Supporting Information

Daryamide Analogues from a Marine-Derived *Streptomyces* species

Peng Fu, Scott La, and John B. MacMillan*

Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States

List of Supporting Information

Bioassay Protocols	S3
Theory and Calculation Details	S3
Figure S1. Analysis of coupling constants for some examples with epoxide moiety	S4
Figure S2. ¹³ C chemical shifts and key 2D NMR correlations of compound 1d	
Figure S3. Marfey's method to determine the absolute configuration of 5	
Figure S4. ¹ H-NMR spectrum of daryamide D (1) in CD ₃ OD	S6
Figure S5. ¹³ C-NMR spectrum of daryamide D (1) in CD ₃ OD	
Figure S6. HSQC spectrum of daryamide D (1) in CD ₃ OD	
Figure S7. ¹ H- ¹ H COSY spectrum of daryamide D (1) in CD ₃ OD	
Figure S8. HMBC spectrum of daryamide D (1) in CD ₃ OD	S10
Figure S9. NOESY spectrum of daryamide D (1) in CD ₃ OD	S11
Figure S10. ¹ H-NMR spectrum of daryamide D (1) in DMSO- <i>d</i> ₆	S12
Figure S11 . ¹³ C-NMR spectrum of daryamide D (1) in DMSO- d_6	S13
Figure S12. HSQC spectrum of daryamide D (1) in DMSO-d ₆	S14
Figure S13 . ¹ H- ¹ H COSY spectrum of daryamide D (1) in DMSO- d_6	S15
Figure S14. HMBC spectrum of daryamide D (1) in DMSO-d ₆	S16
Figure S15. NOESY spectrum of daryamide D (1) in DMSO- <i>d</i> ₆	S17
Figure S16. ¹ H-NMR spectrum of daryamide D (1) in CDCl ₃	S18
Figure S17. ¹ H-NMR spectrum of daryamide D (1) in pyridine- <i>d</i> ₅	S19
Figure S18. ¹ H-NMR spectrum of compound 1a in CDCl ₃	S20
Figure S19. ¹³ C-NMR spectrum of compound 1a in CDCl ₃	S21
Figure S20. HSQC spectrum of compound 1a in CDCl ₃	S22
Figure S21. ¹ H- ¹ H COSY spectrum of compound 1a in CDCl ₃	S23
Figure S22. HMBC spectrum of compound 1a in CDCl ₃	S24

