Supplementary Information

Engineering Recombinant Protein Sensors for Quantifying Histone Acetylation

Oscar F. Sanchez, Agnes Mendonca, Ana D. Carneiro, Chongli Yuan*

School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West

Lafayette, IN 47907, USA

* Corresponding author:

School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette,

IN 47907, USA. Tel.: +1 7654945824; fax: +1 7654940805; E-mail: cyuan@purdue.edu

Table of Contents

Supporting Methods

Affinity measurements using bio-layer Interferometry (BLI) Antibody immunostaining of transfected cells with protein sensors	S-3
Table S1. Amino acid sequence of H3K14ac sensor. The epigenetic reader domain PB1(2) is in bold. Linker region is underlined. A cysteine (double underscored) was	
introduced before 6xHis-tag for fluorescent labeling.	S-4
Table S2. Sequences of synthetic H3 peptides.	S-5
Figure S1. An agarose gel (1.0%) showing digested (EcoRI and SalI) coding DNA	
plasmids of sensors.	S-6
Figure S2. Left: A typical SDS-PAGE gel (18%) of cytoplasmic and nuclear extracts	
from HEK293T cells. Right: Western blotting image of nuclear extracts stained with anti-Histone H3 antibody (ab1791, Abcam, CA, US).	S-7
Figure S3. Circular dichroism spectra of PB1(2) protein sensors with different	5-7
numbers of tandem repeats.	S-8
Figure S4. Typical autocorrelation curves and fitting results of the free protein sensor	
(o) and sensors mixed with nuclear extracts (∇). Top panel shows the autocorrelation	
curve and the bottom one shows the fitting residuals. Typical γ^2 values of the fitting	G 0
were found to be between 0.5 and 1.6.	S-9
Figure S5. Diffusivity of rhodamine dyes mixed with nuclear extracts of varying $1/2 \times 1/4$ as a superstantiant. Details presented as the mean value $1/5$ $D_{10} = 2$	S-10
H3K14ac concentrations. Data is presented as the mean value \pm SD, n = 3. Figure S6. Affinity measurements via bi-layer interferometry (BLI). A. Comparison of	5-10
association and dissociation curves between the dimeric probe (2 μ M) and different H3	
peptides. Only H3K14ac peptides exhibit a discernible association and dissociation	
curve, which can subsequently be used to determine the binding affinity. B. Binding	
affinity of the dimeric probe and H3K14ac was evaluated by varying the probe	
concentration from 0.25 to 2 μ M. The curves were then fitted globally and the K_d values	0.11
was found to be $0.14 \pm 0.02 \mu$ M.	S-11
Figure S7. Representative images of HEK293T cells transfected with <i>in situ</i> probes of	G 12
PB1(2).	S-12

Figure S8. Morphological comparison between untransfected and transfected cells. No significant difference was observed in the cell morphology visually.	S-13
Figure S9. Transfection efficiency (monitored as the percentage of fluorescent cells) of	5-15
HEK293T cells transfected with the dimeric sensor. The efficiency reached a plateau	
value at ~ 24 hours after transfection and remained fairly constant till 72 hours after	
transfection. Insets: representative fluorescent and DIC overlay images collected using	G 14
a 4× objective.	S-14
Figure S10. Comparison in the exponential phase growth of HEK293T (o,	
untransfected cells; and Δ , transfected cells with dimeric PB1(2)-mEGFP vector). The	~
inset was the same data set plotted using logarithmic y-axis.	S-15
Figure S11.Dimeric PB1(2) sensor transfected into cells treated with NaB of varying	~
concentrations.	S-16
Figure S12. Monomeric PB1(2) sensor transfected into cells treated with NaB in (A)	
and the CNF values for the same in (B). Data is showed as Mean \pm S.E, n = 30 cells.	
Fluorescent probes exhibit a significant CNF value compared to the negative control (#	
: $p < 0.01$, ANOVA, Duncan's multiple-range test test). NaB, 5 mM, significantly (*: p	
< 0.05, ANOVA, Duncan's multiple-range test test) increased H3K14ac level compared	
to samples in absence of NaB.	S-17
Figure S13. Representative HEK293T cells transfected with the dimeric protein sensor	
and co-stained with H3K14ac-antibody. Cells were fixed for co-staining with antibody	S-18
after exposure to the specific HDAC inhibitors ((A) NaB and (B) TSA).	
Figure S14. CNF values and relative acetylation level obtained from the anti-H3K14ac	
antibody in HEK293T cells treated with NaB (A) or TSA (B) and transfected with the	
dimeric PB1(2) sensor. Data is showed as Mean \pm S.E, n = 30 cells. *, p<0.05; stands	
for a significant difference between the CNF value obtained with cells treated with the	

drug and the negative control, or untreated cells.

