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Abstract

Wireless Sensor Networks (WSNs) introduce a new paradigm for sensing and

disseminating information from various sources in the physical environment

around us. WSNs facilitate the detection of various real-world phenomena

(e.g. environmental anomaly, natural disasters, structural faults, man-made

hazards and so forth) and thereby aim to reduce any economic and human

loss. Typically, a WSN consists of a large number of sensor nodes deployed

over a geographic area and each sensor is capable of sensing one or more

attributes of the surrounding environment. Unlike traditional communica-

tion networks, the structure of a WSN is tightly coupled with the target

application. Therefore, the design of a WSN based event detection system

involves careful consideration of application-specific performance require-

ments, diversity in real-world sensing fields, impacts and contexts of the

types of target events. The research presented in this thesis focuses on the

reliability and accuracy of the detection of physical events using WSNs.

Studies in the relevant literature suggest the use of node redundancies in

the form of k-coverage to ensure robust detection. In this thesis, first, an

optimal QoS support framework for k-coverage in an event-centric WSN

using static nodes is presented. Then the concept of coverage hole recovery

using variable range sensing is introduced that deals with the loss of cov-

erage arising from node faults and ageing in the post deployment scenario.

However, the redundant coverage can be cost prohibiting as the number

of nodes becomes very high for high degree of coverage requirement. To

reduce the deployment cost, a dynamic k-coverage scheme is proposed that

ensures 1-coverage during deployment and provides k-coverage on-demand

only after an event is sensed by at least one node. Two different solutions -

one using the sensing range adjustment technique and another using node

mobility are presented and compared for performance and cost analysis.



The proposed detection scheme in this thesis also considers the detection

of multiple simultaneous events in a WSN where events may have different

priorities depending on their locations and costs of missed-detections. The

differentiated treatment for event on a priority basis is evident in many

real-world applications. Finally, incorporating the context information in

conjunction with the sensed data extends the event detection framework

and facilitates the seamless integration of WSNs to the Internet of Things

for event detection purpose.
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Chapter 1

Introduction

“Any sufficiently advanced technology is indistinguishable from magic” [1]

- Arthur C. Clarke

One such magical invention of the twentieth century was the computer which has

changed the way of life over the last 60 years. It has greatly extended our capac-

ity to understand the world around us and process the information perceived from the

environment. The pervasiveness of the usage of computing devices in almost every

aspect of human life has made people look for newer ways to narrow the gap between

the computer and the real world and let the computer monitor and interact with the

real world directly and freely without human intervention. Sensor technologies aug-

ment the computing devices with perception capability and revolutionise the way of

collecting information. This has initiated a shift towards human-centred computing

where technology is no longer a barrier, but can work for us adapting to our needs

and preferences. However, monitoring the world and enriching our knowledge base

through this augmented visibility of the real world is not enough. Reactive usage of

such knowledge in the welfare of the human race is a necessity. That is why it is crucial

to process the data perceived from the environment carefully and determine when to

act on it. Imagine a world where such devices with perception capabilities monitor

our neighbourhood and raise an alarm whenever there is a fire or other hazards, or,

an assisted living facility, sensors in wearable clothes sense and inform in the state of

emergency. It is then very crucial to determine an incident at the very moment of

its occurrence and activate an actuation system in response. This is why detection of

events of interest is an essential part of this new generation technology referred to here.
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1.1 Wireless Sensor Networks

The research in this thesis focuses on the efficient and reliable detection of events in a

real-world scenario via a network of sensors that augment the visibility capabilities of

computers.

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is regarded as an emerging technology that com-

bines the concept of wireless network with sensors. Recent advances in Micro Electro-

Mechanical Systems (MEMS) technology have made possible the construction of tiny

and low-cost sensor nodes containing on-board sensing, signal processing and wireless

communication capabilities [2, 3]. A wireless sensor network is a collection of such

sensor nodes spatially deployed in an ad hoc fashion that performs distributed sensing

tasks in a collaborative manner without relying on any underlying infrastructure sup-

port [3, 4]. Rentala et al. [5] regarded nodes in WSNs “as wireless integrated network

sensors that combine micro-sensor technology and low power computing and wireless

networking in a compact system. The individual nodes have a limited capability, but

are capable of achieving a big task through coordinated effort in a network that typ-

ically consists of hundreds to thousands of nodes.” Nodes in a WSN are generally

deployed randomly, and once deployed they organise themselves as a network through

radio communication. Sensor nodes generate data from the surrounding environment

and send to a higher level computing entity, which then generates a meaningful scenario

about the phenomena of interest and responds accordingly. By combining sensing, pro-

cessing and communication capabilities, WSNs enable the virtual world to bridge with

the physical world practically everywhere; from mines to distant forests, from home to

hostile battlefields, from ocean beds to Antarctica, places where it is difficult to reach

because of dangers, natural obstacles and other humanly limitations.

These vast foreseeable application fields of WSN lead the communication research to

take up the challenge of standardising existing communication protocols and make them

WSN-compatible. Some major standardisation efforts are Zigbee [6], WirelessHART

[7] and 6LoWPAN [8]. The layered architecture has been adopted in the development

of WSN systems due to its success with the Internet. However, resource constraints and

the application specific nature of the WSN paradigm lead to cross layer solutions that

tightly integrate the layered protocol stack. For which, early works in sensor networking
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include designing efficient routing algorithms suitable for energy constrained nodes

[9, 10], developing WSN specific MAC protocols [11, 12] and clock synchronisation in

a distributed sensor network [13]. The research trends in WSN are summarised in Fig.

1.1. It is noteworthy that, initial research trends were focused on carrying over the

• Query processing 
• Network management  protocols for WSN 

• Event detection systems  
Application Layer 

• Constrained routing for WSN 
• Congestion detection and avoidance 
• Real-Time and Reliable Transport protocols 
• Event-to-sink reliable transport 

Transport Layer 

• Data centric and flat architecture protocols 
• Hierarchical protocols (clustering) 
• Geographical  routing protocols for WSN 

Network Layer 
Protocols 

• Energy aware MAC 
• Hybrid MAC  
• Event-based networking 

WSN specific 
Medium Access 

Control 

• PHY Layer standards 
• Wireless channel effects 
• Modulation and channel coding for WSN 

Physical Layer 

Figure 1.1: A summary of WSN research trends

pre-existing communication protocols to WSN architecture. The evolution of different

aspects of communication has been being carried out for over a decade now. However,

new research challenges have arisen with the application of WSN in detecting real-world

phenomena. Unfortunately, traditional event detection algorithms and designs do not

carry over to WSN, since event-centric WSNs encapsulate highly application specific

trade-offs in terms of complexity, resource utilisation and communication algorithms.

The successful detection of physical events depends on the appropriate consideration

of the underlying sensor field and the nature of the events. Since users are interested

in collaborative information from multiple sensors, time synchronisation is needed for

the correct ordering of sensed events to accurately model the physical environment.

Localisation protocols need to be incorporated in the protocol stack to associate the
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physical phenomena with their surroundings. Event detection in WSNs thereby exhibits

higher application dependency than any other traditional distributed applications and

calls for closer attention.

