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Abstract  

In people-centric applications, participants voluntarily report data to service providers for 

community benefits. As most of the applications demand high-quality data, straightforward 

representation of even seemingly benign data may pose significant privacy risks through 

inference. Retaining high data quality without compromising participants’ privacy is a 

challenging research problem since these goals are inherently orthogonal. The existing 

techniques attempt to protect user privacy by reducing data precision or infusing 

obfuscation that ultimately degrade data quality. This thesis introduces a novel plaintext 

data sharing framework that aims to provide high-quality data at the desired end, protect 

privacy at vulnerable points such as adversaries, and safeguard against untrustworthy data 

manipulations. A novel subset-coding technique is developed to anonymize user reports 

from where original data can be retrieved through joint-decoding only if sufficient reports 

are received. The proposed framework is applicable when many people observe/express 

opinion about individual instances. Two widely-known people-centric application 

scenarios—participatory sensing and electronic voting—are considered. In participatory 

sensing, participants use data capturing devices such as smartphones that often profile their 

whereabouts, interests, activities, and relationships and hence, intensify inferable privacy 

risks. To mitigate such risks a number of anonymization and joint-decoding algorithms are 

proposed considering both probabilistic and deterministic decision mechanisms to cater for 

different participation rate e.g., commonly visited points of interests or rarely visited ones. 

Comprehensive adversary models are investigated and analytical privacy risk models are 

presented along with risk mitigation strategies. Verifiability of the received data is not of 

considerable significance in participatory sensing. However, wide-acceptance of electronic 

voting systems largely depend on guaranteeing vote-verifiability (vote is cast-as-intended) 

and tally-verifiability (vote is counted-as-cast) while thwarting any attempt of revealing 

voter-vote association to mitigate privacy, coercion, and vote-trading risks. The proposed 

subset-coding technique is successfully applied in this context to design an end-to-end 
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verifiable electronic voting framework. The strength of joint-decoding is shown robust not 

only to detect any vote manipulation attempts by the voting machines but also to provide 

individual verifiability indirectly. Different possible threats are analysed and solutions are 

designed accordingly. Extensive performance analysis, including computational complexity 

of key algorithms, are carried out with analytical models, wherever deemed possible, and 

rigorous simulation experiments to establish the applicability and efficacy of the proposed 

techniques in various realistic scenarios. 
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V{tÑàxÜ  D 

1 Introduction  

I'm Nobody! Who are you? 

Are you – Nobody – too? 

Then there's a pair of us? 

Don't tell! they'd advertise – you know! 

Emily Dickinson 

  

1.1 Introduction 

In the current era of rapidly advancing technology, people are becoming accustomed to the 

service provided by it, but not always understanding the privacy or trust issues involved. In 

general, privacy can be defined as a preference for maintaining the confidentiality of 

personal information. On the one hand, the increasing popularity of online shopping sites 

like eBay or social networking sites like Facebook or Twitter, support the idea that we are 

entering into a whole new age of a virtual world. On the other hand, fraudster and hackers 

are also taking advantage of weaknesses in modern technology and becoming more 

innovative and sophisticated in their privacy and security attacks. The arrival of wearable 

technology and the evolution of the Internet of Things (IoT) which combines inexpensive, 

remote sensors with Big Data analytics have the potential to threaten and undermine long-

held concepts like personal privacy and the rights of individuals. Consequently, our ever-

increasing dependency on technology for daily activities may involve many vulnerable 

exposures to fraud. Recent growing incidents of credit card fraud, the impersonation of 
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Facebook accounts and even the latest launching of the classified media WikiLeaks have 

impelled people to focus on the significance of privacy.  

In the digital world of communication, privacy risks arise from intercepting information 

as it flows in the network. The highlighted boxes in Figure  1.1 refer to the areas we aim to 

examine in this thesis. As shown in Figure  1.1, there are mainly two types of privacy risks, 

named as primary and secondary privacy risks. The first one is the risk evolving from direct 

interception of personal information that the individual prefers to keep private. In this case, 

encryption can be used to mitigate the risk of breaching primary privacy. On the one hand, 

in the field of digital communication, there has been a huge chunk of research done on direct 

data encryption. The second type of privacy risk, on the other hand, involves the seemingly 

benign information, e.g., personal whereabouts that may in turn deduce direct information 

and, thus, breach primary privacy. From the concept of Frequency Attack, we know that the 

most highly probable data and the most frequent data in the encrypted domain are most 

likely to be the same. Hence, probabilistic analysis from this apparently harmless 

information may help the frequency attack to break encryption. For example, when a 

particular person is visiting a petrol pump near a cancer hospital most frequently, then an 

adversary with some more prior information may assume that person to be a cancer patient. 

This implies that secondary inferable information is also necessary to be protected. 

However, encrypting all communications is neither desirable nor applicable. In many 

application scenarios, we need to share the benign information in the public domain. For 

 

Figure  1.1: Classification of privacy risks with mitigation policies. 
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that purpose, we prefer anonymization to mitigate secondary privacy risks. The aim of 

anonymization is to introduce uncertainty in the information conveyed such that getting 

actual information is no longer straightforward. There have been very few works on 

secondary privacy risks and the field is still immature in comparison to work done on 

primary privacy risks.  

While the privacy requirement of users needed to be ensured, data integrity in contrast 

is also undeniably desirable in making service dependable and comprehensible. In general, 

data integrity refers to maintaining and assuring the accuracy and consistency of data over 

its entire life-cycle and is a critical aspect to the design, implementation, and usage of any 

system which stores, processes or retrieves data. Even a very simple service like sending a 

document electronically may involve several data service quality issues, e.g., whether it was 

actually sent from the sender as shown or not, whether it was changed in its way to the 

receiver or not, whether there was any transmission delay or not, and so on. It is notable that 

a top priority of every user is an error free data communication service. A substantial 

amount of research work has been done in this area of data communication. However, it is 

also true that data integrity and user privacy are somehow orthogonal. Database literature 

also supports this concept in the Bell-La Padula model and Biba model  [1] where the former 

ensures security at the expense of integrity and the latter ensures integrity at the expense of 

security. The Bell-La Padula model is characterized by the phrase "no write down, no read 

up", which ensures that data secrecy comes at the expense of data integrity. In contrast, the 

Biba model is characterized by the phrase  "no write down, no read up", which ensures data 

integrity, but only at the expense of compromised secrecy. When the user id is kept private, 

none can ensure verifiability of the data sent. Therefore, the intended receiver cannot get the 

actual information of the whole picture. Hence, there should be a wise trade-off of data 

integrity and user privacy depending on the application of that particular technology and 

 

Figure  1.2: Classification of data integrity. 
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the user’s requirements. Thus far, no solution is developed yet that addresses this universal 

problem. We aim to work with this problem in a particular context. 

In general, there can be two different illustrations of data integrity, namely specific and 

representative data quality as shown in Figure  1.2. The Specific box denotes individual data 

integrity where data on individual entities are collected and are intended to be retained. In 

this case, data quality is measured by specificity, i.e., how specifically the system is able to 

retain that data. In contrast, collective data quality means the aggregated data which should 

correctly represent the collection, e.g., average salary in a profession. In most of the cases, 

the collective data quality is measured by the expected or mean value of the collection. 

Anonymization in general can significantly compromise individual data quality. However, 

some anonymization techniques exist, such as adding random Gaussian noise with a zero 

mean that can preserve the expected value of the collection. Hence, we are mainly interested 

in developing novel anonymization techniques that can preserve individual data quality, 

while applying anonymization for privacy risk mitigation (as highlighted in Figure  1.2). 

When information is shared in a system and there is a probability to obtain the same 

information from multiple observers, then we can hypothesize that preserving privacy 

without compromising data quality may be possible by exploiting redundancies in multiple 

observations. In this thesis, we attempt to establish this hypothesis. For this purpose, we 

have selected a particular system approach, people-centric application that upholds the 

property of information collection where multiple entities may report the same information. 

Realizing the infinite potentiality of mass contribution, many people-centric applications 

have evolved to provide the common people a platform to participate and to achieve goals 

that traditional organizations have failed to do.  However, in this scenario, the success of the 

system is very much dependent on the trustworthiness of the contributors. Hence, 

trustworthiness is another aspect to consider. Here, trustworthiness is the ability to detect 

the fraudulent behaviour of the sender with a high probability. The approach of most 

existing privacy preserving techniques is to add some uncertainty in individual 

observation/choice which often stands in the way of maintaining quality/integrity at the 

desired end. This thesis aims to design an intelligent privacy preserving scheme such that 

the desired properties are made prominent at the desired ends.  
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1.2 Significance 

The significance of the contexts we are referring to is discussed here to understand the 

relevance of the problems and also the reason why these have attracted research interest in 

recent time. 

Recently many digital application scenarios like Participatory Sensing System (PSS) are 

emerging where community people share the apparently insensitive information that travels 

across open wireless networks. The advancement of wireless communication technologies 

has facilitated the development and popularity of mobile devices equipped with powerful 

sensing, storage, and processing capabilities. Unlike web applications, data is sensed using 

ad-hoc sensing devices mounted on, for instance, cell phones, and vehicles from Points of 

Interest (POIs) that the participating users visit in the course of their daily life. These are 

then sent to servers via lightweight and inexpensive wireless communication networks. 

Target servers aggregate data received from users and reply to the queries accordingly. PSS 

has a wide range of real-world applications including consumer price sharing  [2]- [5], 

measuring safety in localities  [6] [6], variation in elevation along bike routes monitoring  [7], 

vehicular transportation monitoring  [8]- [10], public health such as monitoring the 

effectiveness of diet programs  [11], environmental impact and exposure  [12], urban 

planning  [13], sound events  [14] , earthquakes  [15], parking availabilities  [16], comfort 

management of building  [17], and prediction of bus arrival time  [18]. 

Considering the vast range of applications, the role of PSS is no longer limited to being a 

mere communication medium. Rather it has become a major tool to bridge the gap between 

data feed from the sensing devices and human information requirements. The huge 

popularity of social networks e.g., Facebook and Twitter, and the existence of numerous 

blogs, where contributions from general people develop the content, clearly indicates the 

potential of PSS. WikiLeaks, identified by many as an example of participatory journalism 

has initiated a new era in supplementing traditional media. A similar significant role is 

expected from participatory sensing as a supplement to a limited number of traditional 

sensor networks. PSS is emerging as a cost-effective alternative for reliable and impartial 

data collection, processing, and dissemination. It provides a framework to facilitate 

communities to sense, collect, analyse, and share local information or knowledge for mutual 

benefit. However, handling such seemingly benign information may cause a secondary 

privacy risk. In this study, we aim to mitigate this issue.  
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To understand fully the extent of the location privacy risk via participatory sensing we 

need to consider the bigger picture. Most of the smart-phones are now equipped with a high 

precision localization capability, which can potentially leave a long trail as to their 

whereabouts. Many applications running on these devices also exploit this capability to offer 

so-called location-aware services that eventually profile an individual’s habits, interests, 

activities, and relationships. The whereabouts of the participants may be inferred by an 

adversary if some reported data is captured by eavesdropping. While the sensed data itself 

may be considered insensitive/benign where privacy is concerned, the same may not be true 

for inferable information such as the whereabouts of participants. This is formally termed as 

location privacy. With some prior information, knowledge of location may also compromise 

inferable privacy. Reporting nearby a specialized medical treatment facility may assist in 

speculating on a reporter’s medical condition if someone knows only the time of her 

doctor’s appointment. Apart from location, an association with a product may sometimes 

cause privacy concerns. In consumer price sharing from a super store, for example, it is 

necessary to include the name of the product even when this is not desirable in some 

sensitive cases. People may prefer to keep the purchase of a certain drug, drink, or cigarette, 

for example, a secret. Protecting participating users’ privacy is the primary requirement to 

make PSS popular. The introduction of the Location Privacy Protection Act of 2011 bill in the 

US Senate  [20] [20], in light of the Electronic Communications Privacy Act, and the Video 

Privacy Protection Act, clearly emphasises the level of risk involved. We know that the 

success of WikiLeaks is directly linked to objective and ability to keep sources anonymous. 

Similar factors will prevail in the success of PSS. 

While ensuring privacy, the integrity of data also needs to be maintained to ensure 

reliable response to queries. For example, in considering a consumer fuel price sharing 

system in  [1] [2], if the fuel price at the suggested fuel station is not the cheapest, due to loss 

of data quality, dissatisfied users will not participate in future. Ultimately, the best case 

scenario is in achieving anonymity at an individual (adversary) end and data integrity at the 

service provider end. Because the ultimate service can be provided only when the service 

provider can interpret reported data at a much higher accuracy. Data integrity is 

undoubtedly orthogonal to security/privacy. It is supported by the assumption that no one 

can maintain privacy from the entity which is supposed to provide full data integrity. 

Hence, achieving an acceptable level of an observer’s privacy and simultaneously 

maintaining data integrity is crucial to satisfactorily ensuring the voluntary participation of 
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a critical mass. This privacy-data integrity trade-off model should be such that either the 

privacy requirement will dictate achievable data integrity level or vice versa. 

An important contribution from ‘the people’ in the modern age is the democratic 

election of their representative. Voting, or polling, is the fundamental requirement of 

democracy a system which is believed to be the best political system under the utilitarian 

assumption that the majority would not make wrong judgement. Designing an Electronic 

Voting System (EVS) is a natural goal to enjoy the benefit of digitization. An EVS can be 

user-friendly, and provide fast and flawless counting, auditability, and verifiability. In 

modern societies, while every possible task is done electronically to maximise efficiency, 

reliability, and accuracy, voting in most countries is still based on paper and ballot boxes. 

This can be attributed to the simultaneous technical challenges in achieving all the 

requirements of an effective and reliable voting system. Besides meeting the requirements 

common to any technology based system, an EVS must address the requirements unique to 

voting. The same is true for online surveys, which are gaining popularity day by day. 

According to ESOMAR, online survey research accounts for 20% of global data-collection 

expenditure in 2006  [19] [19]. People must be assured of their identity privacy preservation 

so that they can express their opinions without any reservation. 

Achieving both privacy and verifiability/trustworthiness in an electronic voting system 

is challenging due to the inherent properties of the electronic machines. Electronic Voting 

Machines (EVMs) are, in essence, general purpose computers consisting of sophisticated 

hardware and software. They essentially consist of a processor, memory, input/output 

interfaces, and an operating system.  Clearly, the behaviour of the EVM at a particular 

instance depends on the installed software/firmware. Besides, the machine must allow either 

removable media or communication capability to convey the results to the central election 

authority for processing. All these components are vulnerable to attack both from inside and 

outside of the election authority. Thus, trusted EVM is a hard assumption in practice. 

These two apparently dissimilar contexts have many features in common, particularly in 

the sense that many people observe or make choices from a pre-defined set of objects. In the 

context of PSS, the objects refer to various POIs or simply objects/products. In 

voting/surveys, choices have to be made from a set of candidates/survey answers. Another 

similarity is in the requirement of success: the more people participate, the better. Again, 

participation of the people relies a great deal on the assurance of their privacy. Hence, 
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privacy or anonymity of the participants is a major concern in both these contexts. For PSS, 

data quality at the destination provides integrity to the system. In the case of voting/survey, 

verifiability that the vote/feedback is actually counted or free of any manipulation brings 

integrity and trustworthiness to the system. This thesis presents a novel subset-coding 

technique that achieves both privacy and integrity in both these contexts. This technique is 

applicable to many applications that have the property of “multiple observations of 

independent instances.”  

1.3 Motivation  

To mitigate the risk of privacy, a number of location privacy protection mechanisms have 

been proposed using the techniques of k-anonymity, obfuscation, mix-zones, or dummy 

locations  [21] [21] (elaborated on in Chapter  2). The underlying principle of all these 

mechanisms is to record location information with some anonymity or by adding Gaussian 

noise or with reduced precision so that any probabilistic attempt to decode the exact location 

or track remains ambiguous. The safeguard offered by such ambiguity can be severely 

compromised if the exact locations of an individual are known at some temporal points. The 

standard mechanisms moreover, cannot be used directly where the destination expects 

 

Figure  1.3: Basic idea of proposed approach. 
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complete data integrity at an individual level e.g., the PetrolWatch  [2] that assists drivers to 

find the cheapest fuel station in the neighbourhood. Such PSSs need a privacy-preserving 

data communication technique so that each observation from a participant can be 

transmitted with sufficient anonymity such that the data collector is able to de-

anonymize/decode individual data only through the joint processing of the entire collection. 

So long as an adversary is unable to intercept a reasonably high number of transmissions 

from the participants, any de-anonymization attempt to infer sensitive information remains 

sufficiently ambiguous. 

Figure  1.3 describes our basic approach to deal with data integrity, anonymity, 

trustworthiness/reliability, and adversary interception probability. It uses four axes for four 

of the major issues in a basic communication system; the dataflow is shown in volume. In 

digital communication, an adversary is defined as the entity who can intercept a digital 

transmission. When data volume is low, it in turn guarantees a high anonymity in spite of 

high interception probability and low reliability. Trustworthiness or reliability is indeed 

parallel to data integrity. We may worry less about the trustworthiness/reliability issue 

where data integrity is guaranteed. In PSS, our main target is to provide specific data 

integrity at the service provider’s end. Trustworthiness/reliability is maintained with high 

data volume because our joint decoding scheme should be able to detect false data feeding. 

Hence when we aim to achieve the main target, i.e., the specific data integrity, we can 

achieve the trustworthiness inherently. This is how they are related to data volume and can 

successfully facilitate the service provider. In contrast, the adversary intercepts digital 

communication and works with this low data volume. Here, our aim is to achieve high 

anonymity accompanied by low data integrity. Hence we can confirm that all the desirable 

properties can be managed intelligently in our approach such that the required property is 

maintained at the relevant point. Note that privacy by secrecy cannot ensure 

trustworthiness. This is another reason why encryption cannot be used here. 

In PSS, there are many senders, whereas in EVS, the only sender is the voting machine 

that collects the votes and sends them to the bulletin board. When there are many senders, 

the system does not worry much about the accountability or verifiability. In general, 

verifiability can be defined as the ability to ensure that the receiver is using the same data as 

the sender originally sent. In PSS so long as the service (i.e., the reply to query) is correct, the 

system does not bother with verifiability. For example, in the case of PetrolWatch  [2] even the 
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second cheapest petrol pump is acceptable and the participants have no interest bearing 

extra communication to verify their observations being recorded as reported. However, in 

voting we require data integrity as an absolute certainty, that is, any sort of vote 

manipulation attempt is not acceptable. Hence, verifiability appears as another cornerstone 

of an efficient EVS. Individual data in consideration of its contribution in PSS is important 

but certainly not as important as the individual vote.  

The primary requirement of any voting system is confidence or trust among voters as to 

the outcome of an election. This goes beyond the classic security properties of a system such 

as confidentiality, integrity, and availability. Verifiability and auditability are two natural 

responses to this demand in any electronic system. A simple way of maintaining verifiability 

is to provide a receipt (copy) of the vote to each voter which she can verify from a bulletin 

board later on. After the voting period, all votes would be displayed on the bulletin board in 

anonymous, yet an identifiable, form. Both the election authority and a third party auditor 

would count votes using these. However, this approach conflicts with other mandatory 

requirements such as a voter’s privacy, and resistance to vote trading and coercion. A 

voters’ privacy must be protected by establishing the un-linkability between a voter and the 

vote she casts. From a privacy point of view, it is the primary privacy right of the voter to 

maintain this un-linkability. From Figure  1.1, we know that the primary privacy risk can be 

mitigated using encryption. However, encryption is not sufficient to guarantee 

trustworthiness which is a primary requirement here. That is why this second scenario is 

considered where encryption is not enough to address even primary privacy risk. The same 

approach that we propose for mitigating secondary privacy risk in PSS can be used 

intuitively/innovatively for mitigation of the primary privacy risk in EVS by using 

anonymization. To prove our hypothesis we need to address both these two scenarios of 

people centric application. Vote manipulation attempts at any machine or communication 

medium involved in the whole process of EVS from vote cast to counting has to be checked. 

There is also the risk of false accusation of fraud by a losing party. It has to be ensured that a 

false allegation cannot be proved by any means. All these indispensable requirements have 

made electronic voting a significantly challenging research issue.  

Electronic voting systems have begun to replace the traditional paper ballot based 

system in the United States since the 1980’s. However, the vulnerability of the EVMs to 

security threats came to public attention in the wake of the 2000 US Presidential 
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Election  [22]. Therefore, a recent trend is to replace EVMs with a paper ballot system. It is 

noteworthy that the state-of-the-art voting systems proposed in the literature, such as 

Scantegrity  [23], Scantegrity II  [24],  Prêt à Voter (PaV)  [25], Split-Ballot  [26], ThreeBallot 

(3B)  [27], and Hover  [28], use pre-printed paper ballot. In essence, the paper ballot in these 

schemes is scanned just after casting and sent to the central election authority for the 

efficiency of counting and processing. The scanned ballots are also posted to a bulletin board 

for verifiability. However, the optical scanners, with communication and/or storage 

capabilities, are also subject to integrity vulnerability. 

Figure  1.4 shows our basic approach to deal with voter privacy, self-vote verifiability, 

collective tally verifiability, and system trustworthiness risk. Our proposed approach aims 

at high voter privacy, low risk on system trustworthiness, and high tally verifiability. 

However, it suffers only from self-vote verifiability. The consequence of ensuring 

verifiability is that often either privacy or trustworthiness has to be compromised. That is 

why, in our approach, we aim to ensure verifiability indirectly such that these consequences 

can be avoided. To mitigate it we take help of joint decoding which states that any attempt of 

manipulation will be detected by bringing inconsistency in joint decoding. The comparative 

superiority of our approach against other contemporary approaches will be evident when 

we discuss them in Chapter  4. 

 

Figure  1.4: Research challenges in EVS as dealt with in contemporary approaches. 
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Finally, for both these contexts, the requirements of privacy and data integrity need to 

be satisfied in an efficient and cost effective way. The system otherwise would not be widely 

acceptable. A major component of achieving efficiency is to design the anonymization/de-

anonymization techniques in a computationally efficient manner. This additional 

requirement makes the problem even more challenging. In detail, there are actually four 

cornerstones of any people centric applications as depicted in Figure  1.5. Verifiability is not 

much highly valued in PSS. That is why we also work with another application scenario, 

EVS, where verifiability is a must.  

1.4 Aims 

The aim of this thesis is to contribute to the development of a framework that 

simultaneously achieves the goal of preserving privacy for reporting users and maintaining 

integrity at the desired end. The solution is expected to address all the four issues in 

Figure  1.5 as well as the associated concerns and challenges stated above.  This thesis, 

therefore, focuses on achieving the following specific aims:  

1. To develop a coding based theoretical framework that anonymizes multiple 

individual observations of a single instance in such a way that sufficient integrity is 

Figure  1.5: Research challenges in people centric applications. 
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achieved when observations are de-anonymized through joint information 

processing at the destination. 

2. To design infrastructure for inferable privacy-preserving PSS and thoroughly 

analyse the privacy risks against different possible adversary attacks when the 

proposed anonymization technique is used. 

3. To investigate various optimization and implementation issues of the proposed 

anonymization technique in the context of PSS. 

4. To design an EVS that uses the same coding framework to establish the privacy of 

voters.  

5. To analyse the trustworthiness of the EVS by investigating the scope of vote 

manipulation and measuring the system’s ability to detect manipulation attempts. 

 

 

Figure  1.6: Conceptual flow diagram of this research. 
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1.5 Contributions  

Figure  1.6 presents a conceptual flow diagram of the key contributions of this thesis. To 

conclude this introductory chapter we identify and summarise the main contributions of the 

thesis below:  

1. Devising a novel subset-coding technique that protects the privacy of the 

participants by introducing anonymity (Chapter 3). This contribution achieves our 

aim of maintaining privacy to sufficiently confuse an adversary.  

2. Devising a novel joint-decoding technique to bothachieve high data quality at the 

desired end and to detect false data feeding (Chapter 3). Using this technique, we 

complete our aim of avoiding sacrificing data integrity while maintaining user 

privacy. 

3. Designing a system architecture to guard against eavesdropping in an insecure 

communication channel (Chapter 3). This contribution achieves our aim of 

developing a robust system design to address all possible risks. 

4. Presenting a comprehensive adversary model which identifies different malicious 

capabilities in the context of PSS and designing strategies to mitigate attacks on the 

privacy of participants (Chapter 3). Here we attain the aim of addressing potential 

adverse threats while maintaining public network dataflow plain-text.  

5. Presenting a detail risk analysis on the privacy of observers when our proposed 

subset-coding technique is used (Chapter 3). This contribution accomplishes our aim 

of thoroughly analysing all possible privacy risks and keeping them within a user 

defined threshold. 

6. Devising a greedy algorithm that k-anonymizes participating users in terms of 

location using a probabilistic subset coding scheme that aims to maximize integrity 

of reported data at the destination. The algorithm flexibly accommodates any value 

of k (Chapter 4). Using this algorithm, we conceive of a basic approach to deal with 

the issue of simultaneously maintaining privacy and data integrity. 

7. Enhancing our greedy anonymization algorithm by considering a number of 

alternative heuristics to achieve almost lossless data integrity (Chapter 4). This 

contribution achieves our aim of optimizing our basic approach. 
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8. Analysing and implementing a randomized variant of the greedy approach with a 

comparative performance study (Chapter 4). This addresses our goal of undertaking 

comparative performance analysis. 

9. Analysing the impact of transient changes in the attributes of POIs (Chapter 4 and 

5). This contribution meets our aim of making our approach more realistic when 

facing practical issues. 

10. Devising a greedy algorithm that k-anonymizes participating users in terms of 

location using the subset coding scheme that aims to obtain deterministically full 

data integrity of reported data at the destination. The algorithm flexibly 

accommodates any value of k and for the highest possible value of k, a 

computationally faster variant of this deterministic method is devised (Chapter 5). 

We accomplish the target of making our scheme computationally less complex. 

11. Designing a privacy preserving and verifiable voting scheme with a minimal trust 

component where any attempt of manipulation can be easily detected (Chapter 6). 

This contribution meets our aim of using the same coding framework to protect the 

privacy of voters. 

12. Analysing and investigating vote manipulation and measuring the ability of EVS to 

detect manipulation attempts (Chapter 6).  

1.6 Organisation 

The organisation of the rest of the thesis is as follows. 

Chapter 2: Background and Related Works This chapter defines the important terms, 

algorithms, and models for PSS and EVS. First, a short background of the research area 

is provided, including basic concepts and system architecture. As we propose to work 

with the privacy issues in PSS, this chapter includes a brief taxonomy of privacy 

preserving approaches found in the related research works. Finally, we also analyse the 

existing e-voting methodologies as found in the literature to investigate the privacy and 

verifiability issues in EVS. A publication from this chapter as a book chapter in  [31].  

Chapter 3: Subset Coding and Joint Decoding with Risk Analysis in PSS Here the 

proposed PSS system architecture with a novel subset-coding and joint-decoding based 

technique is introduced, and explores potential adversary attacks and provides a 
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comprehensive analysis on the risks on privacy of the participants. Parts of this chapter 

has been published in International Symposium on Communications and Information 

Technologies (ISCIT), 2012  [32].  

Chapter 4: Probabilistic Greedy Anonymization Techniques to Achieve Location Privacy 

and Data Quality in PSS This chapter presents a subset-coding based probabilistic k-

anonymization technique. Findings from this chapter have been published in IEEE 

International Conference on Network and System Security (NSS), 2010  [33] and IEEE 

International Symposium on Network Computing and Applications (NCA), 2011  [34]. 

Chapter 5: Deterministic Greedy Anonymization Techniques to Achieve Location Privacy 

and Data Quality in PSS A subset-coding based deterministic k-anonymization 

technique is illustrated in this chapter. Findings from this chapter is to be submitted in 

IEEE Transactions on Information Forensics and Security. 

Chapter 6: Verifiable and Privacy Preserving Electronic Voting with Untrusted Machines 

This chapter introduces a trustworthy electronic voting system where the privacy of the 

voters is protected using subset-coding based k-anonymization. This research work has 

been published in IEEE International Conference on Trust, Security and Privacy in 

Computing and Communications (IEEE TrustCom) 2013  [35]. 

Chapter 7: Conclusions and Future Works Finally, this chapter concludes the thesis and 

presents discussions on future research direction. 
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2 Background and Related Works 

The objective of this chapter is to define frequently used terms, introduce commonly used 

system entities, explain important existing algorithms, and depict different models for 

inferable privacy preservation while maintaining service quality in the context of people 

centric applications. This chapter critically reviews the literature in related contemporary 

research areas. We present separately the background and related works on the two 

application contexts, i.e. participatory sensing and electronic voting. For the first context, 

relevant research on both location and data privacy problems are discussed along with a 

brief overview of associated issues. For the second context, the works that address the 

problems of simultaneous privacy and verifiability are reviewed.  

This chapter is organized as follows. In Section  2.1, the issue of privacy preservation in 

participatory sensing is introduced with a brief background, followed by reviews of relevant 

works that deal with the problems of location privacy and data privacy. Section  2.2 presents 

the background of EVS followed by some discussion on research on verifiable and privacy 

preserving voting. Finally, in Section  2.3 the drawback or limitations of the existing 

literature in both contexts are explored.   

2.1 Privacy in Participatory Sensing 

Participatory sensing facilitates a system providing cost-effective, reliable, and impartial 

data collection, processing and transmission. However, in practical terms, no one would be 

generous enough to contribute voluntarily if their privacy is not protected. The right against 

unsanctioned invasion of privacy by the government, corporations or individuals is part of 

many countries' privacy laws, and in some cases, constitutions. Working within the scope of 

privacy laws and meeting specific privacy requirements of the contributor is a must to run 
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the system effectively. At the same time, in order to keep the service dependable and 

attractive to users, the data of interest should be credible and the quality of service should 

meet users’ need. 

This section introduces and reviews the system of participatory sensing as an emerging 

system with the intrinsic challenges of meeting privacy requirements and maintaining data 

integrity. It also presents a comparative study of various solutions offered in the literature so 

far. It highlights various privacy issues in PSS and examines possible approaches to face 

privacy attacks while at the same time maintaining data integrity. Then we will also 

examine pros and cons of various existing privacy preserving approaches. Among the 

approaches some are computationally less expensive and real-time in operation while others 

may be more applicable in practical scenarios. Some concentrate on preserving privacy 

regardless of the cost of compromising the data integrity, while some overcome the 

dependency on a centrally trusted node. 

 

 
Figure  2.1: Basic outline of a participatory sensing system. 
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In Section  2.1.1 we provide a short introduction to privacy preserving approaches in 

participatory sensing. Section  2.1.2 presents the works that deal with the problem of location 

privacy. A study of data privacy problem is presented in Section  2.1.3. In Section  2.1.4, a 

brief overview of some related issues and how they are addressed is also provided. 

2.1.1 Background 

The concept of PSS  [38],  [39] was proposed a few years ago as a system that facilitates a 

community sharing data for mutual benefit. In some studies, PSS is referred to as urban 

sensing  [39], or people-centric sensing  [40] or sometimes opportunistic sensing  [40]- [41]. Its 

common characteristic is that it is initiated by ordinary citizens using their privately-owned 

sensor-equipped mobile devices to collectively measure and share information of mutual 

interest from their environment. The concept has become very popular lately with the 

massive boost in usage of mobile devices capable of capturing, classifying and transmitting 

images, sounds, locations and other data, interactively or autonomously  [38]. Unlike web 

applications, data is likely to be sensed from different places people visit in the course of 

their daily life using ad hoc sensing devices mounted, for example, on cell phones and 

vehicles. The data is then sent to servers via inexpensive wireless communication 

architecture. The server is able to generate aggregate results using the data received from all 

participating users. Using that knowledge, it then replies to the queries made by the users at 

any time. In short, it is a system by the people and for the people.  

With participatory sensing, the mobile user consciously opts to meet an application 

request out of personal or financial interest. A participatory approach involves people into 

significant decision stages of the sensing system such as deciding what data is shared and to 

what extent privacy mechanisms should be allowed to impact data fidelity. In its common 

variant opportunistic sensing, the mobile node may not be aware of active applications. 

Instead, a mobile device is utilized whenever its state matches the requirements of an 

application. This state is automatically detected; the owner of the device does not knowingly 

change the device state for the purpose of meeting the application request.  

The very basic architecture of a participatory sensing network consists of a collection of 

Mobile Nodes (MNs), some Points of Interest (POIs), and an Application Server (ApS) which 

is, most of the time, found to be a location-based service provider. The individual MNs that 

constitute mobile sensing infrastructure are devices with sensing, computation, data storage, 

and wireless communication capabilities. These MNs are mostly carried by humans or 
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attached to other moving objects such as vehicles. The POIs are the objects whose specific 

attribute information is to be captured by the MNs. The MNs collect and report the 

particular attributes of the POIs to the ApS. The ApS is the server that receives reports from 

MNs and, based on these reports; it makes the service available for the user e.g., informs 

users about the price of petrol pumps in their vicinity. The ApS is tasked to provide the 

attribute information on demand from the users.  

A very common application of a participatory sensing system is PetrolWatch  [2]. In that 

participatory sensing application, users automatically collect, contribute, and share fuel 

pricing information using camera enabled mobile phones mounted on the car dashboard. 

Whenever the vehicle approaches a service station, the PetrolWatch recognizes the position 

through the use of GPS and GIS and the camera is automatically triggered to take snaps of 

fuel pricing billboards. These pictures are processed by computer vision algorithms to 

extract fuel prices. The fuel prices are annotated with location coordinates of the service 

station and the time at which the capture took place and then the whole information is sent 

to the ApS. Users can query the ApS to locate the cheapest petrol station in their vicinity. 

The ApS responds to the query based on the database developed with the data contributed.  

 

 

Figure  2.2: Basic architecture of a participatory sensing network PetrolWatch [2]. 
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From the basic application scenario discussed above, it is obvious that PSS has some 

fundamental requirements. There are some issues regarding a user’s location privacy as 

privacy must be protected to bring this concept into reality. Who will risk her location 

privacy to report messages for the benefit of community? Because, we consider contributors 

to provide their identifications while reporting, this is a need to facilitate the development of 

a reputation scheme that is required for some applications. Moreover, this will allow the 

system developing a reward-based service provision e.g., the more someone contributes the 

higher will be the quality of data received from the server. Consequently, reports to the 

server cannot be anonymous. Hence, hiding the data ownership straight-away cannot 

provide a complete solution in this context. Hardly anyone, however, will be willing to 

report from controversial places e.g., a casino in a conservative society. With some prior 

information, knowledge of location may also compromise inferable privacy, for example, 

reporting nearby a specialized medical treatment facility may assist in speculating on a 

reporter’s medical condition if someone knows the time of her doctor’s appointment. The 

success of WikiLeaks is directly linked to its ability to keep sources anonymous. A similar 

trend will prevail in the success of PSS.  