S-19

Supporting Methods

Affinity measurement using Bi-layer Interferometry (BLI)

To assess the specificity of the dimeric PB1(2) probe to H3K14ac, we used a bi-layer interferometry (BLI, OctetRed 384, ForteBio, Menlo Park, CA). Biotinylated histone peptides (with sequence detailed in **Table S2**) were loaded on streptavidin-activated capture biosensors (ForteBio, Menlo Park, CA). A binding buffer (HEPES, 25 mM, pH 7.5; NaCl, 150 mM; BSA, 0.1% w/v; and Tween 20, 0.05%v/v) was used to perform all binding assays. Sensors of concentrations ranging from 0.25 to 2.0 μ M were used to determine the binding affinity. The binding and dissociation curves were fitted using Octet software to determine the the k_{on} and k_{off} , which subsequently can be used to determine K_d as k_{off}/k_{on} .

Antibody immunostaining of transfected cells with protein sensors

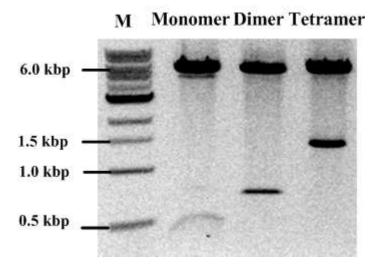
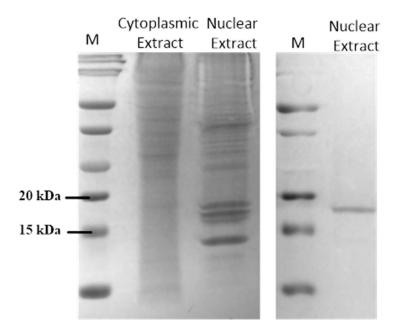
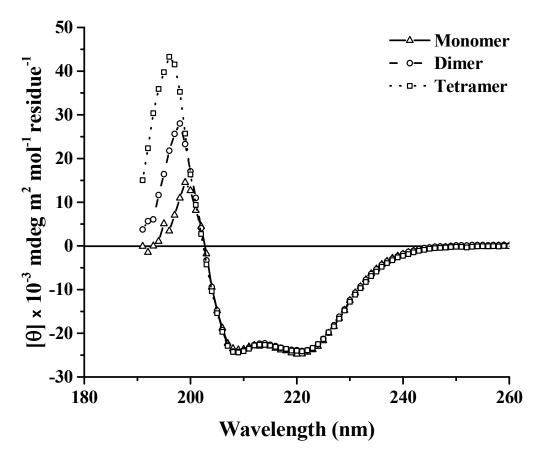
Transfected cells were seeded on poly-L-Lysine treated coverslips (No. 1.5 round coverslips, VWR, PA, US) and grown for 24 hours. Cells were then fixed using freshly prepared 4% paraformaldehyde in PBS for 20 minutes at room temperature, followed by 10 minutes of permeabilization with 0.2% Triton X-100 in PBS. Coverslips with fixed cells were then incubated with a primary antibody, anti H3K14ac (ab52946, Abcam, CA, US) at 4°C overnight. The cells were triple rinsed with PBS, followed by 1 hour of incubation at room temperature with the secondary antibody (an Alexa 564 coupled goat anti rabbit (ab175471, Abcam, CA, US)). A control well was prepared by incubating cells with the secondary antibody in absence of the primary to assess the non-specific activity of the secondary antibody

Table S1. Amino acid sequence of H3K14ac sensor. The epigenetic reader domain PB1(2) is in bold. Linker region is underlined. A cysteine (double underscored) was introduced before 6xHis-tag for fluorescent labeling.