The increasing maturity, performance and miniaturisation of sensor devices and

their interoperability with external services and objects are enabling the move towards

ubiquitous computing. WSN is considered an important technological cornerstone of

the next generation Internet of Things (IoT) which views the future of the world wide

web as a global network of uniquely identifiable objects, sensors and mobile entities

that dynamically connects the physical and virtual world [14, 15]. The IoT allows

human and any entities in the environment to be connected anytime, anywhere, with

any other similar or heterogeneous objects and build a giant network of smart things.

The IoT is already forecast to have huge influence on a wide range of domains, including

ambient intelligence and pervasive computing which will weave itself in the environment

surrounding us and assist in our everyday life when needed. WSN is deemed as one

of the building blocks of IoT as sensors are the only means of observing the physical

world. In this project we focus our research on the challenges and issues related to

event detection in WSN and study the paradigm shift in event detection technology as

sensor networking evolves as a part of the IoT.

1.2 Event Detection using WSN

The ability to sense and identify real-world states and events is essential to the success

of WSNs. In an event detection scenario, sensor nodes are deployed in the target

field to collect data either continuously or on a periodic basis. Typically, an event

is defined as an exceptional change in the sensed parameters such as temperature,

pressure, humidity etc. that requires immediate attention and, in some cases a response.

However, in reality, an event can occur in many ways such as a dramatic or sudden

change of sensed parameters or a gradual and continuous change over time, and the

attributes may maintain spatio-temporal correlation [16]. The main idea of the event

detection paradigm is to identify the physical attributes of the sensed environment that

will exhibit a gradual or sharp variation over time and/or space and define the event

accordingly.
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In general, an event generates a specific pattern of sensor data distribution on

the nodes in a particular region in the network over time. For example, a node can

report the presence of an animal or an object when its motion sensor readings match

a temporal predefined pattern related to that incident [17, 18]; a gas leakage in a mine

can be detected when the gas density sampled by the nodes in a particular region

exhibits a certain spatial distribution over a short span of time [19]; a fire event in a

forest can be characterised by the temperature value reaching a certain threshold while

the smoke sensors show high density supporting the possible occurrence of fire [20, 21].

An overview of basic event detection in sensor networks is shown in Fig. 1.2. The

shaded region denotes the spread of the signal emitted by the event. Any node within

this region will exhibit a specific pattern of data that characterises the event being

monitored. Nodes sensing this event signal transmit the data to a sink or gateway

node that is responsible for further processing of the event signal and notifying the

users in the system,

Notification

End user

  Sink/Gateway

Event 

processing

Sensor node Event Event signal spread

Area of interest

Communication

channel

Figure 1.2: Overview of event detection in a WSN

WSNs may consist of many different types of sensors including but not limited to

thermal, visual, seismic, magnetic, infrared, acoustic, and radar, which enables them

to monitor a wide variety of ambient conditions such as temperature, humidity, pres-

sure, motion, electro magnetic field, radiation, light, noise levels and the presence or

absence of certain kind of objects. This makes WSNs increasingly apt for event de-
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tection applications. The wide spectrum of WSN applications for detecting events of

interest in several domains includes i) habitat monitoring, ii) environment monitoring,

iii) intrusion detection, iv) structural monitoring, v) industrial process monitoring, and

vi) battlefield surveillance.

1.3 Challenges in Event Detection

In this section we discuss the issues that need to be addressed in event detection in a

wireless sensor network.

1. Resource constraint: One of the main benefits of WSNs is the fact that they

do not require cabling, which is also the main operational constraint [22]. Sensor

nodes are typically battery powered which limits the maximum energy usage in

the lifetime of the node. Replacement of energy sources is not a feasible option in

most cases, as nodes are likely to be deployed in an outdoor environment and left

unattended [23]. Apart from this, usually hundreds or even thousands of nodes

can be deployed in a large scale sensor network and replacing energy sources

regularly can be time consuming and expensive. Energy harvesting techniques

such as solar or wind power are also not practical as WSNs are often deployed in

concealed environments. All these necessitate energy awareness in the design of

event detection techniques using WSNs.

2. Unbalanced energy consumption: The energy consumption by nodes in an

event-driven sensor network is inherently different from data gathering networks

as the usage of energy depends on the distribution of events. In monitoring

applications, each individual node continuously collects data and periodically

sends sensed data to the base station. In an event-driven network, generally nodes

respond to and send data to the base station only when they detect an event.

In most real-world applications, events are not uniformly distributed across the

sensor field [24]. The frequency of events in some regions may be much higher

than others. Consequently, nodes in the neighbourhood of a high frequency event

region suffer from faster energy depletion than others. This causes unbalanced

consumption of energy across the sensor field and ultimately results in reduced

network life. One of the major challenges in designing event detection techniques
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is to handle the non-homogeneous spatial distribution of events for the balanced

use of node energy [25, 26].

3. Coverage and connectivity constraint: Sensing coverage characterises how

well the sensor network can monitor an environment and collect data. Different

applications require different degrees of sensing coverage. While some applica-

tions may require every point in the region of interest to be covered by at least

one node, other applications may require higher degree of coverage. For example,

event detection based on data or decision fusion usually requires multiple nodes

monitoring every location in the sensor field for reliable detection [27]. The cov-

erage requirement also depends on the expected fault resilience property of the

system and the dynamic nature of the sensing environment. This requires the

capability to adjust the degree of coverage dynamically. For example, in some

mission oriented event-centric sensor networks [28, 29], initially a low degree of

coverage is maintained. After the occurrence of an event, the region in the vicin-

ity of the event needs to be reconfigured to achieve a higher degree of coverage

to detect the event more accurately. However, a higher degree of coverage incurs

high energy consumption and increased deployment costs, and it is imperative

to minimise the number of nodes to keep the operational overheads at a mini-

mum. Therefore, a fundamental problem in event detection WSNs is to minimise

the coverage while still maintaining the expected degree of coverage for event

scenarios.

Apart from efficient and reliable coverage, for successful and reliable operation, a

sensor network must also maintain connectivity so that the nodes can communi-

cate between themselves and to the base station. The communication range of the

sensor nodes is usually kept low to save energy which necessitates a sophisticated

network design to maintain connectivity between nodes. Single connectivity is

often not sufficient for many event-centric applications as a single node failure

can disconnect the network. Also, redundant connectivity may be required in

many cases to avoid communication bottleneck when multiple events occur in

one region [30]. Maintaining energy efficient coverage and connectivity for seam-

less operation of WSNs has been investigated extensively and many near optimal

solutions have been proposed based on the global information of the network
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[31, 32, 33, 34]. Yet, few address the dynamic reconfiguration and adaptation of

the network to meet the specific requirements of event detection systems.

Topology management to maintain connectivity and coverage of the WSN is crit-

ical in event detection, especially for hazard detection applications since any cov-

erage hole may result in degraded detection performance and the cost of a missed

detection is usually much higher and often involves life threats. Apart from that,

the sensor observation data in a WSN are usually spatially correlated across nodes

[16, 35]. For example, in many real-world applications (e.g. radiation detection

and volcano monitoring), the impact of an event spreads over a region and a num-

ber of nodes need to collaborate before the final decision on the event occurrence

can be reached. The underlying WSNs need to maintain optimum connectivity

and coverage required for such detection.

