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  descend. Figure 46 presents the turning 

angles of a testing distribution. The distribution was obtained when two crowds were moving in 

the intersection area. 

 

 
 

(a) Turning angle between 𝑣⃗𝑖  (𝑡) and 

𝑣⃗𝑖𝑒  (𝑡) 

(b) Testing distribution 

Figure 46. The testing distribution in the T-intersection corridor 

 

The KL distances between the turning angle distributions of each behaviour and the testing 

distribution were analysed to investigate the movement of individuals in the corridor. Figures 47-

50 presents the heat map of the KL distances of each behaviour at different parameter 

combinations. 
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(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 47. The heat map showing the KL distances in the T-intersection corridor with setting c=1.4 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 48. The heat map showing the KL distances in the T-intersection corridor with setting c=1.6 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 49. The heat map showing the KL distances in the T-intersection corridor with setting c=1.8 
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(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 50. The heat map showing the KL distances in the T-intersection corridor with setting c=2.0 

 

In general, Figure 47-50 show the difference in the movement caused by grouping behaviour and 

non-grouping behaviour. The KL distances of grouping behaviour was very low across all 

parameter combinations. In contrast, the KL distances of non-grouping behaviour varied more 

greatly. 

 

To investigate how individuals switched their attractors in the corridor, the networks of the 

strongest attractors of each individual over time were constructed. 

 

 
 

(a) Grouping behaviour (b) Non-grouping behaviour 

Figure 51. The influence networks of two behaviours in the T-intersection corridor with setting 

A=20.0, R=36.0, and 𝑐 = 1.4. 

Figure 51 shows the networks of the two behaviours.  In the network of grouping behaviour, 

clusters were formed. This result showed that individuals were in clusters during crowd movement. 

An individual switched on average 3.34 attractors. In contrast, the degree in the network of non-

grouping behaviour was higher at 5.39. Clusters were not observed in this network. This result 

showed that the movement of non-grouping behaviour created turbulence. 
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6.3.4. The Difference in Corridor with an Obstacle 

This section presents the comparison results between grouping and non-grouping behaviours in a 

corridor with an obstacle. Figure 52 shows the observation of two behaviours with setting 𝑨 = 20, 

𝑹 = 40, and 𝒄 = 1.4. 

  

 

(a) The movement of grouping behaviour  

 

 
(b) The movement of non-grouping behaviour  

 

Figure 52. The observation of grouping and non-grouping behaviours in the corridor with an obstacle 

Simulation videos of these behaviours in a corridor with an obstacle can be viewed at 
https://sites.google.com/site/vietquangvo/home#obstacle_corridor  

 
 

Figure 52.a shows the emergence of clusters of individuals in the same group. In contrast, Figure 

52.b does not show the emergence of clusters. Figure 53 presents the flow rate distributions of two 

behaviours at the 64 combinations of parameters (A, R, c). 

 

https://sites.google.com/site/vietquangvo/home#obstacle_corridor
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Figure 53. The flowrate distributions of grouping and non-grouping behaviours in the corridor with 

obstacle 

The blue colour presents the flowrate distributions of simulations of grouping behaviour while the 

red colour presents the flowrate distributions of simulations of non-grouping behaviour. Each row 

represents a certain value of parameter A while each column stands for a value of parameter R. 

 

Overall, the flowrates of grouping behaviour were higher than the flow rates of non-grouping 

behaviour. Figure 54 presents the heat map of the flowrate percentage difference between two 

behaviours. The difference varied in the range from 2.0% to 5.5 %. 
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Figure 54. The heat map of the flowrate percentage difference in the corridor with an obstacle 

At each value of parameter c, increasing attractive magnitude A makes ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  increase while 

the increase of repulsive strength R makes ∆𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒  descend. In this floor plan, a testing 

distribution was extracted from the movement of a small crowd in the corridor. The angles 𝜃 

between velocity vector and target vector of individuals were obtained when they were moving in 

the corridor. Figure 55 presents the turning angles and the testing distribution. 

 

 
 

 
 

 

 
(a) Turning angles 𝜃𝑖 and 𝜃𝑗 (b) Testing distribution 

Figure 55. The testing distribution in the corridor with an obstacle 
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Figures 56-59 present the heat map of the KL distances of each behaviour at different parameter 

combinations. 

 
 

(a) Grouping Behaviour (b) Non-grouping Behaviour 
 

Figure 56. The heat map of the KL distances in the corridor with obstacle with setting c=1.4 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 57. The heat map of the KL distances in the corridor with obstacle with setting c=1.6 

 

 
(a) Grouping Behaviour (b) Non-grouping Behaviour 

 

Figure 58. The heat map of the KL distances in the corridor with obstacle with setting c=1.8 
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(a) Grouping Behaviour (b) Non-grouping Behaviour 
 

Figure 59. The heat map of the KL distances in the corridor with obstacle with setting c=2.0 

 

Overall, turning angle distributions of grouping behaviour were different from the turning angle 

distributions of non-grouping behaviours. In the KL distances of non-grouping behaviour, the 

increase of attractive magnitude A created higher KL distances. This result showed that higher 

attractive magnitude A made individuals moved more differently. 

 

The influence networks of each behaviour were constructed to investigate how individuals behaved 

in the corridor, the networks of grouping and non-grouping behaviours were constructed. 