Monomeric H3acetyl- sensor10 EQLLEAIVVA20 TNPSGRLISE30 LFQKLPSKVQ40 YPDYY.60 PIDLKTIAQR70 IQNGSYKSIH80 AMAKDIDLLA90 KNAKTYNEPG90 SQVFKT110 LSGGGGGGGV120 DENLYFQGSC130 HHHHHH	50
H3acetyl- sensor ⁶⁰ 70 80 90 pidlktiage igngsyksih amakdidlla knaktynepg sovfk ¹¹⁰ 120 130 kKIFYMKKAE igsggggggV denlyfggsg HHHHHH	_
Insacctyl- sensor PIDLKTIAQR IQNGSYKSIH AMAKDIDLLA KNAKTYNEPG SQVFK 110 120 130 KKIFYMKKAE IGSGGGGGGV DENLYFQGSC HHHHHH	AIIKE
sensor PIDLKTIAQR IQNGSYKSIH AMAKDIDLLA KNAKTYNEPG SQVFK 110 120 130 KKIFYMKKAE IGSGGGGGGV DENLYFQGSC HHHHHH	100
KKIFYMKKAE I <u>GSGGGGGG</u> V DENLYFQGS <u>C</u> HHHHHH	DANSI
\uparrow (G)	
(C)	٢.٥
$\begin{array}{cccc} 1 \underbrace{0}{2} \underbrace{20}{\text{VATNPSGRLI}} & 3 \underbrace{0}{\text{SELFQKLPSK}} & 4 \underbrace{0}{\text{VQYPD}} \end{array}$	5 <u>0</u>
	100
H3acetyl- KEPIDLKTIA QRIQNGSYKS IHAMAKDIDL LAKNAKTYNE PGSQV	
sensor 110 120 130 140	150
SIKKIFYMKK AEIGSGGGGQ FSPAYLKEIL EQLLEAIVVA TNPSG	_
160 170 180 190	200
LFQKLPSKVQ YPDYYAIIKE PIDLKTIAQR IQNGSYKSIH AMAKD	
210 220 230 240	250
KNAKTYNEPG SQVFKDANSI KKIFYMKKAE I GSGGGGQLS VGVDE	NLYFQ –
26 <u>0</u>	
GSCHHHHHH	
10 20 30 40 50	
Tetrameric MEFSPAYLKE ILEQLLEAIV VATNPSGRLI SELFQKLPSK VQYPD	
H3acetyl- KEPIDLKTIA $QRIQNGSYKS$ HAMAKDIDL LAKNAKTYNE PGSQV	10 <u>0</u> EKDAN
sensor 110 120 130 140	150
SIKKIFYMKK AEIGSGGGGQ FSPAYLKEIL EQLLEAIVVA TNPSG	
	200
160 170 180 190	_
160 170 180 190 LFOKLPSKVO YPDYYAIIKE PIDLKTIAOR IONGSYKSIH AMAKD	
LFQKLPSKVQ YPDYYAIIKE PIDLKTIAQR IQNGSYKSIH AMAKD	
LFQKLPSKVQ YPDYYAIIKE PIDLKTIAQR IQNGSYKSIH AMAKD 210 220 230 240	250
LFQKLPSKVQ YPDYYAIIKE PIDLKTIAQR IQNGSYKSIH AMAKD	250
LFQKLPSKVQ YPDYYAIIKE PIDLKTIAQR IQNGSYKSIH AMAKD 210 220 230 240 KNAKTYNEPG SQVFKDANSI KKIFYMKKAE I <u>GSGGGG</u> QFS PAYLK	25 <u>0</u> EILEQ 30 <u>0</u>
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGGQFSPAYLK260270280290	25 <u>0</u> EILEQ 30 <u>0</u>
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGGQFSPAYLK260270280290LLEAIVVATNPSGRLISELFQKLPSKVQYPDYYAIIKEPIDLKTI	25 <u>0</u> EILEQ 30 <u>0</u> AQRIQ 35 <u>0</u>
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGGQFSPAYLK260270280290LLEAIVVATNPSGRLISELFQKLPSKVQYPDYYAIIKEPIDLKTI.310320330340IFYMK360370380390390	250 EILEQ 300 AQRIQ 350 KAEIG 400
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGQGFSPAYLK260270280290LLEAIVVATNPSGRLISELFQKLPSKVQYPDYYAIIKEPIDLKTI310320330340NGSYKSIHAMAKDIDLLAKNAKTYNEPGSQVFKDANSIKKIFYMKT360370380390SGGGGQFSPAYLKEILEQLLEAIVVATNPSGRLISELFQKLPSKV	250 EILEQ 300 AQRIQ 350 KAEIG 400 QYPDY
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGGQFSPAYLK260270280290290LLEAIVVATNPSGRLISELFQKLPSKVQYPDYYAIIKEPIDLKTI3103203303401FYMK3603703803901FYMK3603703803901PSKV4104204304401	250 EILEQ 300 AQRIQ 350 KAEIG 400 QYPDY 450
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGGQFSPAYLK260270280290DYYAIIKEPIDLKTI310320330340IFYMKMGSYKSIHAMAKDIDLLAKNAKTYNEPGSQVFKDANSIKKIFYMK360370380390LPSKV410420430440YAIIKEPIDLKTIAQRIQNGSYKSIHAMAK	250 EILEQ 300 AQRIQ 350 KAEIG 400 QYPDY 450 GSQVF
LFQKLPSKVQYPDYYAIIKEPIDLKTIAQRIQNGSYKSIHAMAKD210220230240240KNAKTYNEPGSQVFKDANSIKKIFYMKKAEIGSGGGGQFSPAYLK260270280290290LLEAIVVATNPSGRLISELFQKLPSKVQYPDYYAIIKEPIDLKTI3103203303401FYMK3603703803901FYMK3603703803901PSKV4104204304401	250 EILEQ 300 AQRIQ 350 KAEIG 400 QYPDY 450 GSQVF