4. Node mobility: Recent progress in distributed robotics and low power embed-

ded systems has encouraged many researchers to propose mobile sensor networks

[36] for event detection. Mobile nodes may be useful in many mission critical ap-

plications to provide dynamic event coverage as mobility allows sensor nodes to

adapt to unpredictable changes in the environment and irregular spatio-temporal

distribution of events [28, 29, 37]. In many cases, mobile nodes remain stationary

initially but move towards the possible event location and achieve higher detection

probability. However, node mobility imposes another unique challenge in main-

taining required coverage and connectivity in WSNs. Irregular node movements

can create temporary coverage holes and degrade detection performance. Also,

the energy consumption is much higher in mobile nodes compared to their static

counterpart. In a sensor field with highly irregular spatial distribution of events,

a relocation strategy can lead to random node movements and unbalanced energy

consumption across the network. It is challenging to design an efficient and reli-

able event detection technique that reduces node movement, maintains temporal

coverage and connectivity and still yields acceptable detection performance.

5. Heterogeneity: Many event detection applications require data on a number

of different physical attributes of the target environment. This can demand the

deployment of multiple classes of sensors which may vary of their physical param-

eters such as initial energy, deployment density, mobility and so on. Especially,
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in the IoT environment, WSNs need to interface with all other devices that are

present in the environment and maintain network connectivity. Successful collab-

oration among diverse types of sensor nodes with different hardware capabilities

makes the design of an event detection system more challenging.

6. Scalability: Large scale sensor networks with nodes in the order of hundreds to

tens of thousands are becoming commonplace especially in environmental moni-

toring and battlefield surveillance applications [5, 38]. The size of sensor networks

is highly application specific and may vary from tiny to very large coverage areas

employing small to large numbers of sensors. Therefore, it is required that the

event detection protocols used in WSNs be scalable so that they can cope with

varying network sizes in terms of the number of nodes and coverage area.

7. Quality of services: Wireless sensor networks can be used in many mission

critical applications of a diverse nature as stated earlier. In these types of appli-

cations, reliable and timely detection of events plays a crucial role in the success

of the mission. However, unlike the traditional networks such as TCP/IP and cel-

lular networks, in most WSN based applications, sensor nodes are low cost, error

prone and subject to various external noises. As such, observations from individ-

ual sensors are often noisy and unreliable which makes it challenging for the event

detection techniques to make an accurate detection decision from noisy data. In

addition, the environments in which sensor networks are deployed usually vary,

largely ranging from cold winter conditions with frost and ice in arctic regions,

to heat and humidity in equatorial regions. WSNs are often deployed in adverse

terrains such as near an active volcano or battlefields and left unattended during

the period of operation, which increases the probability of node failure. Sensors

are often air-dropped in otherwise inaccessible terrain which makes them prone to

damage during deployment and irreplaceable. In addition to node malfunction,

data faults are also common in sensor nodes. Various sensor network measure-

ment studies have established the prevalence of transient faults in sensor readings

[39, 40]. Event detection WSNs need to be robust against such node failures. This

is a challenging task considering the fact that the a priori failure rate modelling

is non-trivial because of diverse sources of node faults. Usually, communication

among the nodes in a WSN is more vulnerable to environmental noise due to the
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relatively low signal strength used by the sensor nodes to preserve energy. This

makes it even more challenging to design robust event detection systems.

Many event-based services, such as fire warning or earthquake or lightning detec-

tion, require immediate detection i.e. the time elapsed between the occurrence of

an event and its detection by the system needs to be bounded. This makes the

timeliness of detection very crucial. For example, spread features of forest fires

show that, in order to put out a fire without any permanent damage, the fire

control centre should be aware of a threat in at most six minutes after the initial

ignition [20, 41]. A number of factors, including the spatial and temporal dis-

tribution of events and the degree of coverage, affect the timeliness of detection.

Current literature advocates the use of node redundancy to allow some nodes to

go to sleep without affecting the overall coverage in order to prolong network life

[42]. For example, IEEE 802.15.4 slotted carrier-sense multiple access with colli-

sion avoidance (CSMA-CA) adopts periodic sleeping for energy efficiency support

[43]. In these efforts, both randomised and synchronised sleep schedules are pro-

posed for sensor nodes. This causes an event to be sensed within a finite delay

bound rather than immediately all the time. Thereby, an inherent trade-off lies

between the network life and coverage, which in turn affects the detection delay.

The overall the performance of an event detection system is measured by the

following QoS metrics:

• Detection probability: The probability that an event will be captured oc-

curring anywhere in the sensor field. The required probability of detection by

the system may vary depending on the application domain. Detection prob-

ability should be high for sensitive events, especially in hazard monitoring

and detection applications, and moderate in other non-critical applications

such as greenhouse monitoring or habitat monitoring.

• Fault Tolerance: The event detection system needs to be robust against

a certain degree of node failures and sensor data faults. The desired fault

tolerance level of the system will depend on the environment in which the

network will be deployed and also on the inherent fault probability of sensor

nodes.
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• Detection delay: Event detection delay or latency is defined by the average

time elapsing between the event occurrence and its detection by the nearby

sensors. Unlike data gathering WSNs, most event detection systems have

the real-time requirement, i.e. events need to be detected within a specified

delay bound that enables the system or user to react.

1.4 Motivation and Problem Statement

As we move towards realising ubiquitous computing, the role of sensor networks is not

limited to collecting information about the surrounding environment, rather it is more

desirable for WSNs to understand the physical interpretation of the data and be able

to isolate and identify phenomena that need attention in real time. Event detection

is an efficient way of mining meaningful information from a huge volume of gathered

sensor data. Naturally, event detection is recognised as one of the major functionalities

of sensor networks these days and will surely become the key in the foreseeable future.

This is why it is important to address the issues of reliable and efficient detection of

events in sensor networks .

Numerous event detection techniques have been proposed in the literature to ensure

high detection accuracy and low delay while maintaining minimum energy consumption,

(see, e.g., various notable studies [25, 26, 27, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]).

Some of these have focused on designing a generic event detection framework [46, 47, 55],

while others have proposed domain specific solutions [48, 56, 57, 58]. Some works have

focused on threshold based detection (e.g. [59, 60, 61, 62, 63, 64]), while others have

handled non-threshold based events [65]. Some addressed the issues in single event

detection [47, 66], while others examined multiple events [53, 67] or composite events

[68, 69]. Some techniques considered the nodes of the underlying WSNs to be static

only [26, 27, 46, 50, 51], while others considered a combination of static and mobile

nodes for event detection [28, 29, 37, 70, 71]. Some detection techniques assumed the

underlying sensor network to be homogenous [47], while others addressed the scenario

where heterogeneous sensors collaborate to detect events [54, 69, 72]. Irrespective of the

nature of underlying sensor networks or the target environment, directly or indirectly,

all these works aim at attaining optimum detection performance characterised by one

or more of the QoS metrics, namely, detection probability, detection delay and fault

11
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tolerance, at the same time targeting prolonged network life. Here, the event detection

problem is viewed from a totally different angle compared to existing work and the

expected values of QoS parameters of an application drive the design method.

