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Supplementary reports (tissue): Report S1  
Experimental procedure, statistical analyses and data management systems and results and 
biological interpretation 
 

Objective 

 
Purpose of Experiment 
The goal of this study was to identify the biochemical profiles of matched-pairs of head and 
neck squamous cell carcinoma samples from indolent and metastatic tissues along with benign 
adjacent tissues.   

 

Experimental Procedures 

 
Experimental design 
Metabolon received 57 tumor tissue samples on December 10, 2014.  Global metabolic profiles 
were determined from the experimental groups outlined below.   
 

 
 

Results and Biological Interpretation 

 
Metabolite Summary and Significantly Altered Biochemicals 
The present dataset comprises a total of 569 compounds of known identity (named 
biochemicals).  Following log transformation and imputation of missing values, if any, with the 
minimum observed value for each compound, ANOVA contrasts were used to identify 
biochemicals that differed significantly between experimental groups.  A summary of the 
numbers of biochemicals that achieved statistical significance (p≤0.05), as well as those 
approaching significance (0.05<p<0.10), is shown below.  Analysis by two-way ANOVA with 
repeated measures identified biochemicals exhibiting main effects of the group experimental 
parameter. 

Group Group Description n 

Control Normal adjacent tissue 19 

Primary Primary HNSCC tumor tissue 19 

Metastatic Metastatic tumor tissue 19 
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An estimate of the false discovery rate (q-value) is calculated to take into account the multiple 
comparisons that normally occur in metabolomic-based studies.  For example, when analyzing 
200 compounds, we would expect to see about 10 compounds meeting the p≤0.05 cut-off by 
random chance.  The q-value describes the false discovery rate; a low q-value (q<0.10) is an 
indication of high confidence in a result.  While a higher q-value indicates diminished 
confidence, it does not necessarily rule out the significance of a result.  Other lines of evidence 
may be taken into consideration when determining whether a result merits further scrutiny.  
Such evidence may include a) significance in another dimension of the study, b) inclusion in a 
common pathway with a highly significant compound, or c) residing in a similar functional 
biochemical family with other significant compounds.  Refer to the Appendix for general 
definitions and further descriptions of false discovery rate and other statistical tests used at 
Metabolon. 
 

 

 
 

We have also included in the electronic deliverables, a file with data for each biochemical 
displayed as box plots like that shown in the example figure below. 
 

Statistical Comparisons 

ANOVA Contrasts 
Primary 
Control 

Metastatic 
Control 

Metastatic 
Primary 

Total biochemicals 
p≤0.05 385 383 63 

Biochemicals  
(↑↓) 301 | 84 288 | 95 22 | 41 

Total biochemicals 
0.05<p<0.10 30 35 42 

Biochemicals  
(↑↓) 16 | 14 19 | 16 17 | 25 

 
Statistical Comparisons 

RM ANOVA Group Main Effect 

Total biochemicals 
p≤0.05 405 

Total biochemicals 
0.05<p<0.10 24 
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Biological Interpretation 
 
The majority of head and neck cancers are squamous cell carcinomas, which typically originate 
from the mucosal epithelial lining of the oral cavity.  These cancers show a strong association 
with tobacco use, alcohol consumption, gastrointestinal reflux (GERD) as well as human 
papillomavirus (HPV) infection and are often aggressive, but respond well to surgical excision 
and radiation therapy if detected early.  The goal of this study was to identify metabolomic 
differences between squamous cell tumors (either primary or metastatic) and neighboring 
tissue, with a secondary goal of identifying biomarkers associated with metastatic potential.  A 
related project (MICH-01-15VW) will assess potential biomarkers in saliva in individuals with or 
without disease. 
 
Datasets provided in the mView product can be quite large and contain a great deal of 
information.  A few observations are offered below as an initial overview of the changes in 
metabolic profiles in clinical tissue samples; key references are cited by PubMed Identification 
number (PMID) at certain points throughout the report.  For convenience, biochemicals are 
highlighted in bold text in the report when they correspond to plots shown in figures of the 
accompanying Graphics file.  Comparison of global biochemical profiles derived from tumors 
(either primary or metastatic) or “normal” adjacent tissue revealed several metabolic 
differences, some of which are highlighted below: 
 
• Overview of the dataset: Principal component analysis (PCA) transforms a large number of 

metabolic variables into a smaller number of orthogonal variables (Component 1, 
Component 2, etc…) in order to analyze variation between groups and to provide a high-
level overview of the dataset.  Samples derived from normal adjacent tissue (called Control 
here) showed good separation from tumor samples; however, Primary and Metastatic 
tumor samples formed an overlapping population on the PCA.  When analyzed by tumor 
grade, tumor samples again formed overlapping populations.  Less advanced grades may be 
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pulling away from more advanced grades on the PCA (slide 6), but low sample numbers in 
lower grades make it difficult to assess populations.  In the hierarchical clustering analysis 
(HCA), Control samples tended to cluster to the left major branch of the dendrogram, while 
tumor samples clustered to the right branch; tumor samples tended to for sub-clusters with 
their matched tumor pair rather than by tumor status (primary or metastatic). 

 
Random forest analysis (RFA) is a statistical tool utilizing a supervised classification 
technique based on an ensemble of decision trees (please see Appendix for greater detail) 
and can aid in the identification of biomarkers differentiating classification groups.  RFA 
showed good efficiency at separating Control, Primary and Metastatic samples, with a 
predictive accuracy of 67% (random chance would be expected to yield a predictive 
accuracy of 33% in this analysis).  Tumor samples appeared to be the source of error in the 
analysis: when these samples were mis-segregated, they tended to be classified with the 
alternate tumor group (for example, Primary were mis-segregated into the Metastatic bin).  
The dividing line between metastatic and primary tumor is more of a continuum; in this 
case, further division based on genetic (Ras, p53 mutational status) or cell biological (e.g., 
matrix metalloprotease expression) criteria may give better results.  RFA attempting to 
classify tumors by subtype (Primary or Metastatic) yielded a predictive accuracy of 53% 
(similar to a random segregation of 50%).  The Top 30 metabolites for predicting Control, 
Primary and Metastatic treatment groups included biochemicals related to lipid metabolism 
(caprate, docosatrienoate, CDP-choline, adrenate), urea cycle (pro-hydroxy-pro, putrescine) 
and inflammation (kynurenine). 
  

• Energetics: Glucose can be utilized to support a variety of physiological processes, including 
energy generation, fatty acid synthesis, protein glycosylation, and nucleotide biogenesis.  
Glycolytic metabolites were suggestive of increased use in both Primary and Metastatic 
(compared to Control):  Glucose and 3-carbon glycolytic intermediates (2-phosphoglycerate, 
3-phosphoglycerate, phosphoenolpyruvate) were decreased, while glucose-6-phosphate 
and fructose-6-phosphate were increased.  Decreases in the 3-carbon glycolytic 
intermediates are typically indicative of increasing use, while elevation in 6-carbon 
intermediates can indicate changes in glucose availability (potentially reflecting increasing 
glucose import).  In Metastatic (compared to Primary), a non-significant increase in glucose 
(and decrease in 3-phosphoglycerate and phosphoenolpyruvate) could indicate increasing 
glucose availability (potentially due to upregulated GLUT transporters) with increased 
glycolytic use.  Interestingly, increased expression of the glycolytic enzyme fructose-
bisphosphate aldolase A (ALDOA) is correlated with metastasis (and poor prognosis) in lung 
squamous cell cancers (PMID: 24465716).  The glycolytic end-products pyruvate and lactate 
were both increased, consistent with increased glycolytic use.  Acetylcarnitine can be used 
as a surrogate marker for acetyl CoA; both Primary and Metastatic (compared to Control) 
showed decreased acetylcarnitine, with a further non-significant decrease in Metastatic 
(compared to Primary) suggestive of increasing energy demand.  Alternately, decreasing 
acetylcarnitine could indicate Warburg metabolism, where conversion of pyruvate to lactate 
takes precedence over entry into the TCA cycle to support oxidative metabolism (decreased 
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citrate with elevated isocitrate, potentially reflecting increasing pool size due to decreased 
substrate input, may indicate declining entry of pyruvate into the TCA cycle). 
 
Glycogen metabolism: Glycogen synthesis proceeds by the reaction of glucose-1-phosphate 
(G1P) with UTP, producing UDP-glucose for glycogen chain incorporation; glycogenolysis 
produces glycogen fragments (e.g., maltopentaose, maltotetraose) which can then be 
converted to G1P for use in glycolysis.  Glycogen metabolites maltohexaose, 
maltopentaose, maltotetraose, maltotriose, and maltose were all decreased (Primary and 
Metastatic vs Control), while UDP-glucose was increased.  This pattern could suggest 
increasing glycogen synthesis; several tumor types show increased glycogen storage in 
response to hypoxic condition (PMID: 23177934).  Alternately, UDP-glucose may be elevated 
to support glycosylation, with decreased glycogen metabolites indicative of increased use to 
support glycolysis.  A histological assessment of glycogen deposition could shed further light 
on glycogen use in squamous cell tumors.  

 
BCAA catabolism: Metabolites derived from leucine, isoleucine or valine catabolism can 
enter gluconeogenesis or the TCA cycle for energy production; leucine, isoleucine and 
valine were all increased (Primary and Metastatic vs Control).  Catabolic metabolites of 
leucine (4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, and alpha-hydroxyisovaleroyl 
carnitine), isoleucine (3-methyl-2-oxovalerate, tiglyl carnitine) and valine (3-methyl-2-
oxobutyrate, 3-hydroxyisobutyrate) were all decreased, suggestive of changing use.  
Increases in 3-methylhistidine, which is derived from actin/myosin turnover, could suggest 
an increase in muscle catabolism to support energy demand.  Metastatic (compared to 
Primary) showed further decreases in several catabolic intermediates, including beta-
hydroxyisovaleroylcarnitine, alpha-hydroxyisovalerate, tiglyl carnitine, 2-hydroxy-3-
methlvalerate, and alpha-hydroxyisocaproate, which may be indicative of increasing use of 
BCAAs for energetics.  Increases in branched-chain aminotransferase (BCAT) expression, 
which catalyzes the first step of BCAA catabolism, have been identified in nasopharyngeal 
carcinoma, which have been associated with increased metastatic potential (PMID: 
23758864).  Changes in BCAA catabolites could indicate increasing use for energetics. 