Table S2. Sequences of synthetic H3 peptides.

Peptide	Amino acid sequence
H3WT	ARTKQTARKSTGGKAPRKQLA-GGK(Biotin)
H3K14ac	ARTKQTARKSTGG-K(Ac) -APRKQLA-GGK(Biotin)
H3K9ac	ARTKQTAR-K(Ac)-STGGKAPRKQLA-GGK(Biotin)

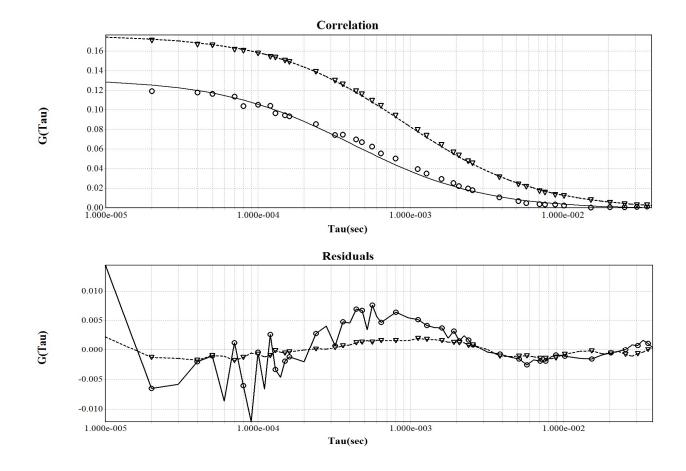

Figure S1. An agarose gel (1.0%) showing digested (EcoRI and SalI) coding DNA plasmids of sensors.

Figure S2. Left: A typical SDS-PAGE gel (18%) of cytoplasmic and nuclear extracts from HEK293T cells. Right: Western blotting image of nuclear extracts stained with anti-Histone H3 antibody (ab1791, Abcam, CA, US).

Figure S3. Circular dichroism spectra of PB1(2) protein sensors with different numbers of tandem repeats.

Figure S4. Typical autocorrelation curves and fitting results of the free protein sensor (o) and sensors mixed with nuclear extracts (∇). Top panel shows the autocorrelation curve and the bottom one shows the fitting residuals. Typical γ^2 values of the fitting were found to be between 0.5 and 1.6.