Most existing work focuses on developing optimal and energy efficient decision fusion

rules or investigating the statistical properties of event observations. For example, the

performance of a fault tolerant and energy efficient event detection scheme was studied

in [51, 52] for a scenario where noise and sensor faults are likely to be uncorrelated while

event signals are likely to be spatially correlated. It was shown that the detection error

decreases exponentially with node density and neighbourhood size without considering

the unpredictable nature of the environment in which WSNs operate. Several other

optimal distributed detection systems were proposed based on statistically dependent

observations from the sensor field using a specific signal attenuation model [27, 50] and

an optimal local decision fusion rule. P. Vershney [45] and Wang et al. [51] studied

the problem of binary hypothesis testing using binary decisions from independent and

identically distributed sensors and developed an optimal fusion rule. Ould-Ahmed-

Vall et al. [54] addressed the fault tolerance of such systems in the context of binary

detection and assumed spatial correlation among sensor observations to rule out faulty

data. Karumbu and Prashanti [73] focused on the timeliness of detection and studied

the problem of minimising the mean detection delay imposing bound on the probability

of false alarms based on a centralised fusion model. Yingshu et al. proposed an energy

aware method for monitoring events and delivering warnings in a timely manner for

hazard detection domain. On the other hand, energy has always been a key issue in

WSN and almost all of these works attempted to optimise the energy usage at different

levels of the detection process such as routing algorithms [9, 10], sleep scheduling [74,

75, 76], fusion process, node clustering where energy is usually traded for detection

latency [43, 73], accuracy [26] or node density [25].

Considering the application of WSNs in diverse real-world problems, it is increas-

ingly desirable for the underlying sensor network to be aware of the application require-

ments rather than attempting to maximise performance blindly. The design of the next

generation event detection systems should be guided by the expected QoS metrics spe-

cific to the application domain. This observation is the motivation behind the idea

presented in this thesis to view the detection problem objectively and to develop a QoS

aware event detection technique. Studying the nature of physical events occurring in
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the environment, it is clear that QoS requirements depend on the application nature

and type of events. For example, detecting the presence of certain animals in a habitat

monitoring WSN is not as critical as detecting a fire hazard in a forest fire monitoring

system or detecting radiation leakage in a nuclear reactor monitoring network. Also,

the QoS requirement is not the same allover of the target sensor field. In addition to

that, QoS parameters may also vary depending on the context of real world phenomena,

i.e. the same event can have different sensitivity based on the context characterised

by the state of the surrounding environment. Therefore, we need to design an event

detection architecture with the following features:

• QoS Aware: The design of the underlying WSN of an event detection system

should be guided by the QoS requirements of the target application. The WSN

should guarantee a set of given performance metrics, namely, bounded detection

probability, fault tolerance and detection delay.

• Adaptive: The WSN for event detection should be adaptive to the dynamic

nature of the target environment such as noise, node faults and irregular event

occurrence distribution and should be able to reconfigure the adjustable param-

eters of the sensor network as needed.

• Priority Sensitive: In the case of multiple simultaneous events with variable

priority occurring over the target sensor field, the system should be sufficiently

flexible to handle a different QoS guarantee for different types of events.

• Context Aware: The event detection technique needs to be context aware, that

is, the method needs to be able to treat the same events differently depending on

the context of the event.

The key functional metric that controls the detection performance of a WSN is the

sensing coverage of the target field, which characterises the quality of monitoring. In its

simplest form, coverage means that every point in a target area is monitored, i.e. cov-

ered within the range of at least one sensor. However, for robust and accurate detection

of events, it is important that each point is covered by multiple sensor nodes. This idea

is formally characterised as k-coverage, where every point in the network is covered by

at least k (≥ 1) nodes, k being the degree of coverage. To guarantee the aforementioned
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features of an event detection system, the thesis adopts a k-coverage model, where the

decision on the occurrence of an event is made in collaboration between the k sensors

detecting the event individually. Even though redundant coverage increases the ro-

bustness of a network, it entails high deployment cost and energy consumption. These

coverage problems have been extensively studied in the existing literature from an en-

ergy efficiency and lifetime point of view [30, 33, 34, 77, 78, 79]. However, the problem

of QoS aware modelling of event coverage has been ignored to date. The current work

is complementary to the existing work since we address the coverage issues specific to

event detection rather and focus on the trade-off between the intrinsic properties of

WSN coverage and event detection performance.

1.5 Research Objectives

The objective in this thesis is to model efficient event detection architecture in a WSN

with guaranteed accuracy and latency bound. It also focuses on how the event detection

in a WSN can be integrated to the Internet of Things and be merged with the ubiquitous

platform. Outlines are as follows,

i. Determine the optimal degree of coverage in an event detecting WSN to guarantee

given detection probability and latency with given fault tolerance at deployment

time. A dynamic recovery technique is also developed to maintain this required

degree of coverage during operational lifetime.

ii. Devise a strategy to provide dynamic k-coverage to achieve given QoS metrics with

a reduced number of nodes and less energy dissipation by ensuring event coverage

in an on-demand basis.

iii. Develop a technique to provision QoS of event detection depending on the priority

when multiple events with variable priority occur simultaneously in the sensing

field.

iv. Devise a technique that facilitates context-aware event detection by exploiting the

context information made available through the integration of WSNs into the IoT

environment.
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1.6 Contributions

In regard to the research objectives formulated in the previous section, Fig. 1.3 illus-

trates the overall research contributions made in this thesis. Block 1 to Block 4 in the

“Contribution Overview” window at the bottom correspond to Objective i to Objective

iv, respectively and the “Underlying Networks” window at the top reveals the type of

underlying network in relation to each contribution.

The primary contributions of this thesis are summarised as follows:

i. As the first step towards designing a QoS aware event detection system, the key

performance metrics for detection are identified, namely detection probability, fault

tolerance and detection latency. The energy-accuracy trade-off is explored from the

event coverage point of view and an analytical solution is presented to determine

the optimal degree of coverage (k) to satisfy given QoS parameters. To make this

model realistic, the environmental noise, communication interferences and node

fault probability are also considered. A lower bound on the degree of coverage in

a k-coverage detection system is obtained that probabilistically guarantees the re-

quired performance metrics. This forms the foundation of a goal-directed solution

where performance requirements are used as design parameters. Then this work

is extended to exploit the variable range sensing technology to attain robustness

considering a time-dependent node fault model. Part of this work has been pub-

lished in Alam et al. [80] and the complete work is currently under first review at

the IEEE Transactions of Mobile Computing [81].

ii. To fulfil the next objective, we developed a dynamic event coverage technique where

QoS guarantee for event detection is provided on-demand in a specific region of

interest after the occurrence of an event. This on-demand detection reduces the

required number of nodes to a great extent and also extends the WSN lifetime

compared to the complete coverage method. Two different solutions are proposed.

First, the variable range sensing technique is utilised to ensure redundant coverage

of an event only when necessary by adjusting the sensing range of the nodes in

the close vicinity of event location. An energy aware node selection algorithm is

devised for efficient event detection and prolonged network life. However, the range

adjustment technology is limited to a certain set of the physical attributes of the
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Figure 1.3: A schematic view of the overall research contribution
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environment being monitored and irregular event distribution can lead to unbal-

anced energy consumption in some cases. To handle such a scenario, an alternative

dynamic event detection technique is proposed using mobile nodes to ensure on-

demand event coverage. The latter method considers the spatial distribution of the

occurrence of events in a network and designs a self-organising autonomous node

movement strategy to provide dynamic k-coverage in event-centric mobile WSNs.