While ensuring privacy, the integrity of data also needs to be maintained to provide 

reliable responses to queries. For example, if the fuel price at a suggested fuel station is not 

the cheapest, due to a loss of data quality, dissatisfied users will not participate in future. 

That is why it is indispensable to maintain data integrity at the intended receiver’s end. 

Ultimately, the best case scenario is achieving anonymity at the adversary’s end and data 

integrity at the service provider’s end. Because ultimate service can only be provided when 

the service provider can interpret reported data at a much higher accuracy. Data integrity is 

undoubtedly orthogonal to security/privacy. A further point is no one can maintain any sort 

of privacy from an entity which is supposed to provide full data integrity. Hence, finding an 

acceptable privacy-integrity trade-off is crucial to ensuring voluntary critical mass 

participation. This privacy-data integrity trade-off model should be such that either the 

privacy requirements will dictate achievable data integrity level or vice versa.  

Privacy concerns may be violated by two types of attacks. First, a malicious node of the 

participatory sensing network may abuse its ability in decrypting data to compromise the 

payload being transmitted. Secondly, a third party adversary not having the ability to 

decrypt data payloads may eavesdrop the wirelessly transmitted data and track the traffic 
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flow information hop-by-hop. For instance, when a malicious third party knows that a 

person is in a mental hospital, she is able to infer that the victim has a mental problem which 

is a severe breach in the victim’s privacy  [42]. Moreover, in the ubiquitous computing 

environment, it is easier to intercept the message than wired networks. The attacker can 

easily acquire location information without the consent of a user from intercepting messages 

and then inferring the context of the victim by collecting and analysing the victim’s location 

information.  

Some prior information about the target victim strengthens an adversary. It is natural 

that an adversary has close access to a victim in the real world and thus knows a victim’s 

user id. Then, overhearing partial information beforehand, an adversary may decide her 

strategy, i.e., where to position. For instance, if someone overheard a conversation of her 

colleague that he will visit a doctor next Friday afternoon there may be privacy issues. 

Moreover, if she receives some information from an eavesdropped message that her boss 

was near a particular hospital at that particular time, she may deduce that her boss suffers 

from a particular disease which is being treated in that hospital. 

2.1.2 Location Privacy in PSS 

The uniqueness of PSS lies in its data communication infrastructure which is constituted by 

the deliberate participation of a community. The potential lack of privacy of the participants 

in such system however makes it harder to ensure their voluntary contribution. On the one 

hand, preserving the privacy of the individuals who contribute data introduces a key 

challenge in this area. On the other hand, data integrity is critical to making the service 

trustworthy and user-friendly. Different interesting approaches have been proposed so far 

which protect the privacy that will in turn encourage the participation of the owners of data 

sources.  

The literature suggests that there are two main types of privacy concerns: data-oriented 

and context-oriented. Data-oriented concerns concentrate on the privacy of data collected 

from or a query posted to a participatory sensing system. Context-oriented concerns instead 

focus on contextual information such as the location of the participant and the timing of the 

traffic flow in a participatory sensing network. Another privacy issue of associating the user 

and the data evolves the concept of ownership privacy, as the mobile user may not want to 

release the ownership information of a controversial contribution. On the one hand, 

ownership privacy preserving schemes indirectly inherit the virtue of maintaining a user’s 
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location privacy. On the other hand, revealed-ownership concerns focus on revealing 

ownership with the reported data at the service provider end to ensure reward eligibility 

and reputation score. This type of location privacy requirement is dealt within the common 

approach of confusing the attacker. Most of the existing location privacy preserving 

techniques are based on the concept of k-anonymization which can be achieved with or 

without the help of a trusted third party. In cryptography, a trusted third party is defined as 

an entity which facilitates interactions between two parties who both trust the third party 

while the third party reviews all critical transaction communications between those parties. 

Moreover, combining a number of the privacy protection concepts also serves as a preferred 

approach to preserving the location privacy for some researchers.  

Balancing all the privacy requirements is a cumbersome job. Owing to a various 

applications, the priority settings for privacy of the participants may be different. In most 

cases, location privacy is likely to be the main concern of participants. While in some others, 

the participants may prioritize their ownership privacy or contributed data privacy.  

Location privacy preservation in the context of participatory sensing has some 

similarity, with the same problem in ubiquitous computing and ad hoc computing areas. 

Existing techniques to deal with it are mostly based on k-anonymity, pseudonym, or 

obfuscation concepts. The concept of k-anonymity states that a data or query collected by an 

application is k-anonymous if it is indistinguishable, with respect to some chosen attributes, 

among �	– 	1 other data or query received by the same application. It is mostly used in 

Spatial cloaking schemes, although it suffers from a lack of data integrity.  

Section  2.1.2.1 presents a brief review of the literature that uses the concept of mix 

network (throughout the thesis another term friend network is used interchangeably). In 

 

 
 

Figure  2.3: Taxonomy of location privacy in participatory sensing. 
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Section  2.1.2.2, pseudonym-based approaches are presented followed by obfuscation-based 

approaches in Section  2.1.2.3. Section  2.1.2.4 outlines some encryption-based privacy 

preservation schemes. Section  2.1.2.5 examines dummy-based anonymization techniques. 

Finally, in Section  2.1.2.6, privacy preserving schemes are critically discussed where 

anonymization is achieved through sharing location information. 

2.1.2.1 Mix Network 

The basic idea of mix network, as illustrated in Figure  2.4, is to route the data through the 

network for a specific hop count before sending it to the ApS. This concept is used to 

address ownership privacy  [43]- [55]. It is also preferred for applications where data with 

more geographical information is needed and, hence, rejects other methods. This very 

concept is conceived from the typical idea of layered routing, commonly known as onion 

routing. To provide low-latency anonymity, a second-generation onion router, Tor was 

designed in  [44] for the TCP-based applications. With around 500,000 users  [45] and 

approximately 3000 voluntarily-run nodes  [46], it is the most widely organised anonymous 

data communication system. Many researchers were attracted to work on some of the major 

performance degrading factors of this traditional scheme which included: 

• service-delays from data relaying  [47] or volunteer nodes with slow connections  [48]  

• trustworthiness of the nodes  [49]- [51]  

• no flexible tuning option between performance and anonymity  [49]- [52]  

 

 
Figure  2.4: Basic working principal of a Mix Network. 
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• no intelligent path selection  [53] 

• low performance video streaming  [54]  

• designing proper incentive for volunteer nodes  [48]. 

Using the mix network concept a Privacy Assurance system for Mobile Sensing 

Networks (PA-MSN) was designed in  [30] to protect ownership privacy and in turn, protect 

location privacy. A mix network based Hot-Potato-Privacy-Protection (HP3) algorithm was 

designed in which user sent the data to one of the network friends (mix node) and that 

friend would choose another friend to deliver the data to the next hop. The last user sent the 

data to the server when the pre-defined hopping threshold was reached. The possible 

adversary may be a malicious server or a compromised peer mobile user. To address 

malicious users, the data was encrypted using the server’s public key and the 

communications between friends were secured by some pre-negotiated shared secret 

between each pair of them. However, this approach can be risky for friends as they are 

unaware of the content and may be transferring data of anti-social activities. Due to the 

limited number of hops everyone became a suspect for a malicious server and it could not 

make an attack on the user privacy with a probability greater than 1/� even with the full 

knowledge of the network. Here � is the number of total registered users. To address the 

problem of interception by compromised nodes, they extended their algorithm and 

introduced image splitting and redundancy, where each piece took individual paths to reach 

the server. The strength of their work lies in addressing two privacy issues- location and 

ownership at the same time, which considers two attack models- malicious server and 

corrupted user. However they did not evaluate the cost of redundancy or image splitting. 

Moreover they did not report on the optimum number of friends, which is important 

because vulnerability may arise from having very few friends. They assumed that the data 

collection server often logged user identities along with the data they reported which may 

lead to disclosing sensitive information by compromising user privacy.  

Wang and Ku  [43] have suggested that most of the existing works on privacy 

preservation by anonymity have not been designed specifically for mobile environments 

and, thus, ignore issues raised by resource constraints. Even in  [30], the data itself was 

routed through multiple users, volume which causes large consumption of network 

bandwidth. While the proposed method, One-way utilized peer-to-peer networks, aims to 

facilitate anonymous data transmission to protect user identity, the actual data payload is 
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not sent through peers. The procedure  [43] is interesting enough to explore as an alternate 

option for  [30]. In describing the method, the parameters and equalities have been borrowed 

from  [43]. Here, it is only the connection request, , that was sent through the peers. It 

consisted of the connection identifier, -. along with the receiver’s routing address $/ and a 

particular hop count ℎ, i.e., 

 , = {-., $/ , ℎ} ( 2.1) 

where, ℎ ≥ 10 and -. was randomly generated and persisted only during transmission of the 

sensed data. After travelling through ℎ hops, when , arrived at the server, an acceptance 

message 2 was sent back consisting of a connection token	-/, with the connection identifier, -. following the reverse path of the peers that took part in forwarding	,. So,  

 2 = {-/ , -.}. ( 2.2) 

Upon receiving this acceptance message by the data originator, the actual payload was 

sent directly to the server that contained on top of the actual data	", the receiver’s routing 

address	$/ , connection identifier token	-/, and sequence number �3  to identify individual 

packet of a transmission. Hence, the payload packet 4 was formulated as, 

                                           4 = {$/ , -/ , �3 , "}. ( 2.3) 

Thus, through the whole process, the One-way protocol successfully avoided sender 

identity information and yet simultaneously confirmed a secure data transmission. 

Moreover, in this anonymous data transmission scheme the actual data was sent directly, 

avoiding the multiple time data replication through the peers and, thus, saving unnecessary 

bandwidth consumption. 

Hsiao et al.  [55] has pointed out a major drawback of a mix network is that a 

communication design with stronger anonymity has to bear the cost of a higher latency. 

From a service point of view, users want to have an intermediate privacy level without 

sacrificing latencies. Keeping that in mind, a practical network-based solution, Lightweight 

Anonymity and Privacy (LAP), was proposed in  [55]. Here, each packet carried its own 

forwarding state, whereas all the relay nodes in the circuit were predetermined in Tor. It 

used encryption schemes for each Autonomous Domains (AD) to use a secret key to encrypt 
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and decrypt forwarding information in packet headers. Hence, an AD's forwarding 

information was kept hidden from all the other entities, while an LAP packet remained the 

same at each hop. It also designed provision for an end-host to trade anonymity for 

improved performance, with different privacy levels available. Here, they assumed a 

weaker attacker model, considering the attacker can compromise any AD except the first 

hop AD, where the victim end-host resides. Because of this relaxed threat model, LAP was 

only appropriate for users with trustworthy local ISPs demanding protection from being 

tracked by Websites and ISPs that are further away.  

2.1.2.2 Pseudonyms 

Another option for preserving ownership privacy is Pseudonym-based communication by 

the user  [56]- [62]. For scenarios where locations are public and visited by many people this 

pseudonym-based method is more appropriate as anonymization approaches greatly 

decrease the data quality in these situations. In contrast, space cloaking technique is not a 

preferable solution here as data with more geographical information is required. 

Beresford and Stajano  [56] have concentrated on the class of location-aware applications 

that accept pseudonyms, and thus ensure anonymization of location information. A long-

term pseudonym for each user cannot provide much privacy. Hence, the framework was 

based on frequently changing pseudonyms and, thus, users avoided being identified by the 

locations they visit. This framework was further developed by introducing the concept of 

mix zones as a connected spatial region of maximum size in which none of the users 

registered any application call-back. In other words, a mix zone concept was applied in the 

scene whenever two users occupied the same place at the same time. Thus, it provided 

unlinkability between users coming in and going out of the zone. However, a powerful 

adversary may use historical data to de-anonymize pseudonyms more accurately. Then 

again, a smaller mix zone may not solve the anonymization problem in practical situations. 

The study also demonstrated that even with a relatively large mix zone, location privacy can 

be low due to a high temporal and spatial resolution of the location data generated by their 

applied system.  

The mix zone concept was used in the MobiMix approach as proposed by  [60]. Zhong 

and Hengartner  [61] proposed another option for preserving location privacy when 

requesting a location-based service using pseudonym-based communication by the user. 

The study introduced the idea of multiple servers to trade-off between centralized and 
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distributed systems. The multiple servers were owned by different organizations that 

deployed location brokers to keep track of the current location of users. Gao et al.  [62] 

improved this theoretical mix zones model using the time factor from the perspective of 

graph theory. The study identified that most of the researchers focused on the participator’s 

location privacy whereas their trajectory privacy remained not much taken care of. They 

proposed a Trajectory Privacy-preserving Framework (TrPF), with the main strength of 

TrPF that it can afford trajectory privacy with lower information loss and costs than that 

carried by other proposals. 

As explored in  [58], a combined analysis of reported data with corresponding reporting 

patterns may help to detect the users’ residences among other noteworthy places, e.g., 

workplaces and favourite entertainment centres, from their location traces. Hence, further 

measures to preserve location privacy must be added on top of pseudonyms. 

2.1.2.3 Spatial Cloaking or Obfuscation  

The concept of obfuscation recommends that location privacy can be preserved by 

intentionally reducing the precision of the location information as used in the 

communication  [63]- [81]. In some literature, the spatial obfuscation is referred to as spatial 

cloaking, as illustrated in Figure  2.5. The common essence is to hide sensitive location 

information, making communication wilfully ambiguous and harder to interpret. Most such 

techniques apply the concept of k-anonymity to make the location information confusing. 

The meaning of k-anonymity is to make an entity indistinguishable among �	– 	1 other 

similar entities as introduced in the area of location privacy by Gruteser and Grunwald  [64]. 

It is a very widely-used privacy preserving approach not limited to location privacy only. 

 
Figure  2.5: Basic idea of Spatial Cloaking to achieve k-anonymization. 
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The model for CliqueCloak  [63] accommodated different k-anonymity requirements for each 

user, but actually compromised real time operation as it waited until k different queries had 

been sent from a particular region. Path Confusion  [65] incorporated a delay in the 

anonymization and just like CliqueCloak it compromised real time operations. In 

CacheCloak  [66], mobility prediction was made to enable prospective path confusion while 

using potentially not-trusted ApS. Mobility predictions were entirely based on previously 

observed user-movements and therefore prevented predictions from absurdities such as 

passing through impassable structures or going the wrong way on one-way streets. 

Obfuscation was first introduced in  [67] as a new technique to safeguard location 

privacy. It aimed to achieve location privacy by providing imperfect spatial information. To 

degrade the quality of information about a person’s location, instead of providing a single 

position, a set of locations was sent to the location based service provider. However, too 

much imperfection of information eventually degraded the quality of location-based service. 

This limitation has been addressed in this study by introducing the idea of automated 

negotiation to achieve desired balance between the level of privacy and the quality of 

service. Nevertheless, selecting an appropriate obfuscation set was a difficult task. This is 

particularly true as in a cloaked region; the obfuscation set was a discrete one which 

incurred high communication costs to send to the server. 

This idea of obfuscation was enhanced in  [68] by introducing a composition of various 

obfuscation techniques. The study established the concept of relevance as a general 

functional metric for location accuracy that qualified a location with respect to either 

accuracy or privacy requirements. As a cloaked region, the obfuscation set was assumed to 

be planar and circular. Henceforth, the three possible varieties of obfuscating a circular set 

were obfuscation by enlarging the radius, by shifting the centre, and by reducing the radius. 

To satisfy users privacy preferences, any one among the three, or a composition of any two 

techniques, could be applied. 

Anonymizing the location of a query source and processing the transformed spatial 

queries was focused in  [70]. It discarded CliqueCloak for compromising real time operations. 

Two approaches of k-anonymization by spatial cloaking have been proposed—Nearest 

Neighbour Cloak (NNC) and Hilbert Cloak (HC). NNC addressed the centre-of-ASR attack, 

but could compromise spatial anonymity in the presence of outliers. A theorem was then 

established for a spatial cloaking algorithm to guarantee spatial k-anonymity if every tile 
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satisfied the reciprocity property. HC satisfied the reciprocity property which stated that a 

tile should contain the user and at least additional k-1 user and every user in that tile also 

will generate the same tile for the given k. It was achieved by utilizing Hilbert space-filling 

curve to transfer multi-dimensional data onto one-dimensional space. The adversary model 

stated that ApS might be compromised or it might reside in between AS and ApS. However, 

the weakness of this work was that the AS was assumed to be a trusted server which is not 

very practical and also may cause a single point of failure. 

Spatial cloaking was improved in  [71] by partitioning the domain into a number of safe 

and as small as possible subdomains ensuring each subdomain contained k users and that 

each node took the subdomain it resided in as its cloaking area. The authors provided an 

analytical model of communication overhead to find this cloaking area. However, their 

approach was not compared in terms of cost or size of the cloaking area with similar works 

in literature. This subdomain concept was somehow similar to Tessellation  [72] which was 

basically k-anonymity by generalization. It involved partitioning the geographic area into a 

collection of cells and merging neighbouring cells to form tiles that users could use to mask 

their true locations. This concept of tessellation was introduced in  [72], a novel blurring 

mechanism to propose a framework for nodes to receive tasks anonymously. It involved 

clustering to protect users’ privacy against the system while reporting context, and k-

anonymous report aggregation to improve the users’ privacy against applications receiving 

the context. Here, k-anonymity required that at least k reports were combined together 

before being revealed. 

Almost at the same time, the concept of l-diversity was introduced in  [73] to address the 

limitations of k-anonymity based techniques while handling some specialized attacks. They 

showed two types of attacks with which a k-anonymized dataset might encounter severe 

privacy problems. First, they showed that an attacker can discover the values of sensitive 

attributes when there is little diversity in those sensitive attributes. Second, attackers often 

have background knowledge, and then k-anonymity does not guarantee privacy against 

attackers using background knowledge. They gave a detailed analysis of these two attacks 

and proposed a novel and powerful privacy preservation scheme called l-diversity. To 

ensure l-diversity, every group of tuples that shared the same non-sensitive information 

should be associated with at least roughly equally distributed sensitive values. 
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Huang et al.  [76] enhanced the concept of Tessellation for preserving spatial and 

temporal privacy in the context of participatory sensing. To protect identity disclosure of the 

transmitting user information, they adopted k-anonymization and to guard against attribute 

disclosure, they implemented l-diversity. They made an important contribution in 

identifying the significant problem of protecting participatory user’s location privacy, which 

is supposed to be important from user’s viewpoint although her association with the 

reported POI needed to be revealed to ensure data integrity. However, this work did not 

consider the potential damage of data integrity by their proposed solution where users from 

different points of interest report the centre of a tile consisting of k points of interest or 

alternatively their mean location as location of all those different points. The receiving server 

associated this reported point with the nearest point of interest and, thus, suffered from false 

association of � − 1 other points within the tile. Data integrity is somehow orthogonal to 

security/privacy. Hence, finding an acceptable trade-off is a challenging task. Moreover, for 

anonymization purposes they depended on a third party entity, and therefore, the AS might 

suffer from the limitation of a single point of failure or being compromised. The limitation of 

Huang’s naive algorithm we have identified was also addressed in  [70] as they described it 

as a centre-of-ASR attack. 

Similar to our research focus, Rodhe et al.  [79] investigated the impact of privacy 

techniques such as k-anonymization that introduce uncertainty in data and on the quality of 

information at the receiving end. Using two strategies to reconstruct the data distribution, 

they found that the cloak area resulted from applying k-anonymity which influences data 

quality more than the size of the anonymity set (k). However, the anonymization techniques 

they were using assumed a simple model of data flow to the destination server where the 

identification of an observer was not available with the observation. The implication of this 

model was that no user specific reward-scheme or reputation mechanism was applicable 

and, thus, created a barrier in making PSS popular. 

Another dimension to spatial cloaking was given in  [74] by introducing l-diversity along 

with k-anonymity and incorporating temporal cloaking functionality into the location 

perturbation process. At the same time, the study maintained the user’s preference for 

privacy to accommodate dynamism. One shortcoming of this approach was that there was a 

communication overhead that incurred for every mobile user participating in the process. 

However, this factor could be balanced out considering that the anonymization success rate 
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and desired service was achieved. Then again the dependency on a central trusted server 

made it vulnerable in real-life scenarios. 

A new framework named Casper was proposed in  [69] that consisted of two main 

components, the location anonymizer and the privacy-aware query processor. It provided 

location privacy for a query source accommodating user specific anonymity preference. 

Here, the location anonymizer blurred the location information by spatial cloaking. Then the 

privacy-aware query processor, which was embedded in the ApS, gave a candidate answer 

list that was inclusive and minimal. It could be applied to a large number of mobile users. 

However, it suffered from the dependency on a trusted third party.  

The problem of query privacy was addressed in SpaceTwist  [75] by applying obfuscation 

to generate an anchor and retrieving information on k nearest points of interest from the 

location based service provider. This scheme needed neither any trusted third party nor any 

communication between other users to form groups. It maintained a good balance between 

the privacy of the user and the success rate of finding the closest point of interest as a reply 

of the query. Nevertheless, it did not deal with the dynamicity of any user’s privacy 

preference and only concentrated on obtaining k nearest neighbour replies successfully. 

To address the bottleneck of a centralized trusted third party Chow et al.  [77] introduced 

a distributed system architecture and proposed the first peer-to-peer (P2P) spatial cloaking 

algorithm to protect location privacy of mobile users. In this algorithm the user achieved k-

anonymity by collaborating as a group with other � − 1 nearby peers. Thus, it approached 

the mobility of the user. One of the peers from the group then acted as the agent and 

forwarded the query on behalf of the originator. As the query was based on the cloaked 

spatial region, the location based service provider provided the agent with a list of candidate 

answers which was readily forwarded to the originator. The query originator then acquired 

the actual answer filtering out the other false candidates. Here k-anonymity was a user 

specified privacy requirement which was a key aspect of this algorithm. Nonetheless, this 

approach lacked an ability to highlight how to deal with potentially compromised peers 

In the field of ad-hoc network, Hashem and Kulik  [78] contributed the same interesting 

idea of using one of the � − 1 other mobile nodes to act as the query requestor to protect the 

identity of the query initiator and, thus, maintained the location privacy of the user. At the 

same time, the study addressed the short-comings of previous work by coping with no trust 

among peers. It enhanced the previous idea of  [77] by combining anonymity and 
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obfuscation, thus addressing the potential security threat of trusting a large number of 

group members. At first, obfuscation was employed by each mobile user to hide her actual 

location in a Locally Cloaked Area (LCA), both from the service provider and her peers. 

Then anonymity was achieved by combining its LCA with the LCAs of � − 1 other peers. 

Finally, the k-anonymized Globally Cloaked Area (GCA) was sent as the location 

information, while requesting a location based service from the service provider. Thus, this 

approach was totally free from trusting any of the involved parties, either the peers or the 

service provider. However, communication among the neighbours and the service provider 

might increase the overall communication costs of this technique. Group queries offer a new 

dimension of privacy challenges as here the location of all group members are vital to 

discovering their nearest neighbour while at the same time any group member can be 

compromised. The concept of private filter was developed in  [80] to determine the actual 

group nearest neighbour without revealing the user’s location to any involved party. This 

was set against the queries from a spread out group of users providing their locations as 

regions instead of exact points to the service provider. However, this approach did not work 

for group of size 2. This is an interesting problem with similar issues for participatory 

sensing applications. 

Vu et. al.  [81] presented a spatial cloaking based k-anonymous location privacy 

technique for participatory sensing applications. They emphasized the quality of spatial 

cloaks indicating that the cloaks should be close to the user’s location and small in size so 

that search algorithms can be executed efficiently. From this motivation, they devised a 

mechanism based on Locality-Sensitive Hashing (LSH) to partition user locations into 

groups each containing at least k users. They then proposed another algorithm to answer 

queries for any point in the spatial cloaks of an arbitrary polygonal shape. 

2.1.2.4 Encryption 

Encryption may seem to be the most obvious solution when the question of security and 

privacy arises. It is already an established measure to provide data privacy. However, the 

context and severity of breaching privacy also needs to be considered when the expenses 

involved in encryption are involved. Moreover, data encryption cannot do much to preserve 

location privacy. In most of the cases  [82]- [90] encryption was employed only to assist the 

main location privacy preserving method. Takabi et al.  [82] introduced a cryptographic 

scheme to adopt the distributed collaborative approach to achieve location privacy based on 
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k-anonymity. It required neither a trusted third party nor the users to trust each other. 

Cryptography was used to learn the presence of minimum k users in the query area 

including the query originator. Thus, it replaced the need of the location broker from 

Zhong’s  [61] solution. Though both the methods exhibit efficient implementation, a 

comparative study of their performance could have made it more worthwhile. 

In  [83], a privacy protecting layer using cryptographic tools was proposed, where no 

entity excluding the network operator can learn the current location of a mobile node. Most 

of the encryption based proposals focused to target on avoiding the bottleneck of depending 

on a trusted third party. The encryption based approaches follow the cryptographic 

techniques and terminologies.  

The concept of multi-secret sharing  [84] states that some arbitrarily related secrets can be 

shared among a set of participants who are not trusted individually. A number of location 

privacy preserving schemes  [85]- [87] adopted this concept to propose a novel position 

sharing approach, while taking service from location-based applications. In the very 

recent  [87], the multiple shares of position information were generated and distributed 

among a number of location servers. Then the location service providers, i.e., the clients, 

combined the specific shares obtained from specific location servers they got access 

permission from the user. The main target of this cryptographic approach was to develop 

secure share generation and combination algorithms to defeat malicious clients or location 

servers by the level of precision. In describing the method, the parameters and equalities 

have been borrowed from  [87]. According to their share generation algorithm, the MN splits 

up 5 into a master share 67 , and set  87 = {�7,9	, . . , �7,:} of ; refinement shares by calculating  

 <=�=�2>=	(5, ?@AB , ;) = (67 , 87), ( 2.4) 

where	?@AB denotes the number of different precision levels. Then the clients received 

permissions to access a user-defined set 87C ⊆ 87  and executed share combination on the 

public 67  and these refinement shares using, 

 ,E6;��=	(67 , 87C ) = 4	(5, ?), ( 2.5) 

where 4	(5, ?) defined the obtained position with precision level ?. It was established that if 

the known precision of position 5AFFAGH  was	4�=,���E�(5AFFAGH), then 
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 4�=,���E�I4(5, ?)J ≥ 	4�=,���E�(5AFFAGH). ( 2.6) 

The scheme was explored both for symbolic and geometric location models. It assumed that 

the location servers were always online, and that the user can permit access to some trusted 

applications. To access this information, the clients took reference of some pre-shared secrets 

requiring the overhead of sender/receiver pre-shared secret setup. 

The concept of the Private Information Retrieval (PIR) technique was used in  [89] to 

answer queries without extracting any information from the query. Symmetric encryption 

techniques were used in  [88] to share a secret with the friends. Here the approach was 

developed to inform users of the presence of their friends within their proximity without 

revealing the location of the user to the ApS. Cristofaro et al.  [90] addressed privacy threats 

as posed by smartphone applications that provide service on the basis of users’ personal 

information and preferences. For this, they proposed using a semi-trusted server which 

deals with encrypted individual data input. Both the server and participants were assumed 

to be acting rationally, i.e., not trying to fail the system. However, the cryptographic 

operations were not optimized. Moreover, the performance analysis was done to compare 

different versions of this very scheme and lacked comparison with any state-of-the-art 

practices. 

2.1.2.5 Using Dummies 

The idea of using dummies states that the location information will be privacy-preserved if 

it comes with multiple false location information or false data traffic i.e., includes dummies 

and confuses the adversary thereby. In one of the initial approaches, diffusion method was 

employed in  [42] that scattered the user’s location information to confuse the attacker. In 

addition, the base station or the access point transmitted dummy messages that looked like 

real traffic but had no actual meaning. However, the diffusion was not applied to multiple 

packets, and the dummy user was not made more like a real user. 

Generating the dummies can be done with or without the help of a trusted third party. 

In  [91], the user herself generated the dummies without the help of any such external entity. 

The common challenge in working with this concept is creating realistic dummies to make 

the actual data ambiguous. A fully decentralized and autonomous k-anonymity based client-

side system, SybilQuery for preserving privacy of location-based queries was presented 

in  [92]. The basic framework demonstrated that for each query from the client it would 
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generate �	– 	1 dummy queries and, thereby, would ensure k-anonymity. It addressed the 

limitation of most of the spatial cloaking approaches which depended on a trusted third 

party anonymizer. Peer-to-peer techniques (e. g. Friend Network), on the other hand, relied 

on the participation of k peers and, thus, restricted the autonomy of such systems. The 

approach proposed here required no change on the server side and only required minor 

modifications to the querying clients. In the implementation, as input, it took a path to be 

followed by a vehicle along which a vehicle might issue several queries to the ApS. It would 

then output �	– 	1 dummy paths that statistically would resemble the input path. To make it 

more appropriate in practical situations, the basic design had accommodation for some 

extensions like randomizing path selection, handling active adversaries, endpoint caching, 

providing path continuity, and adding GPS sensor noise. Thus, the efficiently generated 

queries were indistinguishable from the real ones. The computational costs of this system 

mainly consisted of handling different databases involved in the different steps. 

2.1.2.6 Sharing Location Information 

The concept of location information sharing states that a number of user nodes will share the 

location information and produce the combined data to confuse the attacker. This concept 

was used in  [85] to securely manage private location information in an untrusted system. 

This approach was further extended in  [93] by including map knowledge into account to 

prevent adversaries attempting to increase the precision of location information. Some of the 

methods used geometric transformation to generate the shares whereas some  [87] used the 

multi-secret sharing concept  [94] to do the same. Both approaches support symbolic location 

information. 

Boutsis and Kalogeraki  [95] focused on developing a PSS for android smartphones and 

proposed an efficient low cost and distributed approach for users to disclose their trajectory 

info without compromising privacy. The proposed approach assumed user data would be 

stored locally on the individual smartphone devices, i.e., no dependency on any centralized 

database. Apart from expenses involved and a single point of failure, their argument for 

using a distributed approach is that the users typically query data that is dependent on the 

location of the user. To maintain privacy by making all local trajectories equally-probable to 

be sensitive data, the data exchange approach distributed user data trajectories among 

multiple user databases, based on local entropy. They considered different types of attacks 
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including those arising from the use of Android OS itself, as well as user identification 

attacks, sensitive location tracking and sequential tracking attacks. 

In  [96],  [97] location privacy was preserved during the sensor reading collection by 

applying a collaborative path hiding mechanism in a decentralized way. Instead of directly 

reporting the location to the application server, this collaborative path hiding concept was 

applied to isolate the spatiotemporal context (i.e., time and location), at which the sensor 

readings were taken, from the identity of the users by physically exchanging location 

information between users in an opportunistic approach. Three different exchange strategies 

were proposed in  [97] to explore the impact of different levels of symmetry of each exchange 

that cluttered the location information between users. Each user uploaded every hour a 

combination of the samples received from other users and the remainder of their own 

collected samples to the application server. Finally, by analysing the reported location 

information the application server built summary maps of the occurrence being observed 

(e.g., noise pollution map) to provide service to the public. Thus, this approach mainly 

focused on maintaining location privacy while contributing to a participatory sensing 

application that works on the structured aggregation of collected data without real-time 

constraints for data delivery. Hence, it could safely overlook issues like real-time data 

fluctuation, pinpointing the exact location of a desired sensory data etc. 

2.1.3 Data Privacy in PSS 

There is a variant of this problem named data privacy, which is the privacy of individual 

data or ownership of sensitive data. Talking about privacy in data communication, the first 

thing to come to our mind is encryption. In cryptography, encryption is the process of 

converting information using an algorithm to make it unreadable to anyone except those 

possessing special knowledge, usually referred to as a key. Encryption however, is not 

viable in participatory sensing systems as in these cases the sensed dataset is usually small 

and predictable to defeat public key cryptography. Moreover, law enforcement agencies 

require public network dataflow remain unencrypted to mitigate national security threats.  

Data oriented privacy is another area of research interest which is relevant for many 

data collection types. Reddy et al.  [98] have suggested that PSS can support several types of 

data collection such as that initiated by some researchers or from the ordinary citizens 

themselves. The main challenge was to allow individuals to share data for computing 

community statistics with a privacy assurance. This is because they may be interested in the 
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statistics, but do not trust sharing their private data with the third party. For example, in 

recording her weight periodically a weight watcher is expected to be interested in knowing 

the efficacy of a diet chart, irrespective of her preference to hide her true weight and/or 

average weight and/or trend of weight i.e., loss or gain. The user may want to find the 

average weight loss trend as well as the distribution of weight loss as a function of time on 

the diet from which individual’s weight and/or weight trend should not be extractable.  

A very common approach to preserve data privacy is to apply the concept of data 

perturbation to add artificial noise to the data (see Figure  2.6). To prevent adversaries from 

reconstructing the individual original data, independent random noise was demonstrated to 

be insufficient in  [99]. In PoolView  [100], mathematical foundations and architectural 

components for providing privacy guarantees on stream data in grassroots participatory 

sensing applications was developed. It relied on data perturbation at the data source to 

allow users to ensure the privacy of their individual data as they used tools that perturb 

such data prior to sharing for aggregation purposes. It then used community-wide 

reconstruction techniques to compute the aggregate information of the interest. Thus, user 

privacy was preserved against traditional attacks, like filtering and specialized attacks such 

as MMSE, and at the same time community information both the average and the 

distribution were successfully recovered. This approach is best suited for a closed 

community with a known empirical data distribution.  

This privacy preservation model was further enhanced in  [101] to ensure the                                   

correct reconstruction of community statistics in the case of correlated multidimensional 

 
Figure  2.6: Basic idea of Data Perturbation. 
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time-series data. It also proposed a perturbation-based approach of addressing data privacy 

in participatory sensing. The system was applied to construct accurate traffic speed maps in 

a small campus town from the shared GPS data of participating vehicles, where the 

individual vehicle were allowed to “lie” about their actual location and speed at all times.  

Privacy preserving data aggregation has been gaining popularity mainly in the field of 

sensor networks. This field differs from PSS in a way that sensors are deployed with a single 

authority and their static topology conflicts with the dynamic property of mobile users that 

constitutes the data infrastructure of a participatory sensing system. Being inspired by this 

portion of work in sensor networks, PriSense was proposed in  [102] to support user privacy 

in data aggregation. This technique has mainly been based on data-slicing and mixing. The 

initial idea was very close to Privacy-preserving Data Aggregation (PDA) concept of  [103]. 