 
Lipid metabolism: Fatty acids (FAs) are a critical source of energy for mitochondrial 
oxidation and cellular ATP generation.  Long-chain fatty acids were increased as a class 
(Primary and Metastatic vs Control), which could reflect changes in plasma membrane 
architecture (potentially associated with changes in cell signaling) or changes in beta-
oxidative use.  Long-chain FAs must be conjugated to carnitine for transport across the 
mitochondrial membrane prior to oxidation; increases in higher chain length acylcarnitines 
could reflecting changing beta-oxidative use (Primary and Metastatic vs Control).  
Metastatic (compared to Control or Primary) showed a decrease in the ketone body 3-
hydryoxybutyrate (BHBA), and an increase in medium-chain fatty acids (caprylate, caprate, 
5-dodecenoate) and a subset of long-chain fatty acids (myristate, myristoleate, oleate, 
arachidate), which could indicate decreased use of beta-oxidation (potentially with 
increased reliance on glycolysis and/or amino acid catabolism for energy generation). 
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TCA cycle:  Changes in the pattern of TCA metabolites could indicate changing function in 
Primary and Metastatic (compared to Control); interestingly, glutamine showed trends 
toward decrease in Metastatic (compared to Control or Primary), which could suggest 
increased use for glutaminolysis (increases in alpha-ketoglutarate could reflect glutamine 
entry into the TCA cycle).  A previous metabolomics study has suggested glycolysis as the 
primary energy source in squamous cell cancers of the head and neck (PMID: 21692052); 
increasing glutamine input into the TCA cycle in metastatic tumors may be indicative of 
increased energy demand.  Interestingly, one recent study (PMID: 24316975) has shown that 
glutamine can be converted into 2-hydroxyglutarate (which was also elevated in this project, 
Primary and Metastatic vs Control) in cancers with myc activation, which was associated 
with poor prognosis.  PET imaging using labelled glutamine substrates (PMID: 22095958) 
could be tested as one marker of metastatic risk. 

 
• Inflammation-associated metabolites: Changes in the ratio of n3:n6 polyunsaturated fatty 

acids (PUFAs) can be one readout of inflammation; PUFAs were increased regardless of C=C 
placement in Primary and Metastatic (compared to Control), which could indicate changes 
in plasma membrane structure/organization (potentially resulting from changes in cell 
signaling).  Eicosanoids are enzymatically derived from PUFAs; prostaglandin F2alpha 
(PGF2a) was elevated in both Primary and Metastatic (compared to Control), with a non-
significant increase in prostaglandin E2 (PGE2) and 6-keto prostaglandin F1alpha (6-keto 
PGF1a).  Endocannabinoids are typically considered to be anti-inflammatory (but are 
induced in inflammatory states), promoting their effects through interaction with 
cannabinoid receptors and, in some cases, G-protein coupled receptors (GPCRs).  N-
stearoyltaurine, oleic ethanolamide and palmitoyl ethanolamide were all elevated in 
Primary and Metastatic (compared to Control).  Few significant differences in eicosanoids or 
endocannabinoids were identified in Metastatic (compared to Primary), which could suggest 
similar levels of inflammation.  
 
Changes in tryptophan metabolites can also indicate inflammatory states: indoleamine 2,3-
dioxygenase (IDO), which catalyzes the conversion of tryptophan to kynurenine, is activated 
by pro-inflammatory cytokines (e.g., IFN-γ, TNF-α).  Kynurenine and its degradative 
metabolite kynurenate were both elevated (Primary and Metastatic vs Control), consistent 
with increased inflammation.  Kynurenine plays an anti-inflammatory role as a “natural 
brake” on the immune response; non-significant decrease in kynurenine and kynurenate 
(Metastatic vs Primary) could indicate changing inflammation (but not necessarily a 
decrease).  Finally, histamine showed a trend toward decrease (Metastatic vs Primary), with 
increases in the histamine degradation product 1-methylimidazoleacetate.  Decreased 
histamine may suggest changes in mast cell number or function are associated with 
metastatic potential (mast cells have also been linked to changes in tumor vasculature). 
 

• Redox Homeostasis: Increases in methionine sulfone and methionine sulfoxide (oxidative 
products of methionine), S-methylcysteine (an oxidative product of cysteine) and cysteine-
glutathione disulfide (an oxidative product of glutathione) could be indicative of oxidative 
stress (Primary and Metastatic vs Control).  Oxidized (GSSG) and reduced (GSH) glutathione 
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and gamma-glutamyl amino acids were also increased, consistent with elevated oxidative 
stress.  Metastatic compared to Primary showed increased GSSG, suggestive of elevated 
oxidative stress.  Methionine metabolites appeared elevated as a class, which could suggest 
high demand for glutathione synthesis.  Increases in norophthalmate and non-significant 
increase in ophthalmate, tripeptide analogues of GSH produced by glutathione synthetase in 
which cysteine has been replaced by alanine or 2-aminobutyrate, respectively, are consistent 
with increased glutathione demand.  Carnosine and anserine, two dipeptide derivatives of 
histidine with anti-oxidant function, were also decreased (Primary and Metastatic vs 
Control), consistent with increased use to support redox homeostasis.  Further decrease in 
carnosine and anserine in Metastatic (compared to Primary) could support increasing 
oxidative stress in metastatic cancer cells.   

 
Other changes of potential interest:  
 
o Heme: Heme was decreased in Primary and Metastatic tumors (compared to Control 

tissue), which could suggest relative decreases in vascularization (compared to adjacent 
tissue).  Poor vascularization in many tumors result in necrotic cores with relatively poor 
oxygenation, which can lead to shifts away from oxidative metabolism for energy 
generation (which may be seen here as increases in lactate production).  Similarly, primary 
and secondary bile acids showed trends toward decrease (Primary and Metastatic vs 
Control); these products are typically re-absorbed in the intestine and are returned to the 
liver via the bloodstream.  

 
o Choline metabolism:  Abnormal choline metabolism has previously been associated with 

metastatic tumors (reviewed in PMID: 22089420).  Choline showed a trend toward increase 
(Metastatic vs Primary), with decreased GPC-containing lysolipids (and non-significant 
decrease in glycerophosphorylcholine, GPC) potentially indicating changes in phospholipase 
D (PLD) or PC-phospholipase C (PC-PLC) activity in metastatic tumors.  Mutations in PLD 
isoforms have been identified in a number of cancers and correlates with invasive potential 
in breast cancer cells.   

 
o Cotinine metabolites: Cotinine, the active metabolite of nicotine, was detected in 

approximately half of samples in each group.  Further sub-grouping by tumor origin (HPV-
related, smoking-induced, etc.) could reveal metabolic differences associated with tumor 
subtypes. 
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Conclusions 
 
 
In conclusion, the results from this global metabolomic study comparing control adjacent, 
primary and metastatic tumor samples differed in a number of metabolic readouts, including 
changes in metabolites related to energetics, inflammation and markers of oxidative stress.  In 
the principal component analysis (PCA), tumor samples (Primary and Metastatic) formed an 
overlapping population that was well-separated from Control samples.  Similarly, in the 
hierarchical clustering analysis (HCA), normal and tumor samples clustered into different 
branches of the dendrogram, with sub-clustering of tumor samples from the same subject.  
Energetics metabolites suggested increased use of glycolysis for energetics in tumor samples 
(both primary and metastatic), with decreased fatty acid beta-oxidation in Metastatic 
(compared to Primary) tumors suggestive of increased reliance on glycolysis, glutaminolysis 
and/or protein catabolism for energetics.  Inflammation-related metabolites were elevated in 
tumor samples, with subtle trends toward decrease in several markers of inflammation in 
metastatic samples (compared to primary tumor).  Finally, patterns of metabolites suggest 
increasing oxidative stress in tumor samples, with a further increase in metastatic samples.  
Further studies correlating biochemicals with genetic mutations, cell biological criteria, and 
response to treatment could further link changes in particular metabolites with cancer 
progression, metastasis and response to therapy. 
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Study Parameters 

 
Data Quality: Instrument and Process Variability 
 

QC Sample Measurement Median RSD  

Internal Standards Instrument Variability 6 % 

Endogenous Biochemicals Total Process Variability 8 % 

Instrument variability was determined by calculating the median relative standard deviation 
(RSD) for the internal standards that were added to each sample prior to injection into the mass 
spectrometers.  Overall process variability was determined by calculating the median RSD for all 
endogenous metabolites (i.e., non-instrument standards) present in 100% of the Client Matrix 
samples, which are technical replicates of pooled client samples.  Values for instrument and 
process variability meet Metabolon’s acceptance criteria as shown in the table above. 
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Appendix  

 
Metabolon Platform 
Sample Accessioning:  Following receipt, samples were inventoried and immediately stored at -
80oC.  Each sample received was accessioned into the Metabolon LIMS system and was 
assigned by the LIMS a unique identifier that was associated with the original source identifier 
only.  This identifier was used to track all sample handling, tasks, results, etc.  The samples (and 
all derived aliquots) were tracked by the LIMS system.  All portions of any sample were 
automatically assigned their own unique identifiers by the LIMS when a new task was created; 
the relationship of these samples was also tracked.  All samples were maintained at -80oC until 
processed. 
 
Sample Preparation:  Samples were prepared using the automated MicroLab STAR® system 
from Hamilton Company.  A recovery standard was added prior to the first step in the 
extraction process for QC purposes.  To remove protein, dissociate small molecules bound to 
protein or trapped in the precipitated protein matrix, and to recover chemically diverse 
metabolites, proteins were precipitated with methanol under vigorous shaking for 2 min (Glen 
Mills GenoGrinder 2000) followed by centrifugation.  The resulting extract was divided into five 
fractions: one for analysis by UPLC-MS/MS with positive ion mode electrospray ionization, one 
for analysis by UPLC-MS/MS with negative ion mode electrospray ionization, one for analysis by 
UPLC-MS/MS polar platform (negative ionization), one for analysis by GC-MS, and one sample 
was reserved for backup.  Samples were placed briefly on a TurboVap® (Zymark) to remove the 
organic solvent.  For LC, the samples were stored overnight under nitrogen before preparation 
for analysis.  For GC, each sample was dried under vacuum overnight before preparation for 
analysis. 
 
QA/QC:  Several types of controls were analyzed in concert with the experimental samples: a 
pooled matrix sample generated by taking a small volume of each experimental sample (or 
alternatively, use of a pool of well-characterized human plasma) served as a technical replicate 
throughout the data set; extracted water samples served as process blanks; and a cocktail of QC 
standards that were carefully chosen not to interfere with the measurement of endogenous 
compounds were spiked into every analyzed sample, allowed instrument performance 
monitoring and aided chromatographic alignment.  Tables 1 and 2 describe these QC samples 
and standards.  Instrument variability was determined by calculating the median relative 
standard deviation (RSD) for the standards that were added to each sample prior to injection 
into the mass spectrometers.  Overall process variability was determined by calculating the 
median RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of 
the pooled matrix samples.  Experimental samples were randomized across the platform run 
with QC samples spaced evenly among the injections, as outlined in Figure 1.   
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Table 1:  Description of Metabolon QC Samples 

Type Description Purpose 

MTRX 
Large pool of human plasma 
maintained by Metabolon that has 
been characterized extensively. 

Assure that all aspects of the Metabolon 
process are operating within specifications. 

CMTRX 
Pool created by taking a small 
aliquot from every customer 
sample. 

Assess the effect of a non-plasma matrix on 
the Metabolon process and distinguish 
biological variability from process variability. 

PRCS Aliquot of ultra-pure water Process Blank used to assess the contribution 
to compound signals from the process. 

SOLV Aliquot of solvents used in 
extraction. 

Solvent Blank used to segregate 
contamination sources in the extraction. 