Figure S23. NOESY spectrum of compound 1a in CDCl ₃	S25
Figure S24. 1D NOE spectrum of compound 1a in CDCl ₃	S26
Figure S25. ¹ H-NMR spectrum of compound 1b in CDCl ₃	S27
Figure S26. ¹ H- ¹ H COSY spectrum of compound 1b in CDCl ₃	S28
Figure S27. HSQC spectrum of compound 1b in CDCl ₃	S29
Figure S28. HMBC spectrum of compound 1b in CDCl ₃	S30
Figure S29. ¹ H-NMR spectrum of compound 1c in CDCl ₃	S31
Figure S30. ¹ H- ¹ H COSY spectrum of compound 1c in CDCl ₃	S32
Figure S31. ¹ H-NMR spectrum of compound 1d in CD ₃ OD	S33
Figure S32. HSQC spectrum of compound 1d in CD ₃ OD	S34
Figure S33. ¹ H- ¹ H COSY spectrum of compound 1d in CD ₃ OD	S35
Figure S34. HMBC spectrum of compound 1d in CD ₃ OD	S36
Figure S35. ¹ H-NMR spectrum of daryamide E (2) in CD ₃ OD	S37
Figure S36. ¹³ C-NMR spectrum of daryamide E (2) in CD ₃ OD	S38
Figure S37. HSQC spectrum of daryamide E (2) in CD ₃ OD	S39
Figure S38 . ¹ H- ¹ H COSY spectrum of daryamide E (2) in CD ₃ OD	S40
Figure S39. HMBC spectrum of daryamide E (2) in CD ₃ OD	S41
Figure S40. ¹ H-NMR spectrum of daryamide F (3) in CD ₃ OD	S42
Figure S41. ¹³ C-NMR spectrum of daryamide F (3) in CD ₃ OD	S43
Figure S42. HSQC spectrum of daryamide F (3) in CD ₃ OD	S44
Figure S43. ¹ H- ¹ H COSY spectrum of daryamide F (3) in CD ₃ OD	S45
Figure S44. HMBC spectrum of daryamide F (3) in CD ₃ OD	S46
Figure S45. ¹ H-NMR spectrum of carpatamide D (4) in CD ₃ OD	S47
Figure S46. ¹³ C-NMR spectrum of carpatamide D (4) in CD ₃ OD	S48
Figure S47. HSQC spectrum of carpatamide D (4) in CD ₃ OD	S49
Figure S48. ¹ H- ¹ H COSY spectrum of carpatamide D (4) in CD ₃ OD	S50
Figure S49. HMBC spectrum of carpatamide D (4) in CD ₃ OD	S51
Figure S50. NOESY spectrum of carpatamide D (4) in CD ₃ OD	S52
Figure S51. ¹ H-NMR spectrum of ornilactam A (5) in CD ₃ OD	S53
Figure S52. ¹³ C-NMR spectrum of ornilactam A (5) in CD ₃ OD	S54
Figure S53. HSQC spectrum of ornilactam A (5) in CD ₃ OD	S55
Figure S54 . ¹ H- ¹ H COSY spectrum of ornilactam A (5) in CD ₃ OD	S56
Figure S55. HMBC spectrum of ornilactam A (5) in CD ₃ OD	S57
Figure S56. ¹ H-NMR spectrum of compound 1b in DMSO- <i>d</i> ₆	S58
Figure S57. ¹ H-NMR spectrum of compound 1c in DMSO- <i>d</i> ₆	S59

Bioassay Protocols

Antibiotic Assays. The antibiotic activities against *Pseudomonas aeruginosa* and *Bacillus subtilis* were evaluated by an agar dilution method. The tested strains were cultivated in LB agar plates at 37 °C. Compounds 1–5, and positive control (erythromycin) were dissolved in MeOH at different concentrations from 100 to 0.1 μ g/mL by the continuous 10-fold dilution methods. A 10 μ L quantity of test solution was absorbed by a paper disk (5 mm diameter) and placed on the assay plates. After 24 h incubation, zones of inhibition (mm in diameter) were recorded.

Cytotoxicity Assays. Cell lines were cultivated in 10 cm dishes (Corning, Inc.) in NSCLC cell-culture medium: RPMI/L-glutamine medium (Invitrogen, Inc.), 1000 U/mL penicillin (Invitrogen, Inc.), 1 mg/mL streptomycin (Invitrogen, Inc.), and 5% fetal bovine serum (Atlanta Biologicals, Inc.). Cell lines were grown in a humidified environment in the presence of 5% CO₂ at 37 °C. For cell viability assays, HCC366, A549, HCC44 and H2122 cells (60 μ L) were plated individually at a density of 1200, 750 and 500 cells/well, respectively, in 384-well microtiter assay plates (Bio-one; Greiner, Inc.). After incubating the assay plates overnight under the growth conditions described above, purified compounds were dissolved and diluted in DMSO and subsequently added to each plate with final compound concentrations ranging from 50 μ M to 1 nM and a final DMSO concentration of 0.5%. After an incubation of 96 h under growth conditions, Cell Titer Glo reagent (Promega, Inc.) was added to each well (10 mL of a 1:2 dilution in NSCLC culture medium) and mixed. Plates were incubated for 10 min at room temperature, and luminescence was determined for each well using an Envision multimodal plate reader (Perkin-Elmer, Inc.). Relative luminescence units were normalized to the untreated control wells (cells plus DMSO only). Data were analyzed using the Assay Analyzer and Condoseo modules of the Screener Software Suite (GeneData, Inc.) as described previously.^{S1}

Theory and Calculation Details. The calculations were performed by using the density functional theory (DFT) as carried out in the Gaussian 03.^{S2} The preliminary conformational distributions search was performed by HyperChem 7.5 software. All ground-state geometries were optimized at the B3LYP/6-31G(d) level. Solvent effects of methanol solution were evaluated at the same DFT level by using the SCRF/PCM method.^{S3} TDDFT^{S4} at B3LYP/6-31G(d) was employed to calculate the electronic excitation energies and rotational strengths in methanol.

trans-

Figure S1. Analysis of coupling constants for some example of cyclohexenes with an epoxide moiety.