However, the main difference lies in their application scenario and how the cover nodes 

were selected.  

As introduced in  [104], k-anonymity model is equally popular in protecting data 

privacy. Traditional k-anonymity based privacy preserving approaches  [105],  [106] were 

extended in  [107], used for pattern mining in  [108],  [109], and for real-time social network 

data sharing in  [110]. 

Choi et al.  [111] addressed the privacy threats of sharing highly personal information via 

participatory sensing applications which provide data to medical behavioural studies or 

personal health-care schemes. The proposed architecture, SensorSafe, used an access control 

mechanism with numerous privacy preference options to allow users’ control over the 

behavioural information they wanted to share. The concept of broker was used here to 

support data management from multiple contributors. However, neither any backup plan in 

case of a single point of failure nor any sort of trust assumption of this broker was 

mentioned. Moreover, no adversary model or performance analysis in the context of 

communication overhead or operation efficiency was made which could have added more 

value to this study. 

Preserving privacy is an even more challenging job when multidimensional data is fed 

to participatory sensing applications. Keeping that in mind, the concept of negative surveys 

was used in  [112] to facilitate the complemented sensory data as an input to their proposed 

algorithm to work with and get aggregated result of the actual ones without revealing actual 

individual data. This negative survey concept was preferred over the computationally 
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expensive encryption and key management schemes to serve the very purpose of privacy 

and security in sensitive data handling. Furthermore, they acknowledge that encryption is 

not applicable in cases where even the intended recipient is not trusted with the ownership 

of sensitive data. The dimension adjustment concept was introduced to recover the 

limitation of a huge increase in the required number of participants to maintain a given level 

of utility. Besides they explored the somewhat orthogonal relationship between privacy and 

accuracy. 

Cristofaro and Pietro recently proposed some techniques to ensure query and data 

privacy in urban sensing systems  [113],  [114]. They explored different adversarial models 

depending on whether one has control over a fraction of sensors before or after the data 

being sensed and also considering whether the adversary is randomly distributed or local to 

a specific region of the network. For each of these settings, they presented a probabilistic 

distributed technique that trades off an achieved privacy level with a potential 

communication overhead. 

2.1.4 Other Related Works 

Gadzheva  [115] suggested that protecting privacy in an increasingly transparent society will 

only be possible with the development of an intelligent interplay between technological 

design and legal regulation that reflects the great expansion of ubiquitous data processing 

and surveillance capabilities. Failure to address the legitimate concerns of users can have a 

negative impact on businesses, network operators and service providers, and seriously 

impact the deployment of these beneficial services.  

Christin and Hollick  [116] investigated the technological basis for mobile sensing 

applications with an analysis of different sensor modalities collected in existing applications. 

They wanted to highlight the respective threats to privacy. Their main focus has been to 

examine how the sensor readings are processed within a range of typical mobile sensing 

applications. 

In this practical world, users are generally interested in participating if only they can 

benefit themselves or understand the benefits for a wider community  [117]. Otherwise the 

users may gradually lose interest in participating actively and, thus, appears the challenge of 

identifying methods to motivate user participation. To encourage selfish participants,  [118] 

proposed a novel bargain-based stimulation among the MNs in PSS. It presented a greedy 
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algorithm formulated with the help of game theory. However, they ignored addressing the 

participant’s privacy concerns. 

It is not unusual that due to lack of any proper incentive scheme  [119] the participants 

may start finding no interest in remaining active in the system. In the absence of proper 

evaluation of the contribution, it is quite unavoidable for a system to start suffering from 

inadequate participation. As the system depends on people participating voluntarily to 

contribute data, insufficient contribution may cause degradation in the quality of service. 

That is why the concept of a reward system is proposed to keep user participation up to the 

expected level and ensure ample data aggregation thereby. 

Danezis et al.  [120] addressed the valuation of user data with a fixed price which is a 

very naive approach. Moreover, their work does not distinguish between the different times 

of day, locations, or various situations a user may be in. At the same time, a user’s true 

valuation differs among individuals and over different types of data. Thus, they only focus 

on obtaining an estimate of the value that users attach to their location data being used by 

third parties. 

Lee and Hoh  [121] identified that employing a traditional reverse auction fails to keep 

user participation up to an expected level. In an auction based reward scheme, participants 

produce their true valuation as the bid prices, which include all efforts for collecting data 

such as battery power consumption, device resources, and privacy. However, in that case 

users with a higher true valuation may drop off in a traditional reverse auction. As a result, 

they proposed a Reverse Auction based Dynamic Price (RADP) incentive mechanism with 

the idea of Virtual Participation Credit (VPC). Here, the loser was given a virtual credit for 

participating which was eventually used to lower the bid while considering her next bid 

price and increasing her winning probability in a future auction round. 

One of the obvious reasons behind the huge potential of PSS is that it makes use of 

existing technology and infrastructure. Then again this is also the main cause of the 

challenge of coordinating systems designed for other purposes and provoking the use of 

models to infer what cannot be directly measured or sensed. It faces the challenges of data 

control and user participation by verifying participant context, validating samples, 

incorporating human contributions, and providing reputation scores for participants. It also 

identifies the concern of establishing data integrity while allowing participants to regulate 
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their own privacy and participation. To address this challenge MobiSense  [98] proposed 

using an end-to-end data pipeline from collection to analysis. 

The problem of verifying data received from user devices in participatory sensing was 

studied in  [122] and  [123]. The focus of this work was to ensure that the data contributed by 

a mobile phone indeed corresponded to the actual data reported by the device sensors. They 

assumed a threat model in which a malicious user or program tampered with software 

running on phones and corrupting the sensor data. Their solutions relied on an auxiliary 

Trusted Platform Module (TPM), which guaranteed the integrity of sensing devices. 

However, TPM-enabled mobile phones are yet to be mass produced and, as such, their 

solutions are not readily deployable. Moreover, the TPM is unable to detect malicious 

behaviour where the user may physically create interference that affects the sensor readings. 

For participating devices of PSS, Huang et al.  [124] introduced reputation scores as a 

reflection of the trustworthiness of the contributed data. As in the application scenario, this 

study considered a noise monitoring system which generated a collective noise map by 

aggregating measurements collected from the mobile devices of volunteers. In this specific 

application scenario, a continuous deviation from the group consensus may indicate an 

outlier. However, in scenarios like PetrolWatch  [2] this deviation may also indicate a change 

in fuel price, a trend which is quite natural over the course of time. 

2.2 Privacy-Preserving and Verifiable Voting 

In essence, a verifiable election starts with ballots having a unique serial number. After 

casting the vote, part of the ballot is handed over to the voter so that she can verify that her 

vote is indeed counted for the intended candidate at the end of the election. Unfortunately, 

this simple voting process is vulnerable to vote buying or coercion. Prevention is a must in 

any modern democratic civilization. The election must also satisfy unconditional privacy to 

the voters. A brief background of voting system is presented in Section  2.2.1, followed by 

some related works in this context in Section  2.2.2. 

2.2.1 Background 

To ensure impartiality and integrity, each country has to follow certain universal standards. 

From literature  [127]- [171], we may compile a brief overview on these. 
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• Verifiability: This is the measure to ensure the integrity of an electoral process. It 

implies that each voter can check if her own vote is included in the counting 

(individual verifiability) and anyone can check that all and only authorized votes 

are counted without any change at any step (universal verifiability). Alternatively, 

these are also termed as end-to-end verifiability that is achieved by the combination 

of three properties: 

o A ballot correctly represents a voter’s preference (Cast-as- intended). 

o The vote is stored as it is cast (Recorded-as-cast). 

o The announced result is a correct amalgamation of the set of recorded votes 

(Counted-as-recorded). 

• Privacy: The preference of a voter can never be revealed. The system or any external 

entity will not be able to establish any link between a voter and the vote she casts.  

• Coercion-resistance:  The voter cannot be forced to vote for a particular candidate 

or not to vote a particular candidate. Even if the receipt to verify is handed over to 

the coercer, or the vote processing authority colludes with the coercer, coercion is 

possible.  

• Vote trading prevention: A voter must not be able to prove her vote in favour of a 

particular candidate and claim advantage thereof. 

• Authenticity: Any voter or group of voters must not be able to prove a claim that an 

election result is manipulated when it is actually not. When verifiability is ensured 

by receipts, preventing a fake receipt is the most important task in this regard. 

• Integrity: The final vote counting must match the number of voters and their 

preferences. 

To conduct a verifiable and privacy preserving election, the following system entities 

and authorities need to function properly. 

• Voting Booth: The voter should be able to perform some actions privately such as 

viewing candidate information, casting their vote, and obtaining receipt. At the 

same time, it has to be ensured that she cannot transmit any information (for 
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example, a long receipt number that is not possible to remember) electronically that 

can be used for coercion/trading. 

• Electronic Machines: Voting machines are designed in a number of ways. In most 

cases, it is a general purpose computer consisting of sophisticated hardware and 

software  [127]. It consists of a processor, memory, optionally input/output interfaces 

and uses some kind of operating system.  Sometimes the random number 

generators needed to offer privacy of the voters are part of it and in some cases they 

are external. 

• Receipt Exchange Box: After each vote is cast, the voter obtains a receipt to be used 

later to verify that the vote is counted properly. To establish unlinkability between a 

vote and the voter, a widely used mechanism is to use a receipt exchange box where 

the voter drops her own receipt and randomly picks up another one to verify later. 

• Public Bulletin Board: A public bulletin board is assumed widely as a broadcast 

channel or as append-only storage with public read-access.  

• Auditors: To run the post-election global verification process and and in some 

approaches to guarantee or verify the randomness of the challenge, reliable experts 

are appointed as auditors. 

• Authorities: The central election authority opens and closes the election, facilitates 

the counting of votes, and announces the result. The poll workers assist the election 

authority during the election procedures, for instance, by checking voter eligibility, 

handing out ballot papers for paper-based systems, and verifying receipts collected 

by a voter right after each vote is cast electronically. Their overall responsibility is to 

monitor the polling environment, and supervise both the vote casting and receipt 

exchange. 

The role of these entities in our system will be discussed in Chapter  6. 

2.2.2 Related Works 

Due to the wide demands of verifiable and privacy-preserving electronic voting, numerous 

studies have been undertaken in recent times. A brief overview of the major works is 

presented below. Section  2.2.2.1 describes various commitment scheme based approaches. In 
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Section  2.2.2.2, three-ballot based schemes are discussed followed by some Prêt à Voter 

based approaches in Section  2.2.2.3 

2.2.2.1 Commitment Scheme Based Approaches 

A number of voting schemes have used a commitment scheme, a widely used cryptographic 

technique, to ensure the trustworthiness of the voting protocol. A commitment scheme has 

to maintain two properties, i.e., hiding and binding. A basic presentation of the scheme is as 

follows. For message � and a random number K, a function Commitment (�, K) produces a 

commitment &. It can be checked with another function Open (&, �, K) that accepts as true iff  &E66�>6=�>	(�, K) = &.  The scheme hides if it finds any {�, K} given & is computationally 

very difficult. On the one hand, if extracting only � given & is also difficult, it ensures 

stronger hiding. On the other hand, binding refers to the property that it is hard to find any {�, �C, K, K′} such that  M4=�(&E66�>6=�>(�, K), �C , K′) is accepted as true.  Pedersen’s 

scheme  [127] is an example of a commitment scheme found in the literature. 

Among the notable works that uses a commitment scheme in the context of trustworthy 

voting, Bingo Voting by Bohli et al.  [130] is one such that uses EVM. Before the election, 

EVM generates � random numbers NO3for each candidate �3  that eventually creates dummy 

vote pairs (NO3 , �3) and hiding commitments that are also generated for these dummy votes. 

When a voter expresses here an intention to vote for a particular candidate, the random 

number generator (RNG) generates a fresh random number �  which is assigned to the 

candidate of the voter’s choice. For every other candidate, EVM draws one number out of 

the pool of dummy votes randomly. In the receipt printed by the EVM, the candidate that 

was voted for is assigned a new random number � and a dummy vote is shown for the other 

candidates. In the post-voting phase, every voter can verify that her receipt is shown on the 

list which ensures that it was counted for in the tally. She can also verify that the number of 

remaining commitments is also present. The authors established the correctness of the 

receipts using commitments with a special homomorphism property. The authors enhanced 

it in  [131] by proposing a hash chain such that each single receipt guards the integrity of all 

receipts previously issued. Apart from using a trusted RNG, they assumed a trusted EVM, 

which is a hard assumption and, hence, the applicability of this technique is very limited. 

Scantegrity  [23] and Scantegrity II  [24] enhanced the existing paper ballot system using a 

widely deployed optical scan ballot and commitment scheme. Voters marked a ballot with 

their selections and obtained a receipt to ensure verifiability. The receipt was torn off a ballot 
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chit, i.e., a perforated corner of the ballot that contains a serial number written in human and 

computer readable forms. The voter also wrote down the randomly assigned code letter 

listed next to the selected candidate which varied for the same candidate in different ballots. 

Hence, a particular code letter did not reveal which candidate that person voted for. After 

the election, all voted confirmation codes were posted online, where voters may check them. 

The confirmation codes did not allow voters to reveal how they voted, however, if incorrect 

codes were posted, that could be proved. All the confirmation codes were visible on the 

ballot in the case of Scantegrity which confused the voters about which codes appeared on 

the website. However, the in-person dispute resolution process adopted by them did not 

scale well. 

In Scantegrity II  [24], the problem was overcome using invisible ink to design a dispute-

resolution procedure based on knowledge of a secret confirmation code.  Voters marked 

ballots using a special ballot-marking pen, which made legible pre-printed confirmation 

codes. When the ink in the ballot-marking pen was used on the ballot ovals or confirmation 

codes printed with another special ink, both of these darkened. However, the confirmation 

code ink reacted more slowly than the ballot oval ink, and hence darkened several minutes 

after the oval. The voter may note it on the chit since the code is visible for several minutes 

after being marked. Since the code is indistinguishable from its background in an unmarked 

oval, the voter may have it only after she has made the corresponding ballot selection.  

Voters can check the code online using the two serial numbers printed on the chit. These 

serial numbers also remain indistinguishable from the background until a decoding pen is 

used by the authority concerned who reveals the serial numbers using a decoding pen after 

the ballot is cast. This prevents voters from falsely claiming about a confirmation code 

obtained from an uncast ballot. However, the requirement of such special inks is infeasible 

in many scenarios and the procedure is conceptually very complicated. 

Hover  [28] is a recently proposed approach for trustworthy voting that has combined 

some other ideas. The Scantegrity optical-scan system  [23]  was followed for a voting 

protocol and Eperio  [132] was adopted to facilitate verification. Trustees generated ballots 

each containing a serial number, a code letter assigned randomly without replacement, and 

associated candidate name using a trusted printer. A voter marks an optical-scan oval 

appearing beside the preferred candidate. Some ballots are randomly selected for audit 

which cannot be used for voting. The serial number and code are published on a bulletin 
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board along with a shuffled candidate list using two random permutations by the trustee.  

The commitments to the random permutations are also posted in bulletin board. Unlike 

Scantegrity  [23] that publishes separate commitments to each pair, Hover commits to the full 

specification of random permutations that allowed using a simpler commitment scheme 

with substantially fewer cryptographic operations. The trustees randomly generate and 

obliviously print the confirmation codes on each ballot using oblivious printing  [133] which 

overcome the risks of using trusted printer. Along with ballots, a vector of encryptions of 

each code-candidate association for each ballot is also generated. Semantically secure public-

key encryption schemes are used here for which the decryption key is distributed among 

multiple trustees. Finally, using a secure multiparty protocol and the invisible-ink printing 

techniques developed for Scantegrity II  [24], Hover proposed a means by which several 

parties can generate a shared secret and print it in without learning the result. 

The paper-ballot based voting scheme, Punchscan  [135],  [136] used two paper sheets 

attached one upon the other. The list of candidates was given on the top page and a letter in 

a random permutation was assigned to her. The top paper had holes through which letters 

from the lower paper were visible. Each pair of pages had a short id, which the voting 

authority used to understand the content of each page. The voter needed to mark the letter 

assigned to her candidate which had to be visible on both papers. One layer of the ballot was 

collected by the voter as a receipt.  Without knowing the content of the other part, the 

receipt did not give any information about the vote. Bohli  [130] showed that the voter has to 

vote in favour of the coercer with 50% probability in this scheme, unacceptable by any 

standard.  

Split-ballot  [26] was proposed as a receipt-free commitment scheme based protocol 

using a modification of Pedersen’s scheme  [127] and the trust was distributed in more than 

one voting authority. This is a paper based system, although the machine can be used for 

vote casting. A vote consists of two ballots from each of the two voting authorities. Two 

from those are actually used for voting and the other two was for verification. A partial copy 

of each ballot was collected by the voter as a receipt. A vote tally was jointly performed by 

the two authorities who published all of the ballots. Implementation of this scheme was 

similar to that of Punchscan  [135],  [136] as it used two stacked papers and the top one 

contained holes to reach the bottom paper. The voter also gave her choice in a similar 

manner. The drawback of this scheme is the requirement from voters to be able to perform 
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modular addition from a randomly selected value. The trust is distributed among two 

independent voting authorities and the privacy of the voters may be breached if both of 

these are corrupt. 

Other studies  [137],  [138] also use commitment scheme. Basically, the EVM commits 

itself to some random values by printing it on a receipt without showing it to the voter. The 

voter casts her vote and simultaneously enters a random number that is used later to prove 

that the vote has been counted for the appropriate candidate. Every candidate is printed 

along with the corresponding user choices on a receipt. The order of operations is crucial to 

prevent potential fraud by the EVM. Here, the user enters dummy values for the other 

candidates, then the voting machine commits, after this the voter enters the random value 

for the real candidate. The major drawback of these approaches is the reliance on the limited 

memory of humans in the voting process. It exposes the possibility of coercion, especially 

when there are a large number of candidates, a common phenomenon in national elections. 

Moran and Naor proposed another scheme  [139] based on statistical-hiding using the Direct 

Electronic Recording (DER) that plays the part of the voting authority. 

2.2.2.2 Three-ballot Based schemes  

The three-ballot based or VAV voting systems proposed by Rivest et al. [27],  [140] is a paper-

based system which is conceptually simple and easy to implement. In the three ballot 

scheme, the voter marks three ballots in a single vote.  An example of a valid vote using this 

 

Figure  2.7: A filled out ballot in Three Ballot system with a vote for Bob. Only 
the row containing Bob has two filled-in circles, whereas the other rows have 

exactly one. 
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scheme is shown in Figure  2.7. The voter checks off her preferred candidate in two ballots; 

for all the other candidates, just one check is needed on one of the three ballots, randomly. 

This this system, the candidates voted for will have two marks in the three ballots set, while 

all the other candidates will have just one mark each. Later on, one ballot is chosen at 

random by the voter as a receipt. After the election, the electoral authority publishes all 

ballots to let voters verify whether their votes were accounted for. The remaining two ballots 

not taken as a receipt by each voter may be manipulated by compromised authorities. Thus, 

the partial information provided in receipt creates loophole for the verifiability of voting. 

The authors themselves admitted its vulnerability from a three pattern attack. The 

coercer may force a voter to vote following a specific rare pattern. In this case, the voter will 

do it to avoid getting caught if the instructed actions do not appear at all in the bulletin 

board. This pattern encourages vote buying. Kusters et al.  [141] have pointed out that 

through coercion in three ballot, the manipulator can convert the opponent’s vote into the 

manipulator’s favour as only one-third of each vote is verified. The remaining two thirds 

can be manipulated intelligently.  This is the most dangerous problem with the three ballot 

based voting. Another recent attack named Clash Attack  [142] pointed that the EVM may 

remember the particular vote pattern in the receipt a voter takes home. Next time, when 

another voter chooses that ballot to take as receipt, EVM puts the same receipt number in it 

and as desired by the manipulator replaces the rest. The authors have shown that it can 

work in different voting schemes.  

Costa et al.  [140] developed an electronic system adopting the concept of originally 

 

Figure  2.8: PaV ballot having two parts separated by perforation. Candidate names 
are printed in a permuted order. The right part has marking provision for voters 

and a string containing information about the permutation in encrypted form. 
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paper-based three-ballot system. They used an electronic ballot box, voting console, and 

bulletin board and also introduced a registration agent, and voting manager. However, they 

failed to resist the attacks discussed above that are applicable to the original three-ballot 

system.  

2.2.2.3 Prêt à Voter Based Approaches 

In the Prêt à Voter (PaV) system proposed by Ryan et al. [25],  [145], the ballot is pre-printed 

with two columns. The left column presents the candidates in a shuffled order of the base 

ordering determined by a cyclic offset, and the right column is empty for voting. At the 

bottom of the right column, there is a random encrypted value, termed as onion that 

corresponds to the candidate order. An example of a valid ballot paper using this scheme is 

shown in Figure  2.8. The voter selects a ballot randomly, marks the right column, or ranks 

the candidates, and then tears off the left column. The right column is scanned and sent to a 

bulletin board and the paper is taken as a receipt. To ensure verifiability, the voter later 

checks if the receipt was correctly posted and thereby receives assurance that it is considered 

into the tallying process. However, this scheme does not provide any proof that the onion 

matches the candidate order in the ballot’s left column or any alteration in that order would 

remain undetected. Furthermore, if the information shown to the voter is changed by a 

compromised machine (to be elaborated on in Chapter  6, as group interchange attack), there 

is no way to detect it. 

In  [145], Ryan et al. carried out a comprehensive threat analysis on PaV and some 

enhancements have been proposed by Xia et al.  [146] that address several additional issues 

to handle various election models. Graaf proposed another scheme  [147], combining the 

advantages of PaV  [25] and Pushchan  [135]. Due to its simplicity, it used the widely 

convincible ballot layout of PaV and preferred commitment primitive of Pushchan over the 

mixing primitive of PaV. Demirel et al.  [148] recently aimed to improve PaV to provide 

everlasting privacy by using a commitment scheme and zero knowledge proof in the ballot 

generation anonymization processes. They resorted to specific legal and organizational 

procedures to protect the privacy of voters. 

2.2.2.4 Others 

Adida and Rivest  [149] proposed the “Scratch&Vote" using scratch-off cards to provide 

receipt freeness and verifiability at the polling place. Their scheme published votes in 
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encrypted form, and was, therefore, only computationally private. Another approach to a 

privacy preserving voting system was Farnel  [150],  [151] which was not widely accepted 

due to its complex vote casting procedure. When a voter casts her vote in the Farnel box, a 

subset of its content is scanned and, accordingly, a receipt is generated by spinning the box. 

Although conceptually similar to floating receipt mechanism, the advanced hardware 

dependency remains a limitation. 

Among the other techniques  [152]- [154] were designed for remote or internet based 

voting; still considered unrealistic considering the physical limitations at the vote casting 

point. The early-stage development of electronic voting can be reviewed by interested 

readers in  [162]- [171]. 

2.3 Conclusion 

This chapter has presented the fundamental research strategies and concurrent works on 

privacy in two relevant contexts of people centric applications, i.e., participatory sensing and 

electronic voting. Either application is yet to be widely accepted since all the issues relating 

to privacy are not satisfactorily solved. Hence, the following challenges need to be 

addressed: 

• Traditional approaches add some uncertainty to location or other information in 

protecting the inferable privacy of an associated observer/reporter. This uncertainty is 

likely to degrade the quality of the data at the destination and, thus, destroy the ultimate 

purpose of many applications in the context of PSS. 

• To protect the location privacy of observers from remote places, geographic proximity 

based spatial cloaks are not feasible. Again, the efficiency of anonymization approaches 

is dependent on the quality of these cloaks. The degree of anonymity also has to be 

considered. Since PSS is a voluntary participation based technology involving many 

tiny, power-constrained devices, computational efficiency is desired for any applied 

anonymization approach. 

• In the context of voting, some works emphasize the privacy of voters and coercion 

resistance or vote trading without ensuring end-to-end verifiability. Other works focus 

more on verifiability, leaving a loophole in the protection of voter privacy. The few 

works that have emphasized both these issues simultaneously rely either on complex 

hardware or unrealistically assume a trusted entity or voter capability. 
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3 Subset Coding and Joint Decoding  

Inspired by the working principle of PSS, we chose it as the application scenario to test our 

hypothesis that collective association can automatically preserve privacy without 

compromising data integrity. The only pre requisition to test this hypothesis is that multiple 

observers can report about the similar set of individual entities which essentially prevails in 

the system of participatory sensing. The huge potentiality of PSS to provide a cost-effective 

alternative to traditional Wireless Sensor Networks (WSNs) inspires researchers to 

investigate new application domains for this technology. Consequently, a wide variety of 

application scenarios were identified where the system architecture and role of system 

entities may vary. In order to protect the inferable location privacy risks, the working 

principle of different system entities and potential adversary abilities need to be explored. 

This chapter first discusses and then formalizes the comprehensive system architecture for 

PSS and then introduces the additional entities required in our proposed location privacy 

preserving mechanism. It also presents the basics of the proposed subset-coding framework, 

which (as outlined in Chapter  1) is the corner-stone of different location privacy schemes 

presented in this dissertation, along with the comprehensive privacy risk analysis, and 

mitigation strategies.  

In this chapter, we first discuss the architecture of a PSS with commonly available 

entities and then their mode of communication in Section  3.2. The concept of subset-coding 

technique is presented next in Section  3.3 with some definitions of the terms we use 

throughout the thesis. We then present a comprehensive adversary model, identify their 

different malicious capabilities in our proposed architecture and present design strategies to 

mitigate their attacks to the breach of a participant’s privacy in Section  3.4. The risks on 

privacy of observers when our proposed technique is used are thoroughly analysed in 
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Section  3.5 followed by extensive simulation in Section  3.6. Finally, some concluding 

remarks are made in Section  3.6 3.7.  

3.1 Introduction 

PSS provides common people with a platform to sense, collect, analyse, and share local 

information or knowledge for their own benefit. Smart-phones equipped with high precision 

localization capability, camera or other ad-hoc sensing devices mounted on vehicles are 

used to record objects/events of interest by the people in course of their daily life. The 

captured data are sent to specific servers via some lightweight inexpensive wireless 

communication networks. The collective reports from a large number of participating users 

help the server generate useful information and reply to the queries of the user on-demand.  

In the context of PSS, the privacy of participants who are willing to share their 

information should be respected, especially when information travels across open wireless 

networks. Data privacy is not a concern as the reported data is meant to be shared among 

the community. However, the apparently insensitive information transmitted in plaintext 

through this lightweight infrastructure can be eavesdropped by an adversary and this 

information can be used to infer some sensitive information which threatens the location 

privacy of the observer. Participants are required to provide their identifications while 

 

Figure  3.1: The problems to be addressed simultaneously in PSS. 
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reporting (i) to facilitate building up a reputation scheme that is required to maintain 

reliable and trustworthy data and (ii) to allow the system develop a reward-based service 

provision e.g., the more someone contributes the higher will be the quality of data received 

from the server. Consequently, reports to the server cannot be sent anonymously as hiding 

the data ownership straight-away cannot provide a complete solution in this context. This 

multi-dimensional problem is depicted with Figure  3.1.   

It would be helpful to understand the significance of this problem if we discuss some 

application scenarios of PSS in brief. 

• PetrolWatch  [2]: A network of mobile cameras that automatically collects fuel 

prices and serves users by reporting on the cheapest fuel station in the user’s 

locality.  

• Safe cities  [6]: Uses mobile devices to collect and share the safety level of the 

location such as unreported crimes, or web based applications for visualizing 

unsafe areas. 

Recently, many other consumer price information sharing applications using PSS  [3]- [5] 

have been proposed. Throughout this thesis, we use the example scenario of PetrolWatch  [2] 

to present different ideas on the architecture and techniques of privacy preservation. For 

generic consumer price information sharing applications, both the location privacy and 

association with products may be revealed from the reports of observers. Although we 

discuss the case of location privacy in this work, our proposed anonymization technique is 

readily applicable to protect product-association privacy as well. 

The existing location privacy protection mechanisms  [36]- [116], where inferable location 

information is transmitted with some anonymity or by adding Gaussian noise or at reduced 

precision, cannot be used where the destination expects complete data integrity at 

individual level. Unless sufficient data quality/accuracy is achieved, users will not be 

encouraged to use the system. For example, if PetrolWatch cannot assist drivers to find the 

cheapest fuel station in the neighbourhood and recommends an expensive one instead, the 

reputation of this application will be at stake. Hence, data quality/integrity and privacy 

needs to be protected concomitantly. Therefore, a privacy-preserving data communication 

technique is needed such that each observation of the attribute of a Point of Interest (POI) by 

a participant can be transmitted with sufficient POI-level anonymity such that the data 

collector can eventually de-anonymize individual data, i.e., associate the attribute with the 
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correct POI. As long as an adversary is unable to intercept a reasonably high number of 

transmissions from the participants, any de-anonymization attempt to infer the attribute-

POI association remains sufficiently ambiguous.  

Our solution to address all these significantly challenging problems are based on a novel 

technique called subset-coding. The privacy of the participants who reports an observation 

about a visited POI is ensured by k-anonymization. The concept of k-anonymity states that 

an observation is k-anonymous if the observed POI is indistinguishable from �	– 1 other 

POIs. The feasibility of the technique relies on an efficient joint de-anonymization technique 

to obtain sufficient data quality at the desired end. The anonymization and de-

anonymization techniques developed are presented in subsequent chapters. We assume no 

secure communication channels or the possibility of adversaries to collude while designing 

robust system architecture with viable protocols to safeguard against all types of 

adversaries. Most of the existing privacy-preserving techniques as already presented in 

detail in Chapter  2, cannot be a viable solution so long as high data quality is concerned.  

3.2 System Overview 

In Section  3.2.1 the system entities of our proposed scheme are presented along with some 

relevant definitions. The system model and its functionalities are then described in 

Section  3.2.2. 

3.2.1 System Entities  

The basic entities of our proposed participatory sensing system are described below. 

• Mobile Nodes (MNs): MNs are the users that collectively sense attributes of 	 POIs 

and report them.  

• Application Server (ApS): The ApS is the server that receives anonymized reports 

from users, or in other words MNs, and based on these reported information, it 

makes the service available for the users such as replies to user query or informs 

users about the attributes of POIs, e.g., the cheapest fuel station in their vicinity 

(considering PetrolWatch). It has a decoding application that decodes the attributes 

of the POIs from anonymized reports received from the MNs. 
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• Anonymization Server (AS): A third party AS is used to achieve desired POI-level 

anonymity while remaining transparent to the ApS. Most of the existing techniques 

rely on an AS, a trusted third party, to perform the anonymization centrally.  

In our proposed scheme, MNs send plain and simple Observation Reports (OR) to AS. 

This is simply a POI-attribute pair related to an observed POI. For POI �	having attribute 23  
an OR E3  will assume the form [�, 23] and is sent as plain text. Upon receiving an OR our AS 

k-anonymizes it using a greedy heuristic such that the more anonymized reports are 

received by ApS, the higher is its ability to associate POIs to correct attributes. The 

anonymized report is then relayed to the observer. Finally, the observer MN sends the 

anonymized report to the ApS. Although the anonymization can be performed 

independently by selecting additional �	– 	1 POIs at random, this random anonymization 

can hardly influence the data integrity to reach the target. Moreover, most of the existing 

techniques rely on a trusted third party AS to achieve homogeneity among selected POIs so 

that any of them remains equally likely to thwart any decoding attempt by an adversary. At 

this point we introduce our AS to perform the anonymization centrally, i.e., a directional 

anonymization such that target data integrity can be reached efficiently with received 

collective data. Note that �	 ∈ {2, … , 	 − 1} as � = 1 offers no anonymity and � = 	 makes 

decoding impossible. Let us term the k-anonymized form of an OR as Anonymized Rule (AR) 

defined as follows. 

Definition  3.1 (Anonymized Rule): An Anonymized Rule (AR) for OR [�, 23] is expressed as $K� ≡ {�1, �2, … , ��}: 2� where {�9, �S, … , �H} ⊂ {1, … , 	} ∧ � ∈ {�9, �S, … , �H} are selected by AS 

using a greedy approach.  

For example, when 3-anonymity is desired, $10 price observed for POI 1 may use AR {1, 2, 3}: $10 to anonymize POI 1 with POI 2 and POI 3. The detail of the greedy 

anonymization approaches are discussed in Chapters. 4 and 5. After receiving an AR, the 

observer sends a Report towards ApS (RApS) defined as follows. 

Definition  3.2  (Report towards ApS): A Report towards ApS (RApS) may be expressed as 

[User_id, AR, time_of_observation]. 

An observation of POI 1 by MN having user id W1 observed at time > then may assume 

the form towards ApS as [W1, {1, 2, 3}:	$10, >]. 
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Figure  3.2: Conceptual Diagram of our proposed PSS. 
 

 

Figure  3.3: Detail schematic of proposed PSS. 
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3.2.2 System Model  

Figure  3.2 presents these entities along with their properties and of the communication 

medium. Note that before anonymization, any observation directly sent from the user can  

pose a threat to the user’s privacy straightaway in case of eavesdropping. Hence, we 

propose that no direct communication would take place between the observer MN and AS 

to safeguard against possible eavesdropping of unanonymized ORs. Moreover, since AS 

neither provides any reward nor cares about the reputation of the source, user id is not 

needed to be attached during the communication between an MN and AS.  

At this point, we introduce a friend network to deal with this issue of ownership 

privacy. That is, the OR is relayed through a mix network of random length before 

delivering to AS. As the length of the chain is random, it is impossible to guess the 

originator. Here the challenge is to make this ownership privacy maintained communication 

bidirectional. In one way the MN sends OR to AS, while on the other way the AS sends the 

suggestion back to the originator. Introducing the concept of mix network may develop a 

particular type of adversary who may join as a member of this mix network. To handle 

adversaries we propose dividing the overall user domain into regions, each having a 

number of groups in it served by multiple ASs. The details of various possible adversaries 

and strategies against them are discussed in Section  3.4. 

For the sake of completeness, the detail schematic of the proposed conceptual diagram is 

given in Figure  3.3. Here, AS1 deals with the ORs from group 1 of region 1 and group 1 of 

region 2 whereas AS2 serves those from group 2 of region 1 and group 2 of region 2. The 

mixer of messages for the friend network is shown by the cloud which implies that 

communication with the corresponding AS takes place through the cloud, that is, the friend 

network. The solid MN indicates the physical MN located in a particular instance whereas 

the dotted one indicates that the same MN can also report from a different group in a 

different instance. An individual MN can report from different groups of different regions 

and that is represented by the dotted version of that solid MN. Hence the design principal 

states that,  
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• All groups of a physical region should not be served by the same AS. This is 

done to handle rival-minded AS such that it fails to get the full picture as 

presented in Section  3.4.1.  

