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Conditionally-resonant terms and phase dependence

For an N-DOF system, the 2P element of the vector of variables, u*, may be written
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where upy, and u,,;, are defined as
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where Uy, wyf, and ¢, represent the amplitude, response frequency and phase of the fundamental
component of the k' linear mode respectively.
Substituting Egs. (0.2) into Eq. (0.1) gives
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where 8¢ 1, = spg 1 — Sme,k- Using this, element {4, £} of 3 may be found using
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where f3; o represents a resonant term when f3; y = 0. We now define rj, such that w,; =r,w,
where w represents the base frequency i.e. w =27/T and where T is the period of the response.
Substituting this into Eq. (0.4), 3; ¢ represents a resonant term when
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If the term represented by this is unconditionally-resonant, then Eq. (0.5) must be satisfied
regardless of the values of r. It can be seen that this is only true when
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For a conservative system, the vector of resonant nonlinear terms, N, is written
Ny (u) = [Nu] u, (0.7)
where [Ny] is an {N x L} matrix of coefficients whose {i, £} ‘! element is written [Nul; -
Therefore the i*" element of N, is given by
L
Nui=_ [Nul; pui . (0.8)
=

[

Using Eq. (0.3), this may be written
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If all terms are unconditionally-resonant (i.e. there are no conditionally-resonant terms in the
resonant equation of motion) then, using Eq. (0.6), Eq. (0.9) may be written
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The " resonant equation of motion is written
ii; + whit; + Ny =0, (0.11)

which, substituting the assumed solution for u; and Eq. (0.10), gives
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The time-independent components of Eq. (0.12) may then be written
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Itis clear that Eq. (0.13) is independent of phase. This demonstrates that, if a resonant equation
of motion contains only unconditionally-resonant terms (i.e. it does not contain any conditionally-
resonant terms), the solution will be phase-unlocked. As such, it may be concluded that only
conditionally-resonant terms may lead phase-locking terms, and hence conditionally-resonant
terms are required for phase-locked NNMs.