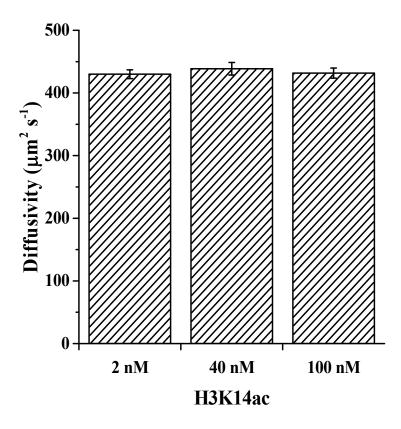
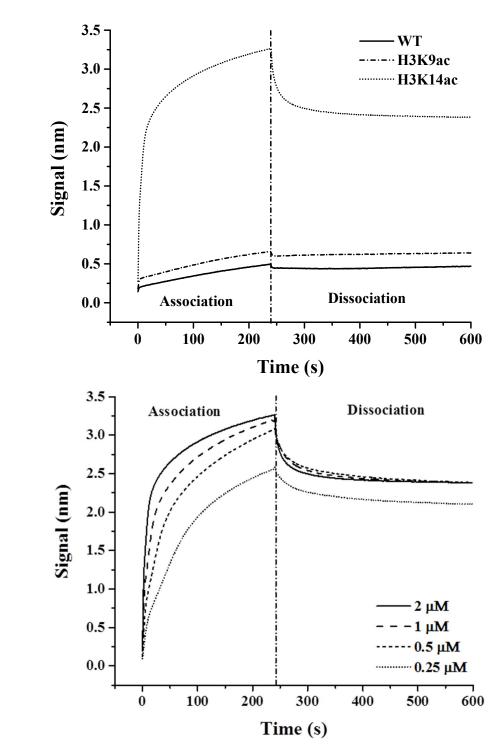



Figure S5. Diffusivity of rhodamine dyes mixed with nuclear extracts of varying H3K14ac concentrations. Data is presented as the mean value \pm SD, n = 3.

Figure S6. Affinity measurements via bi-layer interferometry (BLI). **A.** Comparison of association and dissociation curves between the dimeric probe (2 μ M) and different H3 peptides. Only H3K14ac peptides exhibit a discernible association and dissociation curve, which can subsequently be used to determine the binding affinity. **B.** Binding affinity of the dimeric probe and H3K14ac was evaluated by varying the probe concentration from 0.25 to2 μ M. The curves were then fitted globally and the K_d values was found to be 0.14 ± 0.02 μ M.

В.

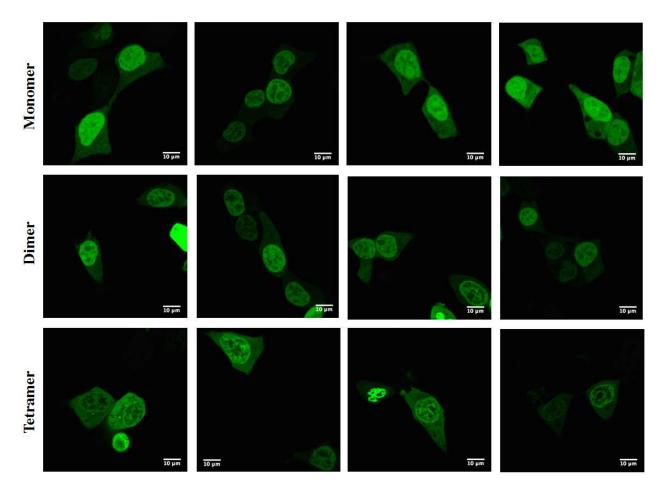


Figure S7. Representative images of HEK293T cells transfected with *in situ* probes of PB1(2).