• At the beginning, when an MN registers as a user in the system, it receives 

different user id to be used while reporting from different corresponding 

groups. 

• As the user ids against a single user are issued by the ApS at the registration, it 

can distinguish reports from a group from that knowledge. 

• A friend network is not bounded by this grouping of regions. Hence, the 

adversary fails to speculate which users belong to the same region/group. 

• At the registration, each MN is provided with a number of (network) friends 

randomly identified by their network id. This id is different from user id as used 

in different groups of regions. 

 

Figure  3.4: Entities and information flow of a typical system scenario of the proposed PSS. 
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Figure  3.4  presents a practical example of our proposed system scenario along with a 

typical information flow sequence (numbered 1 to 9) from observing MN to the ApS in the 

PetrolWatch context. It also consists of three adversaries that are discussed in detail in 

Section  3.4.1. Here, the MN near POI 2 of group 2 of region 1 originates the OR and sends it 

to the corresponding AS using its friend network in the flow sequence numbered from 1 to 

4. Then, AS sends back the corresponding AR following the same route of the friend 

network in reverse order in the flow sequence numbered from 5 to 8. Finally in sequence 9, 

the RApS is uploaded to the ApS from the originator MN. 

The computational complexity of anonymization as well as de-anonymization is 

significantly higher when the attributes of different POIs are not unique, which is naturally 

occurring as POIs are assumed to be non-communicating. However, the non-unique 

scenario can be easily transformed to the unique scenario with the assistance of the AS as 

explained later. Therefore, the attributes of 	 POIs are almost everywhere in this thesis 

(except for the risk analysis in Section  3.5.3) assumed unique without any loss of generality.  

3.3 Basic Concept  

In Section  3.3.1 we present the concept of subset-coding that is the basis of our proposed 

anonymization techniques, followed by that of the proposed joint decoding in Section  3.3.2. 

The basic concept is explained in the context of PetrolWatch  [2] where each participant 

independently reports the observed petrol price.  

3.3.1 Subset-Coding  

In our work we aim to preserve the location privacy of the MN via k-anonymization of the 

observation. We assume there are 	 numbers of POIs whose prices are uniquely defined. 

Our AS receives actual price and corresponding POI from the MN. Then to make a report 

with k-anonymity, the actual POI can be anonymized with any � − 1 out of the remaining 	 − 1 POIs. Let us consider a PetrolWatch scenario with 	 = 4 petrol pumps of ids 1, 2, 3, 

and 4. For a desired anonymity level � = 2, an OR [1,10] can be anonymized using any of 

the subsets {1,2} or {1,3} or {1,4}. Thus, the POI attribute is reported making the POI 

anonymous among	� − 1 other POIs and consequently individual location privacy is 

maintained. This selection of � − 1 other POIs can be random or can follow a particular 

guideline. The detail of how the subsets are selected in anonymized rules is elaborated on in 

the next chapters. 
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3.3.2 Joint Decoding  

For the example given above let us assume that in response to five ORs [1, 10], [2, 20], [3, 30], [4, $40], and [1, 10], the AS generated the following �(= 2)-anonymous  ARs {1,4}: 10, {2,3}: 20, {3,4}: 30, {1,4}: 40, and {1,2}: 10, respectively as shown in the example in 

Figure  3.5. Note that “$” is omitted for the sake of brevity. The generation algorithm for 

these ARs, or in other words the anonymization technique, may be random in the simplest 

case or designed based on some heuristics. For the time being, we ignore this issue and will 

discuss it in subsequent chapters. At the very beginning, the decoding process starts with all 

possible mappings between POIs and their dummy prices that are identified with leading '. 

Each AR rules out some of these mapping possibilities. For example, when the first AR {1,4}: 10 arrives at the decoder of ApS, it removes the tuples that associate either POI 2 or 

POI 3 with d1 and then replaces d1 with 10. With the gradual arrival of the ARs, the dummy 

prices are replaced by the coming attributes. Finally, when only one possibility is left, full 

decodability is achieved, as realized in Figure  3.5. 

Definition  3.3   (Decodability): A particular outcome of an anonymization scheme satisfies "-

decodability iff " or more POIs can be associated to their correct attributes.  	-decodability is also referred to as full decodability. 

 

Figure  3.5: Conceptual depiction of joint decoding. 
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Elaborating the example in Figure  3.5, the AR {$, "}: 2 implies that either A or D has 

price $2. Hence, the permutations (throughout the thesis we have used another term tuples 

interchangeably) indicating either B or C has price $2 are removed. In this way, 12 possible 

mappings are ruled out. The remaining 4! − 12 = 12 possibilities are now checked for 

subsequent ARs and some possibilities are similarly ruled out for each of them. Finally, only 

the actual association remains as conforming to all the ARs and full decidability is achieved. 

Note that if no tuple survives in this approach, it indicates that either some false data has 

been reported or the price of one or more POI has changed. The impact of such cases on our 

system will be discussed in Chapters 4 and 5. 

In the next section we analyse the location privacy risk of participating users in our 

anticipated PSS architecture when their anonymization is done using subset-coding.   

3.4 Adversary Models and Risk Mitigation Strategies 

The focus of a malicious third party is to reveal the location information included in the user 

reports. From these eavesdropped messages, it tries to infer POI-attribute association using 

the same decoding approach of the ApS and, thus, reveal the location of the observer near 

that POI. It is natural that the adversary has close access to victim in real world. Therefore, 

the victim’s user id is known. We first explore adversaries with various capabilities in 

Section  3.4.1 and then discuss strategies to counter them in Section  3.4.2.  

3.4.1 Different Types of Adversaries  

The adversaries that attempt to reveal the location information from the user reports 

working through the PSS communication interception may cause five potential privacy risks 

as discussed below: 

• Type I Adversary (Compromising AS): An adversary compromising the AS can 

access the unanonymized ORs but they have no user id attached. Moreover, after 

introducing the mix network, the originator’s identity cannot be traced back. 

Moreover, as it is a requisite from the security surveillance that the public 

communication should remain plain-text, we may assume that the service of the AS 

is provided by some trusted entity e.g., a government agency. 
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• Type II Adversary (Eavesdropping RApS): Residing near the ApS, adversary can 

receive quite a good number of RApS. Having equipped them with the same 

decoding application as ApS, it is likely to infer significant user-POI association. 

• Type III Adversary (Capturing OR from mix network): It is highly likely that the 

adversary is a member of the friend network. Thus, the adversary will receive a 

certain amount of messages.  

• Type IV Adversary (Compromising ApS): If an adversary is able to compromise 

someone having access to ApS, i.e., an employee. This may be possible only for a 

short duration, then it may have access to ApS data collection.  

• Type V Adversary (Compromising POIs): Some eavesdropping devices may be 

mounted in the vicinity of the POIs.  

Based on the above discussion, we concentrate on the first three cases namely Type I, 

Type II, and Type III depending on what messages they eavesdrop. Because in the case of 

Type IV, the basic security mechanism of ApS such as an audit trail and access logs will not 

allow its compromised employee to continue the undue activity for long. Hence, the data 

captured in this way is limited in size and is likely to reveal little information. Considering 

Type V, we propose that the MNs will transmit the ORs only after going outside some pre-

defined distance e.g., the coverage of the POI’s base station so that the observation and 

transmission will not occur from the same place. Hence, from this point we focus on 

addressing the other three adversary threats. 

3.4.2 Risk Mitigation Strategies 

In this section, we discuss specific strategies to mitigate risks against the three types of 

adversaries identified above. 

3.4.2.1 Strategies against Type I Adversaries 

Type I adversary is a rival-minded AS who aims to challenge ApS and provide service on its 

own. The compromised AS in our system cannot pose a threat to location privacy, but has 

the actual information about POI-attribute association from the ORs accumulated. Thus, it 

can throw a service based challenge to our ApS.  

We propose to guard against Type I adversaries by dividing POIs in a region into 

several groups, each served by a dedicated AS. In Figure  3.4, two groups of POIs are used in 
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each region covered by a mobile base station. Now, in case an AS gets rival-minded to the 

ApS, it can never guarantee complete information about the whole scenario. Moreover, all 

the ASs of the system are compromised and collaborating with each other to give complete 

service is a too extreme case to assume. 

3.4.2.2 Strategies against Type II Adversaries 

The above methodology of dividing a region into several groups also serves the purpose of 

handling Type II adversaries. We propose that a user is allowed to either sense POIs from 

only one group or use separate user id for each group. As the adversary is unable to 

distinguish RApSs from different groups of users, any attempt to associate POIs to correct 

attribute will fail miserably unless in a rare situation the attributes of all correspondingly 

numbered POIs in all groups are same.  

ApS, however, can distinguish RApSs from different groups properly from the user id 

and, hence, can associate POIs to correct attribute. Allowing a user to report on the POIs of 

only one regional group using one user id is quite practical in the context of consumer price 

sharing since users would report on their own locality frequently. If a user frequently travels 

to another area, she may register with another user id for that area. In contrast, dividing the 

region into several groups is also good for keeping the computational complexity at a user-

friendly level.  

Moreover, the physical limitations of standing for a long period in a monitored public 

place can also play a defensive role against this adversary. Hence they are assumed not to be 

able to eavesdrop sufficient number of RApSs to decode the association of POIs to their 

actual attributes with reasonably high accuracy. 

3.4.2.3 Strategies against Type III Adversaries 

Type III adversary is actually a compromised network-friend that emerges as we introduce 

the mix network into the scenario. They capture the plain-text ORs and, thus, learn the 

correct attributes of one or more POIs. Although Type III alone cannot pose any risk to 

location privacy of the target victim due to absence of user id in the OR, she may collude 

with a Type II adversary to improve the decoding accuracy as follows. The Type III 

adversary may gain the correct attribute of one or more POIs by successfully intercepting 

some OR passed through the mix network. In the colluding scenario, this information is 

shared with the Type II adversary who can then either reduce the degree of anonymity (�) 
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for some AR by eliminating possible POIs in the list and/or improve decoding accuracy by 

effectively reducing the impossible set of POIs for each reported attribute.  

Risk analysis of location privacy by such a colluding pair of adversaries is a challenging 

task. We have performed thorough analysis as presented in the next section. 

3.5 Risk Analysis 

In this section, we discuss the risk evoked from introducing the mix network as they face 

different types of adversary attacks. First, analytical analysis on the probability of 

intercepting necessary OR to learn attributes of 0 ≤ Z ≤ 	 POIs by a Type II adversary are 

shown in Section  3.5.1. Then Section  3.5.2 quantifies the risk of disclosing the whereabouts of 

the targeted victim when the adversaries collude and this is done for the strictest scenario 

where the POI attributes are considered unique. Finally, in Section  3.5.3, the analysis is 

generalised by modelling the probability of attribute uniqueness and, then, extending the 

risk model using both interception and uniqueness probabilities.   

3.5.1 Interception Probability 

In the mix network scheme, OR flows unencrypted through a certain number of members in 

the mix network domain towards the AS. By definition a Type III adversary is likely to be a 

member of this network who may learn the attributes of some POIs through active 

participation within the network. The key factor behind the risk here is that whether or not 

the adversary is able to learn that POI’s (where its target is located) current attribute from its 

received data in random data flow through the mix network. To model this ability of 

adversary and its incurred risk on the whole system, we performed the following analysis.  

Let � be the number of total registered users in the system and for the sake of simplicity 

let us assume that each user preselects � network friends either at random or with the help 

of ApS. Let us also assume that ℎ is minimally set by the system such that any of the � users 

in the system remains equally likely to be the observer of an intercepted OR, i.e., �[\]9 <� ≤ �[\. Also note that to provide user anonymity the expected number of hops ℎ4 must be 

greater than 1 such that the immediate previous hop may avoid the risk of being exposed as 

the originator. So, we may conclude, 

 ℎ4 = max(2, blogf �g) = max h2, iln �ln �kl. ( 3.1) 
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Let �m denote the interception probability that the adversary’s intercepted reports contain 

attributes of 0 ≤ Z ≤ 	 distinct POIs. Using a simple simulation of the mix network the 

probability density function (pdf) of �m is estimated and the average results are reported in 

Section  3.6.2.  

3.5.2 Risk of Location Privacy with Unique Attributes 

Let the attribute of POI 1 at time > be $10. Suppose the Type II adversary of the colluding 

pair could somehow eavesdrop an RApS [W1, {1, 3, 6}: $10, >] from the target victim, W1. We 

are interested in estimating the probability of location privacy risk �/3.H that the Type III 

adversary would be able to intercept the relevant OR [1: $10] passing through the mix 

network. When this information is matched against the intercepted RApS, the location of the 

victim at time t will no longer be anonymized if attributes of POIs are unique. Although a 

very unlikely scenario, assuming unique attributes of POIs allows us to develop the analysis 

in a simple way first and then give us insight to extend it for the generalised non-unique 

scenarios in the next section. 

We can estimate the maximum risk from the following average-case analysis. As each 

OR is passed on to hp users on average and 
�	observations are made on average during the 

temporal window, in total 
�ℎ4 reports are seen by � users during this period, i.e., each 

user is expected to receive on average 
ℎ4	reports. As the adversary is one of the users and 

assuming that the ORs received by the adversary contains no duplication, maximum risk 

can be estimated as 

 �qrstuvw = 
ℎ4	 = 
		 iln �ln �k. ( 3.2) 

 As the likelihood of intercepting identical ORs by the adversary increases with 
, the 

actual (average) risk will be smaller than �qrstuvw for large 
. If the Type III adversary 

intercepts the attributes of 0 ≤ Z ≤ 	 POIs, then the chance of having the target attribute 

($10 in the above example) among these Z unique attributes is Z/	. Hence, we can calculate 

the expected risk as 

 �qrst = x Z	 �m .y
mz9  ( 3.3) 

Note that, the parameters		, �, and 
 are fixed for a specific system. The number of 

POIs 	 cannot be lower than the desired level of anonymity while it cannot be higher than 
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the number of POIs in a geographical proximity.  The typical value of 	 is in the range [4,8]. 
Population size � depends on the popularity of the scheme; while 
 is governed by the 

socio-economic and cultural behaviour of the users. By attenuating the only variable 

parameter	�, it is possible to design the mix network such that the maximum risk 

probability is within a user-defined threshold K, i.e., 

 �qrstuvw ≤ K. ( 3.4) 

Let �{ denote the average number of network friends per user such that relation  3.4 

holds. We may then conclude 

 i ln �ln �{k ≤ 	K
 ⇒ ln �ln �{ ≤ }	K
 ~ ⇒ �{ ≥ i�9 �y{� �� k. ( 3.5) 

 Corresponding simulation result with discussion is given in Section  3.6.3.  

3.5.3 Risk of Location Privacy with Non-unique Attributes 

So far we have assumed that attributes of 		POIs are unique. In real-world scenarios, 

however, this assumption is unrealistic as a number of POIs may share the same attribute 

among them. This is because, in any time period, attributes are drawn from a small domain 

or they are highly correlated. Therefore, it is important to develop a suitable model to 

estimate the probability of uniqueness of attributes. Without any loss of generality, we 

assume that attributes are drawn from the current values of 		POIs in the estimation of this 

probability. 

Let ��  denote the uniqueness probability that the attributes of � ∈ {1, … , 	 − 2, 	} POIs 

are unique. Note that � = 	 − 1 is an invalid statement. In order to estimate this probability, 

we need to develop a systematic way of identifying all possible templates of how the 

 
 

Figure  3.6: The general tree representing all possible templates of grouping 7 POIs into 
subsets of size two or more. 
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remaining 	 − �	POIs can be grouped into subsets of size two or more. Let us first consider 

a simple example where of all the 	 = 8 POIs only � = 1 will have a unique attribute. Then 

the remaining 	 − � = 7 POIs may have non unique attributes according to the possible 

templates as shown using a general tree in Figure  3.6. Note that as they exhibit non-unique 

attribute, the possible templates of grouping these 7 POIs into subsets starts from a 

minimum size of two, then more. Careful observation of the tree reveals that each node, 

representing a grouping where the subsets are ordered by size, may lead to other groupings 

in the next level by dividing the largest subset in the group into two subsets of size no less 

than the size of the preceding subset.  

Let us now calculate the number of ways in which these groupings can be achieved by 

assigning attributes to 	 POIs. Again, let us first consider a specific grouping 〈2,2,3〉 from 

the above example. The unique attribute (� = 1) can be drawn from 	 possible values in Iy9 J 

ways. Two attributes with same subset cardinality of 2 can be drawn from the remaining 	 − 1 possible values in Iy]9S J ways. The remaining attribute can be drawn from the 

remaining 	 − (1 + 2) possible values in Iy]�9 J ways. These four selected attributes can then 

be assigned to 	 POIs in y!S!S!�! ways.  

Considering total 	y possible ways, we can generalise the above observation to express 

group probability of the grouping 〈�9, … , �O〉 as 

 ��I�, 〈�9, … , �O〉J = �y��	y × � �	 − � − ∑ ℱ〈.�,…,.�〉(�)�]9�z9ℱ〈.�,…,.�〉(?) ��ℱ〈��,…,��〉�
�z9 × 	!∏ �� !O�z9  ( 3.6) 

where ℱ〈.�,…,.�〉 denotes an array of frequencies of distinct elements in 〈�9, … , �O〉. The tree 

construction algorithm can now be generalised to calculate the �-uniqueness probability as  

 �� = ���C(〈	 − �〉), � ≤ 	 − 2;��C(〈	〉), � = 	;0, otherwise  ( 3.7) 

where 

 ��CI〈�9, … , �O〉J = ��I�, 〈�9, … , �O〉J + x ��CI〈�9, … , �, �O − �〉J}.�S ~
Hz@ABIS,.�¡�J .	 ( 3.8) 
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 Let us now formulate location privacy risk when attributes of � POIs are unique and the 

Type III adversary has already intercepted attributes of Z POIs. If the colluding Type II 

adversary eavesdrops a RApS from the target victim containing attribute $10, we are 

interested in estimating the risk that the associated POI, i.e., the whereabouts of the victim, 

is exposed. In short, risk arises for the situation of the desired attribute’s being intercepted 

and being unique as well. Let 8¢  be the set of � unique attributes and 8£ be the set of τ 

intercepted attributes. Risk to location privacy exists iff $10 ∈ 8¢ as well as $10 ∈ 8£. The 

probability of $10 ∈ 8¢  is �y and that of $10 ∈ 8£  is my. Considering that the colluding 

adversaries working in disjoint domain, Type II intercepting RApSs and Type III 

intercepting ORs, these two probability can also be assumed disjoint to estimate the risk of 

location privacy as the product of these two probabilities, i.e., �my¥.  

We can now estimate the expected risk for non-unique scenarios as 

 �/3.H = x x �Z	S ���my
�z9

y
mz9 . ( 3.9) 

Note that in the unique scenario, domain of � is a single value 	 and �� = 	1. 

Substituting these equalities in  3.9 transforms it into  3.3. 

3.6 Results and Discussion 

In this section, we present simulation results to validate a number of key findings 

throughout this chapter. The simulation setup is described in Section  3.6.1 followed by 

various simulation results to find interception probability in Section  3.6.2. Then in 

Section  3.6.3 a simulation guideline to control maximum risk probability is shown, followed 

by a presentation of the unique attribute probability distribution function in Section  3.6.4. 

Finally, a comparison of risk probability when attributes are unique and non-unique is 

presented in Section  3.6.5.  

3.6.1 Simulation Setup  

To improve simulation accuracy each simulation was repeated 1000 times and for each 

setup, each user randomly selected � network friends out of � − 1 other users and randomly 

selected 
� users then observe POIs at random and send ORs to the AS using a chain of 

network friends of expected length ¦§¨ ©§¨ fª as estimated in ( 3.1). We have considered	� ∈
{100,10000}, representing small and large PSS, respectively and number of network friends 
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used by each user is carefully controlled so that the comparable average number of hops ℎ4 

can be achieved for both populations using the minimum number of network friends. For � = 100, we have used � ∈ {3,10} and for � = 10000, we have used � ∈ {7,100} to effectively 

guarantee ℎ4 ∈ {5,2} for both populations. To simulate a real-world environment, we have 

introduced observation rate 
 such that at any observation period, 
� random users report 

sensed data.  

3.6.2 Interception Probability Distribution 

In our simulation, each user maintains a list of POIs from which it could find attributes from 

 

 

Figure  3.7: Interception probability distribution for � = 10000, 	 = 8, and � = 7 at 
 ∈ {0.1,0.2,0.3}. 

 

 

Figure  3.8: Expected number of intercepted POIs at 
 = 0.3. 
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messages passed through it, which eventually allows the simulation to calculate the pdf of �m. In Figure  3.7, we have plotted the interception probability distribution for � = 10000, 	 = 8, and � = 7 at 
 ∈ {0.1,0.2,0.3}. Notice how the distribution profile is shifted to right as 

observation rate is increased. Ultimately, the expected number of intercepted POIs, ∑ Z�mymz« , 

is increased from 0.48 to 1.58. Note that even at 30% observation rate, which is quite high, 

compared to a real-world rate, the expected number of intercepted POI just 20% of all POIs. 

Figure  3.8 presents the expected number of intercepted POIs by a Type III adversary for 

different values of	�, 	, and � at 
 = 0.3. Clearly, the number increases with n and/or 	 and 

decreases with � when other two parameters remain static. Note that the average number of 

hops used by the system decreases with �	and, hence, the total number of messages 

potentially intercepted by the adversary is also reduced. We have deliberately used the 

minimum possible �	for both population (10 and 100 for population 100 and 10000, 

respectively) to operate with the minimum possible expected hop count, i.e., 2 to estimate 

the minimum possible risk. We have observed that the minimum possible expected number 

of intercepted POIs is insensitive to � and		. For 	 = 8 and	� = 10000, attributes of only 7% 

POIs may be intercepted by an adversary and to achieve this, each user needs to assign 

merely 1% of the population as network friends. 

3.6.3 Attenuating Maximum Risk Probability  

Table  3.1  presents the lower bound on �«.9 for different n and ω with 	 = 8. Clearly, we 

need to assign more network friends per user to keep the risk low as the observation rate 

increases. However, the overhead of increasing F is minimal. The storage requirement of the 

network friends’ user ids is also not an issue with the use of very cheap solid-state memory. 

 

 

Table  3.1: Lower Bound on Number of Network Friends so that Maximum Risk 

Probability ≤ 0.1, i.e., �«.9 when 	 = 8. 

®	 No of users, ¯ 

100 1,000 10,000 100,000 1,000,000 

0.1 2 3 4 5 6 
0.2 4 6 10 18 32 
0.3 10 32 100 317 1000 
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3.6.4 Unique Attribute Probability Distribution 

Figure  3.9 plots the unique attribute probability distribution, ��  for 	 ∈ {4,6,8}. Here we see 

that POIs having non-unique attributes is actually a practical scenario. All the POIs having 

an unique attributes is a very rare case. When 	 = 4, it is highly probable (55%) that only 2 

of them have unique attributes. All the four unique attributes may occur in only  9% cases.   

 

Figure  3.9: Uniqueness probability distribution for 	 ∈ {4,6,8}. 
 

 
(a) 	 = 4 and � = 100 
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(b) 	 = 8 and � = 100 

 
(c) 	 = 4 and � = 10000 

 

(d)		 = 8 and � = 10000 
Figure  3.10: Location privacy risk �/3.H  for unique and non-unique attributes. 
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3.6.5 Unique vs Non Unique 

Here, we present our results on location privacy risk �/3.H due to the mix network for both 

unique and non-unique attribute scenarios. We have considered		 ∈ {4,8}, as the 

computational complexity of the decoder to be presented in the next chapter is significantly 

high for larger		, and � ∈ {100, 10000}, representing small and large PSS, respectively. The 

number of network friends used by each user is minimally set so that the average number of 

hops for both population sizes remains the same. For � = 100, we have considered � ∈{3,10} and for � = 10000, we have used � ∈ {7,100} needing 5 and 2 hops on average, 

respectively, to provide user anonymity across the entire population. In all cases, we have 

considered user participation rate 
 in the range [0.05, 0.3]. 
Figure  3.10 presents �/3.H  for four different setups. In all cases, the location privacy risk 

increases almost linearly with 
. When the number of network friends per user is adjusted 

so that the mix network operates with a fixed average number of hops, the risk is almost 

independent of � as observed in Figure  3.10(a) vs Figure  3.10(c) and Figure  3.10(b) vs 

Figure  3.10(d). In all cases, the risk decreases with 	. Moreover, the risk is almost halved 

when attributes are considered non-unique, which is indeed the real-world scenario. For 	 = 4, location privacy risk is below 6% for the entire range of user participation rate and 

for 	 = 8, the risk is below 3%. So, we may fairly conclude that the location privacy risk due 

to the introduction of the mix network to provide user anonymity while communicating 

with the AS is very small. 

3.7 Conclusion 

In this chapter, we have presented our proposed system architecture of PSS along with the 

flow of information among different entities. We have introduced the system entities needed 

to design a privacy-protection scheme for the users of PSS. The basic concept of subset-

coding technique that was developed as the basis of the anonymization techniques to be 

presented in subsequent chapters is also discussed here. Finally, different potential 

adversary risks are discussed in a detail analysis of location privacy risk. We have found 

that location privacy risk in our approach depends on number of POIs, user population size, 

user participation rate, and the number of network friends used by each user. We have also 

observed that the risk is almost halved when observed attributes are non-unique and, more 
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importantly, the risk can be reduced to a very low level by simply expanding the network 

friend list of each user. 

In the next chapter, we present the subset-coding based k-anonymization schemes that 

achieve the desired data quality at the target end even with a reasonably small number of 

user observations.    
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V{tÑàxÜ  G 

4 Probabilistic Techniques to Achieve 

Location Privacy and Data Quality 

In the previous chapter, the system architecture of PSS was presented along with the 

concept of a novel subset-coding technique. In this chapter, we develop a greedy k-

anonymization scheme that works on that architecture using subset-coding. The 

experimental results presented in the final section of this chapter supports that availing 

greedy techniques for optimization is sufficient for this particular problem scenario. Being a 

voluntary system, it is quite likely that the collection of information will not be very 

extensive. Keeping this in mind, we aim to guide the anonymization scheme in a 

probabilistic manner such that the decision made by ApS, on the basis of current collection 

of information, should reflect the actual scenario for the majority time of this service. The 

primary goal of designing the anonymization scheme is to ensure high data quality from a 

reasonably small number of observation reports. The relevant optimization and 

implementation challenges to achieve this goal are also addressed.  

The rest of this chapter is organised as follows. In the introductory Section  4.1, we 

outline the goals to be achieved and the contributions presented in this chapter. Section  4.2 

presents our preliminary anonymization scheme which was improved in Section  4.3. In 

Section  4.4 the implementation issues are discussed that are validated with simulation in 

Section  4.5. Finally, Section  4.6 concludes the chapter. 

4.1 Introduction 

The combined challenges of protecting location privacy of the participants in a PSS and, at 

the same time, ensuring a high quality of data at the desired end are significantly difficult. 



Chapter  4. Probabilistic Techniques to Achieve Location Privacy and Data Quality 

78 

 

Most of the existing techniques try to address this challenges by designing anonymization 

algorithms to determine spatial cloaks containing at least k POIs. For example, in  [36] a user 

reports the centre of a tile consisting of at least � POIs or alternatively their mean location as 

the location of the reported POI. The server associates this report with the nearest POI in the 

tile. Clearly, this work did not consider the potential damage of data quality. It has been 

shown in  [34] that the proposed solution in  [36] can achieve on average 1/� data integrity, 

i.e., the server is able to correctly associate POIs on average 1/�-th time, which is a 

significantly poor performance especially for reasonable high anonymity. In our case, the 

subset-coding technique is used so that each observation from a participant can be 

transmitted with sufficient anonymity, whereas the data collector can de-anonymize 

individual data only through the joint decoding of the entire collection.  

Since some of the POIs in many PSS application scenarios may be located in remote 

places, the number of observers of those is likely to be small. Furthermore, the observed 

attribute is likely to vary at certain intervals. For example, in PetrolWatch, the price of petrol 

fluctuates quite frequently. These add more complexity to the problem that the challenges 

need to be satisfied with a small number of observations. Consequently, the anonymization 

algorithm has to address new dimensions while forming each individual AR. The AS would 

perform this task by using the knowledge of already generated ARs. In this chapter, we 

present such an anonymization algorithm using a probabilistic greedy heuristic that aims to 

provide sufficient data quality at the ApS even with a small number of ORs. Note that all the 

terms AR, AS, ApS, OR were introduced and defined in Chapter 3 and retain the same 

meaning throughout this thesis. 

From the basic concept of joint decoding, as illustrated in the previous chapter, we know 

that the more anonymized observations are received the number of conforming tuples are 

 
Figure  4.1: Two different working regions of proposed greedy techniques. 
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reduced. Using our greedy heuristics we aim to optimize the anonymization techniques 

such that the joint subset decoding performance can be maximized with the minimum 

number of observations. Figure  4.1 shows how the decision making on the basis of joint 

subset decoding is dictated by the current status of total number of conforming tuples. 

Before reaching a single line we can make a decision probabilistically, which aims to reflect 

the actual scenario for the majority of time during the service. When it reaches single 

conformity, we can make a singular decision deterministically. We want to optimize the 

majority decision probabilistically and the singular decision deterministically (as shown in 

Figure  4.2). This chapter will focus on the probabilistic approach and the deterministic one 

will be discussed along with a comparative analysis in the next chapter. 

The preliminary concept of subset coding and its application by greedy anonymization 

was first introduced by us in  [33]. We titled this probabilistic approach Basic Greedy 

Anonymization Scheme (BGAS). At the time, the necessity for enhancement of this scheme 

was gained from our observation that to ensure the highest degree of anonymity, i.e., � = 	 − 1, the number of observations required to decode the correct POI-attribute 

association may be deemed impractical. From this consideration, we explored several 

optimization issues and developed an Enhanced Greedy Anonymization Scheme (EGAS)  [34]. 

Both the schemes use probabilistic methods to perform the decoding and, hence, are jointly 

named the Probabilistic Greedy Anonymization Scheme (PGAS). These use a majority decoding 

 

Figure  4.2: Two different approaches of proposed greedy techniques. 
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technique which operates based on the ability of matching the correct attribute with the POI 

in majority of the cases. In this chapter, we present both these schemes and compare their 

performance in terms of their achieved data quality. Our key contributions in this chapter 

are outlined below: 

• Developing a probabilistic greedy anonymization algorithm BGAS to achieve 

high data quality after joint-decoding at the target end, 

• Improving the anonymization to EGAS by designing a number of optimization 

strategies to ensure data quality even with a small number of observations, 

• Analysing the transient impact of change in the attribute of POIs. 

Finally, extensive simulation results are presented to establish the applicability of our 

proposed approach. 

Now, we present the proposed greedy anonymization techniques and also show how 

the anonymized reports are decoded jointly, using the concepts of subset-coding and joint 

decoding presented in Section  3.3. 

4.2 BGAS 

In this section, we first present the concept of BGAS. We then present BGAS formally along 

with the algorithms for its anonymization scheme and decoding scheme. Section  4.2.1 

provides a brief introduction to the concept of BGAS followed by relevant algorithms in 

Section  4.2.2. Finally, in Section  4.2.3 our proposed scheme is compared to a contemporary 

approach from the viewpoint of data integrity performance. 

4.2.1 Concept of BGAS 

For anonymization of each report from MN, the AS will generate a new subset. This tries to 

augment the already developed optimal subsets derived from past reports, provided that in 

using the subsets developed so far, the actual price retrieval performance can be maximized 

overall. Let there be 	 numbers of POIs whose prices are uniquely defined. Our AS receives 

the actual price and the corresponding POI from the MN. To make a report with k-

anonymity, the actual POI can be anonymized with any � − 1 out of the remaining 	 − 1 

POIs. For the very first input of price, the AS has nothing much to do and it can randomly 

pick any combination to construct the AR. From the second input and onwards, it is found 

that carefully picking � − 1 POIs can lead to significant revelation towards the actual prices 



Chapter  4. Probabilistic Techniques to Achieve Location Privacy and Data Quality 

81 

 

of the POIs. Our algorithm takes the advantage of this hypothesis. From all the possible 

subsets, it selects the subset which, after being added to the subsets already sent to the ApS, 

gives the maximum match of deduced prices against the actual ones. In this way, individual 

location privacy is preserved, while at the end the application server can also declare the 

prices of the POIs with an acceptable level of data integrity.  

Considering the example of PetrolWatch with 	 = 4 and � = 2, let us observe Figure  4.3 

where one-by-one six ARs are generated in the AS with six incoming ORs. In the figure, (i) 

the root represents the first observation; (ii) each node in a level represents one of the 

possible ARs for the observation made in the above level, and (iii) the next observation is 

written along with the selected AR in that level. The solid edges of the tree refer to the 

number of match of prices for the given OR. It is clear that at each step the AR with the 

maximum match is selected to be appended with the next level subset derived from the next 

input. In the case of more than one subset exhibiting a maximum match, any one is chosen 

to be the selected subset.   

 

Figure  4.3: Subset generation procedure in BGAS. 
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Let us assume that the AS has already generated five ARs using this approach. For a 

better understanding we have taken a very simple example. Now we will see how the 

algorithm actually works by observing the selection and introduction of the sixth AR upon 

receiving the sixth OR. Let the first five OR be as follows: 

[1, $10]	 [	3, $15]	 [	1, $10]	 [	2, $20]	 [4, $25]	
The anonymized and selected ARs so far reported for these five ORs are: 

{1,4}: $10		 {2,3}: $15	 {1,4}: $10	 {2,4}: $20	 {1,4}: $25	
Only the following price permutations satisfy the conditions in all the above five ARs: 

�M-	1	 �M-	2	 �M-	3	 �M-	4	$10	 $20	 $15	 $25	$25	 $20	 $15	 $10	
 

Then comes the sixth OR as	[1, $10]. For achieving 2-anonymity the AS can consider 

anyone of the following three possible ARs: 

{1,4}: $10		 {1,2}: $10	 {1,3}: $10	
The task of our algorithm is to check which AR leads to the maximal actual price 

retrieval ratio after being added to the five ARs and then to select that one.  

At first the AR {1,4}: $10 is considered. It will only pick the permutations that validate 

either		[4, $10] or	[1, $10]. Thus, the table remains the same as before and the number of price 

occurrences against the POIs is given in the following association matrix. According to this 

matrix, the prices of POIs 1 and 4 are indeterminable, but the prices of POIs 2 and 3 

correspond to the actual, leading to two matches. 