A game-theory based distributed scheme is used to minimise the energy spent due

to mobility while taking advantage of the spatial locality tendency of events to

enhance detection performance. Part of this work has been published in Alam et

al. [82] and the extension of this work is currently under first review at the IEEE

Transactions on Parallel and Distributed Systems [83].

iii. The third contribution is to propose an event detection system that considers dif-

ferentiated priority and missed-detection cost of events occurring in the target field

to enhance detection performance. A number of real-world examples of events are

explored to gain an insight into the necessity of differentiated treatment in detect-

ing multiple simultaneous events. QoS metrics such as accuracy and timeliness

in the proposed event detection system are provisioned on a priority basis, which

ensures overall detection performance. An analytical model is established for the

proposed model. The experimental result shows superior performance of the pro-

posed method compared to traditional flat priority event detection systems in terms

of both energy and accuracy. The outcome of this work is published in Alam et al.

[84].

iv. Finally, focus is given on the evolution of event detection from WSNs to the Internet

of Things that connects the physical and virtual world together. We identify the key

challenges to fit an event-centric WSN into the IoT architecture. For generic and

dynamic detection of real-world phenomena, an ontology based event definition

language is proposed which is suitable for the IoT environment where sensors,

objects and persons are all individual entities. Unlike existing work, the proposed

method is context-aware which makes it perfect for the diverse and composite

nature of the events that WSNs are responsible for within the scope of the envisaged

Internet of Things.
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1.7 Thesis Organisation

The rest of the thesis is organised as follows:

Chapter 2 presents the background of event detection using WSN and reviews a

number of existing event detection techniques in different application domains, their

merits and demerits and the maturity achieved to date.

Chapter 3 proposes an analytical model for the determination of optimal degree of

coverage that ensures given QoS requirements for event detection. It also introduces a

variable range event sensing method to recover from any loss of coverage and to maintain

fault tolerance and reliability of the detection. An extensive theoretical analysis on the

proposed method and experimental results supporting the analytical derivations are

presented.

Chapter 4 presents two different techniques for on-demand event coverage. The

first part of this chapter outlines a QoS and energy aware algorithm for event detection

using variable range sensing. The theoretical foundation of this technique, along with

the deployment guideline, lifetime analysis and experimental results supporting the

theory are presented. This is followed by a second method for on-demand coverage

using both mobile sensor nodes for cases where static sensors are not sufficient and

event distribution is unpredictable. A game theory based node movement strategy is

outlined along with the experimental results.

Chapter 5 proposes a priority sensitive event detection technique that ensures event

coverage according to their priority levels and cost of missed detection. It presents a

greedy optimisation algorithm for mobile node selection for event coverage followed by

extensive theoretical analysis of the expected event detection performance in relation

to event priority.

Chapter 6 outlines the key challenges for the paradigm shift of event detection

systems from stand-alone WSNs to the next generation Internet of Things. It introduces

the idea of context-aware event detection using WSN, which makes detection possible

in a pervasive monitoring environment accompanied by experimental results showing

context-dependent events in a testbed implementation.

Finally, Chapter 7 presents some concluding remarks on the impact of the research

undertaken and outlines a number of possible research directions based on the findings

in this thesis.
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Chapter 2

Event Detection using WSN - An

Overview

The detection of real world phenomena using WSN has attracted major research efforts

in recent years. It is gaining more importance as the physical world around us is

getting closer to virtual world and moving towards automation. Researchers have

continued investigating innovative ideas to realise practical, inexpensive, flexible and

robust detection of events using wireless sensor networks. However, any promising

common ground is yet to be reached to guarantee QoS aware detection. In the following,

first we briefly present the background of WSN and its envisaged extension to Internet

of Things in Section 2.1 and a survey of WSN applications for event detection in

several domains in Section 2.2. Then we investigate the fundamental theories used in

event detection research in Section 2.3, classification of the common event detection

techniques in Section 2.4, comprehensive study of the factors affecting the QoS metrics

in event detection systems in Section 2.5 & 2.6 and Section 2.7 presents event detection

in the IoT scenario. Having described the state of the art techniques in these sections,

research directions are summarised in Section 2.8.

2.1 WSN Architecture

The concept of WSNs was first proposed by the US military in 1970’s [5]. Since then,

many research projects, applications and theories have come forth till date. During the

last decade of twentieth century, processing and communication technologies of com-
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puting devices have undergone rapid development. With the continuous development

in microelctromechanical systems (MEMS), WSNs have become commonplace in our

life within the last decade. Wireless sensor network typically refers to a ad-hoc network

of large number of tiny devices equipped with sensing and communication capability

that are deployed in a target field to monitor the surrounding environment [22, 38].

The basic elements of a WSN are described in Fig. 2.1.
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Figure 2.1: A generic cluster based WSN architecture

1. Sensor node: A sensor node is the lowest level entity in a WSN that collects the

raw data from the surrounding environment. A sensor mainly consists of sensing,

transmission, storage and power units. Nodes communicate with each other in

an Ad-hoc manner. A node can act as a data collection unit as well as a router.

Each node can dynamically search, locate and restore connections.

2. Cluster head: To minimise the energy consumption, sensors nodes in a WSN

usually forms multiple clusters and only one node from each cluster communicates

with the sink node. This special nodes are called cluster heads. Clustering results

in a hierarchical architecture in a WSN and cluster heads are higher level entity

than the basic sensors. In a heterogeneous WSN, cluster heads are usually more

powerful than lower level nodes and they tend to distribute the data aggregation

and network reconfiguration task of a WSN.
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3. Sink / Base station: A sink node is a high level entity located near the sens-

ing filed to collect the data from multiple sensor nodes, cluster heads and even

directly from individual nodes. It is the sink node’s responsibility to aggregate

the collected data and transmit the information to end users. Any central co-

ordination of the low level sensor nodes are supervised by the sink node. A sink

is also called a gateway node or a a base station.

4. End users/ Observers: End users are the actual users of WSN applications

who generates query and utilise the sensed information directly or indirectly. It

can also be another system that collects data from other WSN(s).

In essence, a WSN is basically a multi hop self-organising network of diversified nodes

communicating with each other wirelessly. However, there are certain distinctive fea-

tures of WSNs compared to traditional ad-hoc networks, that make them the object of

special research attention. We outline the major features below:

1. Application-specific: WSNs can be deployed in diversified target field to sense

the attributes of physical worlds. The confluence of this close coupling to the

physical world that is subject to change, the nodes forming the network will ex-

perience wide variations in connectivity and operational factors. It causes the

hardware platform, software systems and communication protocols to be appli-

cation specific, which is a significant shift from the traditional networks.

2. In-network processing: In-network processing, involving operations such as

filtering, data compression and data or decision fusion, is a technique widely used

in wireless sensor networks (WSN) for reducing the communication overhead [85],

[86]. In-network processing improves the versatility and scalability of WSNs.

3. Large-scale distribution: WSNs are usually deployed in large stretch of areas

intensively. In most cases, nodes are inexpensive compared to traditional TCP/IP

network, which makes large-scale deployment and distribution of sensor nodes

feasible. In case of large outdoor terrains, nodes can often be airdropped to form

distributed sensor networks. The areas monitored are often complex and harsh,

so it is usually very difficult to conduct operational maintenance. Therefore, the

software and hardware of the sensor network should have high robustness and

strong fault-tolerance.
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4. Dynamic topology: Many reasons can change the topologies of WSNs dynam-

ically. For example, there are often new nodes joining or leaving the networks;

in some cases, sensor nodes might be mobile; some nodes are set to switch be-

tween work and sleep status discretionarily for power saving; some nodes may

break down at any time due to various unpredictable reasons. With the dynamic

changes of topological structures of the networks, WSNs should have the abilities

of self-adjusting and reconstructing [5], [2].