References:

(S1) Kim, H. S.; Mendiratta, S.; Kim, J.; Pecot, C. V.; Larsen, J. E.; Zubovych, I.; Seo, B. Y.; Kim, J.; Eskiocak, B.; Chung, H.; McMillan, E.; Wu, S.; De Brabander J; Komurov, K.; Toombs, J. E.; Wei, S.; Peyton, M.; Williams, N.; Gazdar, A. F.; Posner, B. A.; Brekken, R. A.; Sood, A. K.; Deberardinis, R. J.; Roth, M. G.; Minna, J. D.; White, M. A. *Cell* **2013**, *155*, 552–566.

(S2) Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

(S3) (a) Miertus, S.; Tomasi, J. Chem. Phys. **1982**, 65, 239–245. (b) Tomasi, J.; Persico, M. Chem. Rev. **1994**, 94, 2027–2094. (c) Cammi, R.; Tomasi, J. J. Comp. Chem. **1995**, 16, 1449–1458.

(S4) (a) Casida, M. E. In Recent Advances in Density Functional Methods, part I; Chong, D. P., Eds.; World Scientific: Singapore, 1995; pp 155–192. (b) Gross, E. K. U.; Dobson, J. F.; Petersilka, M. Top. *Curr. Chem.* 1996, *181*, 81–172. (c) Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, *21*, 255–291. (d) Runge, E.; Gross, E. K. U. *Phys. Rev. Lett.* 1984, *52*, 997–1000.

(S5) Mehta, G.; Pujar, S. R.; Ramesh, S. S.; Islam, K. Tetrahedron Lett. 2005, 46, 3373-3376.

(S6) Evidente, A.; Sparapano, L.; Fierro, O.; Bruno, G.; Giordano, F.; Motta, A. Phytochemistry 1998, 48, 1139–1143.

(S7) Jarvis, B. B.; Yatawara, C. S. J. Org. Chem. 1986, 51, 2906–2910.

- (S8) Fex, T.; Wickberg, B. Acta Chem. Scand. B 1981, 35, 97–98.
- (S9) Fujita, K.; Ishikawa, F.; Kakeya, H. J. Nat. Prod. 2014, 77, 2707–2710.

(S10) Son, B. W.; Choi, J. S.; Kim, J. C.; Nam, K. W.; Kim, D.; Chung, H. Y.; Kang, J. S.; Choi, H, D. J. Nat. Prod. 2002, 65, 794–795.

- (S11) Suzuki, Y.; Sugiyama, C.; Ohno, O.; Umezawa, K. Tetrahedron 2004, 60, 7061–7066.
- (S12) Chaicharoenpong, C.; Kato, K.; Umezawa, K. Bioorg. Med. Chem. 2002, 10, 3933–3939.

Figure S2. ¹³C chemical shifts and key 2D NMR correlations of compound 1d.

Figure S3. Marfey's method to determine the absolute configuration of 5.