	 �M-	1	 �M-	2	 �M-	3	 �M-	4	$10	 1	 0	 0	 1	$20	 0	 2	 0	 0	$15	 0	 0	 2	 0	$25	 1	 0	 0	 1	
After applying the second possible AR {1,2}: $10 or the third one {1,3}: $10 only the 

following permutation survives: 

 �M-	1	 �M-	2	 �M-	3	 �M-	4	$10	 $20	 $15	 $25	
With the following association matrix: 

	 �M-	1	 �M-	2	 �M-	3	 �M-	4	$10	 1	 0	 0	 0	$20	 0	 1	 0	 0	$15	 0	 0	 1	 0	$25	 0	 0	 0	 1	
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Clearly, the prices of all POIs can be decoded, leading to four matches. 

From the above results, it is clearly evident that both the ARs {1,2}: $10	and	{1,3}: $10 

can give the best revelation towards the actual prices of the POIs. Therefore our greedy 

algorithm selects the best performing AR considered first, that is, {1,2}: $10 in this step and 

follows the same approach for the next reports. 

4.2.2 The Decoding and Anonymization Algorithms 

Now, we formally present BGAS. The approach is a greedy one as it picks the best choice of 

the next rule in every step.  The scheme basically comprises two algorithms: one for 

anonymized rule generation and the other for decoding these anonymized messages. On the 

one hand, the decoding algorithm, Algorithm 4.1 will be used by ApS and also by the 

adversaries. On the other hand, AS will use the anonymization algorithm, Algorithm 4.2, 

which inherently uses the decoding algorithm. Before describing the algorithms in detail, we 

first define some essential terms. 

Definition  4.1 (Possible Anonymization Subsets): Possible Anonymization Subsets (PAS) are 

the anonymized subset parts of all possible ARs corresponding to a particular POI for a fixed � 

and 	. The total number of PAS corresponding to a POI is	Iy]9H]9J. 

 

�$83{9,…,y},H
= °∅, if	� ≥ |	| ∨ � ∉ {1, … , 	}¶{�, �9, … , �H]9}|{�9, … , �H]9} ⊂ {1, … , 	} ∖ {�}¸, otherwise  

( 4.1) 

Definition  4.2 (Possible Attribute Assignment Set): A Possible Attribute Assignment Set 

(PAAS) is a set of all possible permutations of the known attributes with corresponding POIs. 

Each individual of this set is a possible POI-attribute association permutation. So, the 

mathematical notation of PAAS can be denoted as, 

 �	 ≡ 〈49,4S, … , 4y〉, ( 4.2) 

where 43 ∈ ¶29, 2S, … , 2y¸ ∧ 43 ≠ 4O, iff � ≠ º. 

Definition  4.3 (Conforming Attribute Assignment Set): A Conforming Attribute Assignment 

Set (CAAS) is a subset of PAAS where conforming 	 price tuples are listed eliminating the non-

conforming ones, each time an AR is generated. So,&$$8»{ ⊂ �$$8 and the operation of checking 

the conformity of a generated AR is performed as follows, 
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 � ⊕ $K3 = ½�, �¾ ¿(43� = 23	)H
Oz9 ;

∅, otherwise.  ( 4.3) 

It means that when found conforming to the generated AR, the set of permutation is 

returned as it is. Otherwise, this operation returns a null set. Each permutation of PAAS is 

checked against a generated AR and only the conforming ones constitute the CAAS as given 

below, 

 &$$8»{À = Á �$$8O
y!

Oz9 ⊕ $K3  ( 4.4) 

Definition  4.4 (Anonymized Rules Set): An Anonymized Rules Set (ARS) is a set of generated 

Algorithm 4.1: ('29, … , '2y) = Decode_BGAS (	, �, $K8) 

Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � 

• Set of ARs, $K8 = ($K9, … , $K@) where $KO ≡ ¶�O9, … , �OH¸: 23�|�O ∈ ¶�O9, … , �OH¸ for all 1 ≤ º ≤ � 

Output:  

• Decoded attributes, ('29, … , '2y). 
1. Set $ = {Â|∃�� ∈ �$8: (��: Â) ∈ $K8} 

2. IF |$| < 	 THEN 

3. Set $ = $ ∪ {−1, … , −(	 − |$|)} 

4. END IF 

5. Let (Â1 , … , Â	) be any arbitrary ordering of $ 

6. Set & = {,9, … , ,y!}, where ,3 = I,3,9, … , ,3,yJ is a unique permutation of (Â9, … , Ây) for all � 
7. FOR each $K ∈ $K8 DO 

8.  Set & = &⨁$K 

9. END FOR 

10. IF |&| > 0 

11.  FOR � = 1, … , 	 DO 

12.   Set '23 = ÇmodeI¶,9,3 , … , ,|É|,3¸J, if	modeI¶,9,3 , … , ,|É|,3¸J ≥ 0	and	unique−∞, otherwise  

13.  END FOR 

14. ELSE 

15.  Set '23 = ∞ for all 1 ≤ � ≤ 	 

16. END IF 

   



Chapter  4. Probabilistic Techniques to Achieve Location Privacy and Data Quality 

85 

 

ARs selected so far by the greedy algorithm of AS.  

 &$$8»{Í = &$$8¶»{�,…,»{�¸ = Î &$$8»{�
O

3z9 . ( 4.5) 

Each time a new AR is generated and is included in the ARS, the CAAS is updated as 

given below, 

 &$$8»{Í⋃{»{} = &$$8»{Í⋂&$$8»{ . ( 4.6) 

Algorithm 4.1 collects all attributes and adds dummies (negative values), if necessary 

(steps 1-5). It then disregards the permutations that are non-conforming to any $K ∈ $K8 

from the set of all possible permutations (steps 6-9). Finally, it decodes for maximal 

probability using unique majority or indicate not-yet-decodable (steps 10-12) or declare 

contradiction (steps 15) when there no permutation survives. 

Lemma  4.5. Computational complexity of Algorithm 4.1 is M(	y). 

Algorithm 4.2: $K = Anonymize_BGAS (	, �, &(Â9, … , Ây), &$K8, E ≡ [�, 23])	
Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � 

• Actual attributes of all POIs from recent observations, (Â9, … , Ây); if attribute of any POI � is yet to be observed, Â� is set to its unique dummy value – � assuming that real 

attributes are always mapped to positive values  

• Set of already generated ARs, $K8 

• Observation report E ≡ [�, 23], 1 ≤ � ≤ 	  

Output:  

• Anonymized rule $K ≡ {�9, … , �H}: 23|� ∈ {�9, … , �H}  

1. IF Â� ≥ 0 

2.  Set 2� = −2� 
3.  Set $K8 = ∅ 

4.  Set (Â1 , … , Â	) = (−1, … , −	) 

5. END IF 

6. Set Â� = |2�| 

7. Set �� = argmax∀..∈Ó»ÍÀ{�,…,Ô},Õ|{ÂF|1 ≤ > ≤ 	 ∧ ÂF ≥ 0 ∧ '2F = ÂF}|  
where ('21 , … , '2	) = Ö×ØÙÚ×_ÜÝÞ�(	, �, $K8 ∪ {(��: Â�)}) 

8. Set $K = (��: 23) 

9. Set $K8 = $K8 ∪ {$K} 
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Proof. : Let the time complexity of the algorithm be ß(	). Lines 11 – 13 represent the most 

dominating computation. Line 12 takes M(	!) time as |&| = 	!. This operation is repeated 

for 	 times as shown in line 11. Hence, the total complexity of the algorithm, ß(	) =M(	 × 	!) = 	M(	y).           ■ 

The anonymization algorithm starts with a null set of already generated ARs, $K8. Then, 

the algorithm 4.2 removes all past observations when any attribute fluctuation is detected, 

which is then reported by encoding the attribute with a negative sign (steps 1-5). Then, it 

records the new attribute in step 6. Finally, it constructs AR using a subset that achieves 

maximum-possible decodability using maximal probability decoding (steps 7-9). 

Lemma  4.6. Computational complexity of Algorithm 4.2 is M(	y). 

Proof. : Let the time complexity of the algorithm be ß(	). Line 7 represents the most 

dominating computation. Here, the decoder is called for each subset in �$8 and à�$8�{1,…,	},�à ≤ I	−1�−1J = M(2	),	for	� = 	2  as it represents the worst-case scenario. From 

Lemma  4.5, the time complexity of Ö×ØÙÚ×_ÜÝÞ�(	, �, $K8) is M(	y) Hence, the total 

complexity of the algorithm, ß(	) = M(2y × 	y) = 	M(	y).      ■ 

As we have discussed earlier, AS covers a small locality with a small number of 

particular types of POIs like petrol station, hospital, super store, etc. are natural. Therefore, 

the value of 	 should not exceed 7 and hence it may handle this high computational 

complexity.  

4.2.3 Data Integrity Performance 

Among existing privacy preservation techniques, we chose the one proposed by Huang et 

al.  [36] to compare with as their proposed scheme also applied k-anonymization for 

protecting location privacy. A brief description of their method was given in Chapter  2 and 

in that scheme	� POIs were reported by a single point (centre of their tile or alternatively the 

mean of the equivalence classes). Consequently, only 1/� POI was correctly reported, which 

is the actual price retrieval rate of that scheme. The detail of the performance comparison is 

presented in Section  4.5.2. 



Chapter  4. Probabilistic Techniques to Achieve Location Privacy and Data Quality 

87 

 

4.3 EGAS 

In this section, we first present the concept of EGAS. Then we investigate a number of 

optimization issues to improve the quality of decoded data and present EGAS formally 

along with a discussion on how it differs from BGAS. Section  4.3.1 gives a brief introduction 

to the concept of EGAS. Some optimization issues are addressed in Section  4.3.2 followed by 

relevant algorithms in Section  4.3.3 4.3.3.  

4.3.1 Concept of EGAS  

BGAS and EGAS differ in their methods of AR selection. In BGAS, ARs are selected such 

that maximal POIs can be associated by majority consideration with their correct attributes. 

In contrast, EGAS select ARs such that the currently observed POI can be associated with its 

actual attribute by the majority. First, we need to find all possible 	-tuples of attributes 

conforming to all ARs in the set. Then, each POI is associated with the majority attribute in 

those tuples. If there is more than one majority attribute, the POI is associated with none. 

Consider the same example of PetrolWatch with four POIs having prices of $10, $20, $15, and 

$25, respectively, as considered for BGAS in Section  4.2.1. Let us assume that the same 

 
 

Figure  4.4: Subset generation procedure in EGAS. 
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observation sequence is considered here as was considered when illustrating BGAS, which 

is, [1, $10], [3, $15], [1, $10], [2, $20], [4, $25], and [1, $10]. In response to this how the AS 

generated corresponding 2-anonymous ARs is demonstrated here. Note that the term 

decodability is defined in Definition  3.3.  

Figure  4.4 depicts a concise representation of the above example in the form of a tree 

where (i) the root represents the first observation; (ii) each node in a level represents one of 

the possible ARs for the observation made in the above level; and (iii) the next observation is 

written along with the selected AR identified by the darker node in that level. Whether an 

observation is correctly decoded or not using the set of ARs following the path from the root 

up to a node in the level below the observation is denoted respectively by a solid or dashed 

link to that node. If a node is repeated in a level above to it, no link is drawn. 

As compared to the six ARs required in BGAS to reach full decodability, here only five 

2-anonymous ARs {1,4}: $10, {1,3}: $15, {1,3}: $10, {1,2}: $20, and {1,4}: $25 for the respective 

ORs are found enough to reach full decodability, i.e., all four POIs can be associated with the 

correct price. 

Let us now demonstrate how a set of ARs for price reports can be generated by EGAS 

so that 4-decodability is achieved. When the first observation report [1, $10] is received by 

the AS, it uses three dummy prices so that the possible ARs can be ranked based on whether 

or not the observed POI can be associated with the correct price. As all the three possible 

ARs,{1,2}: $10, {1,3}: $10, and {1,4}: $10 can correctly associate price $10 to POI 1 using 

majority decoding (in each case, there are 12 conforming 4-tuples with the majority of six 

having $10 associated with POI 1), the AS randomly selects the AR {1,4}: $10 in response to 

this OR.  

When the second OR [3, $15] arrives, the AS needs to use only two dummy prices. 

Again, all three possible ARs,{1,3}: $15, {2,3}: $15, and {3,4}: $15 can correctly associate the 

price $15 to POI 3 using majority decoding when used in conjunction with the previously 

generated AR {1,4}: $10. Hence, the AS randomly selects the AR {1,3}: $15 in response to this 

observed report. 

As the third OR [1, $10] is a repeat of the first received OR, the AS still needs to use the 

two dummy prices. This time, out of the three possible ARs, the previously generated AR {1,4}: $10 is excluded from the choice. This is shown in Figure  4.4 by drawing no link to the 
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AR excluded from consideration. As the remaining two possible ARs can correctly associate 

price $10 to POI 1 by majority, the AS randomly picks up AR {1,3}: $10. 

When the fourth observation [2, $20] arrives the AS now knows three prices and hence 

needs to use only one dummy price. Among the three possible ARs only the two ARs {1,2}: $20 and {2,3}: $20 can correctly associate the price $20 to POI 2 when used together 

with the previously generated three ARs. The third AR is shown in Figure  4.4 by drawing a 

dashed link to the AR not fulfilling the majority decoding requirement. Let us assume that 

the AS randomly picks the AR {1,2}: $20 in response to this observation. 

When the final observation [4, $25] arrives, AS no longer needs any dummy price and 

any of the three possible ARs can associate the price $25 to POI 4 correctly by the majority 

decoding when is used along with the previously generated four ARs. Indeed, these five 

ARs can now successfully associate all POIs to correct prices. 

In Table  4.1, conforming price 4-tuples are shown each time an AR is generated. Note 

that the number of tuples gradually decreases with the number of ARs. By adding a new 

AR, some of the existing conforming tuples no longer remain conforming to the new set of 

Table  4.1: Conforming Tuples of Gradually Generated AR Set where Dummy Attributes 
are Identified with Leading ' 

 

ARS 

{1,4}: $10 

{1,4}: $10 {1,3}: $15 

{1,4}: $10 {1,3}: $15 {1,3}: $10 

{1,4}: $10 {1,3}: $15 {1,3}: $10 {1,2}: $20 

{1,4}: $10 {1,3}: $15 {1,3}: $10 {1,2}: $20 {1,4}: $25 

&$$8»{Í 

($10, '1, '2, '3) ($10, '1, '3, '2) ($10, '2, '1, '3) ($10, '2, '3, '1) ($10, '3, '1, '2) ($10, '3, '2, '1) ('1, '2, '3, $10) ('1, '3, '2, $10) ('2, '1, '3, $10) ('2, '3, '1, $10) ('3, '1, '2, $10) ('3, '2, '1, $10) 

($10, '1, $15, '2) 	($10, '2, $15, '1) ('1, '2, $15, $10) ($15, '1, '2, $10) 	($15, '2, '1, $10) ('2, '1, , $15, $10) 

($10, '1, $15, '2) 	($10, '2, $15, '1) 

 

($10, 20, $15, '1) ($10, 20, $15, $25) 
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ARs. Effectively, only the tuple representing correct POI-attribute association for all POIs 

survives. 

4.3.2 Optimization Issues in EGAS 

In this section, we investigate three aspects of optimization to improve decodability of the 

data at ApS with fewer observations. Section  4.3.2.1 presents a theorem with its proof 

followed by some reasons behind choosing the local search direction in Section  4.3.2.2. 

Finally, in Section  4.3.2.3, another intuitive optimization issue of joint anonymization of 

multiple observations is explored. 

4.3.2.1 Recurrent Observations 

In BGAS, all possible Iy]9H]9J ARs are considered for each new observation, whereas EGAS 

only considers ARs that are not included in the generated set of ARs. This is significant in 

reducing the total number of observations needed to achieve full decodability with a high 

degree of anonymity. The right-most node in level 3 of the AR generation tree in Figure  4.4 

is not considered by EGAS despite being capable of associating price $10 with the recently 

observed POI 1. BGAS will pick up this node with a probability of 1/3. With a large 	 and �, 

there will be many such repeating nodes in the tree and the probability of picking these 

nodes by BGAS increases accordingly. Selecting repeating ARs by the AS cannot improve 

decodability as proved by the following theorem. 

Theorem  4.7. Performance of the decoder is independent of the order of ARs and duplicate ARs do 

not improve the performance. 

Proof. Irrespective of the order of ARs, the conforming attribute N-tuples are fixed for the 

set of ARs and duplicate ARs neither make any non-conforming tuple conforming nor 

does it cause any conforming tuple to become non-conforming. ■ 

Note that in our example, had AR {1,4}: $10 been selected for both the observations of 

POI 1, the set of conforming tuples would have remained unchanged when the second 

observation is processed, whereas the proposed EGAS successfully reduced the size of the 

set from 4 to 3 as the 4-tuple ('1, $20, $30, $10) no longer remains conforming as shown in 

Table  4.1. 
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4.3.2.2 Local Search Direction 

In selecting the best AR from a list of possible ARs, BGAS selects the one that would lead to 

associate the maximum number of POIs with their correct attributes by majority decoding, 

whereas EGAS selects the one that would guarantee the correct association of attributes to 

the currently observed POI only. From a different viewpoint, the greedy local search in 

BGAS and EGAS is performed respectively with global and local optima objectives.  

A greedy algorithm is a problem solving heuristic of making the locally optimal choice 

at each stage of a process with the hope of finding the global optimum. Although the greedy 

algorithm often fails to produce the optimal solution when it reaches a local plateau, this is 

not the case if the problem space has a convex surface such as the problem of subset 

anonymization. In this problem, the number of conforming tuples is monotonically non-

increasing irrespective of the search technique used. A hill-climbing greedy algorithm such 

as EGAS, which attempts to find a better solution by incrementally changing a single 

element of the solution, is well-suited for optimizing over convex surfaces and converges to 

the global maximum quicker  [37]. Whether performing a local search with a global or local 

optima objective makes any substantial difference in the final outcome depends on the 

problem in hand and any analytical modelling to justify the preference is hard. Instead we 

opt for the following empirical analysis.  

As observations are made at random with independent observers, the probability 

distribution of a sequence of �	observed POIs is difficult to model. However, we can use the 

following two specific sequences to represent the ideal and extreme cases: 

 8=�3áâA�(�) = 〈1,2, … , 	, 1,2, …ãääääåääääæç 〉.	 ( 4.7) 

  

 8=�âBF/â@â(�) = 〈1, … ,1ãåæbç/yg , 2, … ,2ãåæbç/yg , … , 	, … , 	ãäåäæèç/yé 〉.	 ( 4.8) 

The proposed algorithm selects an AR at random from a set of possible ARs that 

maximises the selection criteria (global or local optima objective). As a result, a sequence of 

observation can result in many possible sets of ARs depending on the selection criteria. It is 

observed that using global optima objective prunes the search tree significantly at the 

beginning, whereas using local optima objective prunes the search tree at a much lower 

level. Consequently, the number of possible sets of ARs for a given sequence of observation 

is much smaller when local optima objective is used. 
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We have generated ARs for the above two sequences of various lengths with different 

values of 	 and �. In all cases, tens of thousands of iterations were carried out and the mean 

decodability and the percentage of iterations achieving full decodability were estimated. 

Although we observed the same trend in all cases, for the sake of brevity, we present the 

results for 	 = 4, � = 3, and � = 9 in Table  4.2. Clearly, using local optima objective, as we 

have introduced in EGAS in which the correct association of attribute to only the currently 

observed POI is checked, is superior to using global optima objective where the maximum 

number of POI-attribute association is preferred. Note that the performance of the local 

objective is significantly better in the ideal sequence of observations. In Section  4.5.3, we will 

present a detailed comparative performance analysis on these two search directions.  

4.3.2.3 Joint Anonymization of Multiple Observations       

While demonstrating the basic concept in Section  4.3.1, we have anonymized observation 

reports one at a time. A natural optimization enquiry is to find whether decodability 

performance can be significantly improved if ë successive observations are grouped and 

jointly anonymized. This can be performed by exploring ë levels of the AR generation tree to 

select ë ARs that satisfy the local optimal criteria, which needs to be modified to find the 

maximum of ë POIs associated to correct attributes.  

Table  4.2: Mean Decodability and Percentage of Iterations Achieving 	-Decodability for 
the Ideal and Extreme Sequences of Observed POIs with 	 = 4 and � = 3 

 

Sequence of Observed POIs 

Mean  

Decodability 

Percentage of Full 

Decodability 

Local Global Local Global 

Ideal: 〈1,2,3,4,1,2,3,4,1〉 3.103 2.167 58.7 8.3 

Extreme: 〈1,1,1,2,2,3,3,4,4〉 3.789 3.382 90.3 69.1 
 

Table  4.3: Mean Decodability and Percentage of Iterations Achieving 	-Decodability 
with Joint Anonymization for the Ideal and Extreme Sequences of Observed POIs with 	 = 4 and � = 3 

 

Sequence of Observed POIs 

Mean  

Decodability 
Percentage of Full Decodability 

ë = 1 ë = 2 ë = 3 ë = 1 ë = 2 ë = 3 

Ideal: 〈1,2,3,4,1,2,3,4,1〉 3.103 3.484 3.742 58.7 74.2 87.1 

Extreme: 〈1,1,1,2,2,3,3,4,4〉 3.789 3.233 2.166 90.3 66.0 14.3 
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We have performed simulations with the same set up used in the previous section. 

Again, tens of thousands of iterations were carried out and the mean decodability and the 

percentage of iterations achieving full decodability were estimated. Although we observed 

the same trend in all cases, for the sake of brevity, we present the results for 	 = 4, � =3, � = 9, and ë ∈ {1,2,3} in Table  4.3. Higher values of ë were avoided due to a significant 

increase in decoding complexity. This time, however, we were unable to observe any 

superior choice. While decodability improves with ë for the ideal sequence of observation, 

the opposite trend was observed for the extreme sequence. This can be explained as follows. 

No doubt that higher ë ensures improved AR set for any independently selected ë 

observations. However, observations used by our greedy scheme cannot be considered 

Algorithm 4.3: $K = Anonymize_EGAS (	, �, &(Â9, … , Ây), &$K8, E ≡ [�, 23]) 

Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � 

• Actual attributes of all POIs from recent observations, (Â9, … , Ây); if attribute of any POI � is yet to be observed, Â� is set to its unique dummy value – � assuming that real 

attributes are always mapped to positive values  

• Set of already generated ARs, $K8 

• Observation report E ≡ [�, 23], 1 ≤ � ≤ 	  

Output:  

• Anonymized rule $K ≡ {�9, … , �H}: 23|� ∈ {�9, … , �H}  

1. IF Â3 ≥ 0 

2.  Set 23 = 	 −23  
3.  Set $K8 = ∅ 

4.  Set (Â9, … , Ây) = (−1, … , −	) 

5. END IF 

6. Set Â3 = |23| 
7. Set 88 = °�� ì �� ∈ �$83{9,…,y},H ∧ '23 = Â3	where	('29, … , '2y) = Ö×ØÙÚ×_ÜÝÞ�(	, �, $K8 ∪ {(��: Â3)})í 

8. IF 88 ≠ ∅ THEN 

9. IF |88| = 1 THEN  

10.  Set $K = (��: 23) where �� ∈ 88 

11. ELSE 

12.  Set $K = (��: 23) where �� ∈ 88⋀(��: Â3) ∉ $K8 

13.  END IF 

14. ELSE 

15.  Set $K = (��: 23) where �� ∈ �$83y,H 

16. END IF 

17. Set $K8 = $K8 ∪ {$K} 
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independent as we accumulate ARs as observations are being reported. Consequently, there 

can no longer be any guarantee of improved decodability with ë > 1 as the set of the already 

generated ARs no longer remains the same when ë = 1.  

Nevertheless, computational complexity of the anonymization algorithm increases 

significantly with ë. Moreover, the decodability performance for the extreme sequence 

degrades at a significantly higher rate as ë is increased. Hence, ë = 1 is preferred. For the 

sake of completeness, we will a present detailed comparative performance analysis on joint 

anonymization in Section  4.5.4. 

4.3.3 The Anonymization and Decoding Algorithms 

To anonymize with the aim of achieving high data integrity, it is essential to inherently 

Algorithm 4.4: ('29, … , '2y) = Ö×ØÙÚ×_ïÝÞ�I	, �, &(Â9, … , Ây), &&, $K ≡ (��: 2)J 

Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � 

• Actual attributes of all POIs from recent observations, (Â9, … , Ây); if attribute of any POI � 
is yet to be observed, Â� is set to its unique dummy value – � assuming that real attributes 

are always mapped to positive values. 

• Updated &$$8»{Í 	, & 

• Anonymized Rule,	$K ≡ (��: 2)   

Output:  

• Decoded attributes, ('29, … , '2y) 

1. IF & = ∅ ∨ 2 < 0 ∨ I∀�: Â3 ≥ 0 ∧ ∄º: ÂO = 2J THEN 

2. Set (Â9, … , Ây) = (−1, … , −	) 

3.  Set & = {,9, … , ,y!} where ,3 = I,3,9, … , ,3,yJ is a unique permutation of (Â9, … , Ây) for all �  
4. END IF 

5. Set ÂO = |2| where º = argmin∀3 	Â3 < 0 

6. Set & = &⨁$K 

7. IF & ≠ ∅ THEN 

8.  FOR � = 1, … , 	 DO 

9.   Set '23 = ÇmodeI¶,9,3, … , ,|É|,3¸J, if	modeI¶,9,3 , … , ,|É|,3¸J ≥ 0	and	unique−∞, otherwise  

10.  END FOR 

11. ELSE  

12.  Set '23 = ∞ for all 1 ≤ � ≤ 	 

13. END FOR 
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decode tentative rules. This is done to check the decodability performance of each candidate 

AR upon which the decision of final selection is made. Hence, the decoder called from the 

AS should be offline. However, we prefer to use a real-time decoder for decoding at the ApS 

end such that any attempt of false data feeding or actual attribute fluctuations are readily 

detected. Here, we first present the anonymization scheme (Algorithm 4.3) which inherently 

checks decoding performance of the tentative ARs using the offline decoder (Algorithm 4.1) 

and then the online decoding scheme (Algorithm 4.4) used in ApS.  

Algorithm 4.3 receives an observation report and the set of actual attributes 

accumulated in AS. Note that steps 1 to 6 are just the same as in algorithm 4.2. Both these 

anonymization algorithms differ in the step of selecting the AR. However, another 

significant difference in step 7 is that the ARs that were generated earlier for the same 

observation are excluded from this set of PAS here. Finally, the greedy algorithm constructs 

AR using a subset, preferably non-repeated, that can decode the current attribute using 

maximal probability decoding, if possible (steps 7-17). Its worst-case computational 

complexity is the same as that of algorithm 4.2 i.e., M(	y) as proved in Lemma  4.6. 

However, we can design the system in such a way that every locality will contain multiple 

ASs, each having a small number of POIs to deal with. Still, in scenarios where this system 

design is not feasible, we may use more efficient ones. These are discussed in the next 

chapter. 

Algorithm 4.4 receives a set of ARs and finds the set of attributes from these ARs. The 

decoder is reset at the beginning or when the previous decoding contradicts due to a 

malicious AR or the AS signals attribute fluctuation or number of attributes exceeds 	 due 

to false data feeding (steps 1-4). Then, it removes permutations non-conforming to AR after 

recording the new attribute (steps 5, 6). Finally, it decodes for maximal probability using the 

unique majority or indicates not-yet-decodable (steps 7-10) or declare contradiction when no 

permutation survives (step 12). 

The computational complexity of this online decoding scheme is the same as that of 

algorithm 4.1, i.e., M(	y) as proved by Lemma  4.5. However, this computational complexity 

analysis is considered the worst case scenario. For the average case scenario, we may 

analyse the complexity as follows. For each unique	$K, the decoder scans the list of so-far-

conforming tuples to eliminate the ones that are non-conforming to	$K. The average-case 

order of the decoder will be expressed in terms of the average number of permutations 

scanned for each	$K.  
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The decoder starts at state ñ = 			undecided attributes, with 	! permutations. For the 

sake of simplicity, we assumed that the decoder groups $Ks involving the same attribute 

and considers the groups in order of $K frequency. We may then generalise that the most-

observed attribute will be decoded using 2ñzy = max	(	 − 1,1) $Ks by reducing the number 

of conforming permutations to (	 − 1)! and hence, transiting the decoder to the next state ñ = 	 − 1 undecided attributes. By further assuming that each of these $Ks eliminates the 

same y!](y]9)!AñòÔ = (	 − 1)! number of non-conforming tuples, we may once again generalise 

that each of these $K� scans 	! − (º − 1)(	 − 1)! permutations where 1 ≤ º ≤ 2ñzy is the 

rank of the $K in the observational temporal order. 

Considering that the decoder will gradually transit from the initial state ñ = 	 to the 

final state ñ = 1 to achieve full-decodability, we can estimate the average number of tuples 

scanned for each $K to be  

∑ ∑ (�! − (º − 1)(� − 1)!)AÀ]9Oz9y3z9 ∑ 23y3z9 	 ( 4.9) 

 Figure  4.5 shows that this analytical model of average-case computational complexity 

does not differ much from the simulated results for 	 in the range	[4, 7] and � = 	 − 1, i.e., 

the maximum possible anonymity. It is found that the complexity increases exponentially 

with 	. 

 
Figure  4.5: Average-case decoding complexity in EGAS. 
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4.4 Implementation Issues 

In this section, we discuss two practical aspects of the proposed subset coding schemes that 

need to be resolved in order to implement the scheme in a practical scenario. At first in 

Section  4.4.1 we consider the temporal fluctuation of attributes and how they may impact 

the proposed scheme. Then, in Section  4.4.2 another real-life issue of handling non-unique 

attributes, is explored. 

4.4.1 Temporal Fluctuation of Attributes 

Attributes of the observed POIs vary over time. In fact, it is this fluctuation that leads to the 

need for participatory sensing in the first place. The frequency of attribute changes, 

however, is more or less fixed depending on the nature of the attribute as well as POIs. If 

sufficient information can be collected, an efficient statistical model can be developed to find 

the expected period óÉ 	 between successive changes in attributes among 	 POIs. As 	 is 

considered small in the range [4,6], óÉ 	can be estimated to be fairly large. For example, in the 

PetrolWatch application, the price of fuel normally changes once a day and with 	 = 6, it can 

be easily shown that óÉ 	 = 24/6 = 4 hours. 

The decoding approach considers all the observations from a reference point beyond 

which the system has no interest. This approach can be easily modified to incorporate a 

user-defined temporal window	óô, which is preferably set at	óm ≤ óÉ . The decoder can use the 

time_of_observation field of each RApS to decide whether it should be included within	óm. 

As we aim for high data integrity, óm also has a lower bound to achieve a desired level of 

full decodability. For example, with 	 = 6 and � = 5, 90% or higher full decodability is 

achieved with 32 observations, as observed in the simulation result presented in Section  4.5. 

In this case, óm must be large enough to accumulate at least 32 RApS. With � = 100 

registered users, on average, 
 = 32/100 ≈ 0.3 fraction of users needs to observe during the 

temporal window. In the previous chapter, we have suggested that 
 is fixed, which is 

governed by the socio-economic and cultural behaviours of the users. In case, 
 is smaller 

than the required value, we can either reduce �, or more promisingly, we can expect that 

more users will participate as the location privacy improves with the application of the 

proposed scheme. This participation will effectively keep the required value of 
 in check. 

We now need to analyse the transient effect of attribute change on decodability, i.e., data 

integrity. As soon as the changed attribute is reported, it is likely to cause contradictions 
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with previous reports from the corresponding POI. It is, however, impossible for the ApS to 

pinpoint the POI due to subset coding with k-anonymity. Consequently, it is likely that the 

decodability performance of the decoder is degraded due to the contradictions and returns 

to normalcy after the recovery period ó{ . We are interested in empirically ascertaining the 

expected length of ó{. In Section  4.5.5 4.5.6, we have presented the simulation results to 

conclude that  ó{ ≤ 	 óm in all cases of 	 and �, while aiming to achieve full decodability in 

90% of cases or more. 

4.4.2 Non-unique Attributes  

So far in this chapter we have assumed that the attributes of 	 POIs are unique, which is 

unrealistic as POIs are non-communicating. Now we demonstrate that such an assumption 

keeps the decoding algorithm’s complexity in check while the non-unique scenario can be 

easily transformed to the unique scenario. 

When the attributes are assumed to be unique, the decoding algorithm (Algorithm 4.1) 

needs to consider 	! permutations of 	-tuples to find the set of tuples conforming all the 

ARs, resulting in computational complexity of M(	!). If the attributes are non-unique, this 

algorithm needs to be modified to consider 	y  tuples from the 	-ary Cartesian product of a 

set of distinct attributes, increasing computational complexity to M(	^	). For 	, as little as 

6, computational complexity of the decoder is increased by 6^6/6! ≈ 65 times. 

The transformation of the non-unique scenario to the unique scenario is quite 

straightforward. When AS receives an observation report with the attribute that is the same 

as an already observed attribute of another POI, the AS can make the attribute unique by 

adding a small value below the level of significance. For example, the price of fuel is 

normally mentioned in 2 decimal point precision and hence, any value smaller than the unit 

precision may be used to keep the prices distinct when reported to the ApS. 

4.5 Performance Evaluation 

In this section, we present simulation results to validate a number of key comparative 

analyses. All the results presented here were obtained by averaging 1000 simulation runs. 

Section  4.5.1 presents the simulation setup followed by data integrity performance 

comparison in Section  4.5.2. Then, in Section  4.5.3 some experimental results are presented 

to be considered as a reason behind choosing local search direction followed by exploring 
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joint anonymization in Section  4.5.4. Section  4.5.5 presents comparative performance 

analysis of different techniques discussed so far. Finally, in Section  4.5.6 the impact of the 

actual fluctuation of attributes is explored in our simulation results.  

4.5.1 Simulation Setup  

In our simulated participatory sensing system, MNs report observations to AS in a random 

fashion. The number of POIs (	) were varied from 4 to 6. Since the system is designed in 

such a way that every locality will have multiple ASs dealing with exclusive POIs, a large 

number of the same types of POIs are not practical and 4 to 6 was quite realistic. The 

proposed schemes flexibly handle degree of anonymity requirement (�) and thus results are 

produced for	� = 	 − 2	to		 − 1. Lower � values imply a lower anonymity which is weak in 

consideration of privacy. Similarly, we are mostly interested to evaluate decodability 

performance with a very high degree of data integrity. Therefore, we considered only 	-

decodability (full decodability) and (	 − 1)-decodability, termed as partial decodability.  