 
Table 2:  Metabolon QC Standards 

Type Description Purpose 

RS Recovery Standard Assess variability and verify performance of extraction 
and instrumentation. 

DS Derivatization Standard Assess variability of derivatization for GC-MS samples. 
IS Internal Standard Assess variability and performance of instrument. 

 

 
Figure 1.  Preparation of client-specific technical replicates.  A small aliquot of each client 
sample (colored cylinders) is pooled to create a CMTRX technical replicate sample (multi-
colored cylinder), which is then injected periodically throughout the platform run.  Variability 
among consistently detected biochemicals can be used to calculate an estimate of overall 
process and platform variability. 
 
Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS):   
The LC/MS portion of the platform was based on a Waters ACQUITY ultra-performance liquid 
chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass 
spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 
mass analyzer operated at 35,000 mass resolution.  The sample extract was dried then 
reconstituted in acidic or basic LC-compatible solvents, each of which contained 8 or more 

Client samples
1st injection Final injection

CMTRX         Process Blank

Client samples

DAY 1

DAY 2

Study samples randomized and balanced

CMTRX: Technical 
replicates created from an 
aliquot of all client study 

samples
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injection standards at fixed concentrations to ensure injection and chromatographic 
consistency.  One aliquot was analyzed using acidic positive ion optimized conditions and the 
other using basic negative ion optimized conditions in two independent injections using 
separate dedicated columns (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm).  Extracts 
reconstituted in acidic conditions were gradient eluted from a C18 column using water and 
methanol containing 0.1% formic acid.  The basic extracts were similarly eluted from C18 using 
methanol and water, however with 6.5mM Ammonium Bicarbonate.  The third aliquot was 
analyzed via negative ionization following elution from a HILIC column (Waters UPLC BEH 
Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM 
Ammonium Formate.  The MS analysis alternated between MS and data-dependent MS2 scans 
using dynamic exclusion, and the scan range was from 80-1000 m/z.  Raw data files are 
archived and extracted as described below. 
 
Gas Chromatography-Mass Spectroscopy (GC-MS):  The samples destined for analysis by GC-
MS were dried under vacuum for a minimum of 18 h prior to being derivatized under dried 
nitrogen using bistrimethyl-silyltrifluoroacetamide.  Derivatized samples were separated on a 
5% diphenyl / 95% dimethyl polysiloxane fused silica column (20 m x 0.18 mm ID; 0.18 um film 
thickness) with helium as carrier gas and a temperature ramp from 60° to 340°C in a 17.5 min 
period.  Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-
quadrupole mass spectrometer using electron impact ionization (EI) and operated at unit mass 
resolving power.  The scan range was from 50–750 m/z.  Raw data files are archived and 
extracted as described below. 
 
Bioinformatics:  The informatics system consisted of four major components, the Laboratory 
Information Management System (LIMS), the data extraction and peak-identification software, 
data processing tools for QC and compound identification, and a collection of information 
interpretation and visualization tools for use by data analysts.  The hardware and software 
foundations for these informatics components were the LAN backbone, and a database server 
running Oracle 10.2.0.1 Enterprise Edition. 
 
LIMS:  The purpose of the Metabolon LIMS system was to enable fully auditable laboratory 
automation through a secure, easy to use, and highly specialized system.  The scope of the 
Metabolon LIMS system encompasses sample accessioning, sample preparation and 
instrumental analysis and reporting and advanced data analysis.  All of the subsequent software 
systems are grounded in the LIMS data structures.  It has been modified to leverage and 
interface with the in-house information extraction and data visualization systems, as well as 
third party instrumentation and data analysis software. 
 
Data Extraction and Compound Identification:  Raw data was extracted, peak-identified and 
QC processed using Metabolon’s hardware and software.  These systems are built on a web-
service platform utilizing Microsoft’s .NET technologies, which run on high-performance 
application servers and fiber-channel storage arrays in clusters to provide active failover and 
load-balancing.  Compounds were identified by comparison to library entries of purified 
standards or recurrent unknown entities.  Metabolon maintains a library based on 
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authenticated standards that contains the retention time/index (RI), mass to charge ratio (m/z), 
and chromatographic data (including MS/MS spectral data) on all molecules present in the 
library.  Furthermore, biochemical identifications are based on three criteria: retention index 
within a narrow RI window of the proposed identification, accurate mass match to the library 
+/- 0.005 amu, and the MS/MS forward and reverse scores between the experimental data and 
authentic standards.  The MS/MS scores are based on a comparison of the ions present in the 
experimental spectrum to the ions present in the library spectrum.  While there may be 
similarities between these molecules based on one of these factors, the use of all three data 
points can be utilized to distinguish and differentiate biochemicals.  More than 3300 
commercially available purified standard compounds have been acquired and registered into 
LIMS for distribution to both the LC-MS and GC-MS platforms for determination of their 
analytical characteristics.  Additional mass spectral entries have been created for structurally 
unnamed biochemicals, which have been identified by virtue of their recurrent nature (both 
chromatographic and mass spectral).  These compounds have the potential to be identified by 
future acquisition of a matching purified standard or by classical structural analysis. 
 
Curation:  A variety of curation procedures were carried out to ensure that a high quality data 
set was made available for statistical analysis and data interpretation.  The QC and curation 
processes were designed to ensure accurate and consistent identification of true chemical 
entities, and to remove those representing system artifacts, mis-assignments, and background 
noise.  Metabolon data analysts use proprietary visualization and interpretation software to 
confirm the consistency of peak identification among the various samples.  Library matches for 
each compound were checked for each sample and corrected if necessary. 
 
Metabolite Quantification and Data Normalization:  Peaks were quantified using area-under-
the-curve.  For studies spanning multiple days, a data normalization step was performed to 
correct variation resulting from instrument inter-day tuning differences.  Essentially, each 
compound was corrected in run-day blocks by registering the medians to equal one (1.00) and 
normalizing each data point proportionately (termed the “block correction”; Figure 2).  For 
studies that did not require more than one day of analysis, no normalization is necessary, other 
than for purposes of data visualization.  In certain instances, biochemical data may have been 
normalized to an additional factor (e.g., cell counts, total protein as determined by Bradford 
assay, osmolality, etc.) to account for differences in metabolite levels due to differences in the 
amount of material present in each sample. 

 
 
 
 
 
 
 
 
 

Day
1      2        3        4      5       6        7

Day
1      2        3        4      5       6        7

A. B. 
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Figure 2:  Visualization of data normalization steps for a multiday platform run.  

Statistical Methods and Terminology 
Statistical Calculations:  For many studies, two types of statistical analysis are usually 
performed: (1) significance tests and (2) classification analysis.  Standard statistical analyses are 
performed in ArrayStudio on log transformed data.  For those analyses not standard in 
ArrayStudio, the programs R (http://cran.r-project.org/) or JMP are used.  Below are examples 
of frequently employed significance tests and classification methods followed by a discussion of 
p- and q-value significance thresholds.  
 

1. Welch’s two-sample t-test 
Welch’s two-sample t-test is used to test whether two unknown means are different 
from two independent populations. 
 
This version of the two-sample t-test allows for unequal variances (variance is the 
square of the standard deviation) and has an approximate t-distribution with degrees of 
freedom estimated using Satterthwaite’s approximation.  The test statistic is given by 

t=  (�̅�𝑥1 − �̅�𝑥2)/�𝑠𝑠12/𝑛𝑛1 + 𝑠𝑠22/𝑛𝑛2 , and the degrees of freedom is given by �𝑠𝑠1
2

𝑛𝑛1
+ 𝑠𝑠22

𝑛𝑛2
�
2

/

�
�𝑠𝑠1

2

𝑛𝑛1
�
2

𝑛𝑛1−1
+

�𝑠𝑠2
2

𝑛𝑛2
�
2

𝑛𝑛2−1
� , where �̅�𝑥1, �̅�𝑥2 are the sample means, s1, s2, are the sample standard 

deviations, and n1, n2 are the samples sizes from groups 1 and 2, respectively.  We 
typically use a two-sided test (tests whether the means are different) as opposed to a 
one-sided test (tests whether one mean is greater than the other). 

 
2. Matched pairs t-test 

The matched pairs t-test is used to test whether two unknown means are different from 
paired observations taken on the same subjects. 
 
The matched pairs t-test is equivalent to the one-sample t-test performed on the 
differences of the observations taken on each subject (i.e., calculate (x1 – x2) for each 
subject; test whether the mean difference is zero or not).  The test statistic is given by 
𝑡𝑡 =  (�̅�𝑥1 − �̅�𝑥2)/𝑛𝑛, with n – 1 degrees of freedom, where �̅�𝑥1, �̅�𝑥2 are the sample means for 
groups 1 and 2, respectively, sd is the standard deviation of the differences, n is the 
number of subjects (so there are 2n observations).   

 
3. One-way ANOVA  

ANOVA stands for analysis of variance.  For ANOVA, it is assumed that all populations 
have the same variances.  One-way ANOVA is used to test whether at least two 
unknown means are all equal or whether at least one pair of means is different.  For the 

http://cran.r-project.org/
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case of two means, ANOVA gives the same result as a two-sided t-test with a pooled 
estimate of the variance.  
 
An ANOVA uses an F-test which has two parameters – the numerator degrees of 
freedom and the denominator degrees of freedom.  The degrees of freedom in the 
numerator are equal to g – 1, where g is the number of groups.  If n is the total number 
of observations (n1 + n2), then, the denominator degrees of freedom is equal to n – g.  
The F-statistic is the ratio of the between-groups variance to the within-groups variance, 
hence the higher the F-statistic the more evidence we have that the means are 
different. 
 
Often within ANOVA, one performs linear contrasts for specific comparisons of interest.  
For example, suppose we have three groups A, B, C, then examples of some contrasts 
are A vs. B, the average of A and B vs. C, etc.  For single-degree of freedom contrasts, 
these give the same result as a two-sided t-test with the pooled estimate of the variance 
from the ANOVA and degrees of freedom n – g.  Below, we show the three formulas for 
A vs. B from a three group design as shown above.  The numerator is same in each case, 
but the denominator differs by the estimates of the variances, and the degrees of 
freedom are different for each (if the theoretical assumptions hold, then the contrast 
has the most power, as it has the largest degrees of freedom). 
 