5. Mobility and flexibility: Recent advancement in distributed robotics and low

power embedded systems has led to the creation of mobile sensor networks [36].

Mobile nodes can capture more area than their static counterpart since the cov-

erage capability is not limited to specific region of sensor field [87], [28]. Mobile

nodes allow a network to reconfigure topology and change node density at dif-

ferent part of sensing field. This makes it attractive for WSNs with dynamically

changing nature.

6. Self-organising: There are many unpredictable factors in the physical environ-

ments of networks. For example, the locations of the nodes can not be established

in advance precisely; some nodes die due to energy depletion or other reason;

wireless communication quality subjected to environmental impacts can not be

forecasted accurately. All these require that nodes should have the ability of self-

organisation. Without human intervention and any other pre-network facilities,

the nodes can make their self-configuration and self-management automatically

and quickly.

Such features open the frontier of endless potentialities in WSN based real world appli-

cations such as environmental monitoring [88], [89], disaster management and warning

system [90], [91], [92], [21], target detection and tracking [46], [47], health care systems,

emergency navigation and traffic management [93], [94], etc. Thus event detection

is potentially a prominent application for emerging sensor network technologies [95].

Even though, in its early age, WSNs were primarily used in data gathering applications

where efficient and reliable data delivery were the main research focus. Majority re-

search is now being devoted to ensure accurate and reliable detection of physical events

using sensor network [43, 46, 47, 48, 73, 96, 97, 98, 99, 100, 101].
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Wireless sensor networks are increasingly becoming an integral part of our everyday

life. No wonder it is a strong candidate to be integrated with the future Internet of

Things. The future Internet, designed as an “Internet of Things (IoT)”, is foreseen to be

a world-wide network of interconnected objects uniquely addressable, based on standard

communication protocols [14, 15, 102]. Identified by a unique address, any object

including computers, sensors, RFID tags or mobile phones will be able to dynamically

join the network, collaborate and cooperate efficiently to achieve different tasks.

Figure 2.2: WSN integration with IoT

The future Internet and integration with WSN is illustrated in Fig. 2.2. Integrating

sensor networks to this ubiquitous IoT platform opens a new horizon in the field of

detection and monitoring [103, 104, 105]. Though IoT is still in its infancy, research

interest is gradually moving towards it and WSN based event detection is envisaged to

go through a paradigm shift in near future. Therefore, it is worth studying the trends

in such field.

2.2 WSN Based Event Detection Applications

Applications of WSNs in the event detection domain can be categorised into five major

categories. They are : i) Military applications, ii) Environmental monitoring and

hazard detection, iii) Structural integrity and condition monitoring, iv) Home and

Industry automation, and v) Emergency healthcare. We explore few representative

applications from each domain in this section as outlined in Fig. 2.3.
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Figure 2.3: Outline of major application domains in event detection using WSN

2.2.1 Military Applications

WSNs produced revolutionary effect on military defence and battlefield surveillance

since its early age. In fact, the maturity of the today’s sensor technology originated

from the result of military research as WSNs can be an integral part of military com-

mand, control, communication, computing, intelligence, surveillance, reconnaissance

and target (C4ISRT) systems [106]. The rapid deployment, self organisation and fault

tolerance characteristics make them apt for promising sensing techniques in such fields.

For example, battlefields are generally hostile environment for expensive equipment as

they can be exposed to enemy attacks anytime. WSNs can comprise of a large number

of inexpensive and disposable nodes building a distributed architecture and maintain

dense deployment offering a degree of fault tolerance. As such the destruction of a num-

ber of nodes in enemy attacks does not render the complete network non-operational.

In addition to this, WSNs can be deployed randomly from an aircraft which makes

it feasible to deploy specific purpose sensor network in battlefields where land access

may be too risky [107, 108]. Sensor nodes can be closely positioned to the target for
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improved information accuracy. Information is one of the crucial keys to winning in
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Figure 2.4: WSN application in Battlefield surveillance

modern warfare. WSNs revolutionise this field by keeping an eye on every corner of the

battlefield via intelligent sensors [109]. The typical application is to scatter a number

of smart nodes across the combatant area usually from unmanned air vehicles. By self

organising themselves, sensor nodes collect and fused the sensed data for the purpose

of gaining clear idea of the target field and anticipating attacks. A typical sensor net-

work based surveillance system is illustrated in Fig. 2.4. It shows a WSN collecting

relevant information from a battle field and the base station can initiate reinforcement

or emergency response based on the collected information. WSNs are used to detect

and characterise Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE)

attacks and materials [110, 111, 112], battlefield surveillance and reconnaissance of

opposing forces [110], target detection, intrusion detection [113], and border security

[17, 107]. There representative applications are discussed below.
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2.2.1.1 BorderSense

Conventional border patrol has extensively been based on fixed checkpoints and human

involvement. However, the relative cost for the increasing number of personnel as well as

the diminishing accuracy through human-only surveillance demand the involvement of

high-tech devices in border patrol and distributed WSNs proved to be a suitable option

for this. BorderSense [17] is a border patrol system framework based on hybrid wireless

sensor networks, which can accurately detect and track border intrusions with minimum

human involvement. It utilises multiple sensor network technologies, including the

wireless multimedia sensor networks and the wireless underground sensor networks

that can collaborate to provide real-time detection with high accuracy.

The underlying WSN in BorderSense consists of three types of sensor nodes: mul-

timedia sensor nodes equipped with video cameras or night vision scopes, scalar sensor

nodes that are equipped with vibration/seismic sensor, and mobile sensor nodes. It uses

a three-layered hierarchical system architecture. The unattended ground sensors and

the underground sensors constitute the lower layer of the architecture, which provide

higher granularity for monitoring. At the second layer, multimedia sensors mounted

on surveillance towers provide visual information. Finally, mobile ground robots and

unmanned aerial vehicles constitute the higher layer that provides additional coverage

and flexibility. Features of BorderSense are that the multimedia sensors complement

the information acquired by the ground sensors and improve detection accuracy. The

underground sensors increase the stealthiness of network and guarantee the proper sys-

tem functionalities where aboveground visible devices are not preferred for concealment

purposes. Aside from detection, mobile sensors provide intrusion tracking capability

after any intrusion is detected. Cooperative intrusion detection is performed through

in-network processing of the sensor data and the result is reported to a remote base

station.

2.2.1.2 Sniper Detection System

Sensor networks can use the acoustic signal and small-arms fire to detect shooting

event and localise the shooter in both battlefields and urban areas [114, 115, 116].

The Boomerang sniper detection system [114] can monitor a shooting incident and

pinpoint the sniper location by detecting arms fire from the shooter. It has been used by
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the military, law-enforcement agencies, and municipalities. The countersniper system

[116] uses passive acoustic sensors to detect incoming fire using sensors mounted on

wearable clothes of the soldiers. The detected audio from the microphones enables the

system to estimate the relative position of the shooter as well. The network consists of

Mica2 nodes equipped with a sensor board with a high-power DSP to provide real-time

detection, classification, and correlation of acoustic events. This system is suitable for

law-enforcement agencies and municipalities to provide protection during events such

as public speeches.