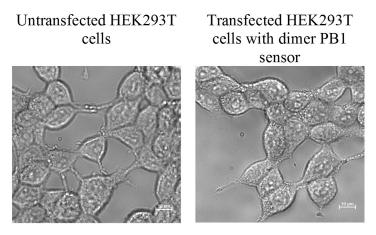
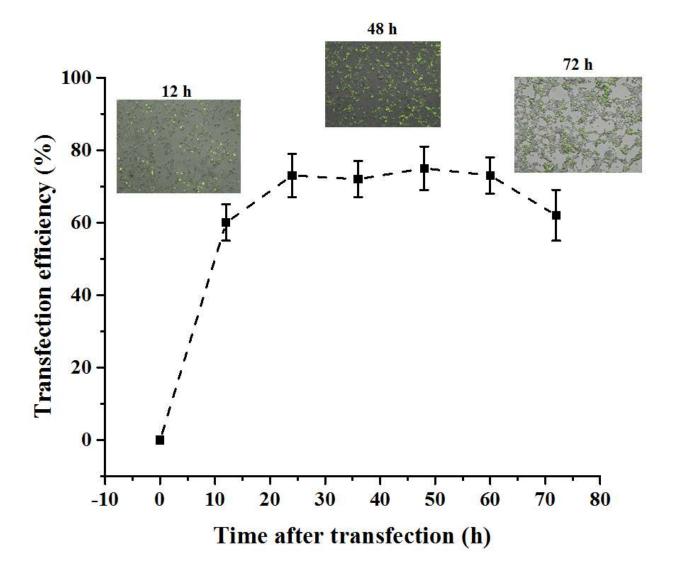
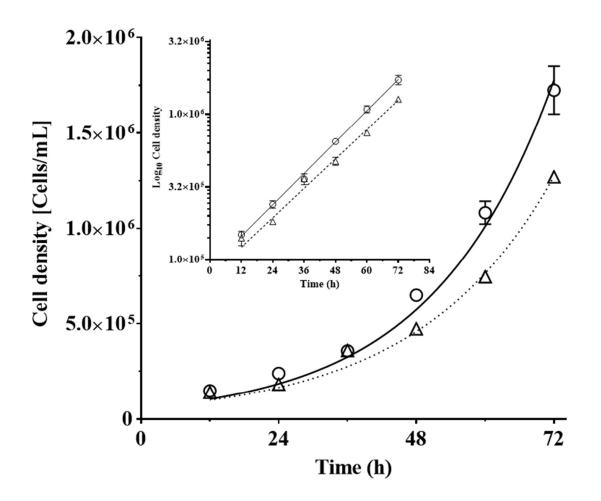
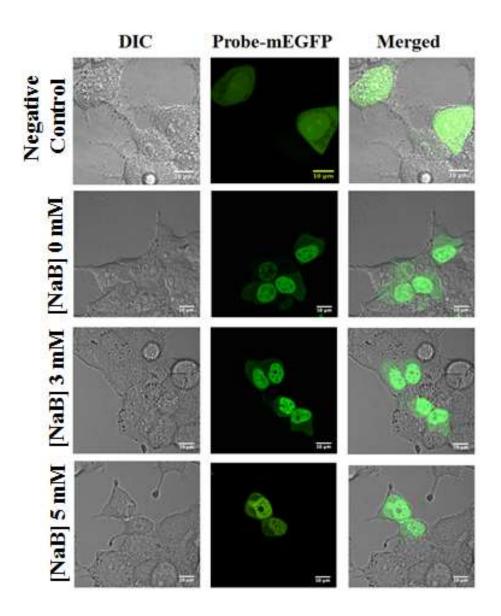
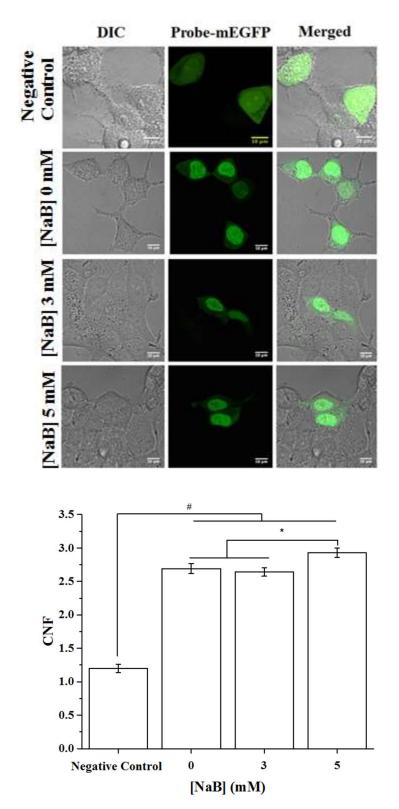
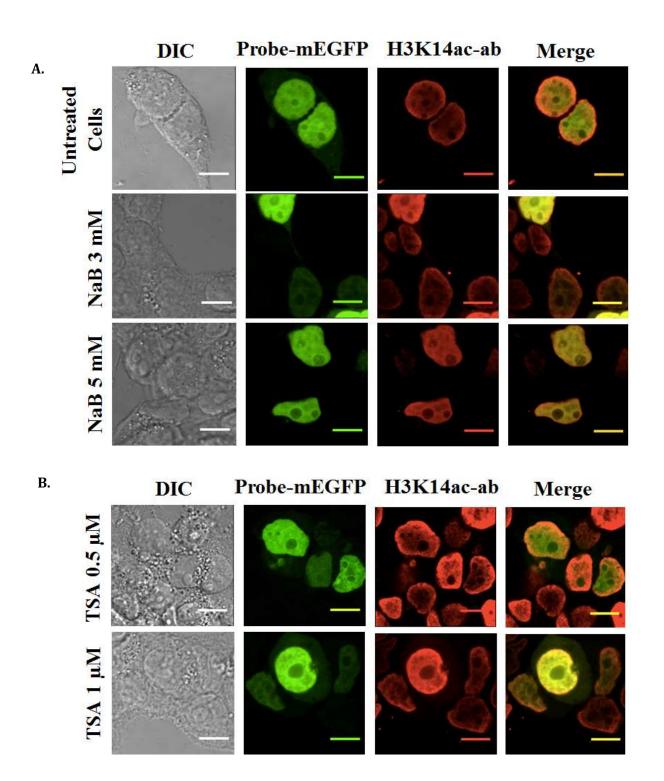