Welch’s two-sample t-test 
By t =  (�̅�𝑥𝐴𝐴 − �̅�𝑥𝐵𝐵)/�𝑠𝑠𝐴𝐴2/𝑛𝑛𝐴𝐴 + 𝑠𝑠𝐵𝐵2/𝑛𝑛𝐵𝐵 , and the degrees of freedom is given by 

�𝑠𝑠𝐴𝐴
2

𝑛𝑛𝐴𝐴
+ 𝑠𝑠𝐵𝐵
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𝑛𝑛𝐵𝐵
�
2

/�
�
𝑠𝑠𝐴𝐴
2

𝑛𝑛𝐴𝐴
�
2

𝑛𝑛𝐴𝐴−1
+

�
𝑠𝑠𝐵𝐵
2

𝑛𝑛𝐵𝐵
�
2

𝑛𝑛𝐵𝐵−1
� 

 
Two-sample t-test with pooled estimate of variance from A and B 

𝑡𝑡 =  (�̅�𝑥𝐴𝐴 − �̅�𝑥𝐵𝐵)/�𝑠𝑠𝐴𝐴𝐵𝐵2 (1/𝑛𝑛𝐴𝐴 +/𝑛𝑛𝐵𝐵) 

where 𝑠𝑠𝐴𝐴𝐵𝐵2 = �(𝑛𝑛𝐴𝐴 − 1)𝑠𝑠𝐴𝐴2 + (𝑛𝑛𝐵𝐵 − 1)𝑠𝑠𝐵𝐵2�/(𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐵𝐵 − 2),  where the degrees of 
freedom is nA + nB – 2.  
The contrast from the ANOVA, 

𝑡𝑡 =  (�̅�𝑥𝐴𝐴 − �̅�𝑥𝐵𝐵)/�𝑠𝑠2(1/𝑛𝑛𝐴𝐴 +/𝑛𝑛𝐵𝐵) 
where 𝑠𝑠2 = �(𝑛𝑛𝐴𝐴 − 1)𝑠𝑠𝐴𝐴2 + (𝑛𝑛𝐵𝐵 − 1)𝑠𝑠𝐵𝐵2   +  (𝑛𝑛𝐶𝐶 − 1)𝑠𝑠𝐶𝐶2�/(𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐵𝐵 +  𝑛𝑛𝐶𝐶 − 3),  where 
the degrees of freedom is given by where the degrees of freedom is nA + nB + nC – 3.  

 
4. Two-way ANOVA 

ANOVA stands for analysis of variance.  For ANOVA, it is assumed that all populations 
have the same variances.  For a two-way ANOVA, three statistical tests are typically 
performed: the main effect of each factor and the interaction.  Suppose we have two 
factors A and B, where A represent the genotype and B represent the diet in a mouse 
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study.  Suppose each of these factors has two levels (A:  wild type, knock out; B:  
standard diet, high fat diet).  For this example, there are 4 combinations (“treatments”):  
A1B1, A1B2, A2B1, A2B2.  The overall ANOVA F-test gives the p-value for testing 
whether all four of these means are equal or whether at least one pair is different.  
However, we are also interested in the effect of the genotype and diet.  A main effect is 
a contrast that tests one factor across the levels of the other factor.  Hence the A main 
effect compares (A1B1 + A1B2)/2 vs. (A2B1 + A2B2)/2, and the B-main effect compares 
(A1B1 + A2B2)/2 vs.  (A1B2 + A2B2)/2.  The interaction is a contrast that tests whether 
the mean difference for one factor depends on the level of the other factor, which is 
(A1B2 + A2B1)/2 vs. (A1B1 + A2B2)/2.  

 
Some sample plots follow.  For the first plot, there is a B main effect, but no A main 
effect and no interaction, as the effect of B does not depend on the level of A.  For the 
second plot, notice how the mean difference for B is the same at each level of A and the 
difference in A is the same for each level of B, hence there is no statistical interaction.  
The final plot also has main effects for A and B, but here also has an interaction:  we see 
the effect of B depends on the level of A (0 for A1 but 2 for A2), i.e., the effect of the 
diet depends on the genotype.  We also see here the interpretation of the main effects 
depends on whether there is an interaction or not. 
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5. Two-way Repeated Measures ANOVA 
This is typically an ANOVA where one factor is applied to each subject and the second 
factor is a time point.  See two-way ANOVA as many of the details are similar except 
that the model takes into account the repeated measures, i.e., the treatments are given 
to the same subject over time.  The two main effects and the interaction are assessed, 
with particular interest to the interaction, as this shows where the time profiles are 
parallel or not for the treatments (parallel mean no interaction).  
 
One additional note, the standard analysis assumes a condition referred to as 
compound symmetry, which assumes the correlation between each pair of levels of the 
repeated-measures factor is the same.  Thus, for the case of time, it assumes the 
correlation is the same between time points 1 and 2, 1 and 3, and 2 and 3. 
 

6. Correlation 
Correlation measures the strength and direction of a linear association between two 
variables.  The statistical test for correlation tests whether the true correlation is zero or 
not. 
 
The square of the correlation is the percentage of the total variation explained by a 
linear relationship between the two variables.  Thus, with large sample sizes there may 
be a sample correlation of 0.1 that is statistically significant.  This means we have high 
confidence that the true correlation is zero, however, only 100*(0.1*0.1)% = 1% of the 
variation of one variable is explained by a linear relationship with the other variable, so 
while there is an association, it has little predictive ability. 

 
7. Hotelling’s T2 test 

The Hotelling’s T2 test is a multivariate generalization of the t-test, but here we are 
testing whether the mean vectors are different or not (the vector consists of multiple 
metabolites). 
 

The Hotelling statistic is: 𝑡𝑡2  = � 𝑛𝑛𝑥𝑥 𝑛𝑛𝑦𝑦
𝑛𝑛𝑥𝑥+𝑛𝑛𝑦𝑦

� ∗ (𝒙𝒙� − 𝒚𝒚�)𝑇𝑇 𝑺𝑺−1 (𝒙𝒙� –𝒚𝒚�), where nx and ny are the 

numbers of samples in each group, 𝒙𝒙�  is the mean vector of the variables from group 1,  
𝒚𝒚�  is the mean vector of variables from group 2 and S is the pooled estimate of the 
variance-covariance matrix of the variables.  This analysis assumes the underlying 
variance-covariance matrix is the same for each group.  Notice that in the case of 
uncorrelated variables, this is simply a weighted average of the squared mean 
differences with weights inversely proportional to the sample variances (i.e., the 
metabolites less variable within a group are given higher weights). 
 

8. p- values 
For statistical significance testing, p-values are given.  The lower the p-value, the more 
evidence we have that the null hypothesis (typically that two population means are 
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equal) is not true.  If “statistical significance” is declared for p-values less than 0.05, then 
5% of the time we incorrectly conclude the means are different, when actually they are 
the same. 
 
The p-value is the probability that the test statistic is at least as extreme as observed in 
this experiment given that the null hypothesis is true.  Hence, the more extreme the 
statistic, the lower the p-value and the more evidence the data gives against the null 
hypothesis. 

 
9. q-values 

The level of 0.05 is the false positive rate when there is one test.  However, for a large 
number of tests we need to account for false positives.  There are different methods to 
correct for multiple testing.  The oldest methods are family-wise error rate adjustments 
(Bonferroni, Tukey, etc.), but these tend to be extremely conservative for a very large 
number of tests.  With gene arrays, using the False Discovery Rate (FDR) is more 
common.  The family-wise error rate adjustments give one a high degree of confidence 
that there are zero false discoveries.  However, with FDR methods, one can allow for a 
small number of false discoveries.  The FDR for a given set of compounds can be 
estimated using the q-value (see Storey J and Tibshirani R. (2003) Statistical significance 
for genomewide studies.  Proc. Natl. Acad. Sci. USA 100: 9440-9445; PMID: 12883005).  
 
In order to interpret the q-value, the data must first be sorted by the p-value then 
choose the cutoff for significance (typically p<0.05).  The q-value gives the false 
discovery rate for the selected list (i.e., an estimate of the proportion of false 
discoveries for the list of compounds whose p-value is below the cutoff for significance).  
For Table 1 below, if the whole list is declared significant, then the false discovery rate is 
approximately 10%.  If everything from Compound 079 and above is declared significant, 
then the false discovery rate is approximately 2.5%.   
Table 1: Example of q-value interpretation 

 
 
 
 
 
 
 

10. Random Forest 
 
Random forest is a supervised classification technique based on an ensemble of decision 
trees (see Breiman L. (2001) Random Forests.  Machine Learning.  45: 5-32; 
http://link.springer.com/article/10.1023%2FA%3A1010933404324).  For a given 
decision tree, a random subset of the data with identifying true class information is 

Compound p -value q -value
Compound 103 0.0002 0.0122
Compound 212 0.0004 0.0122
Compound 076 0.0004 0.0122
Compound 002 0.0005 0.0122
Compound 168 0.0006 0.0122
Compound 079 0.0016 0.0258
Compound 113 0.0052 0.0631
Compound 050 0.0053 0.0631
Compound 098 0.0061 0.0647
Compound 267 0.0098 0.0939
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selected to build the tree (“bootstrap sample” or “training set”), and then the remaining 
data, the “out-of-bag” (OOB) variables, are passed down the tree to obtain a class 
prediction for each sample.  This process is repeated thousands of times to produce the 
forest.  The final classification of each sample is determined by computing the class 
prediction frequency (“votes”) for the OOB variables over the whole forest.  For 
example, suppose the random forest consists of 50,000 trees and that 25,000 trees had 
a prediction for sample 1.  Of these 25,000, suppose 15,000 trees classified the sample 
as belonging to Group A and the remaining 10,000 classified it as belonging to Group 
B.  Then the votes are 0.6 for Group A and 0.4 for Group B, and hence the final 
classification is Group A.  This method is unbiased since the prediction for each sample is 
based on trees built from a subset of samples that do not include that sample.  When 
the full forest is grown, the class predictions are compared to the true classes, 
generating the “OOB error rate” as a measure of prediction accuracy.  Thus, the 
prediction accuracy is an unbiased estimate of how well one can predict sample class in 
a new data set.  Random forest has several advantages – it makes no parametric 
assumptions, variable selection is not needed, it does not overfit, it is invariant to 
transformation, and it is fairly easy to implement with R. 
 
To determine which variables (biochemicals) make the largest contribution to the 
classification, a “variable importance” measure is computed.  We use the “Mean 
Decrease Accuracy” (MDA) as this metric.  The MDA is determined by randomly 
permuting a variable, running the observed values through the trees, and then 
reassessing the prediction accuracy.  If a variable is not important, then this procedure 
will have little change in the accuracy of the class prediction (permuting random noise 
will give random noise).  By contrast, if a variable is important to the classification, the 
prediction accuracy will drop after such a permutation, which we record as the 
MDA.  Thus, the random forest analysis provides an “importance” rank ordering of 
biochemicals; we typically output the top 30 biochemicals in the list as potentially 
worthy of further investigation. 
 

11. Hierarchical Clustering 
Hierarchical clustering is an unsupervised method for clustering the data, and can show 
large-scale differences.  There are several types of hierarchical clustering and many 
distance metrics that can be used.  A common method is complete clustering using the 
Euclidean distance, where each sample is a vector with all of the metabolite values.  The 
differences seen in the cluster may be unrelated to the treatment groups or study 
design. 

 
12. Principal Components Analysis (PCA) 

Principal components analysis is an unsupervised analysis that reduces the dimension of 
the data.  Each principal component is a linear combination of every metabolite and the 
principal components are uncorrelated.  The number of principal components is equal 
to the number of observations.   
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The first principal component is computed by determining the coefficients of the 
metabolites that maximizes the variance of the linear combination.  The second 
component finds the coefficients that maximize the variance with the condition that the 
second component is orthogonal to the first.  The third component is orthogonal to the 
first two components and so on.  The total variance is defined as the sum of the 
variances of the predicted values of each component (the variance is the square of the 
standard deviation), and for each component, the proportion of the total variance is 
computed.  For example, if the standard deviation of the predicted values of the first 
principal component is 0.4 and the total variance = 1, then 100*0.4*0.4/1 = 16% of the 
total variance is explained by the first component.  Since this is an unsupervised 
method, the main components may be unrelated to the treatment groups, and the 
“separation” does not give an estimate of the true predictive ability.   
 