4.5.2 Data Integrity Performance Comparison  

Table  4.4 presents the performance of our randomized approach, and BGAS to analyse their 

performance and compare them with another state-of-the-art, regarding the successful 

association of the POI-attribute. For a convenient representation of the mean values the unit 

of measurement was in percentage. The results presented here were for � = 	� length of set 

Table  4.4: Price Retrieval Rate 
 

k Approaches 
Mean Price Retrieval Rate 		 = 	3 		 = 	4 		 = 	5 

2 

Randomized 83.22% 90.57% 93.40% 

BGAS 89.40% 92.02% 93.51% 

H&K  50.00% 50.00% 50.00% 

3 

Randomized  65.85% 86.95% 

BGAS  75.34% 93.57% 

H&K   33.33% 33.33% 

4 

Randomized   40.00% 

BGAS   48.40% 

H&K    25.00% 
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of anonymized rules. For		 = 5, � = 2, the achieved integrity 93.51% implies that among the 

1000 simulation runs, most of the times correct POI- attribute association was possible for 

more than 4 out of 5 POIs. Data integrity of Huang et. al.  [36] was theoretically derived and 

shown here as H&K approach. As � POIs are reported by a single point (the centre of their 

tile or alternatively the mean of the equivalence classes), considering reports containing each 

POI, are same in number, only 1/� POI was correctly reported. Table  4.4 clearly presents 

that in all cases our proposed BGAS approach outperformed both the H&K and randomized 

one. Hence, from now on, we concentrate on improving our proposed approach and 

compare with each other.   

4.5.3 Local Search Direction 

Figure  4.6 presents the data integrity performance of the proposed anonymization algorithm 

(Algorithm 4.2 vs. Algorithm 4.3) when the local search direction was guided by local (used 

in EGAS) and global (used in BGAS) optimal objectives for 	 = 6, � = 5. The former 

achieved full decodability in 90% cases with 2 observations less than needed by the later. 

This may not seem significant, but considering the level of voluntary participation, any 

improvement is worth pursuing.  

 
Figure  4.6: Local vs global optima objective in local search: data integrity of ARs in 
terms of full decodability generated from  � number observations when 	 = 6 and � = 5. 
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4.5.4 Joint Anonymization  

Table  4.5 presents data integrity performance of the proposed anonymization algorithm 

when observations are anonymized jointly in groups of ë ∈ {1,2,3}. It can be observed as 

predicted in Section  4.3.2.3 that decodability performances for different values of λ are 

almost indistinguishable.  

Table  4.5: Full Decodability (%) for Various Degree of Joint Anonymization 
 � ë = 1 ë = 2 ë = 3 

25 52 50 48 

26 61 59 57 

27 69 67 64 

28 76 74 72 

29 81 79 78 

30 85 83 83 

31 88 87 87 

32 91 90 91 

33 92 93 93 

34 94 96 95 

35 95 97 96 
 

 
Figure  4.7: Data integrity trend of ARs for different techniques in terms of full (6) and partial (5) decodability generated from � number of observation reports when 	 = 6 and �	 = 	5. 
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(a) 

 
(b) 

 
(c) 

Figure  4.8: Data integrity of ARs in terms of full (	) and partial (	 − 1) decodability 
generated from � number of observation reports when (a) 	 = 4, (b) 	 = 5, and (c) 	 = 6 and in all cases �	 = 		 − 1 and 	 − 2. 
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4.5.5 Comparison among Different Techniques  

We have implemented BGAS, EGAS, and a random anonymization scheme in a custom 

simulator to compare decodability performance for the different number of messages 

reported by the MNs. In the random anonymization scheme, AS avoids running the decoder 

by selecting one of the possible ARs at random. In fact, this random scheme does not require 

the AS as the observing MN can use this algorithm to generate AR from the observation. 

Figure  4.7 presents the comparative performance of our proposed EGAS using trend-

lines with other two techniques when 	 = 6, � = 5. Trend-lines were produced from 

regression analysis with a polynomial curve fitting. The degree of polynomial coefficients 

used for curve fitting were 3 (2), 4 (2), and 6 (3) for full (partial) decodability in case of 

random, BGAS, and EGAS, respectively. For each scheme, the performance curves for full 

and partial decodability were plotted with a solid and dashed line, respectively. In some 

application scenarios, it may be sufficient to have less than full decodability with a 

requirement of fewer �. 

The figure indicates that for a low decodability requirement, (	 − 1)-decodability may 

be achieved with significantly fewer observations. In the case of both full and partial 

decodability, EGAS is superior to the other two techniques. Full decodability was achieved 

in 90% of simulation runs by EGAS with only 31 observations. For the same number of 

observations, BGAS attained full decidability in only 42% cases and the random scheme 

barely (3%) achieved full decodability. 

Figure  4.8 shows how "-decodability performance varies for (a) 	 = 4, (b) 		 = 	5, and 

(c) 	 = 6 with � = 	 − 1 and 	 − 2. The performance curve for each set up is identified as 	, �, (") where " ∈ {	, 	 − 1}. In all cases, a certain proportion of the simulation runs 

Table  4.6: Number of Observations Needed to Regain 90% Full Decodability after the 
Attribute of a Randomly Selected POI is Changed 

 	 � óô ó{  

4 2 13 11 

4 3 14 14 

5 3 19 17 

5 4 22 21 

6 4 30 28 

6 5 33 33 
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achieved "-decodability with fewer observation reports when the degree of anonymity (�) 

or " is lowered. However, to guarantee that in almost all cases the desired decodability is 

achieved, the minimum number of necessary reports do not vary much with �. This 

indicates that when a very high degree of decodability is desired, the system can also afford 

the highest degree of anonymity, i.e., � = 	 − 1 , without demanding any significant 

increase in the number of observations. 

4.5.6 Fluctuation of Attributes 

In this simulation, we considered the temporal window size óô  starting from the number of 

observations that can achieve 90% full decodability for various 	 and �, as reported in 

Figure  4.8. For each window size, the attribute of one of the randomly selected POI was 

changed when the data integrity was at 90% full decodability or higher. Since that point, we 

traced the number of new observations needed to recover the data integrity to its original 

state. In all cases, we observed that the recovery period ó{ ≤ 	 óm . Table  4.6 presents the 

recovery period observed when óm was minimally set to achieve 90% full decodability.  

4.6 Conclusion 

In this chapter we presented two k-anonymization schemes using the novel subset-coding 

based anonymization approach introduced in Chapter  3 to protect the privacy of 

participants in a PSS application. The primary goal in using these techniques was to achieve 

high quality data after the de-anonymization at the target end. First, we presented our initial 

approach, BGAS. Next, we discussed the optimization issues needed to improve the quality 

of BGAS which were successfully addressed and a better scheme EGAS was designed. 

Performance of both these approaches was compared and also their significant superiority 

against random anonymization was also established through comprehensive simulation.   

Thus, the challenging problem of achieving the location privacy of the participating users 

and, at the same time, the desired data quality at the target end was successfully solved.  

However, we feel the need for even better anonymization approaches that can work 

with fewer observations in such application scenarios. For example, around 40 observations 

are needed for high data integrity with 	 = 6 indicating that there is ample need for 

improvement in this regard. Moreover, reducing the computational complexity of the 

technique would also be a significant improvement. We aim to address these issues in the 

next chapter. 
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5 Efficient Anonymization with 

Deterministic Techniques 

In the previous chapter, subset-coding based anonymization techniques were proposed that 

attempted to achieve high data integrity at the desired end. We also observed that the 

necessity of the number of observations from various POIs was quite high to achieve 

comparable data quality. From that point of view, we aim to anonymize in a way to achieve 

full decodability with significantly fewer observations. With the existing reward facilitating 

schemes introduced in PSS, it is quite likely that the required number of observations to 

achieve full decodability will be collected. From that point on our ApS can provide service 

deterministically as the system is expected to operate in the Singular Decoding Decision 

Region shown in Figure  4.1. Reducing computational complexity is another target for these 

techniques since it would be beneficial in scenarios with a large number of POIs.  

The rest of this chapter is organised as follows. In Section  5.1 we introduce the new 

anonymization technique that follows a deterministic approach. The detail of this basic 

deterministic approach is presented in Section  5.2 along with formal algorithms. Section  5.3 

discusses its fast variation with algorithms related to the proposed approach and an 

important implementation issue is addressed in Section  5.4. Section  5.5 presents the 

simulated performance of the proposed schemes and finally Section  5.6 concludes the 

chapter. 

5.1 Introduction 

Probabilistic Greedy Anonymization Schemes (PGAS) presented in the previous chapter 

were simulated in the context of PSS. A clear observation was made that those techniques 
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would require a good number of observations to provide quality data. This prohibits the 

applicability of those techniques in applications where some of the POIs are not likely to be 

observed frequently by the community people due to their remote location.   

In this chapter we present new anonymization and decoding schemes that overcome 

this limitation. The basis of the new schemes is the same subset-coding technique and also 

the system entities of PSS would remain unchanged. However, now the new approaches 

philosophically aim to achieve deterministic decoding. Majority decoding was the 

determinant of the choice of a k-subset at every step in PGAS. Now, the subset that can rule 

out the maximum number of permutations would be preferred in each step of 

anonymization. Considering the differences with PGAS, we have named the new techniques 

as Deterministic Greedy Anonymization Schemes (DGAS). 

Even DGAS has a limitation of high computational complexity. Although, the PSS can 

be designed with a number of subsystems each containing a feasible number of POIs, it is 

still desired to reduce the complexity. Achieving this would offer more flexibility in design, 

especially in densely populated areas. From this motivation, we have designed an efficient 

variation of DGAS where choice of  � has been restricted to the maximum possible 

anonymity, 	 − 1	 only. However, this is satisfactory since this implies the strongest privacy 

to the participants. To signify the efficient computation of this variation, we have named it 

 

Figure  5.1: Two different approaches of proposed greedy techniques. 
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Fast Deterministic Greedy Anonymization Schemes (FDGAS). Figure  5.1 highlights the specific 

branch of anonymization techniques covered in this chapter. 

5.2 DGAS 

In this section, we first discuss the concept of DGAS in Section  5.2.1. Note that the terms and 

definitions presented in the previous chapters are used here without any change in 

meaning. Next, we formally present the anonymization and de-anonymization algorithms in 

Section  5.2.2. 

5.2.1 Concept of DGAS 

First of all, we are going to discuss the process by which AS generates ARs from received 

observations. As we have already mentioned, the approach is a greedy one that tries to 

augment POI-attribute association with generation of new AR considering the already 

generated ARs.  

As the ORs arrive at AS, our greedy anonymization scheme aims to choose an AR that 

will maximally reduce the size of &$$8»{Í . The ultimate target of our proposed scheme is to 

attain a single cardinality &$$8»{Í. So, the main objective can be stated as follows. 

Objective  5.1 Achieving singularity, i.e., |&$$8»{Í| = 	1 with minimal observation.  

 The AS keeps the POI-Attribute assignment adding some anonymity on it upon getting 

various ORs from MNs. At the fresh start, when the AS has no information, i.e., no OR has 

yet been reported to AS, the cardinality of �$$8 equals to		!. As the ORs start arriving, the 

AS starts giving suggestion in a way to achieve the objective of reaching singular cardinality &$$8»{Í. Keeping that objective in mind we develop our greedy algorithm to find 

corresponding AR that reduces &$$8»{Í cardinality maximally. Whenever AS gets an OR, it 

checks the all possible ARs for it and selects the one which will reduce &$$8»{Í cardinality 

maximally.  

Now we will observe a simple example how ARs are selected corresponding to received 

observations as performed by the AS. Consider an example of PetrolWatch with four POIs of 

ids 1,2,3,	and	4,	having prices $10, $20, $30, and $40, respectively. In this 	 = 4 system, the 

initial size of �$$8 is 	! = 24.  
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Table  5.1: Conforming Tuples of Gradually Generated AR Set where Dummy 
Attributes are Identified with Leading ' 

 

 1st observation [1, $10] ARS {1,2,3}: $10 {1,2,4}: $10 {1,3,4}: $10 
('1, '2, '3, '4) ('1, '2, '4, '3) ('1, '3, '2, '4) ('1, '3, '4, '2) ('1, '4, '2, '3) ('1, '4, '3, '2) ('2, '1, '3, '4) ('2, '1, '4, '3) ('2, '3, '1, '4) ('2, '3, '4, '1) ('2, '4, '1, '3) ('2, '4, '3, '1) ('3, '1, '2, '4) ('3, '1, '4, '2) ('3, '2, '1, '4) ('3, '2, '4, '1) ('3, '4, '1, '2) ('3, '4, '2, '1) ('4, '1, '2, '3) ('4, '1, '3, '2) ('4, '2, '1, '3) ('4, '2, '3, '1) ('4, '3, '1, '2) ('4, '3, '2, '1) 

�$$8: ($10, '1, '2, '3) ($10, '1, '3, '2) ($10, '2, '1, '3) ($10, '2, '3, '1) ($10, '3, '1, '2) ($10, '3, '2, '1) ('1, $10, '2, '3) ('1, $10, '3, '2) ('1, '2, $10, '3) ('1, '2, '3, $10) ('1, '3, $10, '2) ('1, '3, '2, $10) ('2, $10, '1, '3) ('2, $10, '3, '1) ('2, '1, $10, '3) ('2, '1, '3, $10) ('2, '3, $10, '1) ('2, '3, '1, $10) ('3, $10, '1, '2) ('3, $10, '2, '1) ('3, '1, $10, '2) ('3, '1, '2, $10) ('3, '2, $10, '1) ('3, '2, '1, $10) 

($10, '1, '2, '3) ($10, '1, '3, '2) ($10, '2, '1, '3) ($10, '2, '3, '1) ($10, '3, '1, '2) ($10, '3, '2, '1) ('1, $10, '2, '3) ('1, $10, '3, '2) ('1, '2, $10, '3) ('1, '2, '3, $10) ('1, '3, $10, '2) ('1, '3, '2, $10) ('2, $10, '1, '3) ('2, $10, '3, '1) ('2, '1, $10, '3) ('2, '1, '3, $10) ('2, '3, $10, '1) ('2, '3, '1, $10) ('3, $10, '1, '2) ('3, $10, '2, '1) ('3, '1, $10, '2) ('3, '1, '2, $10) ('3, '2, $10, '1) ('3, '2, '1, $10) 

($10, '1, '2, '3) ($10, '1, '3, '2) ($10, '2, '1, '3) ($10, '2, '3, '1) ($10, '3, '1, '2) ($10, '3, '2, '1) ('1, $10, '2, '3) ('1, $10, '3, '2) ('1, '2, $10, '3) ('1, '2, '3, $10) ('1, '3, $10, '2) ('1, '3, '2, $10) ('2, $10, '1, '3) ('2, $10, '3, '1) ('2, '1, $10, '3) ('2, '1, '3, $10) ('2, '3, $10, '1) ('2, '3, '1, $10) ('3, $10, '1, '2) ('3, $10, '2, '1) ('3, '1, $10, '2) ('3, '1, '2, $10) ('3, '2, $10, '1) ('3, '2, '1, $10) 

 

CR 6 6 6 

($10, '1, '2, '3) ($10, '1, '3, '2) ($10, '2, '1, '3) ($10, '2, '3, '1) ($10, '3, '1, '2) ($10, '3, '2, '1) ('1, $10, '2, '3) ('1, $10, '3, '2) ('1, '2, $10, '3) ('1, '3, $10, '2) ('2, $10, '1, '3) ('2, $10, '3, '1) ('2, '1, $10, '3) ('2, '3, $10, '1) ('3, $10, '1, '2) ('3, $10, '2, '1) ('3, '1, $10, '2) ('3, '2, $10, '1) 

&$$8»{Í 	: 2nd observation [3, $30] {1,2,3}: $10 {1,2,3}: $30 {1,3,4}: $30 {2,3,4}: $30 ($10, $30, '1, '2) ($10, $30, '2, '1) ($10, '1, $30, '2) ($10, '1, '2, $30) ($10, '2, $30, '1) ($10, '2, '1, $30) ($30, $10, '1, '2) ($30, $10, '2, '1) ($30, '1, $10, '2) ($30, '2, $10, '1) ('1, $10, $30, '2) ('1, $10, '2, $30) ('1, $30, $10, '2) ('1, '2, $10, $30) ('2, $10, $30, '1) ('2, $10, '1, $30) ('2, $30, $10, '1) ('2, '1, $10, $30) 

($10, $30, '1, '2) ($10, $30, '2, '1) ($10, '1, $30, '2) ($10, '1, '2, $30) ($10, '2, $30, '1) ($10, '2, '1, $30) ($30, $10, '1, '2) ($30, $10, '2, '1) ($30, '1, $10, '2) ($30, '2, $10, '1) ('1, $10, $30, '2) ('1, $10, '2, $30) ('1, $30, $10, '2) ('1, '2, $10, $30) ('2, $10, $30, '1) ('2, $10, '1, $30) ('2, $30, $10, '1) ('2, '1, $10, $30) 

($10, $30, '1, '2) ($10, $30, '2, '1) ($10, '1, $30, '2) ($10, '1, '2, $30) ($10, '2, $30, '1) ($10, '2, '1, $30) ($30, $10, '1, '2) ($30, $10, '2, '1) ($30, '1, $10, '2) ($30, '2, $10, '1) ('1, $10, $30, '2) ('1, $10, '2, $30) ('1, $30, $10, '2) ('1, '2, $10, $30) ('2, $10, $30, '1) ('2, $10, '1, $30) ('2, $30, $10, '1) ('2, '1, $10, $30) 
CR 6 4 4 
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($10, $30, '1, '2) ($10, $30, '2, '1) ($10, '1, $30, '2) ($10, '2, $30, '1) ($30, $10, '1, '2) ($30, $10, '2, '1) ($30, '1, $10, '2) ($30, '2, $10, '1) ('1, $10, $30, '2) ('1, $30, $10, '2) ('2, $10, $30, '1) ('2, $30, $10, '1) 

&$$8»{Í: 3rd observation [2, $20] {1,2,3}: $10 {1,2,3}: $30 {1,2,3}: $20 {1,2,4}: $20 {2,3,4}: $20 ($10, $30, $20, '1) ($10, $30, '1, $20) ($10, $20, $30, '1) ($10, '1, $30, $20) ($30, $10, $20, '1) ($30, $10, '1, $20) ($30, $20, $10, '1) ($30, '1, $10, $20) ($20, $10, $30, '1) ($20, $30, $10, '1) ('1, $10, $30, $20) ('1, $30, $10, $20) 

($10, $30, $20, '1) ($10, $30, '1, $20) ($10, $20, $30, '1) ($10, '1, $30, $20) ($30, $10, $20, '1) ($30, $10, '1, $20) ($30, $20, $10, '1) ($30, '1, $10, $20) ($20, $10, $30, '1) ($20, $30, $10, '1) ('1, $10, $30, $20) ('1, $30, $10, $20) 

($10, $30, $20, '1) ($10, $30, '1, $20) ($10, $20, $30, '1) ($10, '1, $30, $20) ($30, $10, $20, '1) ($30, $10, '1, $20) ($30, $20, $10, '1) ($30, '1, $10, $20) ($20, $10, $30, '1) ($20, $30, $10, '1) ('1, $10, $30, $20) ('1, $30, $10, $20) 
CR 6 2 2 

($10, $30, $20, '1) ($10, $20, $30, '1) ($30, $10, $20, '1) ($30, $20, $10, '1) ($20, $10, $30, '1) ($20, $30, $10, '1) 

&$$8»{Í: 4th observation [4, $40] {1,2,3}: $10 {1,2,3}: $30 {1,2,3}: $20 {1,2,4}: $40 {1,3,4}: $40 {2,3,4}: $40 ($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 
CR 0 0 0 

($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

&$$8»{Í: 5th observation [2, $20] {1,2,3}: $10 {1,2,3}: $30 {1,2,3}: $20 {1,2,4}: $40 
{1,2,3}: $20 {1,2,4}: $20 {2,3,4}: $20 ($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

($10, $30, $20, $40) ($10, $20, $30, $40) ($30, $10, $20, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 
CR 0 2 2 

($10, $20, $30, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

&$$8»{Í: 6th observation [2, $20] {1,2,3}: $10 {1,2,3}: $30 {1,2,3}: $20 {1,2,4}: $40 {1,2,4}: $20 
{1,2,3}: 20 {1,2,4}: $20 {2,3,4}: $20 ($10, $20, $30, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

($10, $20, $30, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 
($10, $20, $30, $40) ($30, $20, $10, $40) ($20, $10, $30, $40) ($20, $30, $10, $40) 

CR 0 0 2 

($10, $20, $30, $40) ($20, $10, $30, $40) 
&$$8»{Í: 7th observation [1, $10] {1,2,3}: $10 {1,2,3}: $30 {1,2,3}: $20 {1,2,4}: $40 {1,2,4}: $20 {2,3,4}: $20 

{1,2,3}: $10 {1,2,4}: $10 {1,3,4}: $10 ($10, $20, $30, $40) ($30, $20, $10, $40) ($10, $20, $30, $40) ($30, $20, $10, $40) ($10, $20, $30, $40) ($30, $20, $10, $40) 
CR 0 1 0 

($10, $20, $30, $40) &$$8»{Í: 
 

 {1,2,3}: $10 {1,2,3}: $30 {1,2,3}: $20 {1,2,4}: $40 {1,2,4}: $20 {2,3,4}: $20 {1,2,4}: $10 
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Table  5.1 demonstrates how the ARS is generated and populated by our greedy 

approach so that single cardinality &$$8»{Í is achieved, i.e., all four POIs can be associated 

with the correct price for a minimal set of observation. Here, the updated &$$8»{Í is shown 

each time an AR is selected for each observation. 

When the first OR [1, $10] is received by the AS, it uses three dummy prices. For desired 

anonymity � = 3, there are three possible ARs that can be ranked based on their ability of &$$8»{Í cardinality reduction. Cardinality Reduction (CR) means count of eliminating non-

conforming permutations after applying an AR. As any of the three possible ARs, {1,2,3}: $10, {1,2,4}: $10, and {1,3,4}: $10, can reduce &$$8»{Í cardinality by 6, we can pick 

any. Let us assume that we pick {1,2,3}: $10 for the first observation, after which cardinality 

of &$$8»{Í reduces to 	! − 6 = 18.  

When the second OR [3, $30] arrives, the AS needs to use two dummy prices. Among 

the three possible ARs, {1,2,3}: $30 can reduce cardinality by 6, whereas both the other two {1,3,4}: $30 and {2,3,4}: $30 can reduce that by 2. Hence, the AS selects the AR {1,2,3}: $30 in 

response to this observed report and after applying that the cardinality of &$$8»{Í reduces 

 

Figure  5.2: Subset generation procedure in DGAS. 
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to  18 − 6 = 12.  

When the third OR [2, $20] is received, AS now needs to use only one dummy price. Of 

the three possible ARs, {1,2,3}: $20 can reduce cardinality by 6, whereas the other two {1,2,4}: $20 and {2,3,4}: $20 score 2 in CR. Therefore, the AR {1,2,3}: $20 with maximum CR 

score is picked  in response to this observation. Then, the cardinality of the updated &$$8»{Í 

becomes 12 − 6 = 6. 

When the fourth observation [4, $40] arrives, none of the possible ARs can reduce 

cardinality any more. Hence, AS randomly picks an AR, {1,2,4}: $40, after applying which &$$8»{Í cardinality remains the same as before, i.e., 6. Finally, after seven observations, it 

reaches the objective of achieving &$$8»{Í cardinality 1. 

Note from the table that &$$8»{Í cardinality gradually decreases with the number of 

ARs. By adding a new AR to the set ARS, some of the existing conforming tuples no longer 

remain conforming to the new set of ARs. Effectively, only the tuple representing correct 

POI-attribute association for all POIs survives as the single cardinality &$$8»{Í. 

For the sake of completeness, the same example is shown in a tree-format in Figure  5.2 

where one-by-one seven ARs are generated in the AS with seven incoming ORs. The solid 

edges of the tree refer to the number of non-conforming permutations elimination, i.e., CR 

score after applying an AR for the given OR. It is clear that at each step the AR with 

maximum CR score is selected to be appended with the next level subset derived from the 

next input. In the case of more than one subset exhibiting a maximum CR score, any one is 

chosen to be the selected subset.    

While decoding at the ApS end, it starts with the initial �$$8 with cardinality 	!. Upon 

receiving each RApS, it cancels out the non-conforming tuples from the �$$8. As the same 

as anonymization at AS, decoding at ApS also aims to achieve cardinality 1. However, in 

some cases decoder at ApS may arrive at &$$8»{Í	cardinality equal to zero.  It means a 

contradictory RApS has been received and taken into account by the decoder of ApS that 

has led to reach &$$8»{Í  cardinality 0. Here, we can state a corollary as follows. 

Corollary  5.2: Emptiness i.e.,|&$$8»{Í| = 0 implies inconclusive state as a result of either 

fluctuation or fraudulent. 

This contradiction may arise from genuine fault or from a change in attribute value or 

from intentional false data feeding to fail the system. Again, when ApS fails to handle data 
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from different region differently, this inconclusive state may take place. Now, we formally 

present the algorithms of DGAS and its efficient variation FDGAS to deterministically k-

anonymize the observations by AS and decode those in ApS. 

5.2.2 The Anonymization and Decoding Algorithms 

As DGAS anonymizes individual observations with the aim of achieving single cardinality &$$8»{Í, it is essential to measure CR score of the tentative rules. Here, we first present the 

anonymization scheme (Algorithm 5.1) and then the decoding scheme (Algorithm 5.2).  

Algorithm 5.1 removes all past observations when attribute fluctuation is detected, 

which is then signalled by encoding the attribute with a negative sign (steps 1-6). It records 

the new attribute in step 7. Finally, it constructs the AR using a subset that removes maximal 

permutations. Here we have removed the dependency of AS on decoder call to take decision 

Algorithm 5.1: $K	 = 	Þ�Ù�ú��û×_ÖÝÞ�	(	, �, &(Â9, … , Ây), &$K8, &&, E ≡ [�, 23]) 

Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � 

• Actual attributes of all POIs from recent observations (Â1 , … , Â	); if attribute of any 

POI � is yet to be observed, Â�is set to its unique dummy value −� assuming that real 

attributes are always mapped to positive values 

• Set of already generated $Ks, $K8 

• Observation report E ≡ [�, 23], 1 ≤ � ≤ 	 

• Updated &$$8»{Í, &. Initially, when $K8 = ∅, |&| = 	!.  
Output:  

• Anonymized rule $K ≡ {�9, … , �H}: 23|� ∈ {�9, … , �H} 

1. IF Â� ≥ 0 

2.  Set 2� = −2� 
3.  Set  $K8 = ∅ 

4.  Set (Â1 , … , Â	) = (−1, … , −	) 

5.  Set & = {,9, … , ,y!} where ,� = I,�,1 , … , ,�,	J is a unique permutation of (Â1, … , Â	) 

for all �  
6. END IF 

7. Set Â� = |2�| 

8. Set �� = argmin∀..∈Ó»ÍÀ{�,…,Ô},Õ|&⨁(��: Â3)| 
9. Set $K = (��: 23) 

10. Set $K8 = $K8 ∪ {$K} 

11. Set & = &⨁$K	  
   



Chapter  5. Efficient Anonymization with Deterministic Techniques 

113 

 

of selecting a suitable AR, as used in our earlier anonymization algorithms (Algorithms 4.2, 

4.3). However, we still need to maintain and update &. 

Lemma  5.3. Computational complexity of Algorithm 5.1 is M(	y). 

Proof. Let the time complexity of the algorithm is ß(	). In line 5, the algorithm takes M(	!) 

time as |&| = M(	!). Then in line 8, the algorithm checks each subset of �$8 and à�$8�{1,…,	},�à ≤ I	−1�−1J = M(2	),	for	� = 	2  as it represents the worst-case scenario.  Hence 

the total complexity of the algorithm, ß(	) = M(2y × 	!) = 	M(	y).   ∎ 

Algorithm 5.2 receives a set of ARs and finds the set of attributes from these ARs. The 

decoder is reset at the beginning or when the previous decoding contradicted due to a 

malicious AR or when the AS signals attribute fluctuation or when the number of attributes 

Algorithm 5.2: ('29, … , '2y) = Ö×ØÙÚ×_ÖÝÞ�I	, �, &(Â9, … , Ây), &&, $K ≡ (��: 2)J 

Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � 

• Actual attributes of all POIs from recent observations (Â1 , … , Â	); if attribute of any 

POI � is yet to be observed, Â�is set to its unique dummy value −� assuming that real 

attributes are always mapped to positive values 

• Set of permutations & = {,3} where ,� = (41, … , 4	) derived from the set {1, … , 	}  

without contradicting with $K8. Initially, when $K8 = ∅, |&| = 	!. 
• Anonymized Rule, $K ≡ (��: 2) 

Output:  

• Decoded attributes, ('29, … , '2y) 

1. IF & = ∅ ∨ 2 < 0 ∨ I∀�: Â3 ≥ 0 ∧ ∄º: ÂO = 2J THEN 

2.  Set (Â9, … , Ây) = (−1, … , −	) 

3.  Set & = {,9, … , ,y!} where ,3 = I,3,9, … , ,3,yJ is a unique permutation of (Â9, … , Ây) for 

all � 
4. END IF 

5. Set ÂO = |2| where º = argmin∀3 	Â3 < 0 

6. Set & = & ⊕ $K  

7. IF & ≠ ∅ THEN 

8.  FOR � = 1, … , 	 DO  

9.   Set '23 = Ç,9,3 , if	,9,3 = ⋯ = ,|É|,3 ≥ 0	−∞, otherwise 	 
10.  END FOR  

11. ELSE 

12.  Set '23 = ∞, for all 1 ≤ � ≤ 	 

13. END IF 
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exceeds 	 due to malicious AR (steps 1-4). Then, it removes permutations non-conforming 

to AR after recording the new attribute (steps 5, 6). Finally, it decodes, when 

deterministically possible or indicates not-yet-decodable (steps 7-10) or declares a 

contradiction when no permutation survives (steps 11-13). 

Lemma  5.4. Computational complexity of Algorithm 5.2 is M(	y). 

Proof. Let the time complexity of the algorithm is ß(	). In line 3, the algorithm takes M(	!) 

time as |&| = M(	!). This operation is the dominating one in this algorithm. Hence, the 

total complexity of the algorithm,  ß(	) = M(	!) = 	M(	y).    ∎ 

However, these computational complexities are considered for the worst-case scenario. 

For the average case scenario we have developed an expression as discussed in the previous 

chapter in Equation ( 4.9). Figure  5.3 shows that this theory-based approximation does not 

differ much from what is acquired using simulation. The graph shows results for 	 in the 

range[4, 7] and � = 	 − 1, which is the maximum possible anonymity to compare the 

average number of tuples considered to check conformity with the AR each time using 

simulation versus theoretical analysis. It was found that the complexity increases 

exponentially with 	. 

 
Figure  5.3: Average number of permutations considered each time to check the 

conformity of an AR varying with 	 and �. 
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5.3 FDGAS 

In PGAS, we focused on majority decoding. However, the ultimate target of all time is to 

provide service with reliability. The sooner we reach single cardinality &$$8»{Í the better 

the purpose is served. From that realization we have developed the philosophy of DGAS 

and focused on selecting ARs that reduce &$$8»{Í cardinality maximally at every stage of 

anonymization. In doing so, we made an important observation, which in turn helps in 

developing the concept of a faster approach of this deterministic scheme. In this section, we 

first discuss the concept of FDGAS in Section  5.3.1. Next, we formally present the 

anonymization and de-anonymization algorithms in Section  5.3.2. 

5.3.1 Concept of FDGAS 

In Table  5.1, it is evident that the conforming tuples for any AR {�9, … , �H}: 23 do not have 

attribute 23  in the POI column, which is not represented in the subset {�9, … , �H}. For the first 

observation [1, $10], when AR {1,2,3}: $10 is considered, none of conforming tuples has $10 

in column 4 and similarly, when AR {1,2,4}: $10 is considered, all the tuples having $10 in 

column 3 get eliminated. We have now established the following lemma: 

Lemma  5.5: When � = 	 − 1, an AR {�9, … , �y]9}: 23  renders all 	-tuples having attribute 23  
associated with the missing POI in the given subset {�9, … , �y]9}, i.e., �y = 	 {1, … , 	} ∖ {�9, … , �H} 

non-conforming, i.e., these tuples get eliminated.      ∎ 

For an observation of attribute 23, if one of the maximal AR {�9, … , �y]9}: 23  is selected 

that can eliminate the maximum possible non-conforming tuples, the remaining conforming 

tuples show an interesting property. For each attribute value in column �y, the number of its 

instances in any other column cannot be higher, as those columns may also have instances of 

attribute 23, which no longer exists in column �y. Hence, the following corollary is 

established: 

Corollary  5.6: When � = 	 − 1, among the conforming 	-tuples after selecting a maximal AR {�9, … , �y]9}: 2 that eliminates the maximum possible non-conforming tuples, for each attribute 

values in column �y, no other column has more instances of the attribute.   ∎ 

For example, in Table  5.1, the conforming tuples after selecting a maximal AR {1,2,3}: $10 for the first observation has the highest instances (6) of [dummy] attribute values '9, 'S, and '� in column {1,2,3,4} ∖ {1,2,3} = 4. Similarly, the conforming tuples after 
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selecting a maximal AR {1,2,4}: $20 for the fifth observation has the highest instances (2) of 

attribute values $10 and $30 in column {1,2,3,4} ∖ {1,2,4} = 3. 

When maximal AR is selected for each observation to eliminate maximum possible non-

conforming tuples, Corollary  5.6 provides a fast way to select the maximal subset for any 

future observation, which is expressed in the following theorem: 

Theorem  5.7: When � = 	 − 1, to anonymize an observation [�, 2], any subset in �$83{9,…,y},H that 

has already been used for anonymizing observations from any other POI but � will eliminate 

maximum possible non-conforming tuples.       ∎  

A fast, polynomial time bounded, anonymization algorithm springs from this theorem, 

which is formally defined in the next section. Given a sequence of observations 〈�9, �S, ��, �þ, �9〉 for the corresponding domain of attributes 〈23� , 23¥ , 23� , 23� , 23�〉 in a � = 3 and 	 = 4 scenario, the initial �$$8-cardinality is equal to 	!. For the very first observation, any 

possible AR can be selected randomly as all possible ARs result in same cardinality 

reduction for they are all equally likely at that very first instance. If the AR {�9, �S, ��}: 23�  is 

selected for the first OR, it implies that 23�  cannot be the attribute of the POI  �þ. As soon as 

an attribute is selected to be associated with the subset, the other attributes get equally 

eliminated with the same statistics for the POIs in the subset but preserved for the non-

present one.  