 

 

 

(a) Grouping behaviour (b) Non-grouping behaviour 

Figure 60. The influence networks of two scenarios in the corridor with an obstacle 

with setting A=18.0, R=40.0, 𝑐 = 1.4. 

In the network of grouping behaviour, clusters were formed. This result confirmed that individuals 

were in clusters when they were moving in the corridor. An individual switched on average 3.31 

attractors. In contrast, the degree in the network of non-grouping behaviour was higher at 4.74. 

Clusters were not observed in this network. This result showed that movement of non-grouping 

behaviour was turbulent. 
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6.4. Analysis of the Difference between Grouping and Non-grouping 

Behaviours 

In general, the results from the simulations of grouping and non-grouping behaviours show that 

group behaviour facilitates effective crowd movement. The flowrates of grouping behaviours are 

consistently higher than the flowrates of non-grouping behaviours for the four typical floor plans. 

Grouping behaviour allows individuals to stay together with in-group members and to avoid other 

out-of-group members. Clusters form from grouping behaviours. These clusters move in an 

orderly fashion to exit corridors. 

 

When clusters emerge in crowd movement, every individual receives the same amount of in-group 

and out-group forces. For instance, Figure 61 shows the forces acting on a tracked individual at 

different time steps t of a simulation of grouping behaviour. 

 

  

time t=20 time t=21 

Figure 61. In-group and out-of-group forces acting on a tracked individual caused by grouping 

behaviour 

The snapshots were captured in one simulation with setting A=2.0, R=40, and c =1.4. The tracked 

individual is highlighted. The solid arrow shows in-group force acting on the tracked individual whereas 

dashed arrow presents out-of-group force. The length of each arrow is correlated with the magnitude 

of its corresponding force. 

The forces acting on a tracked individual can be viewed at 
https://sites.google.com/site/vietquangvo/home#force_balance   

 

 

The emergence of clusters helps to maintain the balance between in-group and out-of-group forces 

acting on every individual over time. It allows individuals to stay together with their in-group 

members while they are exiting the narrowing corridor. Thus, individuals rarely change their 

attractors. This ordered movement of clusters prevents turbulence. The movement is significantly 

different from the movement caused by non-grouping behaviour. Non-grouping behaviour 

destroys the balance of in-group and out-of-group forces acting on each individual. Figure 62 

https://sites.google.com/site/vietquangvo/home#force_balance
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shows an example of the rapid change in the direction and the magnitude of in-group and out-of-

group forces caused by non-grouping behaviour. 

 

  

time t=20 time t=21 

 

Figure 62. In-group and out-of-group forces acting on an tracked individual caused by non-grouping 

behaviour 

The forces acting on a tracked individual can be viewed at 
https://sites.google.com/site/vietquangvo/home#force_unbalance  

 

Non-grouping behaviour makes individuals move irrationally. These individuals receive the 

unequal amount of in-group and out-of-group forces over time. As a result, they frequently switch 

attractors. Their turning angles vary greatly over time. Consequently, this movement creates 

turbulence and reduces flow rate. The flowrate percentage difference between grouping and non-

grouping behaviour is significantly different. Especially, the flow rate difference is up to 36% in 

the T-intersection corridor followed by another value of 20% in the narrowing corridor. This 

difference emphasizes the effectiveness of the formation of clusters when crowds contain a large 

number of individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

https://sites.google.com/site/vietquangvo/home#force_unbalance
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7 Conclusion and Future Work 

This chapter summarizes the findings of this study, and proposes recommendations for future 

work. 

7.1. Conclusion 

This study built a force-based model which is applicable to capture the grouping behaviour of 

individuals in an inhomogeneous crowd. The model is reasonable because it is extended from the 

base model that has been well accepted and validated. While the base model formulates the 

grouping behaviour of members in the same group, the extension takes into account the repulsive 

interaction between members of different groups in such inhomogeneous crowd. 

 

While previous studies have focused on designing architectural layouts to prevent turbulence and 

to enhance flowrates for saving human lives in emergency situations, this study attempts to explore 

another solution to serve the purposes. By examining the impact of group interactions on crowd 

dynamics in the four typical layouts in evacuation simulation scenarios, this study finds that 

grouping behaviour helps to prevent turbulence to facilitate effective movement. Among the four 

widely used floor plans, T-intersection corridors have the largest flow rate difference between 

grouping and non-grouping behaviour. For crowds at public events, letting people stay together 

with their groups may be effective for crowd management when a large number of participants are 

egressing the venue. 

7.2. Future Work 

The need for modelling real-world crowds always motivates researchers to explore new aspects 

that can fully explain human crowd dynamics for floor plan optimization and crowd movement 

planning. This thesis have built a theoretical model, and empirical studies are needed to validate 

and modify it. 

 

Previous studies have not collected data for real-world crowds that contain more than one group 

in order to calibrate the interactions of in-group members, and the interaction between in-group 

and out-of-group members. Thus, data acquisition is necessary to explore these interactions. 

Moreover, data collection also helps to explore whether the interaction between groups is different 

from real-world crowds at various places such as sport-like venues, work places, shopping malls, 

train stations, or schools. With the synthesis from different research fields and scientists, crowd 

behaviours are hopefully to be predictable in the near future. 
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