13. Z-scores 
An intensity measurement for a metabolite by itself does not tell much.  If for example a 
patient contains a blood glucose level of 300, this could be very good news if most 
people have blood glucose levels around 300, but less so if most people have levels 
around 100.  In other words a measurement is meaningful only relative to the means of 
the sample or the population.  This can be achieved by transforming the measurements 
into Z-scores which are expressed as standard deviations from the mean.   
 
The Z-score, also called the standard score or normal score, is a dimensionless quantity 
derived by subtracting the control population mean from an individual raw score and 
then dividing the difference by the control population standard deviation.  The Z-score 
indicates how many standard deviations an observation is above or below the mean of 
the control group.  The Z-score is negative when the raw score is below the mean, 
positive when above.  Since knowing the true mean and standard deviation of a control 
population is often unrealistic, the mean and standard deviation of the control 
population may be estimated using a random control sample. 

 
 

Z-score =  
where:  x is a raw score to be standardized, μ is the mean of the 
control population,  σ is the standard deviation of the control population 

 
Subtracting the mean centers the distribution, and dividing by the standard deviation 
standardizes the distribution.  The interesting properties of Z-scores are that they have a 
zero mean (effect of “centering”) and a variance and standard deviation of 1 (effect of 
“standardizing”).  This is because all distributions expressed in Z-scores have the same 
mean (0) and the same variance (1), so we can use Z-scores to compare observations 
coming from different distributions.  When a distribution is normal most of the Z-scores 
(more than 99%) lay between the values of -3 and +3. 

 



Supplementary reports (saliva): Report S1  
Experimental procedure, statistical analyses and data management systems and results and 
biological interpretation 

 
 
 
 
 
 
 

 
  



S22 
 

Objective 

 
Purpose of Experiment 
The goal of this study was to characterize the biochemical profiles of saliva from patients with 
head and neck squamous cell carcinoma in order to identify biomarkers of disease. 

 

Experimental Procedures 

 
Experimental design 
Metabolon received 60 saliva samples on February 19, 2015.  Global metabolic profiles were 
determined from the experimental groups outlined below.   
 
 

 
 

Results and Biological Interpretation 

 
Metabolite Summary and Significantly Altered Biochemicals 
The present dataset comprises a total of 481 compounds of known identity (named 
biochemicals).  Following log transformation and imputation of missing values, if any, with the 
minimum observed value for each compound, Welch’s two-sample t-test was used to identify 
biochemicals that differed significantly between experimental groups.  A summary of the 
numbers of biochemicals that achieved statistical significance (p≤0.05), as well as those 
approaching significance (0.05<p<0.10), is shown below.   

An estimate of the false discovery rate (q-value) is calculated to take into account the multiple 
comparisons that normally occur in metabolomic-based studies.  For example, when analyzing 
200 compounds, we would expect to see about 10 compounds meeting the p≤0.05 cut-off by 
random chance.  The q-value describes the false discovery rate; a low q-value (q<0.10) is an 
indication of high confidence in a result.  While a higher q-value indicates diminished 
confidence, it does not necessarily rule out the significance of a result.  Other lines of evidence 
may be taken into consideration when determining whether a result merits further scrutiny.  
Such evidence may include a) significance in another dimension of the study, b) inclusion in a 

Group Group Description n 

Control Saliva from healthy controls 13 

Disease Saliva from patients with head and 
neck squamous cell carcinoma 47 
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common pathway with a highly significant compound, or c) residing in a similar functional 
biochemical family with other significant compounds.  Refer to the Appendix for general 
definitions and further descriptions of false discovery rate and other statistical tests used at 
Metabolon. 
 
 

 
 
We have also included in the electronic deliverables, a file with data for each biochemical 
displayed as box plots like that shown in the example figure below. 
 

 
 
 
 
 
 

Statistical Comparisons 
Welch's Two-
Sample t-Test 

Disease 
Control 

Disease 
Control (No 379-399) 

Total biochemicals 
p≤0.05 175 234 

Biochemicals  
(↑↓) 126 | 49 120 | 114 

Total biochemicals 
0.05<p<0.10 40 40 
Biochemicals  

(↑↓) 22 | 18 26 | 14 
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Biological Interpretation 
 
 
The majority of head and neck cancers are squamous cell carcinomas, which typically originate 
from the mucosal epithelial lining of the oral cavity.  These cancers show a strong association 
with tobacco use and alcohol consumption, gastrointestinal reflux (GERD) as well as human 
papillomavirus (HPV) infection.  These cancers are often aggressive, but respond well to surgical 
excision and radiation therapy if detected early.  The goal of this study is to identify salivary 
biomarkers associated with head and neck squamous cell carcinomas (which will also be 
compared to metabolic changes identified in the related project, MICH-03-14VW, which 
assessed metabolites in primary and metastatic tumors compared to normal adjacent tissue). 
 
Datasets provided in the mView product can be quite large and contain a great deal of 
information.  A few observations are offered below as an initial overview of the changes in 
metabolic profiles in saliva samples; key references are cited by PubMed Identification number 
(PMID) at certain points throughout the report.  For convenience, biochemicals are highlighted 
in bold text in the report when they correspond to plots shown in figures of the accompanying 
Graphics file.  Comparison of global biochemical profiles derived from the saliva of Control or 
tumor-bearing individuals (here called Disease) revealed several metabolic differences, some of 
which are highlighted below: 
 
• Overview of the dataset: Principal component analysis (PCA) transforms a large number of 

metabolic variables into a smaller number of orthogonal variables (Component 1, 
Component 2, etc…) in order to analyze variation between groups and to provide a high-
level overview of the dataset.  Control and Disease samples tended to form partially 
overlapping populations, with Disease samples showing a wider spread across the PCA.  
Increased spread could reflect position of the tumor within the oral cavity (nearness to 
sampling site), tumor stage or metastatic potential.  In the hierarchical clustering analysis 
(HCA), Control and Disease samples tended to cluster by disease status, though three 
control samples (1027, 1030, and 1031) formed a separate cluster.  These three samples 
appear to have a different numbering scheme compared to other control samples (which 
have a “D” in front of the number); it is possible that differential clustering may reflect an 
alternate collection site or protocol.  These three samples also separated from the Control 
group in the PCA (highlighted with a red dashed line).  A statistical analysis without these 
samples is also included in the Client Data Table; however, this report will focus on 
differences in the complete data set. 
  
Random forest analysis (RFA) is a statistical tool utilizing a supervised classification 
technique based on an ensemble of decision trees (please see Appendix for greater detail) 
and can aid in the identification of biomarkers differentiating classification groups.  RFA was 
very effective at separating Control from Disease samples, with a predictive accuracy of 
100% (a 50% predictive accuracy would be expected by random chance).  Interestingly, the 
three samples that showed separation from the Control population in the PCA and HCA 
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were classified correctly.  The Top 30 metabolites for predicting treatment groups included 
biochemicals related to carbohydrate (3-phosphoglycerate, an isobar of fructose/glucose 
1,6-diphosphate or myo-inositol 1,4 or 1,3-diphosphate, glucose-6-phosphate, and maltose) 
nucleotide (2’,3’-cGMP, 3’-AMP, allantoin), and lipid (maleate, caproate, heptanoate, 
carnitine) metabolism. 

 
• Energetics: Glucose can be utilized to support a variety of physiological processes, including 

energy generation, fatty acid synthesis, protein glycosylation, and nucleotide biogenesis.  
While glucose levels were similar, glycolytic metabolites were increased as a class (though 
lactate was not significantly changed), potentially reflecting increasing glycolytic use in the 
tumor.  The pentose phosphate metabolite 6-phosphogluconate was also elevated, with 
decreased pentose products (which may reflect increased proliferative demand for 
nucleotides).  Metabolites in the TCA cycle could indicate changing function: increased 
citrate could reflect increased glycolytic or beta-oxidative input, while elevated alpha-
ketoglutarate could indicate increased glutaminolysis (glutamine levels were non-
significantly decreased).  Lactate levels were increased in the related tumor samples (MICH-
03-14VW), but was not increased in Disease saliva (compared to Control).  One study has 
suggested that our bacterial flora can convert lactate into the short chain fatty acid (SCFA) 
butyrate (PMID: 15466518).  The Metabolon discovery platform does not detect butyrate 
(though a surrogate molecule, butyrylcarnitine, was elevated); however valerate and several 
medium chain fatty acids (MCFAs) did show an increase.  One attractive (and somewhat 
speculative) explanation for static levels of lactate might be conversion into SCFAs (and 
lower chain-length MCFAs) by resident microflora.  A corollary would then be that cancers 
might change neighboring microbial communities by altering available energy sources.  It is 
uncertain how this might affect mucosal biology, but given studies showing effects of certain 
bacteria on immune responses in the gut, there may be an effect on immune tumor 
surveillance.  

 
Glycogen metabolites: Glycogen metabolites (maltopentaose, maltotetraose, and maltose) 
were higher in Disease (compared to Control), potentially suggesting increased glycogen 
mobilization to support tumor metabolism, though maltopentaose and maltotetraose 
experienced poor fill (these metabolites were detected in Disease with greater frequently 
than Control).  It is possible that metabolic changes associated with tumor progression 
underlies the appearance of glycogen metabolites in saliva.  Further studies assessing 
stage/grade or molecular status could identify these metabolites as predictive biomarkers 
for disease.   
 
BCAA catabolism: Metabolites derived from leucine, isoleucine or valine catabolism can 
enter gluconeogenesis or the TCA cycle for energy production; leucine, isoleucine and 
valine showed non-significant trends toward decrease (Disease vs Control), while increases 
in catabolic products of leucine (isovalerate, isovalerylcarnitine), isoleucine (2-
methylbutyrylcarnitine, tiglyl carnitine), and valine (3-methyl-2-oxobutyrate, 
isobutyrylcarnitine) could indicate increased cellular use of BCAAs for energetics.  Increases 
in propionylcarnitine (a surrogate reporter for propionyl CoA, one end-product of isoleucine 
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catabolism as well as the oxidation of odd-chain fatty acids) and 2-
methylcitrate/homocitrate (both of which are formed by condensation of propionyl CoA 
with TCA intermediates) could also support increasing use of BCAAs for energetics. The 
opposite pattern of metabolites was observed in the tumor matrix; this pattern in saliva 
could reflect changes in both BCAA use and secretion.  
  