2.2.1.3 BONAS Project

BONAS (BOmb factory detection by Networks of Advanced Sensors) is a collaborative

project financed by the European Commission [117]. The aim of this project was to

design, develop and test a novel wireless sensor network to detect bomb threats. The

proposed model relies on the WSN based detection of improvised explosive device (IED)

in urban area [112]. The proposed system serves the security and safety needs for the

citizens to counter terrorist attacks, in particular against the threat posed by IED

devices. The proposed sensor network focuses on the detection of traces of precursors

used in IED production (particulates, gases and/or waterborne) in the environment

surrounding the vicinity of a bomb source. The sensors are specifically designed to be

deployed in sensitive locations and easily camouflaged.

2.2.1.4 VigilNet

VigilNet [118, 119] is a large-scale battlefield surveillance sensor network for energy-

efficient and stealthy event detection and target tracking in harsh environments. The

underlying WSN implementation consists of 70 Mica2 nodes equipped with magnetic

sensors that detect the magnetic field generated from vehicles and magnetic objects.

The main goal of this application is to provide energy-efficient surveillance support

through distributed sensor nodes. VigilNet focuses on achieving prolonged network life

through a hierarchical architecture of nodes in the network. Few nodes are denoted as

sentries that coordinate the event detection by lower level nodes termed as non-sentry

node. Sentry nodes remain in low power state until any event occurs in the sensor

field. Once an event occurs, the network is reorganised into clusters and collaborative

detection takes place. VigilNet sets an example of application of WSN based event
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detection and tracking system that minimise the exposure of military personnel to

hazardous materials and enemy attack.

2.2.2 Environmental Applications

The cost effective large-scale deployment and autonomous coordination capabilities of

WSNs have produced a wide variety environmental monitoring and disaster manage-

ment applications. In fact, sensor network studies over the last decade indicate the most

extensive use of WSN in this domain. The reactive nature of WSN systems made event

detection the most attractive functionality these days, especially in environmental haz-

ard detection. There are basically two different types of environmental applications.

Some environmental applications are non-critical but deployed over any specific ter-

rain or forest to collect information for long period of time and detect changes in the

monitored condition. These applications include habitat monitoring [120, 121], bird

species detection [122], small animals or insects detection, biodiversity and ecosystem

monitoring [88, 123], detecting changes in environmental condition that affect crops and

irrigation [89], chemical spill on soil or air pollution monitoring [19, 124], condition mon-

itoring in marine, soil and atmospheric contexts [125], greenhouse monitoring system

[126, 127], flood monitoring [92, 128]. However, the use of WSNs in critical environmen-

tal hazard detection and disaster warning system attracted more attention in recent

years as it promises safety of human lives and properties. Typical applications in such

fields include forest fire detection [20, 21, 57, 129], volcano monitoring [130, 131, 132],

seismic event detection and earthquake warning system [90, 91, 133, 134], lightning de-

tection [135, 136], tsunami alarm [137], flood detection, hazardous material detection

in mines [138], radiation detection [139, 140], chemical and biological hazard detection

in urban areas [124, 141, 142] or any other meteorological hazard characterised by some

ambient physical attributes of the corresponding environments [143]. Recent research

focuses on these mission critical applications of WSNs considering their impacts on

human life. We discuss a few environmental event detection WSNs below.

2.2.2.1 Fire Detection

Wireless sensor networks constitute a powerful technology to monitor large-scale envi-

ronment and has been proved effective in detecting fire hazards in forest, underground

mines and city areas. Forest fire is a fatal threat in many countries in the world. Table
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Fire season Location Area burnt (hectares)

1993-94 Sydney/Blue Moun-

tains/North coast

NSW

800,000+

1995 Southeast Qld 333,000

1997-98 Hunter/Blue Moun-

tains/Shoalhaven,

NSW

500,000+

1997-98 Caledonia River, Gipps-

land, Vic.

32,000

2001-02 Greater Sydney, NSW 744,000

2002 Stanthorpe/Toowoomba,

Qld

40,000

2002-03 Eastern Highlands, Vic. 1.1 million

2002-03 Brindabella

Ranges/Canberra,

ACT/NSW

157,000+

2002-03 NSW east coast includ-

ing greater Sydney

1.46 million

2002-03 Arthur-Pieman, Tas. 100,000

2005 Eyre Peninsula, SA 145,000

2006-07 Eastern Highlands, Vic. 1.05 million

Table 2.1: Major forest fires in Australia from 1993 to 2007

2.1 gives an overview of wildfire occurrences and the atrocity caused in different re-

gions of Australia since 1993 [144]. Despite all the preventive measures that sometimes

include satellite imaging, the risk is still high and the main reason behind such loss is

the lack of sufficiently early warning of the hazard. Over the last decade more than

100,000 forest fire incidents have been reported all over the world and significant re-

search effort is directed to mitigate the risk of such fire [20]. Cutting edge technologies

such as satellite imaging are being employed in large-scale fire detection. However,

satellite monitoring can take up to 1-2 days to capture a complete image of any big

forest and this large scan period is not acceptable in many cases. The smallest fire

size that can be detected using satellite is 0.1 hectare, which makes the early detection
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almost impossible. Studies show that, in order to prevent any permanent damage in

wild fire, the fire control centre needs to be notified at most 6 minutes after the fire

starts [41]. Human based monitoring by the forest rangers is also subject to significant

delay. WSNs came as a promising alternative for detection of forest fire and have been

successfully implemented in several countries. WSN deployed in a forest can locally

detect occurrence of fire by monitoring temperature, humidity, barometric pressure and

smoke in the atmosphere, and send alarm to the control centre in a remote location

and necessary measures can be taken.

Extensive research works have been performed in fire detection using WSN during

the last decade [20, 21, 57, 129, 145, 146, 147, 148]. Some of them focused on protocol

level optimisation for fire detection systems such as routing or MAC protocol suitable for

emergency event reporting in case of fire. Some focused on application level framework

development considering single or multiple ambient attributes characterising such fire.

Hafeeda and Bagheri [148] developed a WSN for forest fire detection that improves the

accuracy of detection by considering fire weather index (FWI) which is a fire danger

rating system used in the USA. The detection system adopts a centralised architecture

where sensors collect weather data and send to the control centre and the final decision is

taken at that control centre. Garcia and Serna [146] designed a simulation environment

that can create model for a fire by analysing collected data from sensor and considering

any additional geographic information available. The fire hazard reports and spread of

fire are sent to the hand-held devices of the fire fighters. Aslan et al. [20] developed a

framework that facilitates the use of sensor networks for fire detection and forecast, and

also provides accurate localisation of the fire hazard. Most recently, advanced sensing

such as camera based sensors or active infrared (IR) sensors are being used in fire

detection [129, 145]. Jorge et al. [129] proposed a vision-enabled wireless sensor network

for reliable and early on-site detection of forest fires. They devised a robust vision

algorithm for smoke detection and implemented power-efficient smart imager designed

for such algorithm. Their implemented testbed yielded high degree of reliability in

terms of both successful detection and low false-alarm rate. The significant role of event-

centric WSN in fire detection systems is evident from the research trends witnessed in

recent years.