After selecting an AR, CAAS-cardinality is updated by eliminating the non-conforming 

attribute 	-tuples and they are fixed for consideration when the next OR arrives. Then after 6 = 3 observations, &K@ ≥ &K@C 	, where &K@  and &K@C  denote counts of cardinality 

reduction using this theorem and otherwise respectively after 6 number of observations. 

That is, for the next 2 observations the same subset {�9, �S, ��	} can give the best cardinality 

reduction if selected. For the other possible ARs, some of the non-conforming attribute 	-

tuples have already got eliminated once the previous AR has been selected. However, upon 

selecting the previous AR at the first place, the entire non-conforming attribute 	-tuples for 

selecting next AR with the same anonymized subset part representing a different 

observation are all kept conforming.  

Careful scrutiny of Table  5.1 also reveals that column � of the conforming tuples 

guarantees deterministic decoding of POI � when all the subsets in �$83{9,…,y},H have already 

been used to anonymize observations from POI �. After anonymizing the sixth observation, 
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POI 2 has been observed thrice and all the three subsets in �$8S{9,…,þ},� = {{1,2,3}, {1,2,4}, {2,3,4}} have been used to anonymize the corresponding 

attribute $20. Only two 4-tuples have survived and their column 2 has only one value $20 to 

guarantee that POI 2 can be decoded correctly.  

A recursive fast, polynomial time bounded, decoding algorithm springs from this 

scrutiny, which is formally defined in the next section. According to this approach, the 

decoder checks in the ARS whether for any single attribute, a complete PAS for any of the 

POIs has appeared or not. Once it obtains a complete PAS for a particular POI, then that POI 

is actually decoded and can now be correctly associated with that single attribute. We then 

use the same approach recursively to decode another POI in the reduced problem space (	 − 1, � − 1) and so on.  

In order to define this recursive approach, the definition of PAS in ( 4.1) needs to be 

modified as follows:  

 �$83£,H = °∅, if	� ≥ |-| ∨ � ∉ -¶{�, �9, … , �H]9}|{�9, … , �H]9} ⊂ - ∖ {�}¸, otherwise  ( 5.1) 

where, - represents the set of yet-to-be-decoded POIs. We have now established the 

following theorem from the above scrutiny: 

Theorem  5.8:  When � = 	 − 1, POI � can be decoded deterministically if all subsets in 

�$83£,H]y�|£|
, augmented with so-far-decoded set of POIs {1, … , 	} ∖ -, have already been used to 

anonymize observations from POI � where - is the set of yet-to-be-decoded POIs.   ∎  

Note that, this fast approach is valid only for � = 	 − 1 which is the best possible 

privacy preserving case. With extensive experimentation, it has been found that FDGAS 

gives the same result as DGAS, and only differs in computational complexity level. Hence, it 

may perform satisfactorily in bigger scenarios with larger values of 	.  

5.3.2 The Anonymization and Decoding Algorithms 

To anonymize with the aim of achieving lower computational complexity, we need to avoid 

the decoder call from AS as well as avoid maintaining and updating	&. On the basis of some 

observation heuristics, we then design FDGAS for the cases where, � = 	 − 1 which now 

have computational complexity reduced to polynomial order. We first present the 

anonymization scheme (Algorithm 5.3) and then the decoding scheme (Algorithm 5.4). 
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Algorithm 5.3 presents the anonymization technique in light of Theorem  5.7 where � = 	 − 1. It removes all past observations when attribute fluctuation is detected, which is 

then signalled by encoding the attribute with a negative sign (steps 1-5). Then, it records the 

new attribute in step 6. Finally, it constructs the AR using a subset, preferably non-repeated, 

that has already been used maximally for anonymizing other attributes (steps 7-14). 

Lemma  5.9. Computational complexity of Algorithm 5.3 is M(	�). 

Proof. Let the time complexity of the algorithm is ß(	). Line 8 represents the most 

dominating computation. In the worst case, the algorithm takes M(	S) time as ��$8�£,�� ≤I	−1	−2J = M(	) and |8| ≤ M(	2). Hence the total complexity of the algorithm, ß(	) =
M(	 × 	S) = 	M(	�).         ∎ 

Algorithm 5.3: $K = Anonymize_FDGAS (	, �, &(Â9, … , Ây), &8, E ≡ [�, 23]) 

Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � = 	 − 1 

• Actual attributes of all POIs from recent observations (Â1 , … , Â	); if attribute of any 

POI � is yet to be observed, Â� is set to its unique dummy value −� assuming that real 

attributes are always mapped to positive values 

• Set of already generated $Ks, 8 

• Observation report E ≡ [�, 23], 1 ≤ � ≤ 	 

Output:  

• Anonymized rule $K ≡ {�9, … , �H}: 23|� ∈ {�9, … , �H} 

1. IF Â3 ≥ 0 

2.  Set 23 = −23 
3.  Set 8 = ∅ 

4.  Set (Â9, … , Ây) = (−1, … , −	) 

5. END IF 

6. Set Â3 = |23| 
7. Set - = {1, … , 	} 

8. Set 88 = °����� ∈ �$83£,H ∧ |{2|(��: 2) ∈ 8 ∧ 2 ≠ Â3}| = max∀O∈Ó»ÍÀ�,Õ|{;|(º: ;) ∈ 8 ∧ ; ≠ Â3}|í 

9. IF |88| = 1 THEN 

10.   Set $K = (��: 23) where �� ∈ 88 

11. ELSE 

12.  Set $K = (��: 23)	 where �� ∈ 88 ∧ (��: Â3) ∉ 8 

13. END IF 

14. Set 8 = 8 ∪ {$K} 
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Algorithm 5.4 presents the decoding technique in light of Theorem  5.8 where � = 	 − 1. 

It receives a set of ARs and finds the set of attributes from these ARs. It resets the decoder 

when the AS signals attribute fluctuation or number of attributes exceeds 	 due to false data 

feeding (steps 1-3). Then it appends AR to the collection after changing the attribute sign to 

positive in step 4. Finally, it decodes up to 	 − 1 attributes using the recursive decoder by 

assuming not-yet-decodable at the beginning (steps 5-10). 

The recursive decoder in Algorithm 5.5 decodes only when the collection is non-empty 

(step 1). At first, it finds an attribute with maximum number of subsets available in 8 (steps 

2, 3). Then it declares contradiction when number of subsets equals 	, which is impossible. 

Finally, it assigns that attribute to POI � if the subsets represent �$83-,H and then recursively 

decodes the remaining attributes by eliminating the ARs of the selected attribute as well as 

other ARs not having � in the subset from the collection and then removing � from all subsets 

to effectively make their length � − 1 (steps 7-16). 

Lemma  5.10. Computational complexity of Algorithm 5.5 is M(	�). 

Proof. Let the time complexity of the algorithm is ß(	). All steps excluding the recursive call 

of the algorithm take M(	S) time as |8| ≤ 	 × I yy]9J = M(	S). So, we can express ß(	) 

Algorithm 5.4: ('29, … , '2y) = Ö×ØÙÚ×_�ÖÝÞ�I	, � ≡ 	 − 1, &8, $K ≡ (��: 2)J	
Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � = 	 − 1 

• Set of already generated $Ks, 8 

• Anonymized Rule, $K ≡ (��: 2) 

Output:  

• Decoded attributes, ('29, … , '2y) 

1. IF 2 < 0 ∨ |{;|∃º: (º: ;) ∈ 8} ∪ {2}| > 	 THEN 

2.  Set 8 = ∅ 

3. END IF  

4. Set 8 = 8 ∪ {(��: |2|)} 

5. Set '23 = −∞ for all 1 ≤ � ≤ 	 

6. Set - = {1, … , 	} 

7. Set 	� = Ö×ØÙÚ×_�ÖÝÞ�_�(	, �, 8, &('29, … , '2y), -) 

8. IF 	� = 	 − 1 ∧ ∃(º: ;) ∈ 8: ; ∉ ('29, … , '2y) THEN  

9.  Set '23 = ; for � such that '23 = −∞ 

10.  END IF 
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with the following recursive expression for the complete decodability case, which is also 

the extreme scenario: 

ß(	) = ÇM(1), if		 = 1	;ß(	 − 1) + M(	S), otherwise. 
By expanding the recursive expression we get 

ß(	) = ß(	 − 1) + 	S = ß(	 − 2) + 	S + (	 − 1)S = ⋯ = ∑ �Sy3z9 = M(	�).  ∎ 

In the next section, we discuss an important implementation issue regarding how the 

possible variation in attributes over time would be addressed. 

Algorithm 5.5: 	� = Ö×ØÙÚ×_�ÖÝÞ�_�(	, � ≡ 	 − 1, 8, &('29, … , '2y), -)	
Input:   

• Number of POIs, 	 

• Degree of desired anonymity, � = 	 − 1 

• Set of already generated $Ks, 8 

• Decoded attributes, ('29, … , '2y) 

• Set of POIs, - = {1, … , 	} 

Output:  

• Number of decoded attributes, 	" 

1. IF 8 = ∅ THEN 

2.  Set 2 = argmax∀A|∃O:(O:A)∈Í|{��|(��: 2) ∈ 8}| 
3.  Set 8C = {��|(��: 2) ∈ 8} 

4.  IF |8C| = 	 THEN 

5.   Set '23 = ∞ for all 1 ≤ � ≤ 	 

6.   Set 	� = 0 

7.  ELSE IF ∃� ∈ -:	8C = �$83£,H  THEN 

8.   Set '23 = 2 

9.   Set 8CC = ¶(�� ∖ {�}: ;)�(��: ;) ∈ 8 ∖ 8C ∧ �� ∈ �$83£,H¸ 

10.   Set 	�
C = Ö×ØÙÚ×_�ÖÝÞ�_�(	 − 1, � − 1, 8CC, &('29, … , '2y), - ∖ {�}) 

11.   IF 	�
C = 0 THEN 

12.    Set 	" = 0 

13.   ELSE 

14.    Set 	" = 1 + 	"′  

15.   END IF 

16.  END IF 

17. ELSE  

18.  Set 	" = 0 

19. END IF 
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5.4 Temporal Fluctuation of Attributes 

Recalling from Section  4.5.5 4.4.1, considering the frequency of attribute change, an efficient 

statistical model can be developed to find the expected fraction of time, ó{ by which ApS 

recovers the correct knowledge about all POI-attribute associations. This implies a time gap 

within which the ApS can provide dependable service. We can now analyse the transient 

effect of attribute change on the decodability while using DGAS. Since the change in 

attribute value (say, price change at a petrol pump) causes contradictions with previous 

reports from the corresponding POI, the decodability performance of the decoder degrades 

and will take some time to recover. Similar to what we did in the previous chapter for 

PGAS, we may empirically ascertain the expected length of	ó{ to remain preferably 90% of 

the full temporal window. Here, we present an analytical model to determine the expected 

value of 	ó{ .  

Consider a participatory sensing system of 	 POIs that change their respective 

attributes	23Cs independently at exponentially distributed intervals with mean	#3, 1 ≤ � ≤ 	. 

Effectively, the interval between changes of at least any two attributes is also exponentially 

distributed with mean	#̂ = 1/∑1/#3. Here, the attribute change interval,	# is the key 

parameter in the fluctuation modelling. 

Let	�A = � × 
, number of participants observe these POIs, anyone at random, 

independently at exponentially distributed intervals with mean	
O ,	1 ≤ º ≤ �A. For 

sufficiently large	#̂, we may safely assume that between changes of at least any two 

attributes º-th participant observes each POI on average #̂/	
O 	 times and collectively #̂∑1/
O = (∑1/
O) ⁄ (∑1/#O)  observations are made. 

Let 6y,H  be the average number of reports needed to decode attributes of all 		POIs 

using k-anonymity. So, the application server is expected to be knowledgeable of all 

attributes for the fraction of time, 

 ó{ = 1 − 6y,H − 1∑ 9
�� ∑ 9


�� = 1 − ∑ 9

�∑ 9
�� I6y,H − 1J. ( 5.2) 

For a simpler case where all POIs are changing attributes in same interval and all the �A 

participants are reporting in the same observation interval, i.e., if #9 = ⋯ = #y = # and 


9 = ⋯ = 
©� = 
 then,  
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 ó{ = 1 − 	
�A# I6y,H − 1J ( 5.3) 

Here	6yÕ	is a function of	(	, �), number of active participants �A depends on the 

popularity of the scheme, while # is governed by the POIs. The users’ observation frequency 

is the only variable parameter to design a reliable service scheme such that the ApS has 

correct knowledge about all POI-attribute associations for a user-defined period of time. The 

higher the value of	ó{ , the ApS sustains complete and exact information for a greater fraction 

of time. 

In Section  5.5, we shall present the simulation results to demonstrate that the higher the 

value of		, it requires a greater number of reports to maintain full decodability in 90% or 

more times. Besides, for less frequently changing attributes, it requires a fewer number of 

reports to maintain full decodability in 90% or more of the time. 

5.5 Performance Evaluation 

In this section, we present simulation results to establish the superiority of the decoding 

performance of DGAS compared to PGAS. The number of observations needed to achieve a 

certain level of data integrity indicates the performance of the respective approach. The 

simulation setup was the same as for PGAS in the previous chapter (presented in 

Section  4.5.1). To recall in brief, MNs report observations to AS in a random fashion that 

anonymizes those using respective algorithms and also the knowledge of previous reports. 

The results are generated for different degrees of anonymity, i.e.,	� = 	 − 2	to		 − 1. All the 

results presented here are obtained by averaging 1000 simulation runs. Note that the 

decodability is computed here in a deterministic manner for all the schemes as opposed to 

the majority decoding based decoding computation performed in Chapter  4.  

The performance of our proposed DGAS in achieving a certain level of data integrity 

and withstand attribute fluctuation, a comparison with its efficient variation FDGAS and 

also with the previously presented PGAS are presented here. Note that, in the previous 

chapter the performance of PGAS was measured in terms of decodability percentage, i.e., 

among 	 number of POIs which percentage of POIs was decoded. From now on, the 

performance of DGAS as well as comparison of that with its other variants are undertaken 

on the basis of full decodability percentage, i.e., the percentage of achieving 	-decodability. 



Chapter  5. Efficient Anonymization with Deterministic Techniques 

123 

 

5.5.1 Decodability Performance of DGAS 

Figure  5.4 elaborately describes how "-decodability performance varies for different values 

of	", for DGAS with a fixed value of 	 = 4 and	� = 3. Performance curve for each set up is 

identified as 	, �(") where " ∈ {1,2, . . , 	}. The trends confirm that, a certain proportion of 

the simulation runs achieved "-decodability with fewer ORs when " is lowered. As the 

desired level of decodability, i.e., value of " increses, the value of required � also needs to 

be increased. To achieve 1-decodability i.e., to become confirm about one POI-attribute 

association among the total of four POIs where desired anonymity,	� = 3, the number of 

required reports to ApS, � = 7. However, to arrive at full decodability the number of 

necessary reports, � = 18. This signifies that required value of � increases with desired 

level of	". 

  

 

Figure  5.4: Data integrity trend when 	 = 4 and	�	 = 	3, for all possible "-decodabilities, 
where " ∈ {1,2, . . , 	} generated from � number of observation reports. 
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5.5.2 Fluctuation of Attributes 

In this simulation, we presented different types of transient effects of POI attribute change. 

Here, the number of active participants �A = 200. Figure  5.5 considers a generic case where, 

each POI changes attributes on average once per day. To maintain knowledge about POI-

attribute association for 85% of time, the ApS needs 57 obseravations per POI per day 

for		 = 4, whereas that required for 	 = 5		is	96, and 	 = 6 is	200. From another point of 

 
Figure  5.5: Effect of 	 on number of reports required to maintain knowledge 

particular fraction of time considering 	 = {4,5,6} and � = 	 − 1. 

 

 
Figure  5.6: Effect of varying POI attribute change interval, # on number of reports 

required to maintain knowledge particular fraction of time for 	 = 4 and � = 	 − 1. 
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view, when number of observation per POI per day is fixed to be	100 and		 = 5, Figure  5.5 

shows that for 82% fraction of time, our ApS is expected to be knowledgeable of the full 

decoded information. This is the requirement for highest possible privacy preservation, as in 

all cases we assume desired level of anonymity	� = 	 − 1.  

Then we consider varying the key fluctuation modelling parameter	#, for a fixed 	 = 4, 

and � = 3. On the one hand, for more frequently changing attributes, e.g., when POIs 

change attribute in every 6 hours, i.e.,	# = 6, Figure  5.6 shows that 300 observations per POI 

per day is required to retain 90% fraction of the time the ApS has knowledge about all 

attributes. On the other hand, when POIs change attribute less frequently e.g., in every three 

days, i.e.,	# = 72,	only 29 observations per POI per day is sufficient to maintain the full 

decodability knowledge for 90% fraction of time. 

5.5.3 Comparison between DGAS and PGAS 

Figure  5.7 shows how the decodability performance of DGAS can be compared with its 

random variant for different values of 	 and	� = 	 − 1. The performance curve for each set 

up is identified as (	, �) where		 ∈ {4,5,6}. The figure shows that in all cases, a certain 

proportion of the simulation achieved 100% full decodability with significantly fewer 

observations when we used our proposed DGAS approach instead of the random one. As 

 

Figure  5.7: Data integrity trend when 	 ∈ {4,5,6} and	�	 = 	 − 1, for DGAS and Random 
scheme as compared from � number of observation reports. 
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the number of POI increases, the gap between the decodability performance curves also 

increases. When 	 = 4, our proposed algorithm can reach 100% full decodability with 

reports	� = 	24, whereas for the same performance, the random scheme requires	� = 49. 

This gap in required number of � to achieve the same performance increases from 25 to 133 

using our proposed approach as compared to the random one, when number of POI is 

increased from 4 to 6.  

Figure  5.8 presents the comparative performance of our proposed DGAS using trend 

lines with PGAS for the same values of 	 and	�. Here, we consider, 	 = 6 and � ∈ {3,4,5}, to 

examine the effect of varying � as well. For all cases, a certain proportion of the simulation 

runs achieved 100% full decodability with almost same ORs for both DGAS and PGAS. 

However, prior to reaching 100% full decodability, DGAS is running over PGAS. Achieving 

up to 95% full decodability, DGAS requires a fewer number of observations compared to 

PGAS. For example, our proposed DGAS can reach	28% full decodability with � = 20, 

whereas PGAS can reach only	8.2% full decodability with same number of ORs, when	� = 5. 

This gap by which DGAS is superior to PGAS, is increasing when operating with higher 

degree of anonymity, i.e., higher value of �. 

  

 

Figure  5.8: Data integrity trend when 	 = 6 and	�	 ∈ {3,4,5}, for DGAS and PGAS as 
compared from � number of observation reports. 
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5.5.4 Comparison between DGAS and FDGAS 

In some application scenarios, the privacy requirement might be the highest possible i.e., � = 	 − 1. For those cases we have developed a fast approach, FDGAS in Section  5.3.1 

which is less complex both in computation and memory requirement. Figures  5.9 and  5.10 

compare the time requirement of FDGAS as compared with DGAS in performing encoding 

and decoding respectively. The results clearly show that the complexity increases with the 

number of POIs. More importantly, FDGAS can compute at a much lower range of time 

compared to DGAS such that we needed to use a logarithmic graph to display them in the 

 
Figure  5.9: Time requirement for Encoding as compared between DGAS and FDGAS. 

 

 
Figure  5.10: Time requirement for Decoding as compared between DGAS and FDGAS. 
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same chart. Our original DGAS scheme can comfortably handle POIs in the range of 4 to 6, 

hardly 7 or 8. In contrast, if we used our FDGAS approach, time elapsed in computing is 

merely 0.76 milliseconds, even when 	 is as high as 20. 

5.6 Conclusion 

In this chapter, we have presented two more k-anonymization schemes using subset-coding 

which simultaneously protect the location privacy of the participating users and achieve the 

desired data quality at the target end. The deterministic approach based on cardinality 

reduction from a set of mapping possibilities between POIs and attributes was found to be 

superior to the probabilistic approach presented in the previous chapter in achieving data 

quality from fewer observations. The faster variation of this approach was also analysed 

empirically.  In the next chapter, we are going to apply another subset-coding based 

anonymization approach for a completely different application scenario, electronic voting.     
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V{tÑàxÜ  I 

6 Subset Coding Based E-Voting  

In the previous two chapters we have presented subset-coding based k-anonymization 

techniques to protect the privacy of users in PSS. In this chapter, we use the same subset-

coding as a basis of privacy preserving electronic voting that is simultaneously trustworthy 

to the voters who can verify that their votes are properly counted to produce an election 

outcome. The proposed voting system resorts to joint de-anonymization of the votes for 

counting ensuring that it is difficult to manipulate votes by any entity concerned without 

being detected. 

The organization of the rest of this chapter is as follows. Section  6.1 constructs the 

introductory baseline of this chapter. We briefly discuss the idea of k-anonymity based 

voting in Section  6.2. In Section  6.3, we present the voting protocol in details. We present the 

post-voting procedures, including tallying and auditing, in Section  6.4. In Section  6.5, we 

analyze various threats to the proposed voting scheme. Some optimization issues related to 

our proposed scheme are discussed in Section  6.6. Finally, we conclude the chapter in 

Section  6.7. 

6.1 Introduction 

Democracy, the most wide-spread political system in the world, relies a great deal on free 

and impartial election. It is believed that  [125] if voters can trust an election, their 

participation would be spontaneous and they will put in their best effort to choose the right 

candidate. A trustworthy voting system has to be verifiable by the voters individually and 

also globally by some responsible parties. However, the indispensable requirements of 

voting such as confidentiality and privacy of the voters also must be respected.  
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Among all the requirements discussed in detail in Section  2.2, the following are of 

critical importance to a trustworthy voting system.  

Fairness – all the eligible voters should have equal weight to influence the outcome of an 

election and nobody should be able to influence the outcome of an election more than with 

her own vote.  

Privacy – it should be impossible for anyone to know how an individual voter voted. It 

should also be impossible for a voter to prove to anyone how he voted. The former 

requirement also ensures coerce-resistance while the latter prevents vote trading.  

Integrity – it should be impossible for anyone, including the election officials, to tamper 

with the voting results. The measures to ensure the integrity of a voting system is 

verifiability, i.e., it should be possible to verify that each and only the authorized votes are 

counted. In other words, E2E verifiability has to be maintained.  

To achieve integrity, in addition to verifiability, a voting system needs to ensure 

authenticity, i.e., a voter or a group of voters must not be able to prove a false claim about 

the election result. To achieve fairness, a voting system should ensure that all eligible voters 

are allowed to vote only once and no eligible voter is denied her voting right. While 

verifying eligibility, the voting system should also maintain anonymity  [22]. Therefore, the 

 

 

Figure  6.1: The challenges of an EVS. 
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traditional method where the eligibility is verified in front of the voting booth can be used to 

ensure fairness. Thus, the major objective of an electronic voting system is to ensure both 

privacy and integrity. This is a difficult problem since privacy mandates that there would be 

no link between the vote and the voter, whereas integrity or trustworthiness requires 

verifiability which needs to preserve association between a vote and its originator. 

Verifiability is desired individually by the voters as well as globally by some third party 

auditors. All these simultaneous requirements are summarised in Figure  6.1. 

Electronic voting, having the privilege of fast and flawless counting, has over the years 

been explored to meet all these demands. Some schemes have tried to combine the 

simplicity of the traditional system with some security mechanisms using electronic 

machines. However, to provide trustworthiness of the system, these techniques either 

assume unrealistic mechanisms, such as use of special inks, or demand unrealistic voter 

capability, such as performing modular arithmetic or trusted entities such as Electronic 

Voting Machine (EVM), printer, scanner, etc  [22]- [28]. In reviewing the literature, there is yet 

to be any universally acceptable electronic or electronic device-aided voting system. 

In this chapter, we present a voting scheme that ensures minimal trust assumption of 

the machines to achieve both privacy and E2E verifiability of the voters.  To ensure the voter 

privacy we use a k-anonymization scheme based on our subset-coding technique introduced 

in Chapter 3. The idea of our approach is to anonymize a vote with � − 1 other candidates. 

The problem of voting is quite different from the natural context where subset-coding is 

applicable. We have mapped the voting problem to this context by considering a group of 

candidates who would be presented to a number of voters similar to a collection of 

observers visit who a POI. Our hypothesis is that the individual anonymized votes can be 

jointly decoded, provided a sufficient number of votes are cast.  

The feasibility of the technique relies on the efficient joint de-anonymization property of 

subset-coding technique to obtain the election outcome. To ensure the trustworthiness of the 

electronic entities (hardware and communications) involved in the voting system, each of 

the entities’ behaviour is kept under check and balance by other entities in the system. 

Essentially, this ensures that any manipulation attempt by any of the entities will be 

detected by other components of the system with high probability. The proposed voting 

scheme also uses standard security/privacy measures such as cryptographic hashing while 

storing and/or transmitting the casted votes to the central authority and/or Bulletin Board 
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(BB). We also incorporate the idea of a floating receipt as proposed by  [27] to protect against 

vote trading or coercion. To ensure receipt-authenticity, we propose using both a digitally 

signed paper and on-the-spot physical validation by a polling officer.  

Specifically, the proposed k-anonymity based voting scheme has the following 

comparative advantages over other existing systems:  

• The proposed scheme ensures trustworthiness of the whole system by distributing 

the responsibilities among the entities. The behaviour of each of the entities is 

verified by one or more other entities of the system.  Therefore, this does not require 

assuming expensive and/or infeasible hardware or voter capability to achieve 

trustworthiness of the system. 

• The existing schemes use pseudorandom permutation of the candidates to protect 

the privacy of each of the votes. Our approach instead checks the consistency of the 

votes during the joint de-anonymization. As we show in Section  6.5.1, even a 

negligible number of vote manipulations will not remain undetected in this system 

due to this inherent consistency preservation property. This allows our proposed 

system to adopt a simple hardware model. 

• Some existing systems such as  [25] protect voter privacy by allowing partial 

information about the vote in a receipt and eventually fail to ensure complete 

verifiability. In contrast, the proposed system provides full voting information in the 

receipt and, thus, ensures E2E verifiability.  

In the following sections, we present our voting scheme. 

6.2 Preliminaries 

In this section, we discuss the idea of how subset-coding based anonymization scheme is 

designed for a completely different application scenario. Recall from Chapter  3 that subset-

coding is applicable to any multiple observation of individual instance scenario. We have 

mapped the voting problem to this context by considering a group of candidate a single 

object on which a collection of voters would cast their preference. To present the preliminary 

concept of our approach we use an example as follows. 

Let there be 	 = 4 candidates $, %, &, and " and we want to achieve � = 2 anonymity. 

Let [$	%	&	"] be the canonical ordering of the candidates. Clearly we can have 4! = 24 
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possible ordering for these candidates. Now in the voting scheme, a voter is randomly 

provided with a candidate-order out of these 24 possible orderings. Let a voter is assigned 

the candidate-order [%	&	$	"] and her favorite candidate is	&. Now she needs to construct a 

subset of {$	%	&	"}  containing exactly � = 2 candidates which should include the candidate 

C. Thus, her possible choices are{$, &},{%, &}, and {&, "}. Assume that her choice is{$, &}. 

Then, her completed vote should be recorded as{$, &}: 2, since the index of & in the 

candidate-ordering [%	&	$	"] is 2. 

To count the votes, the central election authority, as well as a verifier, must be able to 

decode the votes. Clearly knowing the candidate-ordering used in a particular vote, allows 

anyone to decode the vote. For example, given that the candidate-order [%	&	$	"] was used 

while casting the vote {$, &}: 2, one can easily decode that the vote is for candidate &.  

However, the major strength of the scheme is that the election authority or verifier can 

decode the votes without knowing the candidate-ordering used to cast the vote as long as 

one has a reasonable number of anonymized votes. In the instance in the current example, 

let a group of voters voted using the candidate-ordering,  [%	&	$	"] as {$, &}: 2, {%, &}: 2, {%, &}: 1, {$, %}: 3, {$, "}: 4. This can be verified that among the possible 24 candidate-

orderings, only [%	&	$	"] is consistent with all these votes. We can now calculate the number 

of votes for candidates $, %, &, and " as 1, 1, 2, and 1, respectively. 

Clearly the brute-force approach to de-anonymize the votes considering all the 	! 
possible candidate-orders is not computationally feasible. We also need to ensure complete 

de-anonymization even in case of an insufficient number of votes to achieve full de-

anonymization (to be defined by Definition  6.4). In Section  6.4, we describe how the de-

anonymization can be done efficiently. To address the problem of insufficient number of 

votes for complete de-anonymization we propose the idea of dummy votes in Section  6.4.1. 

6.3 Voting Protocol 

In this section we present the whole voting process including pre-voting steps and the 

functionalities after the arrival of each voter in the booth. 
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The proposed voting system involves the following hardware entities: (i) random 

number generator (RNG); (ii) electronic voting machine; (iii) receipt exchange box; (iv) 

public Bulletin Board (BB); and (v) central server. Human entities involved with the system 

are: (i) voters; (ii) multiparty polling agents; (iii) vote counting authority; and (iv) auditors. 

Before describing the voting protocol in detail, we first define relevant notions. 

Definition  6.1 (Candidate-order) Let  [&9	&S ⋯ &y] be the canonical ordering of 	 candidates. 

Then an indexed candidate-order 

 [&3�&3¥ ⋯ &3Ô] ← �=�6	(�, [&9	&S ⋯	&y]	), ( 6.1) 

accepts � as the index and the canonical candidate-order[&9	&S ⋯	&y] and outputs a permutation [&3�&3¥ ⋯ &3Ô] of the canonical candidate-order. 

Definition  6.2 (Permutation group) Given a set of  � ≤ 	! distinct indices {�9	�S ⋯	��},  the 

permutation group	� is defined as the set of candidate-orders corresponding to indices �O , º =1, ⋯ , �, i.e. 

 �	 = 	 {�=�6	I�O , [&9	&S ⋯	&y]J}, º = 1, ⋯ , �. ( 6.2) 

 

Figure  6.2:  Conceptual diagram of the proposed electronic voting process. 
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The whole voting process is depicted in Figure  6.2 . In the following section, we describe 

the pre-voting tasks and the procedures that an eligible voter will experience in the course of 

casting a vote. 

6.3.1 Receipt Number and Candidate-order Generation 

Given the number of candidates N, the RNG chooses the permutation group size L at the 

beginning of the election. The RNG then generates L indices and the corresponding L 

candidate-orders are then provided to the EVM. The RNG also computes a hash value of the 

permutation group and posts it to the BB after the completion of the vote.  This hash value 

enables the public to verify that the EVM used the correct permutation group.  To ensure the 

trustworthiness of the RNG, its behavior will be controlled by the seed that is provided by 

the multiparty pooling agents at the beginning of the election. Later in this chapter, we show 

that a compromised RNG has very limited capability to manipulate the election in favor of a 

particular candidate.  

On the arrival of an eligible voter, the RNG generates a receipt containing a unique 

randomly generated number r of length n which is also supplied to the EVM. The EVM uses 

a one way function ¾(∙) that maps r to {1, ⋯ , �} to choose a candidate-order from the 

permutation group supplied by the RNG at the beginning of the election. Let ri denotes the i-

th digit of r. Then in the proposed system we assume the following structure for the function ¾(∙),    

 ¾(�) = (2«�« + 29�9 + ⋯ + 2©�©) mod �,     where	23 ∈ {0,1}, � = 1, … , �. ( 6.3) 

The EVM randomly selects the values of 23's	that determine the behavior of ¾(∙). Indeed, 

due to the use of this function, an untrusted RNG cannot manipulate the election in favor of 

a particular candidate. To ensure that the EVM is consistent with the values of 23 's	throughout the election, it is a requirement that the EVM post the values of 23 's to the BB 

at the end of the voting. 

To prevent any collusion between the RNG and EVM, we assume that the 

communication link between RNG and EVM is one way, i.e, from RNG to EVM only. This 

one way communication can be achieved as follows: there will be no electronic 

communication between the RNG and EVM; the output generated by the RNG printed on 

the receipt will be fed to the EVM by the voter herself, and to facilitate the reading of the 
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receipt number by the EVM, the RNG will print the number along with its barcode in the 

receipt.  

After receiving a receipt from a voter, the EVM reads the number r and chooses the 

candidate order corresponding to ¾(�). Then the EVM simultaneously displays the receipt 

number r and the candidate-order corresponding to	¾(�) to the voter. At this point, there is a 

risk of manipulation by the EVM if it does not use the original receipt number r. Therefore, 

the handling of the receipt by the EVM would be done using physically transparent 

hardware so that the voter gets the original receipt at the end of her vote. Another possible 

fraudulent attempt by a compromised EVM may be to choose and display a different 

candidate-order other than that corresponding to ¾(�). We term this as group-interchange 

attack. Since, at the end of the voting, the hash value of the given permutation group and the 

values of 23 's will be posted to the BB by the RNG and EVM respectively, the EVM cannot 

use any other number without being detected due to the inherent strength of joint de-

anonymization. We analyse this attack and also the detection probability in Section  6.5.1.  

The next step is to cast the vote in k-anonymized form. We discuss this step below. 

6.3.2 Casting Vote 

In the proposed system, the voters cast their votes using the k-anonymization technique 

discussed here. Let us term the k-anonymized form of a vote as Anonymized Vote (AV), 

 

 

(a) 

 

(b) 

Figure  6.3:  For a set of 4 candidates {$, %, &, "},(a) the voter inputs her preference in 3-
anonymized way following the displayed candidate-order and half-printed receipt with 

receipt-number only and (b) the EVM shows the recorded vote while printing the full receipt. 
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defined as follows. 

Definition  6.3 (Anonymized Vote): Given a candidate-order �&3�&3¥ … &3Ô�, an Anonymized Vote 

(AV) for casting in favor of the candidate &3� , 1 < º ≤ 	, is expressed as  

 �&3�� ∪ ¶&O�	&O¥ ⋯ &OÕ¡�¸: �O , ( 6.4) 

�ℎ=�=	{º9, ºS, … , ºH]9} ⊂ {1, … , 	}/¶�O¸ is selected by the voter to anonymize her vote with other 

candidates. 

After the completion of a vote casting, the EVM appends the anonymized vote {&3�		} ∪
{&O�			&O¥	 … &OÕ¡�	}: �O below the receipt number and gives the complete receipt to the voter. 