Lipid metabolism: Fatty acids (FAs) are a critical source of energy for mitochondrial 
oxidation and cellular ATP generation.  Short and medium-chain fatty acids were increased, 
while long-chain fatty acids showed non-significant trends toward decrease (potentially 
reflecting increased use for beta-oxidation).  Long-chain FAs must be conjugated to 
carnitine for transport across the mitochondrial membrane prior to oxidation; acylcarnitine 
conjugates (hydroxybutyrylcarnitine, hexanoylcarnitine, octanoylcarnitine) were 
increased, with increases in carnitine and the ketone body 3-hydroxybutyrate (BHBA) 
suggestive of increased beta-oxidative use.   
 
Comparison of energetics in saliva and tumor matrices:  Changes in salivary metabolites 
include contributions from both tumor and non-tumor populations, though several 
signatures of tumor metabolism were seen.  Increases in glycolytic and BCAA catabolic 
metabolites are consistent with changes in tumor metabolism observed in MICH-03-14VW, 
while increased in beta-oxidative metabolites may reflect non-tumor (or stromal) 
metabolism.  Increased markers of beta-oxidative use may indicate a metabolic shift in 
tumor-adjacent stroma in response to high tumor glucose demand (or changes in 
SCFA/MCFA availability).  Glycogen metabolites were increased in saliva but decreased in 
tumor, which could suggest mobilization of glycogen reserves to support highly glycolytic 
tumor metabolism.  Finally, TCA metabolites may show a hybrid effect: increasing citrate 
may indicate increasing beta-oxidative input in “normal” cells, while changes in alpha-
ketoglutarate may reflect elevated BCAA catabolism in the tumor.   

 
• Inflammation-associated metabolites: Changes in tryptophan metabolites can also indicate 

inflammatory states: indoleamine 2,3-dioxygenase (IDO), which catalyzes the conversion of 
tryptophan to kynurenine, is activated by pro-inflammatory cytokines (e.g., IFN-γ, TNF-α).  
Kynurenine was elevated, while its degradation product kynurenate was decreased, 
suggestive of increasing inflammation (Disease vs Control).  While frequently used as a 
biomarker of inflammation, kynurenine functions as an endogenous “brake” on immune 
activation and has been suggested as one mediator of tumor-induced immune suppression, 
with effects on invasive tumor growth (PMID: 21993754).  Histamine and N-acetylhistamine 
were non-significantly decreased, with a significant increase in the degradatory metabolite 
1-methylimidazoleacetate.  This signature was also apparent in tumor cells from MICH-03-
14VW and could reflect changes in mast cell biology or inflammation.   

  
• Redox Homeostasis: Gamma-glutamyl AAs are generated by gamma-glutamyl 

transpeptidase (GGT), which transfers the gamma-glutamyl moiety of reduced glutathione 
(GSH) to an amino acid acceptor, modulating the intra- and extracellular exchange of GSH.  
Increases in several gamma-glutamyl AAs (e.g., gamma-glutamylalanine, gamma-
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glutamylglutamate) could indicate increasing oxidative stress (Disease vs Control), while 
elevated 5-oxoproline may reflect increased gamma-glutamyl amino acid exchange to 
replenish glutathione.  Oxidized glutathione (GSSG) was increased in Disease (compared to 
Control), as were cysteine-glutathione disulfide (a product of glutathione oxidation), cys-gly, 
oxidized, and ophthalmate (a tripeptide analogue of glutathione also produced by 
glutathione synthetase that can be used as a marker of glutathione demand).  Note that 
many of these markers experienced poor fill in both Control and Disease groups, though they 
were detected with greater frequency in Disease samples (consistent with increasing 
oxidative stress seen in tumor samples, MICH-03-14VW).  A subset of methionine 
metabolites were also elevated, including cysteine, hypotaurine and taurine (potentially in 
support of glutathione production).    

 
Other observations of interest:  
 

o Heme:  Heme levels were increased in the saliva of Disease (compared to Control); 
interestingly, this metabolite was below the threshold of detection in Control samples 
(while Disease showed 28% fill).  The presence of heme could indicate blood in the saliva, 
potentially derived from tumors in the oral cavity.  

 
o Nicotine: While nicotine levels were decreased in Disease (compared to Control), 

nicotine metabolites (cotinine, hydroxycotinine, and cotinine N-oxide) were not 
significantly altered.  Since nicotine metabolism primarily occurs in the liver (PMID: 
19184645), it is possible that lower nicotine reflects less recent use.  Interestingly, 
levulinate, an additive that is used to increase nicotine binding to receptors, was 
increased in Disease (compared to Control).  Glycols (pentaethylene glycol, hexaethylene 
glycol, heptaethylene glycol and octaethylene glycol) were also increased; these could 
derive from medications (where PEGylation can improve solubility and decrease renal 
clearance) or from nicotine delivery (e-cigarettes can use polyethylene glycol as a 
solvent).  

 
o Drugs: The opioids oxycodone and its metabolites noroxycodone and oxymorphone 

were also detected in a subset of Disease samples (Disease vs Control).  The presence of 
these drugs may indicate more advanced disease in the patients from which these 
samples were derived.  Individuals with detected oxycodone did not show good overlap 
with those where heme was detected.   
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Conclusions 
 
 
In conclusion, the results from this global metabolomic study comparing saliva samples from 
Control or Tumor-bearing subjects differed in a number of metabolic readouts, including 
changes in metabolites related to energetics, redox homeostasis, and inflammation.  In the 
principal components analysis (PCA), Control and Disease formed overlapping populations, 
though Disease showed wider sample spread across the PCA.  Interesting, three control 
samples separated from the rest of the Control population; statistical analysis is provided with 
and without these samples.  Increases in glycolytic and TCA metabolites could reflect increased 
use of glycolysis and glutaminolysis in tumors; interestingly, markers of lipid metabolism 
pointed to increased beta-oxidative use (potentially reflecting changes in normal tissue or 
tumor stroma).  Trends in the dataset also pointed to increasing oxidative stress and 
inflammation.  Finally, heme was detected in a subset of Disease samples, which could indicate 
more advanced tumor stage or progression in these samples.  Overall, changes in metabolites in 
saliva and tissue matrices (from the related project MICH-03-14VW) showed good correlation, 
suggesting altered biochemicals may be useful prognostic biomarkers of disease. 
 
 

Study Parameters 

 
Data Quality: Instrument and Process Variability 
 

QC Sample Measurement Median RSD  

Internal Standards Instrument Variability 4 % 

Endogenous Biochemicals Total Process Variability 6 % 

Instrument variability was determined by calculating the median relative standard deviation 
(RSD) for the internal standards that were added to each sample prior to injection into the mass 
spectrometers.  Overall process variability was determined by calculating the median RSD for all 
endogenous metabolites (i.e., non-instrument standards) present in 100% of the Client Matrix 
samples, which are technical replicates of pooled client samples.  Values for instrument and 
process variability meet Metabolon’s acceptance criteria as shown in the table above. 
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Appendix  

 
Metabolon Platform 
Sample Accessioning:  Following receipt, samples were inventoried and immediately stored at -
80oC.  Each sample received was accessioned into the Metabolon LIMS system and was 
assigned by the LIMS a unique identifier that was associated with the original source identifier 
only.  This identifier was used to track all sample handling, tasks, results, etc.  The samples (and 
all derived aliquots) were tracked by the LIMS system.  All portions of any sample were 
automatically assigned their own unique identifiers by the LIMS when a new task was created; 
the relationship of these samples was also tracked.  All samples were maintained at -80oC until 
processed. 
 
Sample Preparation:  Samples were prepared using the automated MicroLab STAR® system 
from Hamilton Company.  A recovery standard was added prior to the first step in the 
extraction process for QC purposes.  To remove protein, dissociate small molecules bound to 
protein or trapped in the precipitated protein matrix, and to recover chemically diverse 
metabolites, proteins were precipitated with methanol under vigorous shaking for 2 min (Glen 
Mills GenoGrinder 2000) followed by centrifugation.  The resulting extract was divided into five 
fractions: one for analysis by UPLC-MS/MS with positive ion mode electrospray ionization, one 
for analysis by UPLC-MS/MS with negative ion mode electrospray ionization, one for analysis by 
UPLC-MS/MS polar platform (negative ionization), one for analysis by GC-MS, and one sample 
was reserved for backup.  Samples were placed briefly on a TurboVap® (Zymark) to remove the 
organic solvent.  For LC, the samples were stored overnight under nitrogen before preparation 
for analysis.  For GC, each sample was dried under vacuum overnight before preparation for 
analysis. 
 
QA/QC:  Several types of controls were analyzed in concert with the experimental samples: a 
pooled matrix sample generated by taking a small volume of each experimental sample (or 
alternatively, use of a pool of well-characterized human plasma) served as a technical replicate 
throughout the data set; extracted water samples served as process blanks; and a cocktail of QC 
standards that were carefully chosen not to interfere with the measurement of endogenous 
compounds were spiked into every analyzed sample, allowed instrument performance 
monitoring and aided chromatographic alignment.  Tables 1 and 2 describe these QC samples 
and standards.  Instrument variability was determined by calculating the median relative 
standard deviation (RSD) for the standards that were added to each sample prior to injection 
into the mass spectrometers.  Overall process variability was determined by calculating the 
median RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% of 
the pooled matrix samples.  Experimental samples were randomized across the platform run 
with QC samples spaced evenly among the injections, as outlined in Figure 1.   
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Table 1:  Description of Metabolon QC Samples 

Type Description Purpose 

MTRX 
Large pool of human plasma 
maintained by Metabolon that has 
been characterized extensively. 

Assure that all aspects of the Metabolon 
process are operating within specifications. 

CMTRX 
Pool created by taking a small 
aliquot from every customer 
sample. 

Assess the effect of a non-plasma matrix on 
the Metabolon process and distinguish 
biological variability from process variability. 

PRCS Aliquot of ultra-pure water Process Blank used to assess the contribution 
to compound signals from the process. 

SOLV Aliquot of solvents used in 
extraction. 

Solvent Blank used to segregate 
contamination sources in the extraction. 

 
Table 2:  Metabolon QC Standards 

Type Description Purpose 

RS Recovery Standard Assess variability and verify performance of extraction 
and instrumentation. 

DS Derivatization Standard Assess variability of derivatization for GC-MS samples. 
IS Internal Standard Assess variability and performance of instrument. 

 

 
Figure 1.  Preparation of client-specific technical replicates.  A small aliquot of each client 
sample (colored cylinders) is pooled to create a CMTRX technical replicate sample (multi-
colored cylinder), which is then injected periodically throughout the platform run.  Variability 
among consistently detected biochemicals can be used to calculate an estimate of overall 
process and platform variability. 
 
Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS):   
The LC/MS portion of the platform was based on a Waters ACQUITY ultra-performance liquid 
chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass 
spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 
mass analyzer operated at 35,000 mass resolution.  The sample extract was dried then 
reconstituted in acidic or basic LC-compatible solvents, each of which contained 8 or more 

Client samples
1st injection Final injection

CMTRX         Process Blank

Client samples

DAY 1

DAY 2

Study samples randomized and balanced

CMTRX: Technical 
replicates created from an 
aliquot of all client study 

samples
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injection standards at fixed concentrations to ensure injection and chromatographic 
consistency.  One aliquot was analyzed using acidic positive ion optimized conditions and the 
other using basic negative ion optimized conditions in two independent injections using 
separate dedicated columns (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm).  Extracts 
reconstituted in acidic conditions were gradient eluted from a C18 column using water and 
methanol containing 0.1% formic acid.  The basic extracts were similarly eluted from C18 using 
methanol and water, however with 6.5mM Ammonium Bicarbonate.  The third aliquot was 
analyzed via negative ionization following elution from a HILIC column (Waters UPLC BEH 
Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM 
Ammonium Formate.  The MS analysis alternated between MS and data-dependent MS2 scans 
using dynamic exclusion, and the scan range was from 80-1000 m/z.  Raw data files are 
archived and extracted as described below. 
 
Gas Chromatography-Mass Spectroscopy (GC-MS):  The samples destined for analysis by GC-
MS were dried under vacuum for a minimum of 18 h prior to being derivatized under dried 
nitrogen using bistrimethyl-silyltrifluoroacetamide.  Derivatized samples were separated on a 
5% diphenyl / 95% dimethyl polysiloxane fused silica column (20 m x 0.18 mm ID; 0.18 um film 
thickness) with helium as carrier gas and a temperature ramp from 60° to 340°C in a 17.5 min 
period.  Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning single-
quadrupole mass spectrometer using electron impact ionization (EI) and operated at unit mass 
resolving power.  The scan range was from 50–750 m/z.  Raw data files are archived and 
extracted as described below. 
 
Bioinformatics:  The informatics system consisted of four major components, the Laboratory 
Information Management System (LIMS), the data extraction and peak-identification software, 
data processing tools for QC and compound identification, and a collection of information 
interpretation and visualization tools for use by data analysts.  The hardware and software 
foundations for these informatics components were the LAN backbone, and a database server 
running Oracle 10.2.0.1 Enterprise Edition. 
 
LIMS:  The purpose of the Metabolon LIMS system was to enable fully auditable laboratory 
automation through a secure, easy to use, and highly specialized system.  The scope of the 
Metabolon LIMS system encompasses sample accessioning, sample preparation and 
instrumental analysis and reporting and advanced data analysis.  All of the subsequent software 
systems are grounded in the LIMS data structures.  It has been modified to leverage and 
interface with the in-house information extraction and data visualization systems, as well as 
third party instrumentation and data analysis software. 
 
Data Extraction and Compound Identification:  Raw data was extracted, peak-identified and 
QC processed using Metabolon’s hardware and software.  These systems are built on a web-
service platform utilizing Microsoft’s .NET technologies, which run on high-performance 
application servers and fiber-channel storage arrays in clusters to provide active failover and 
load-balancing.  Compounds were identified by comparison to library entries of purified 
standards or recurrent unknown entities.  Metabolon maintains a library based on 
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authenticated standards that contains the retention time/index (RI), mass to charge ratio (m/z), 
and chromatographic data (including MS/MS spectral data) on all molecules present in the 
library.  Furthermore, biochemical identifications are based on three criteria: retention index 
within a narrow RI window of the proposed identification, accurate mass match to the library 
+/- 0.005 amu, and the MS/MS forward and reverse scores between the experimental data and 
authentic standards.  The MS/MS scores are based on a comparison of the ions present in the 
experimental spectrum to the ions present in the library spectrum.  While there may be 
similarities between these molecules based on one of these factors, the use of all three data 
points can be utilized to distinguish and differentiate biochemicals.  More than 3300 
commercially available purified standard compounds have been acquired and registered into 
LIMS for distribution to both the LC-MS and GC-MS platforms for determination of their 
analytical characteristics.  Additional mass spectral entries have been created for structurally 
unnamed biochemicals, which have been identified by virtue of their recurrent nature (both 
chromatographic and mass spectral).  These compounds have the potential to be identified by 
future acquisition of a matching purified standard or by classical structural analysis. 
 
Curation:  A variety of curation procedures were carried out to ensure that a high quality data 
set was made available for statistical analysis and data interpretation.  The QC and curation 
processes were designed to ensure accurate and consistent identification of true chemical 
entities, and to remove those representing system artifacts, mis-assignments, and background 
noise.  Metabolon data analysts use proprietary visualization and interpretation software to 
confirm the consistency of peak identification among the various samples.  Library matches for 
each compound were checked for each sample and corrected if necessary. 
 
Metabolite Quantification and Data Normalization:  Peaks were quantified using area-under-
the-curve.  For studies spanning multiple days, a data normalization step was performed to 
correct variation resulting from instrument inter-day tuning differences.  Essentially, each 
compound was corrected in run-day blocks by registering the medians to equal one (1.00) and 
normalizing each data point proportionately (termed the “block correction”; Figure 2).  For 
studies that did not require more than one day of analysis, no normalization is necessary, other 
than for purposes of data visualization.  In certain instances, biochemical data may have been 
normalized to an additional factor (e.g., cell counts, total protein as determined by Bradford 
assay, osmolality, etc.) to account for differences in metabolite levels due to differences in the 
amount of material present in each sample. 

 
 
 
 
 
 
 
 
 

Day
1      2        3        4      5       6        7

Day
1      2        3        4      5       6        7

A. B. 
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Figure 2:  Visualization of data normalization steps for a multiday platform run.  

Statistical Methods and Terminology 
Statistical Calculations:  For many studies, two types of statistical analysis are usually 
performed: (1) significance tests and (2) classification analysis.  Standard statistical analyses are 
performed in ArrayStudio on log transformed data.  For those analyses not standard in 
ArrayStudio, the programs R (http://cran.r-project.org/) or JMP are used.  Below are examples 
of frequently employed significance tests and classification methods followed by a discussion of 
p- and q-value significance thresholds.  
 

1. Welch’s two-sample t-test 
Welch’s two-sample t-test is used to test whether two unknown means are different 
from two independent populations. 
 
This version of the two-sample t-test allows for unequal variances (variance is the 
square of the standard deviation) and has an approximate t-distribution with degrees of 
freedom estimated using Satterthwaite’s approximation.  The test statistic is given by 

t=  (�̅�𝑥1 − �̅�𝑥2)/�𝑠𝑠12/𝑛𝑛1 + 𝑠𝑠22/𝑛𝑛2 , and the degrees of freedom is given by �𝑠𝑠1
2
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/
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�
2

𝑛𝑛2−1
� , where �̅�𝑥1, �̅�𝑥2 are the sample means, s1, s2, are the sample standard 

deviations, and n1, n2 are the samples sizes from groups 1 and 2, respectively.  We 
typically use a two-sided test (tests whether the means are different) as opposed to a 
one-sided test (tests whether one mean is greater than the other). 

 
2. Matched pairs t-test 

The matched pairs t-test is used to test whether two unknown means are different from 
paired observations taken on the same subjects. 
 
The matched pairs t-test is equivalent to the one-sample t-test performed on the 
differences of the observations taken on each subject (i.e., calculate (x1 – x2) for each 
subject; test whether the mean difference is zero or not).  The test statistic is given by 
𝑡𝑡 =  (�̅�𝑥1 − �̅�𝑥2)/𝑛𝑛, with n – 1 degrees of freedom, where �̅�𝑥1, �̅�𝑥2 are the sample means for 
groups 1 and 2, respectively, sd is the standard deviation of the differences, n is the 
number of subjects (so there are 2n observations).   

 
3. One-way ANOVA  

ANOVA stands for analysis of variance.  For ANOVA, it is assumed that all populations 
have the same variances.  One-way ANOVA is used to test whether at least two 
unknown means are all equal or whether at least one pair of means is different.  For the 

http://cran.r-project.org/
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case of two means, ANOVA gives the same result as a two-sided t-test with a pooled 
estimate of the variance.  
 
An ANOVA uses an F-test which has two parameters – the numerator degrees of 
freedom and the denominator degrees of freedom.  The degrees of freedom in the 
numerator are equal to g – 1, where g is the number of groups.  If n is the total number 
of observations (n1 + n2), then, the denominator degrees of freedom is equal to n – g.  
The F-statistic is the ratio of the between-groups variance to the within-groups variance, 
hence the higher the F-statistic the more evidence we have that the means are 
different. 
 
Often within ANOVA, one performs linear contrasts for specific comparisons of interest.  
For example, suppose we have three groups A, B, C, then examples of some contrasts 
are A vs. B, the average of A and B vs. C, etc.  For single-degree of freedom contrasts, 
these give the same result as a two-sided t-test with the pooled estimate of the variance 
from the ANOVA and degrees of freedom n – g.  Below, we show the three formulas for 
A vs. B from a three group design as shown above.  The numerator is same in each case, 
but the denominator differs by the estimates of the variances, and the degrees of 
freedom are different for each (if the theoretical assumptions hold, then the contrast 
has the most power, as it has the largest degrees of freedom). 
 
Welch’s two-sample t-test 
By t =  (�̅�𝑥𝐴𝐴 − �̅�𝑥𝐵𝐵)/�𝑠𝑠𝐴𝐴2/𝑛𝑛𝐴𝐴 + 𝑠𝑠𝐵𝐵2/𝑛𝑛𝐵𝐵 , and the degrees of freedom is given by 
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Two-sample t-test with pooled estimate of variance from A and B 

𝑡𝑡 =  (�̅�𝑥𝐴𝐴 − �̅�𝑥𝐵𝐵)/�𝑠𝑠𝐴𝐴𝐵𝐵2 (1/𝑛𝑛𝐴𝐴 +/𝑛𝑛𝐵𝐵) 

where 𝑠𝑠𝐴𝐴𝐵𝐵2 = �(𝑛𝑛𝐴𝐴 − 1)𝑠𝑠𝐴𝐴2 + (𝑛𝑛𝐵𝐵 − 1)𝑠𝑠𝐵𝐵2�/(𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐵𝐵 − 2),  where the degrees of 
freedom is nA + nB – 2.  
The contrast from the ANOVA, 

𝑡𝑡 =  (�̅�𝑥𝐴𝐴 − �̅�𝑥𝐵𝐵)/�𝑠𝑠2(1/𝑛𝑛𝐴𝐴 +/𝑛𝑛𝐵𝐵) 
where 𝑠𝑠2 = �(𝑛𝑛𝐴𝐴 − 1)𝑠𝑠𝐴𝐴2 + (𝑛𝑛𝐵𝐵 − 1)𝑠𝑠𝐵𝐵2   +  (𝑛𝑛𝐶𝐶 − 1)𝑠𝑠𝐶𝐶2�/(𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐵𝐵 +  𝑛𝑛𝐶𝐶 − 3),  where 
the degrees of freedom is given by where the degrees of freedom is nA + nB + nC – 3.  