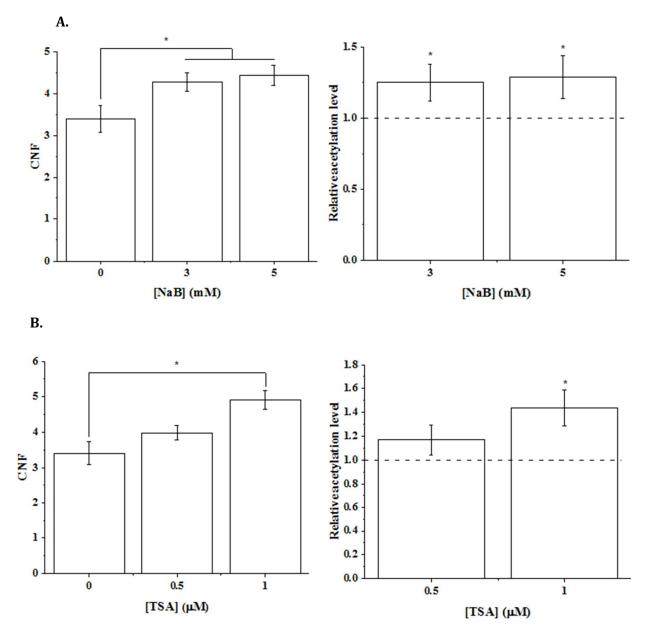
Figure S8. Morphological comparison between untransfected and transfected cells. No significant difference was observed in the cell morphology visually.

Figure S9. Transfection efficiency (monitored as the percentage of fluorescent cells) of HEK293T cells transfected with the dimeric sensor. The efficiency reached a plateau value at ~ 24 hours after transfection and remained fairly constant till 72 hours after transfection. Insets: representative fluorescent and DIC overlay images collected using a 4× objective.

Figure S10. Comparison in the exponential phase growth of HEK293T (\circ , untransfected cells; and Δ , transfected cells with dimeric PB1(2)-mEGFP vector). The inset was the same data set plotted using logarithmic y-axis.


Figure S11.Dimeric PB1(2) sensor transfected into cells treated with NaB of varying concentrations.


Figure S12. Monomeric PB1(2) sensor transfected into cells treated with NaB in (**A**) and the CNF values for the same in (**B**). Data is showed as Mean \pm S.E, n = 30 cells. Fluorescent probes exhibit a significant CNF value compared to the negative control (# : p < 0.01, ANOVA, Duncan's multiple-range test test). NaB, 5 mM, significantly (*: p < 0.05, ANOVA, Duncan's multiple-range test test) increased H3K14ac level compared to samples in absence of NaB.

B.

A.

Figure S13. Representative HEK293T cells transfected with the dimeric protein sensor and co-stained with H3K14ac-antibody. Cells were fixed for co-staining with antibody after exposure to the specific HDAC inhibitors ((A) NaB and (B) TSA).

Figure S14. CNF values and relative acetylation level obtained from the anti-H3K14ac antibody in HEK293T cells treated with NaB (**A**) or TSA (**B**) and transfected with the dimeric PB1(2) sensor. Data is showed as Mean \pm S.E, n = 30 cells. *, *p*<0.05; stands for a significant difference between the CNF value obtained with cells treated with the drug and the negative control, or untreated cells.