Figure S4. ¹H-NMR spectrum of daryamide D (1) in CD₃OD

Figure S7. ¹H-¹H COSY spectrum of daryamide D (1) in CD₃OD

Figure S8. HMBC spectrum of daryamide D (1) in CD₃OD

Figure S10. ¹H-NMR spectrum of daryamide D (1) in DMSO- d_6

Figure S11. ¹³C-NMR spectrum of daryamide D (1) in DMSO- d_6

Figure S13. ¹H-¹H COSY spectrum of daryamide D (1) in DMSO- d_6

Figure S14. HMBC spectrum of daryamide D (1) in DMSO- d_6

Figure S15. NOESY spectrum of daryamide D (1) in DMSO- d_6

Figure S16. ¹H-NMR spectrum of daryamide D (1) in CDCl₃

Figure S17. ¹H-NMR spectrum of daryamide D (1) in pyridine- d_5

7.2426 7.2179 6.1315 6.1066 6.0718 6.0473 5.4586 4.0207 3.4849 3.4849 3.3928 3.3928 3.3922 3.3922 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3254 3.3256 2.973 2.973 2.973 2.2973 2.2973 2.1124 2.1124 1.6387 0.8901 0.8818 0.8790 0.8707 6.0568 2.0538 2.0450 2.0400 2.0356 2.0305 2.0076 1.9971 1.9858 1.6723 1.6612 1.6500 2.0633 1.6947 1.6835 2.0941 2.0856 - 1700 1600 - 1500 - 1400 - 1300 O´ - 1200 0 0 - 1100 - 1000 0: - 900 N 1a - 800 - 700 - 600 - 500 - 400 - 300 - 200 - 100 - 0 0.94₌ $\begin{array}{c} 1.17_{\rm I}\\ 1.16_{\rm I}\\ 1.52_{\rm I}\\ 1.42_{\rm I}\\ 1.78\\ 1.23^{\rm I}\end{array}$ 1.08 1.00-3.11 3.15 1.07 2.05 2.96 11 20 1.14 6.03 -100 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

Figure S18. ¹H-NMR spectrum of compound 1a in CDCl₃

Figure S20. HSQC spectrum of compound 1a in CDCl₃

Figure S21. ¹H-¹H COSY spectrum of compound 1a in CDCl₃

Figure S22. HMBC spectrum of compound 1a in CDCl₃

Figure S23. NOESY spectrum of compound 1a in CDCl₃

Figure S24. 1D NOE spectrum of compound 1a in CDCl₃

Figure S25. ¹H-NMR spectrum of compound 1b in CDCl₃

Figure S26. ¹H-¹H COSY spectrum of compound 1b in CDCl₃

Figure S29. ¹H-NMR spectrum of compound 1c in CDCl₃

Figure S30. ¹H-¹H COSY spectrum of compound 1c in CDCl₃

Figure S31. ¹H-NMR spectrum of compound 1d in CD₃OD

Figure S32. HSQC spectrum of compound 1d in CD₃OD

Figure S33. ¹H-¹H COSY spectrum of compound **1d** in CD₃OD

Figure S34. HMBC spectrum of compound 1d in CD₃OD

Figure S36. ¹³C-NMR spectrum of daryamide E (2) in CD₃OD

Figure S37. HSQC spectrum of daryamide E (2) in CD₃OD

Figure S38. ¹H-¹H COSY spectrum of daryamide E (2) in CD₃OD

Figure S39. HMBC spectrum of daryamide E (2) in CD₃OD

Figure S40. ¹H-NMR spectrum of daryamide F (**3**) in CD₃OD

Figure S42. HSQC spectrum of daryamide F (3) in CD₃OD

Figure S43. ¹H-¹H COSY spectrum of daryamide F (3) in CD₃OD

Figure S45. ¹H-NMR spectrum of carpatamide D (4) in CD₃OD

Figure S46. ¹³C-NMR spectrum of carpatamide D (4) in CD₃OD

Figure S47. HSQC spectrum of carpatamide D (4) in CD₃OD

Figure S48. ¹H-¹H COSY spectrum of carpatamide D (4) in CD₃OD

Figure S49. HMBC spectrum of carpatamide D (4) in CD₃OD

Figure S52. ¹³C-NMR spectrum of ornilactam A (5) in CD₃OD

Figure S53. HSQC spectrum of ornilactam A (5) in CD₃OD

Figure S54. ¹H-¹H COSY spectrum of ornilactam A (5) in CD₃OD

Figure S55. HMBC spectrum of ornilactam A (5) in CD₃OD