 
4. Two-way ANOVA 

ANOVA stands for analysis of variance.  For ANOVA, it is assumed that all populations 
have the same variances.  For a two-way ANOVA, three statistical tests are typically 
performed: the main effect of each factor and the interaction.  Suppose we have two 
factors A and B, where A represent the genotype and B represent the diet in a mouse 
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study.  Suppose each of these factors has two levels (A:  wild type, knock out; B:  
standard diet, high fat diet).  For this example, there are 4 combinations (“treatments”):  
A1B1, A1B2, A2B1, A2B2.  The overall ANOVA F-test gives the p-value for testing 
whether all four of these means are equal or whether at least one pair is different.  
However, we are also interested in the effect of the genotype and diet.  A main effect is 
a contrast that tests one factor across the levels of the other factor.  Hence the A main 
effect compares (A1B1 + A1B2)/2 vs. (A2B1 + A2B2)/2, and the B-main effect compares 
(A1B1 + A2B2)/2 vs.  (A1B2 + A2B2)/2.  The interaction is a contrast that tests whether 
the mean difference for one factor depends on the level of the other factor, which is 
(A1B2 + A2B1)/2 vs. (A1B1 + A2B2)/2.  

 
Some sample plots follow.  For the first plot, there is a B main effect, but no A main 
effect and no interaction, as the effect of B does not depend on the level of A.  For the 
second plot, notice how the mean difference for B is the same at each level of A and the 
difference in A is the same for each level of B, hence there is no statistical interaction.  
The final plot also has main effects for A and B, but here also has an interaction:  we see 
the effect of B depends on the level of A (0 for A1 but 2 for A2), i.e., the effect of the 
diet depends on the genotype.  We also see here the interpretation of the main effects 
depends on whether there is an interaction or not. 
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5. Two-way Repeated Measures ANOVA 
This is typically an ANOVA where one factor is applied to each subject and the second 
factor is a time point.  See two-way ANOVA as many of the details are similar except 
that the model takes into account the repeated measures, i.e., the treatments are given 
to the same subject over time.  The two main effects and the interaction are assessed, 
with particular interest to the interaction, as this shows where the time profiles are 
parallel or not for the treatments (parallel mean no interaction).  
 
One additional note, the standard analysis assumes a condition referred to as 
compound symmetry, which assumes the correlation between each pair of levels of the 
repeated-measures factor is the same.  Thus, for the case of time, it assumes the 
correlation is the same between time points 1 and 2, 1 and 3, and 2 and 3. 
 

6. Correlation 
Correlation measures the strength and direction of a linear association between two 
variables.  The statistical test for correlation tests whether the true correlation is zero or 
not. 
 
The square of the correlation is the percentage of the total variation explained by a 
linear relationship between the two variables.  Thus, with large sample sizes there may 
be a sample correlation of 0.1 that is statistically significant.  This means we have high 
confidence that the true correlation is zero, however, only 100*(0.1*0.1)% = 1% of the 
variation of one variable is explained by a linear relationship with the other variable, so 
while there is an association, it has little predictive ability. 

 
7. Hotelling’s T2 test 

The Hotelling’s T2 test is a multivariate generalization of the t-test, but here we are 
testing whether the mean vectors are different or not (the vector consists of multiple 
metabolites). 
 

The Hotelling statistic is: 𝑡𝑡2  = � 𝑛𝑛𝑥𝑥 𝑛𝑛𝑦𝑦
𝑛𝑛𝑥𝑥+𝑛𝑛𝑦𝑦

� ∗ (𝒙𝒙� − 𝒚𝒚�)𝑇𝑇 𝑺𝑺−1 (𝒙𝒙� –𝒚𝒚�), where nx and ny are the 

numbers of samples in each group, 𝒙𝒙�  is the mean vector of the variables from group 1,  
𝒚𝒚�  is the mean vector of variables from group 2 and S is the pooled estimate of the 
variance-covariance matrix of the variables.  This analysis assumes the underlying 
variance-covariance matrix is the same for each group.  Notice that in the case of 
uncorrelated variables, this is simply a weighted average of the squared mean 
differences with weights inversely proportional to the sample variances (i.e., the 
metabolites less variable within a group are given higher weights). 
 

8. p- values 
For statistical significance testing, p-values are given.  The lower the p-value, the more 
evidence we have that the null hypothesis (typically that two population means are 
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equal) is not true.  If “statistical significance” is declared for p-values less than 0.05, then 
5% of the time we incorrectly conclude the means are different, when actually they are 
the same. 
 
The p-value is the probability that the test statistic is at least as extreme as observed in 
this experiment given that the null hypothesis is true.  Hence, the more extreme the 
statistic, the lower the p-value and the more evidence the data gives against the null 
hypothesis. 

 
9. q-values 

The level of 0.05 is the false positive rate when there is one test.  However, for a large 
number of tests we need to account for false positives.  There are different methods to 
correct for multiple testing.  The oldest methods are family-wise error rate adjustments 
(Bonferroni, Tukey, etc.), but these tend to be extremely conservative for a very large 
number of tests.  With gene arrays, using the False Discovery Rate (FDR) is more 
common.  The family-wise error rate adjustments give one a high degree of confidence 
that there are zero false discoveries.  However, with FDR methods, one can allow for a 
small number of false discoveries.  The FDR for a given set of compounds can be 
estimated using the q-value (see Storey J and Tibshirani R. (2003) Statistical significance 
for genomewide studies.  Proc. Natl. Acad. Sci. USA 100: 9440-9445; PMID: 12883005).  
 
In order to interpret the q-value, the data must first be sorted by the p-value then 
choose the cutoff for significance (typically p<0.05).  The q-value gives the false 
discovery rate for the selected list (i.e., an estimate of the proportion of false 
discoveries for the list of compounds whose p-value is below the cutoff for significance).  
For Table 1 below, if the whole list is declared significant, then the false discovery rate is 
approximately 10%.  If everything from Compound 079 and above is declared significant, 
then the false discovery rate is approximately 2.5%.   
Table 1: Example of q-value interpretation 

 
 
 
 
 
 
 

10. Random Forest 
 
Random forest is a supervised classification technique based on an ensemble of decision 
trees (see Breiman L. (2001) Random Forests.  Machine Learning.  45: 5-32; 
http://link.springer.com/article/10.1023%2FA%3A1010933404324).  For a given 
decision tree, a random subset of the data with identifying true class information is 

Compound p -value q -value
Compound 103 0.0002 0.0122
Compound 212 0.0004 0.0122
Compound 076 0.0004 0.0122
Compound 002 0.0005 0.0122
Compound 168 0.0006 0.0122
Compound 079 0.0016 0.0258
Compound 113 0.0052 0.0631
Compound 050 0.0053 0.0631
Compound 098 0.0061 0.0647
Compound 267 0.0098 0.0939
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selected to build the tree (“bootstrap sample” or “training set”), and then the remaining 
data, the “out-of-bag” (OOB) variables, are passed down the tree to obtain a class 
prediction for each sample.  This process is repeated thousands of times to produce the 
forest.  The final classification of each sample is determined by computing the class 
prediction frequency (“votes”) for the OOB variables over the whole forest.  For 
example, suppose the random forest consists of 50,000 trees and that 25,000 trees had 
a prediction for sample 1.  Of these 25,000, suppose 15,000 trees classified the sample 
as belonging to Group A and the remaining 10,000 classified it as belonging to Group 
B.  Then the votes are 0.6 for Group A and 0.4 for Group B, and hence the final 
classification is Group A.  This method is unbiased since the prediction for each sample is 
based on trees built from a subset of samples that do not include that sample.  When 
the full forest is grown, the class predictions are compared to the true classes, 
generating the “OOB error rate” as a measure of prediction accuracy.  Thus, the 
prediction accuracy is an unbiased estimate of how well one can predict sample class in 
a new data set.  Random forest has several advantages – it makes no parametric 
assumptions, variable selection is not needed, it does not overfit, it is invariant to 
transformation, and it is fairly easy to implement with R. 
 
To determine which variables (biochemicals) make the largest contribution to the 
classification, a “variable importance” measure is computed.  We use the “Mean 
Decrease Accuracy” (MDA) as this metric.  The MDA is determined by randomly 
permuting a variable, running the observed values through the trees, and then 
reassessing the prediction accuracy.  If a variable is not important, then this procedure 
will have little change in the accuracy of the class prediction (permuting random noise 
will give random noise).  By contrast, if a variable is important to the classification, the 
prediction accuracy will drop after such a permutation, which we record as the 
MDA.  Thus, the random forest analysis provides an “importance” rank ordering of 
biochemicals; we typically output the top 30 biochemicals in the list as potentially 
worthy of further investigation. 
 

11. Hierarchical Clustering 
Hierarchical clustering is an unsupervised method for clustering the data, and can show 
large-scale differences.  There are several types of hierarchical clustering and many 
distance metrics that can be used.  A common method is complete clustering using the 
Euclidean distance, where each sample is a vector with all of the metabolite values.  The 
differences seen in the cluster may be unrelated to the treatment groups or study 
design. 

 
12. Principal Components Analysis (PCA) 

Principal components analysis is an unsupervised analysis that reduces the dimension of 
the data.  Each principal component is a linear combination of every metabolite and the 
principal components are uncorrelated.  The number of principal components is equal 
to the number of observations.   
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The first principal component is computed by determining the coefficients of the 
metabolites that maximizes the variance of the linear combination.  The second 
component finds the coefficients that maximize the variance with the condition that the 
second component is orthogonal to the first.  The third component is orthogonal to the 
first two components and so on.  The total variance is defined as the sum of the 
variances of the predicted values of each component (the variance is the square of the 
standard deviation), and for each component, the proportion of the total variance is 
computed.  For example, if the standard deviation of the predicted values of the first 
principal component is 0.4 and the total variance = 1, then 100*0.4*0.4/1 = 16% of the 
total variance is explained by the first component.  Since this is an unsupervised 
method, the main components may be unrelated to the treatment groups, and the 
“separation” does not give an estimate of the true predictive ability.   
 

13. Z-scores 
An intensity measurement for a metabolite by itself does not tell much.  If for example a 
patient contains a blood glucose level of 300, this could be very good news if most 
people have blood glucose levels around 300, but less so if most people have levels 
around 100.  In other words a measurement is meaningful only relative to the means of 
the sample or the population.  This can be achieved by transforming the measurements 
into Z-scores which are expressed as standard deviations from the mean.   
 
The Z-score, also called the standard score or normal score, is a dimensionless quantity 
derived by subtracting the control population mean from an individual raw score and 
then dividing the difference by the control population standard deviation.  The Z-score 
indicates how many standard deviations an observation is above or below the mean of 
the control group.  The Z-score is negative when the raw score is below the mean, 
positive when above.  Since knowing the true mean and standard deviation of a control 
population is often unrealistic, the mean and standard deviation of the control 
population may be estimated using a random control sample. 

 
 

Z-score =  
where:  x is a raw score to be standardized, μ is the mean of the 
control population,  σ is the standard deviation of the control population 

 
Subtracting the mean centers the distribution, and dividing by the standard deviation 
standardizes the distribution.  The interesting properties of Z-scores are that they have a 
zero mean (effect of “centering”) and a variance and standard deviation of 1 (effect of 
“standardizing”).  This is because all distributions expressed in Z-scores have the same 
mean (0) and the same variance (1), so we can use Z-scores to compare observations 
coming from different distributions.  When a distribution is normal most of the Z-scores 
(more than 99%) lay between the values of -3 and +3. 
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