
SI2-SSE
STAMLA

Scalable Tree Algorithms
for Machine Learning Applications

PI: Vincent Reverdy & Robert J. Brunner - SI2 PI meeting - February 2017 - License: CC-BY

Abstract

The STAMLA project aims at designing efficient data struc-
tures for high performance machine learning applications. It
originates from research in numerical astrophysics where data
structures have become one of the main bottleneck of present
day simulation and analysis codes. The STAMLA project fo-
cuses on trees, since they are at the core of a wide range of
applications, including machine learning, while still missing in
standard libraries of most programming languages.

Tree data structures in numerical astrophysics

The STAMLA project started from advanced optimizations on
tree data structures in astrophysical codes. Below are illus-
trated two high performance applications relying on trees: on
the left, an adaptive mesh refinement code for cosmology, dis-
played here for two cosmological models, and on the right, a
machine learning algorithm to estimate photometric redshifts
in large observational surveys.

✭�
✁✂
✈
✄☎
✂
☎✄
♦
✆
✂
✝
♣
♦
☎✞
✆
☎✄
✂
✝t
❘
✟
✠
✡
❊
✡
✉
✆
✄☎
t
✝✄
✆
✞✂
✁
s☛
✂
✝✞
❡

③ ☞ ✌

③ ✌✵✍☞

Prediction tree for photometric redshiftsGravitational potential in redshift shells

Trees and graphs

While graphs are generally stored as adjacency lists or matri-
ces, rooted trees tend to be stored using explicit links between
nodes. However, given a set of constraints at compile-time,
like the arity of the tree, or its maximum depth, more effi-
cient representations are available. In particular, implicit repre-
sentations relying on indexing strategies demonstrate excellent
cache-friendliness and vectorization properties. The STAMLA
project aims at generating such representations at compile-time
given a set of constraints depending on the application domain.

Data movement
Operation Approx. time Remark

L1 cache reference 0.5 ns

One cycle on a 3GHz processor 1 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14× L1 cache

Mutex lock or unlock 25 ns

Main memory reference 100 ns 200× L1 cache

Send 1KB over a 1Gbps network 10µs

Read 1MB sequentially from main memory 250µs

Round trip within the same datacenter 500µs

Read 1MB sequentially from a SSD 1ms 4× memory

Disk seek 10ms 20× datacenter RT

Read 1MB sequentially from disk 20ms 80× memory

Send packet California→Netherlands→California 150ms

The software stack

Machine layer, assembly instructions
Compilers, mostly written in C and C++ (GCC, LLVM…)

Compiled, native, low level languages (C, C++...)
Virtual machines (JVM)Interpreters (Python, R…)Optimized libraries

JavaWrappers and bindings Python R
High level libraries

Applications

Because softwares are built as a stacks, low-level improvements
and optimizations can be easily propagated to higher levels.
Here, we are using C++ with template-based generative pro-
gramming approaches to generate efficient code. Python
wrappers are automatically generated to interface high level
machine learning libraries, including scikit-learn, with na-
tive code.

Bit manipulation and C++ standardization

Low-level optimization includes the improvement of bit ma-
nipulation algorithms involved in indexing strategies for im-
plicit trees. The approach we developed allows to map effi-
ciently complex bit manipulation patterns to specific assem-
bly instruction sets. It outperforms the standard present-day
C++ approach provided by compilers by two to three or-
der of magnitudes, depending on the algorithm. Our bit li-
brary is currently discussed in the C++ standards commit-
tee to become a part of the next revision of the language.

10-11

10-10

10-9

10-8

10-7

T
im

e
 (

se
co

n
d
s)

86× 1906× 522× 153× 31× 3359× 113×

C
o
u
n
t

S
e
a
rc

h

C
o
p
y

Fi
ll

R
e
v
e
rs

e

S
o
rt

A
cc

u
m

u
la

te

GCC/STD C++ Library

Our Approach

Current work and future directions

Current work involves optimization of kd-trees and nearest
neighbor algorithms. Advanced memory allocation strategies
with customized paging system already led to an order of mag-
nitude improvement on tree construction. Because kd-tree con-
struction also rely heavily on sorting, we developed a sorting
network generator at compile-time that outperforms recursive
algorithms for small sets of elements. Future directions of re-
search include improvements on approximate nearest neighbor
(ANN) algorithms for high dimensional datasets.
Achieving genericity, performance and ease of use, is one of
the most challenging aspect of the STAMLA project. A sig-
nificant effort is currently put on the software architecture and
abstraction side, the goal being to be able to generate the
whole complexity of tree data structures from a minimal set
of abstractions, including explicit, implicit and serialized tree
representations.