Since the receipt was already printed with � and the hash value of the permutation group 

and the values of 23 	′�	 defining ¾(∙) will be made available to the BB, the EVM cannot 

manipulate the candidate-order. The vote casting protocol is depicted in Figure.  6.3 for a 

typical scenario with four candidates.  

Example: Let $, %, &,	and	" be four candidates and [$	%	&	"] be their canonical order. 

For a candidate-order	[&	$	"	%], Table  6.1 shows a list of the possible AVs to maintain � = 3 

anonymity where the voter wishes to vote for $, %, &,	or	". If she chooses to vote for	%, she 

can choose any of the three possible AVs: {$, %, &}: 4, {$, %, "}:	4, or {%, &, "}:	4. To prevent 

potential manipulation of the EVM, the voter is given the control to choose any of the 

possible subsets. If the voter inputs an inconsistent AV, EVM will detect it and ask the voter 

to vote again. For example,  {$, %, &}: 3 is an inconsistent AV for the candidate-group 

presented above.  

The EVM stores all the AVs in its memory to send the votes to the central election 

authority and to the BB at the end of the voting session. To enable de-anonymization of the 

anonymized votes, the stored AVs also contain the identification of its originating EVM. 

Table  6.1: Possible Anonymized Votes for the Candidate-order [&	$	"	%] 
Vote for $ Vote for % Vote for & Vote for " 

{$, %, &}:	2 {$, %, &}:	4 {$, %, &}:	1 {$, %, "}:	3 {$, &, "}:	2 {$, %, "}:	4 {$, &, "}:	1 {$, &, "}:	3 {$, %, "}:	2 {%, &, "}:	4 {%, &, "}:	1 {%, &, "}:	3 
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The receipt collected after each vote preserves an association between a vote and the 

voter which makes the privacy of the voter vulnerable. Our target is to use the receipt for 

individual verification, however, without keeping any link to its originator. This is achieved 

by swapping receipts, as discussed below.  

6.3.3 Floating the Receipt 

After collecting the receipt from the EVM, the voter comes to the polling officer to validate 

her receipt with a signature and seal. Together with the digital signature, this manual 

validation prevents fake-receipts1. After validation, the polling officer puts it into a 

transparent receipt exchange box and guides the voter to randomly collect another receipt 

from the exchange box. This mechanism is termed as floating receipts, and as proposed in  [27] 

it decouples the link between a voter and the receipt she carries. Distributed or individual 

verification is achieved by expecting that a large number of voters will verify the collected 

receipts in the BB.  

It may be argued that the voters have more motivation to check their own receipt, rather 

than checking an unknown voter’s vote. However, the joint de-anonymization ensures that 

all the original AVs will jointly conform to a particular candidate-order and any fraudulent 

attempt will get noticed by bringing inconsistency to the de-anonymization process. In the 

proposed scheme, if a voter checks and verifies a floating receipt from the BB, she can be 

assured that her vote is also recorded-as-cast. The strength of joint de-anonymization is 

further elaborated in Section  6.4. 

Next, we discuss the post-voting procedures run at the central authority and also by 

third-part auditors to count the votes and ensure the global verifiability by detecting 

potential manipulation attempts by the EVMs. 

6.4  Post Voting Procedures 

At the end of the voting session, the polling agents count the number of voters and publish 

the total number of votes cast. This count will be matched against that provided by EVM. 

After this, using a cryptographic hash function, the EVM computes a hash value or message 

digest based on all the information stored in the ROM which includes AVs and the values of 23C�	defining	¾(∙). The message digest is handed over to the polling agents of the different 

                                                           
1 However, if it can be extremely difficult to fake the receipt, this step can be skipped. 
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parties before transferring the content of the ROM to the central election authority and/or to 

the BB. The total number of votes in each EVM is counted by the polling agents and is 

separately provided to the central vote counting authority and the BB. The RNG also 

computes the hash value of the permutation order given to the EVM at the beginning of the 

voting session and is handed over to the polling agents. A major strength of the proposed 

joint de-anonymization technique is that all the AVs of a permutation group are consistent 

with one and only one candidate-order. This consistency property ensures that any 

fraudulent attempt by the EVM to change candidate-orders would be detected as a 

contradiction during vote counting.  

In the case of physically transferring the ROM, the transparency can be ensured by 

physical monitoring of different polling agents. In the case of electronic transfer, encryption 

and standard secure channels can be used. If a channel intruder makes any change to the 

AVs, the message digest will mismatch and, therefore, the change will be detected. Note that 

it is computationally infeasible to modify a message without changing the message digest 

and it is also computationally infeasible to find two different messages with the same 

message digest. This property also ensures that if any change is made to any data sent from 

an EVM, it can be detected by re-computing the message digest from the same data 

presented in the BB. 

The central authority processes the collected AVs from all the EVMs in the central server 

and presents them in the BB so that an individual can match her receipt against the one in 

the BB. The message digest is also presented and verified by the polling agents. The 

authority de-anonymizes these AVs using the technique discussed below, counts votes for 

each candidate, and then declares the vote result. Finally, the third party audit team plays 

the role of an external group that checks and verifies the election result to confirm the 

universal verifiability property using the same de-anonymization technique from AVs 

presented in the BB. They also compute a message digest from the raw data and match it 

against the one presented in the BB. 

6.4.1 Tallying 

Each AV needs to be de-anonymized for tallying. We present here the joint de-

anonymization technique that uniquely associates each vote to the candidate that was 

actually cast, provided that a sufficient number of anonymized votes have been cast for each 

group. In the following, we formally define the notion of full de-anonymization. 
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Definition  6.4  (Full De-anonymization): For an N-candidate election, a particular outcome of an 

anonymization scheme satisfies full de-anonymization iff all 	 candidates can be associated to their 

correct candidate-order. 

From the receipt number of an AV, one can easily compute the associated group number 

given the values of 23′s. However, the candidate-order corresponding to a group number is 

not directly available. Now given all the AVs belonging to a particular group, one can 

determine its candidate-order using the joint de-anonymization method (as presented 

below). 

Let us explain the de-anonymization method with an example.  In Table  6.2, we present 

the de-anonymization method for 	 = 4, � = 3 and a candidate-order	[$	%	&	"]. The 

algorithm starts with all possible mappings between the candidates and their orders. Each 

AV rules out some of these mapping possibilities and when only one possibility is left, full 

de-anonymization is achieved. In Table  6.2, the conforming tuples are shown each time an 

AV is taken into account. Note that the number of tuples gradually decreases with the 

Table  6.2: Conforming Tuples of Gradually Counted AV Set for Candidates [$	%	&	"] 
 

AVs 

{A,B,C}: 1 
{A,B,C}: 1 {A,C,D}: 3 

{A,B,C}: 1 {A,C,D}: 3 {$, %,D}: 1 

{A,B,C}: 1 {A,C,D}: 3 {$, %,D}: 1 {A,B,C}: 1 {%, &, "}: 4 

{A,B,C}: 1 {A,C,D}: 3 {$, %,D}: 1 {A,B,C}: 1 {%, &, "}: 4 {A,B,C}: 2 

Conforming 

tuples 

(1,2,3,4) (1,2,4,3) (1,3,2,4) (1,3,4,2) (1,4,2,3) (1,4,3,2) (2,1,4,3) (2,1,3,4) (2,3,1,4) (2,4,1,3) (3,1,2,4) (3,1,4,2) (3,2,1,4) (3,4,1,2) (4,1,2,3) (4,1,3,2) (4,2,1,3) (4,3,1,2) 

(1,2,3,4) (1,2,4,3) (1,4,2,3) (1,4,3,2) (2,1,4,3) (2,1,3,4) (2,4,1,3) (3,1,2,4) (3,1,4,2) (3,2,1,4) (3,4,1,2) (4,1,2,3) (4,1,3,2) (4,2,1,3) 

(1,2,3,4) (1,2,4,3) (1,4,2,3) (1,4,3,2) (2,1,4,3) (2,1,3,4) (3,1,2,4) (3,1,4,2) (4,1,2,3) (4,1,3,2) 

(1,2,3,4) (1,2,4,3) (1,4,2,3) (1,4,3,2) (2,1,4,3) (2,1,3,4) (3,1,2,4) 

 

(1,2,3,4) (1,2,4,3) (1,4,2,3) (2,1,4,3) (2,1,3,4) (3,1,2,4) 
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number of AVs. When a new AV is taken into consideration, some of the existing tuples 

conforming to previously considered AVs, contradict with the new AV. In the end, the 

remaining tuple/s may or may not lead to full de-anonymization.  

Since the individual voters select the k candidates in the AV in an unguided manner, a 

group of votes may fall short of full de-anonymization. In this case the central authority 

would not be able to count votes from the received AVs. To overcome this problem, we 

propose to use dummy votes that will ensure unique and correct decoding. The dummy 

votes are candidate-group specific and easily distinguishable from the original ones while 

tallying. After the voting session, the EVM determines the minimal set of dummy AVs that 

will bring the group to full de-anonymization. Thus, the EVM also needs to send the set of 

dummy AVs, along with the original AVs, to the central authority.  Now, we describe the 

procedure to compute a set of dummy AVs. 

Let  8(	, �) be a set of AVs that yields full de-anonymization. Let 8ur¨	(	, �) be a set 

with a minimal number of AVs that achieves full de-anonymization. Now a 8ur¨	(	, �) can 

be constructed using the following technique. 

Following the joint de-anonymization technique presented in Table  6.2, one AV 

eliminates (	 − �) possible candidate-orders. Again, to associate a candidate with her correct 

order, (	 − 1) other possibilities need to be removed. Continuing with the candidate-

order[$	%	&	"], the three AVs	{$, %, &}: 1,	{$, %, "}: 1, and  {$, &, "}: 1 suggest that ", &, and % 

cannot have the order 1. So, they jointly decide that the candidate-order of $ is	1. To decode 

the next candidate, say	%, we take into account the decoded order of $ in the AVs. 

Accordingly, the AVs {$, %, &}: 2 and  {$, %, "}: 2 will define that the candidate-order of % 

is	2. This process will continue until � − 1 candidates are mapped to their respective orders. 

The remaining candidates may be mapped using only one AV by including any � − 1 from 

the already decoded candidates. Here, to decode	&, we use already decoded orders of $ and % and find the AV {$, %, &}: 3. For	", any two candidates from	{$, %, &} can be included. So, 

any of {$, %, "}: 4 or {$, &, "}: 4 or {%, &, "}: 4 will serve the purpose, i.e., {−, −, "}. 

According to this strategy, it is evident that the first candidate in a group can be mapped 

to its order using ¦y]9y]Hª AVs. Similarly, for the second candidate it takes ¦y]Sy]Hª AVs and so on 

for the first � − 1 candidates. For the remaining 	 − � + 1 candidates, each requires only one 

AV. Hence we have the following proposition. 
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Proposition  6.5.  |8ur¨(	, �)| = ∑ ¦y]3y]Hª	H]93z9 + (	 − � + 1).  ∎ 

At the end of voting session, EVM has to check if at least one 8ur¨	(	, �) can be 

constructed for each of the groups. If this is achieved, no dummy vote is required for that 

group. Otherwise, the EVM has to generate a minimal set of dummy AVs for the group, 

which together with the actual AVs, construct an	8ur¨	(	, �) for that group. For example, the 

final set of AVs shown in Table  6.2 need to include three AVs, i.e., {$, &, "}: 1, {$, %, &}: 3, and	{$, %, "}: 2 to achieve full de-anonymization. In other words, 

these three dummy votes along with the original AVs	{$, %, &}: 1, {$, %, "}: 1, 	{%, &, "}: 4, and {$, %, &}: 2 would construct an  8ur¨	(	, �). 
A simple way to generate the set of dummy AVs is to pre-decide a particular 8ur¨	(	, �) 

to be constructed and check if each of its AVs is present in the casted votes. If any AV from 

the target 8ur¨	(	, �) is not found, it has to be appended as a dummy vote. 

6.4.2 Auditing 

Once the voting is complete and the result is announced, the third party audit team plays 

the role of the universal verifier. They collect all the AVs from the BB and all the message 

digests from the EVMs. Then, the message digest from the AVs is computed and matched 

against the one published in the BB. They cross check the total vote counts as maintained by 

an EVM with the number of total votes casted. Finally, the audit team verifies and confirms 

the election result to uphold the universal verifiability property of the proposed scheme. For 

this purpose, they use the same de-anonymization technique as used by the central 

authority to get the final result from the AVs presented in the BB. 

6.5 Threat Analysis of the Proposed System 

First, we classify the possible threats into three types: threats on verifiability, threat by 

manipulating dummy AVs, and threat on privacy. We categorize the following threats into the 

class of threat on verifiability: (1) manipulation of the votes at the EVM, (2) alternation of the 

votes during transmission from EVM to central election authority and the BB, and (3) 

changing the votes at central election authority. The other threat is that the EVM can 

generate dummy AVs in such a way that the AVs become consistent with a different 

candidate-order other than the one displayed to the voter. Under the class of threat on 

privacy, we consider the threats that may breach the voter privacy and results in coercion 
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and/or vote trading that will indirectly affect the election. In the following section, we 

discuss how all these threats are accounted for in our proposed system. 

6.5.1 Mitigation of Threat on Verifiability 

The possibility of vote alteration is mitigated due to the use of cryptographic hashing since 

the hashing is done just after the voting session and published to the polling agents. External 

auditors/verifiers will compute the same hash for the votes counted at the central authority 

for each EVM and will publish these. The polling agents who have received the hash of 

corresponding EVMs will match this against the ones published at the BB and any mismatch 

here would be reported. 

Individuals would find the receipt they carry in the BB and match the content. This 

would ensure that the vote is cast-as-intended and recorded-as-casted. The auditors 

compute the result as well to ensure all the votes are counted-as-recorded. 

Now, the most likely chance of vote manipulation is in EVM and before the hash is 

published. As discussed in Section  6.3, when a voter comes to vote, the receipt number is 

printed by the RNG and handled by the EVM in a transparent manner. The voter inputs an 

AV with her preference and the full receipt comes out appending this AV. The only way an 

EVM may alter a vote is by presenting a candidate-order different from what is computed 

from the original receipt number � using	¾(∙). Referring to two candidate-orders 2 ≡[$	%	&	"] and ; ≡ ["	%	&	$], let $ be a popular candidate and EVM is compromised to 

interchange the votes between $ and a manipulator candidate ". Then while ¾(�) denotes 

candidate order ;, the EVM would show candidate-order 2	to the voter. Consequently, a 

voter with a preference for $ would choose AV as {$, %, "}: 1 or	{$, &, "}: 1 and it would be 

counted as a vote in favour of	". Considering that the other candidates would not influence 

the interest of	", this is quite a plausible option for manipulation in favor of ". However, 

since the voter selects � − 1 candidates for anonymization out of � options with an equal 

likelihood for everyone, there is a probability that the voter would not include the illicit 

candidate at all in the selected subset. In this example, {$, %, &}: 1 is that AV. This is clearly a 

contradiction for group ; as neither of	$, %, or & has candidate-order	1. It will be detected 

while counting votes and the corresponding EVM will be identified as compromised.  

Let this potential attack on the integrity of our proposed electronic voting system by 

EVM be termed as a group-interchange attack.  We may estimate the probability of detection 
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of a group-interchange attack by the inherent consistency property of the proposed joint de-

anonymization technique. For 	 candidates, to achieve k-anonymity including the actual 

person to vote in the subset, the total number of possible subsets is	�9 = (y]9H]9). Among these, 

�S = (y]SH]S) subsets would include the manipulator candidate (" in the example above). 

Therefore, the probability �¢ that group-interchange attack is undetected (that is equal to the 

probability of selecting the manipulator candidate in the subset) for a single vote be 

 �¢ = �S
�9 .	 ( 6.5) 

 

(a) 

 

(b) 

Figure  6.4: Probability of detection of group-interchange attempt by subset-coding 

technique for different number of votes attempted to be manipulated (�) when 

number of candidates (	) is (a) 10 and (b) 20. 
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If � votes are attempted to be changed, then for all of these the probability �ç  of failure 

to detect any of these attempts is  

 �ç = (�¢)ç. ( 6.6) 

Then the successful detection probability �� of � candidate-order interchange attempts 

by our technique is 

 �� = 1 − �¢ . ( 6.7) 

Since � is a reasonably high value for even a small scale election, ��  is very high and a 

compromised EVM will thus be easily identified. Figure  6.4 presents a numerical analysis of ��  for different number of votes attempted to be manipulated (�) for a permutation group. 

We have considered typical election scenarios to investigate the manipulation detection 

probability of EVM with 10 and 20 candidates in Figures  6.4 (a) and  6.4 (b), respectively. In 

each case, the numbers of vote changing attempts are realistically considered to be three 

times the number of candidates or more.  Even for as few as three times 	 attempts, the 

probability of detection is as high as 97% and 96% for 	 = 10 and 20, respectively. 

Naturally, the probability of manipulation-detection increases with � and for � ≥ 6	, the 

detection probability is almost 100% in both cases. 

6.5.2 Preventing Manipulation by Dummy Votes 

Without any control over the choice of anonymized subset by the voter, full de-

anonymization may not be achieved from the casted AVs for some of the permutation 

groups. In such cases, the EVM would generate a set of dummy AVs that would lead to full 

de-anonymization. This is possible for a compromised EVM to generate the set of dummy 

AVs in such a way that together with the casted AVs they become consistent with a different 

candidate-order than the one displayed to the voters. Consequently, the vote counting 

would be totally misled.  

This type of manipulation can be detected with the hash of the candidate-orders 

generated by the RNG which is supplied to the BB at the end of the vote. The hash of the 

candidate-orders, constructed after complete de-anonymization, would be computed. This 

computed hash would not match the one provided by the RNG if the set of dummy AVs are 

manipulated. Note that the expected requirement of dummy AVs is negligible when the 
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number of voters for each group exceeds even 20 times the number of candidates (see 

Section  6.6.2). 

6.5.3 Mitigation of Threat on Privacy 

Voter privacy has to be retained in two phases, i.e., before and after the receipt exchange. 

Before the receipt exchange, each voter has to validate her receipt by a polling officer. The 

standard procedure to validate a document is to use both digital mechanism (by digital 

signature, watermark, etc.) and manual on-the-spot verification. In this context, it ensures 

that a fake receipt would not be produced even when the receipt printing authority is 

compromised. It also prevents the clash attack as reported in  [142] where a number of 

compromised voters would drop some fake receipts and take their own one with them so 

that these are never verified. 

If there is a possibility to associate a voter with her receipt at any point, her privacy is 

violated. If the RNG is compromised, the voter can be identified from the receipt published 

in the BB and from the physical sequence of appearance of a voter. Thus, an untrusted EVM 

is not used in the proposed scheme to generate the receipt numbers. Instead, the proposed 

scheme uses the receipts printed by a trusted, simple, hardware-only external RNG. 

For manual validation, the voter does not need to show the receipt explicitly to the 

polling officer; however, while signing the receipt the polling agent has enough opportunity 

to notice it. If the polling officer is compromised by a candidate and reveals the vote of a 

person, the voter’s privacy is hampered and coercion or vote trading may occur. This is why 

a direct vote would not serve the purpose. However, since our proposed system generates 

AVs with k-anonymity of the candidates, the threat on privacy is mitigated at this level.  

We also adopt the floating-receipt technique to prevent coercion or vote trading. After 

validation, the polling agent would drop each receipt in an exchange box and the voter will 

take another one at random. It will be ensured either mechanically (say, the exit door will 

not open until the receipt is exchanged) or by observation of all-party polling agents. Once 

this exchange is complete, there is no link between the voter and her receipt or vote. So, 

from then on, the threat on privacy is naturally mitigated as the coercer would not be able to 

have any information from the receipt a voter carries and, on top of it, the voter cannot 

prove the way she voted. 
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In the next section, we discuss some optimization issues related to the selection of 

dummy votes and how they impact the voting process.   

6.6 Optimization Issues 

An anonymized EVS needs to be completely random since any specific technique would 

allow the compromised authority to manipulate cast votes, or a potential coercer may reveal 

a vote following this pattern. As the random approach requires a significantly large number 

of votes to achieve full de-anonymization, we introduced the concept of dummy votes in 

Section  6.4.1. We proposed to construct a minimal required set of AVs (8ur¨) for a given 	 

and � in order to achieve full de-anonymization. Once the voting is done, this minimal set is 

matched against the collected votes and the missing votes required to achieve full de-

anonymization are identified and appended as dummy votes. Dummy votes are usually 

required when the number of voters is very low, implying that not enough variety of AVs 

has been cast for full de-anonymization. 8ur¨ can be constructed in a number of ways for the 

same candidate-group. The careful selection of the most preferable 8ur¨ can effectively 

reduce the number of dummy votes required to bring full de-anonymization, ensuring less 

communication overhead. 

6.6.1 Selection of ���� Using Pre-election Polling 

The selection of an 8ur¨ that would reduce the requirements of dummy votes cannot be 

made optimal since there is no control over the choice of candidates in AVs. Hence, we 

propose a near-optimal heuristic for this selection using pre-polling survey results which are 

widely used for other purposes around the world. The performance of this approach is 

evaluated by simulation and will be presented in the next section. 

By the laws of statistics, we can assume that any dramatic change from the pre-polling 

survey result is the least probable case, whereas the swapping of any two candidates of the 

lowest popularity gap is the most probable one. Keeping this in mind we also aim to 

establish that the less it deviates from the pre polling survey result, the less will be the 

required number of dummy votes. We aim to utilize the pre-polling survey result to 

minimize the required number of dummy votes to avoid the risk of manipulation without 

interpreting the actual votes cast.  

Using the candidate ranking from the pre-election survey result, the occurrence of 

candidates in an 8ur¨ can be selected in order of their popularity. For example, for the 
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popularity order of candidates [$	%	&	"], following this heuristic 8ur¨ may consist of 7 AVs, {$, %, &}: 1, {$, %, "}: 1,  {$, &, "}: 1, {$, %, &}: 2, {$, %, "}: 2, {$, %, &}: 3, and {−, −, "}: 4. It 

inherently assumes that $ will have more AVs than any other one and so on. Again, if we 

have a pre-voting polling result in our hand implying that the popularity order for 

candidates is ["	%	&	$], we can construct the 8ur¨ as:	{$, %, "}: 4,{$, &, "}: 4,  {%, &, "}: 4, {$, %, "}: 2, {%, &, "}: 2, {%, &, "}: 3, and	{$, −, −}: 1. On the contrary, if the 

opposite happens then we might end up generating dummy votes as high as 6 in the worst 

case scenario when the votes are cast in completely reverse order of the pre-poll result. 

However, we consider this to be highly unlikely.   

In our analysis, we were interested to see if the forecast remains true while voting then 

whether the minimum number of dummy votes is required compared to other possible 8ur¨s. The significance of this validation is that now we can ensure that even anyone 

suspecting manipulation in dummy votes can be assured that such minimal manipulated 

votes can merely change the election result. For example, let us assume that in a particular 

EVM for a particular candidate-order group, 8ur¨ is constructed using the pre-polling 

survey result and after vote casting only 2	dummy votes were found to be required to 

achieve full de-anonymization. Now, if the winning candidate wins by more than 4	votes, 

then we can confirm that even dummy vote manipulation can make no alteration to the final 

result.  

The number of voters for each candidate-group has a direct impact on the requirement 

of dummy vote for that group and, instead, all the voters are distributed among the groups. 

Hence, it is obvious that the decision of how many groups will be used is also significant in 

this respect. If a small number of groups are used, the need for dummy votes is expected to 

be low. However, as discussed earlier, the more groups are used, the better the situation 

from a privacy perspective. This trade-off is addressed by the empirical analysis presented 

below. 
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6.6.2 Empirical Analysis 

In the simulation based empirical analysis, we have used the candidate-order group [$	%	&	"] with a pre-polling survey result showing the probability of popularity distribution 

as	[0.05	0.25	0.1	0.6]. Figure  6.5 shows the typical trend signifying that the required number 

of dummy votes reduces as the number of voters is increased. Here, the mean dummy vote 

trend is shown to portray the average case, whereas the trend for the maximum dummy 

vote represents the worst case scenario. 

For this four candidate scenario, there can be total		! = 24, number of candidate-order 

groups. Typically, we can assume that the number of voters in each polling booth is 500. 
Figure  6.6 shows that the percentage of required dummy votes effectively increases as the 

number of total candidate-order groups used is increased. Using this approach, we can now 

design the voting system to accommodate user specific requirements. The higher the 

 
Figure  6.5: Required number of Dummy Vote trend for different number of voters. 

 
Figure  6.6: Required dummy vote percentage for different number of candidate groups. 
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number of candidate-order groups, the more robust will be the voting system from the 

security and privacy points of view. For a fixed number of total voters, in contrast, the 

higher the number of candidate-order groups, fewer the number of voters per group will be 

which in turn implies that more dummy votes will be required. We need to keep these both 

in mind while designing a voting system. For example, if it is mentioned that no more than 
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10% of the votes can be allowed as dummy votes, then from Figure  6.6, we can state that 

highest 16 total candidate-order groups can be allowed for maintaining the requirement. 

Then again, if a voting system targets to work with total 20 candidate-order groups, then it 

should also realize that it may have to bear dummy vote percentage as high as 16% to fulfill 

that criterion.  

 

(a) 

 

(b) 

Figure  6.7: For candidate number 	 = {4,5,6},	 (a) Dummy Vote trend for different 

number of voters and (b) Dummy Vote percentage for different number of candidate 

groups. 
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In Figure  6.7, we analysed the variation in these trends for varying number of 

candidates, 	 = {4,5,6}. For all the cases, the subsets used in vote anonymizing avail the 

highest possible level of anonymity, i.e.,	� = 	 − 1. The trends show that dummy vote 

requirement increases with the higher values of		. 

So far, all the results have been produced assuming that the pre polling survey result is 

sustained in the actual vote. Now, let us focus on the possibilities of variation in the actual 

vote from the forecast and how the dummy votes are affected by this variation. A summary 

of this variation is presented in tabular format as shown in Table  6.3. We have assumed that 

Table  6.3: Dummy Votes for All Possible Variations from the Pre Polling Survey Result 
with Popularity Order ["	%	&	$] 

 

Actual Popularity Order Dummy (Mean) Dummy (Max) [$	&	%	"]	 1.646 5 [$	"	%	&]	 1.259 3 [$	%	&	"]	 2.156 4 [$	%	"	&]	 1.378 4 [$	&	"	%]	 1.24 4 [$	"	&	%]	 0.894 3 [%	&	$	"]	 1.434 3 [%	"	$	&]	 0.671 2 [&	%	$	"]	 2.015 3 ["	%	$	&]	 1.02 2 ["	&	$	%]	 0.913 2 [&	"	$	%]	 2.062 3 [&	$	%	"]	 1.602 4 ["	$	%	&]	 0.813 3 [%	$	&	"]	 2.309 3 [%	$	"	&]	 1.063 3 [&	$	"	%]	 0.767 3 ["	$	&	%]	 1.769 3 ["	&	%	$]	 0.911 3 [&	"	%	$]	 0.76 3 ["	%	&	$]	 0.252 2 [&	%	"	$]	 0.889 3 [%	&	"	$]	 0.888 2 [%	"	&	$]	 0.285 2 
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the pre-polling survey result in our hand implies that the popularity ranking for candidates 

is	["	%	&	$]. For 1000	simulation runs, we found that the required dummy vote was lowest 

in the expected case when there was no variation from the survey result (highlighted in 

Table  6.3). Here, again the first column of dummy vote represents the average case whereas 

the latter depicts the worst case scenario. 

6.7 Conclusion 

In this chapter, we have proposed a k-anonymized electronic voting scheme that does not 

trust the EVM used in the voting process. The scheme successfully deals with the significant 

challenge of simultaneously protecting the privacy of voters and providing verifiability of 

the results, exploiting our novel subset-coding technique which is used for all the 

anonymization schemes presented in this thesis. The joint de-anonymization approach 

mitigates the threat of EVM level manipulation by virtue of its inherent consistency-

preservation property and non-dependency of the candidate-order information used during 

anonymization. The additional use of standard cryptographic hashing and floating receipt 

concept ensure E2E verifiability while preventing coercion and vote trading. 
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7 Conclusions and Future Works 

The major challenge in research on privacy is that sometimes the quality and the verifiability 

of the data have to be preserved simultaneously. Since the obfuscation or precision-

reduction based traditional approaches have limited success to achieve all the requirements 

satisfactorily, in recent times researchers have focused on the problem, especially in 

emerging areas of mass electronic communication. In this thesis, we have worked on solving 

this problem by developing novel techniques and presenting comprehensive relevant 

analyses. To establish our hypothesis, we have chosen two people-centric systems, i.e., PSS 

and EVS, as application scenario since together their characteristics cover the main aspects of 

such systems. Critical knowledge from the observations made in this research is not only 

valuable for our current domain, but also has a significant impact on relevant and related 

research fields. 

In pursuing our aims, the key achievements of the thesis, along with their significance, 

are summarised as follows: 

• The main innovation of this work is that the typical trade-off problem of maintaining 

privacy and data integrity at the same time is handled intelligently such that the 

desirable properties are maintained at their relevant points. Consequently, we have 

established that it is possible to achieve them simultaneously. The proposed scheme is 

applicable to emerging people centric systems that have a probability of “multiple 

observations of individual instances.” Thus, the proposed scheme has prospective 

applicability to many multivariate systems.  

• Replication is a well-established concept in data communication that inherently 

maintains trustworthiness/verifiability. For example, replication is done in network 
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communication to confirm acknowledgement, although it is not the optimal way. In our 

scheme, we have exploited the redundancy in replication to ensure trustworthiness/ 

verifiability. Our contribution in this regard is that we have devised the optimal 

replication pattern.  In Chapter  5, we have aimed to anonymize observations in such a 

way that full decodability can be achieved with minimal observations, which in a sense 

minimally exploits this replication redundancy. Additionally, the concept of a minimum 

anonymized set of votes that may achieve full decodability is established in Chapter  6. 

In both cases, we have found that it is not necessary to obtain multiple observations of 

all the individuals to obtain full decodability.  

• To obtain full and accurate information, we have devised a framework for joint 

decoding of some seemingly independent observations. To deal with multiple 

observations of the same object is a straight forward problem, whereas in our scheme 

we have dealt with multiple apparently autonomous observations that are occurring 

multiple times. Thus, we have jointly achieved trustworthiness through minimal 

replication redundancy and accurate POI-attribute association using our unified 

platform. Hence, we can not only provide data integrity with a reasonably low number 

of observations, but also use it to further enhance protection against untrustworthy 

behaviour, as well as to provide some kind of verifiability assurance. Our approach can 

be applied in domains where optimization is required in multiple dimensions.  

• Our proposed scheme of simultaneously achieving privacy and data integrity indirectly 

suggests how the participation rate in public networks can be influenced. In the people-

centric application scenarios presented in this thesis, many volunteers are required to 

participate in making the service available. Even in the absence of any reward scheme, 

the service provided itself can become sufficient to motivate volunteers to participate, if 

the fulfilment of their other demands can be assured. With the minimization of cost per 

service by optimizing required data size, and also the improvement of service quality 

with maintenance of data accuracy, the participation of the volunteers can be influenced 

positively in such systems. At the same time, in EVS, the inherent trustworthiness or 

verifiability with privacy assurance can boost voters’ participation in cases where voting 

is not made compulsory.  

• There have been very few approaches proposed so far that have dealt with the privacy 

data integrity trade-off issue, let alone addressing all other such sensitive issues. As 
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proposed in our scheme, all the desirable sensitive concerns like trust, verifiability, 

privacy, and data integrity of a people-centric system can be dealt by the same 

framework. From this perspective, this research work has made a notable contribution. 

• Risk analysis and possible adversary modelling has also been comprehensively 

accomplished in this thesis. We have established that risk involved can be attenuated to 

remain within the user-defined threshold. We have identified and analysed the impact 

of the adjustable parameters of a people-centric application scenario. Note that in such 

systems some parameters are user controllable, some are naturally controlled from the 

environment, and some are dominated by system approach and behaviour. Thus, we 

have devised a possible way to achieve certain characteristics or property, as shown in 

Chapter 3. For example, we have shown that attenuating a parameter as simple as the 

number of friends, can keep the risk within a desired upper bound.  

While addressing each of the issues mentioned above, extensive experiments have been 

performed to evaluate the proposed mechanisms. The research findings presented in the 

thesis can be extended to the following areas: 

• The proposed subset coding scheme can be extended to deal with multidimensional 

privacy. For example, in a consumer price sharing application scenario, a user may not 

care about the presence in a super store, but will be very sensitive about the purchase of 

a particular item such as alcohol or a particular drug. In this case, product-level privacy 

may be incorporated with spatial privacy. Moreover, adversary inference often depends 

heavily on the temporal correlation of spatial occurrence. Hence, incorporating these 

additional dimensions to the location privacy scheme poses other research issues. 

• Studies on socio-cultural behaviour suggest that different people from different 

countries react differently to privacy issues and also to a suspected privacy breach. 

Hence, the proposed subset coding scheme can be upgraded to provide different options 

of desired anonymity levels to work with. It can be made more attractive to users by 

allowing them to set the parameters and relative priority for privacy or accuracy.  

• To encourage more voters to participate, critical knowledge gathered from this research 

work can be used to establish an analytical model of an EVS which can totally avoid the 

trusted hardware assumption. 
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• Preferential voting is practised in many countries around the world. It is, thus, worth 

exploring the applicability of our proposed privacy-integrity management scheme using 

subset-coding and joint de-anonymization in the process of preferential voting.  

• The proposed scheme can be enhanced for real environments by incorporating various 

realistic incentive/reward conditions, to ensure sufficient participation in the system. 

• Another challenging research problem is to include a reputation-based scheme for 

incorporating provision of outlier detection in our proposed system design. 

• It is also worthwhile to explore our proposed scheme in other relevant application 

scenarios like online surveys, anonymous student feedback collection, anonymous 

unique incidence tracking and reporting  [6] to achieve inferable privacy preservation 

and trustworthiness simultaneously.   

People-centric applications have positive prospects with the advent of next generation 

wireless network and the Internet of Things. We are hopeful that the specific protocols and 

relevant results presented in this thesis will eventually improve the overall efficiency of 

achieving privacy and integrity at their respective desired points. Incorporation of this 

approach would increase the popularity of these systems to a great extent and would 

eventually make the services more meaningful and powerful. We hope that the critical 

knowledge obtained from this thesis will be considered in taking the first step to assure 

future cyber privacy and security so that people can enjoy every benefit of digital 

communication. 
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