30



2.2 WSN Based Event Detection Applications

2.2.2.2 Volcano Monitoring

WSNs greatly assist the geo-spatial event detection through their realistic deployment

in extreme environments that are generally inaccessible or risky for humans. In vol-

cano monitoring, a sensor network is deployed near active volcanoes and continuously

monitor for events such as eruptions, earthquake, or tremor activity [130, 131, 132] .

In 2004-2005, two test beds for such monitoring were implemented in two volcanoes in

Ecuador as a proof of concept [131]. In 2004, a small wireless sensor network on Volcan

Tungurahua was deployed. Nodes were equipped with microphone and continuous data

were collected for three days. Later a larger and more capable network of 16 nodes

equipped with seismoacoustic sensors was deployed over 3km area on Volcan Reventa-

dor in Northern Ecuador. Over three weeks of continuo monitoring, the network was

able to capture 230 volcanic events. Werner-Allen [131] studied the nature of the corre-

sponding data stream and documented the high data rate and high fidelity requirement

for such network. The underlying event detection system uses a short term and long

term average threshold detector. Because of high bandwidth requirement, each node

collects and samples data locally and only sends a report to sink when an event is

detected. When the sink receives a number of reports in a certain time window, it

starts data collection from the entire network. The main goal of this application is to

detect the small earthquakes that occur near the active volcanoes. Since these events

usually last for less than 60 seconds, a high sampling rate (100Hz) is employed which

limits the locally stored information and energy consumption is high. This made the

trade-off between reliable detection and false alarm very critical.

In July 2009, Huang et al. designed and deployed a sensor network on Mount St.

Helens for long term volcano hazard monitoring as a part of Optimised Autonomous

Space In-situ Sensorweb (OASIS) [132]. OASIS station is a sensor unit capable of mul-

timodal sensing equipped with seismic, infrasonic, lightning sensors and GPS unit for

localisation. The seismometer detects earthquakes, infrasonic sensors detect volcanic

explosions, and lightning sensors detect eruption clouds. Combining all three data

streams, the observatory centre takes further decision. They developed a auto-recovery

feature which is very crucial as nodes are deployed in rugged terrain and only reachable

by helicopter. The study suggested that fault tolerance and robustness are the most

important features for normal operation of such event-centric WSNs. The successful de-
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sign and deployment of this volcano monitoring system greatly promoted the confident

use of WSN for real-time monitoring and hazard detection in harsh environment.

2.2.2.3 Early Flood Detection

Flood is an annual threat in many countries, especially in low lying regions, and early

warning can mitigate the loss caused by flood to a great extent. In this regard, WSNs

are now being used for early flood detection in many developing countries [92, 128, 149].

The main drawback in the existing systems is the dependency on human personnel for

continuous monitoring of river beds. Instead, model-based prediction systems can be

used by exploiting the statistical properties of data collected by a network of sensor

nodes. Such a system has been developed at MIT and tested in Honduras, where

frequent floods significantly affect urban life [149]. Flood monitoring requires a large-

scale sensor network as large area needs to be monitored for effective early detection.

Basha et al. [149] designed a two-tier network architecture. Three different type sensors

are used in the lower level for measuring rainfall, air temperature, and water flow

data. Each closely deployed sensor forms a group and is connected to the second-tier

computation nodes. Data collection and information processing are performed at the

computation nodes, which inform the control centres, in case of a potential flood. Since

flood events usually do not occur frequently, long term energy efficient monitoring is a

critical requirement. Several other research efforts are directed to timely detection of

floods recently [92, 95].

2.2.2.4 Earthquake Detection

Earthquake is another geo-physical event that can be monitored using the sensor

technology. Studies show that the major earthquakes are often preceded by a se-

ries of small seismic events and capturing them correctly makes it possible to pro-

vide early warning of earthquakes [143]. Recent advancement in sensor networks at-

tracted significant research interest in WSN based earthquake disaster protection sys-

tems [90, 91, 133, 134, 150, 151]. Wang et al. [133] presented a a dynamic real-time

wireless earthquake disaster monitoring system which has great significance to the

earthquake hazard prediction.
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2.2.3 Industrial Applications

Event-driven WSNs are now becoming commonplace in industrial fields for monitoring

the performance and operational faults, and to detect safety issues in large industrial

plants [56, 152, 153], building automation [154, 155], structural integrity monitoring

[156, 157, 158, 159], sensitive plant monitoring (e.g. nuclear reactor) [160]. Typical

monitored parameters include temperature, vibration, pressure, fluid flow, humidity,

valve positions, gas leak, radio activity. Major motivational factors for using WSNs

instead of their wired counterparts are the flexibility and self-organisation capability

resulted from the elimination of extensive cabling. In this way, the monitoring per-

formance can be improved anytime by adding additional sensors in suitable positions

without having to worry about cabling. In addition to this, sensors can be placed in

the moving parts of machineries and otherwise inaccessible areas for remote monitor-

ing, where wired sensors and maintenance may not be viable solution. Unlike many

non-critical monitoring such as habitat monitoring or bird species detection mentioned

earlier, the detection of faults or anomaly in industry is very sensitive from both cost of

damage and personnel safety point of view. Consequently, high reliability of detection

is the fundamental requirement of industrial applications. It is possible to achieve high

reliability in WSNs even in adverse condition by employing redundant sensors and self

healing algorithm as well as fault resilient decision making algorithm. We discuss few

commercial applications in the following.

2.2.3.1 Structural Health Monitoring (SHM)

Distributed WSNs can track the spatio-temporal patterns of vibrations induced through-

out the structure and intra-structure vacuum. This enables the detection of cracks and

potential damages almost in real time. Existing structural health monitoring tech-

niques rely on periodic inspection or expensive wired data acquisition technique, which

are not viable for large structures such as skyscrapers or bridges. D. Roach [156] ex-

plored the potentials of comparative vacuum monitoring (CVM) sensors to monitor

structural health and prevent unexpected flaw growth by detecting any crack in real-

time. Becker et al. [161] designed an aircraft structural health monitoring system to

track fatigue, detect damage or stress of structural parts using a network of autonomous

sensors. The proposed system is self-powered employing power harvesting capabilities
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such as thermoelectric power, vibration generator and solar cells. This ensures detec-

tion of any flaws during operation and facilitates sufficient maintenance free operation.

BriMon [162] is a railway bridge monitoring sensor network system that monitors the

structural health of a railway bridge by sensing vibrations and reporting damages as

soon as they occur in the bridge structure. Chebrolu et al. [162] designed this system

which triggers an event in response to an oncoming train and starts collecting vibration

data. Collected data are then transferred to a central location whereupon decision on

the current health is made and necessary measures are taken.

2.2.3.2 Gas Leak Detection

High pressure gas distribution channels are commonly used in many industrial processes

such as chemical, electricity and cement industry, and any leaks in the pipeline may

cause economic losses and environmental pollution. WSNs are gradually replacing the

traditional systems for instant detection and localisation of such leaks of hazardous

material [56, 153]. Chengjun et al. [56] developed a gas leak detection and localisation

system based on WSN. There are two application modes in the proposed system :

fixed-point monitoring and dynamic deployment. In fixed point monitoring mode,

sensor nodes are deployed on some fixed locations near the potential risk areas such

as pipe joints, reaction points and places that are subject to erosion. In dynamic

deployment, some wireless nodes are thrown through ejection and all the information

of the distribution of temperature and gas density is collected. Using the location-

aware sensor nodes, this system provides nearly accurate location of the leaks, which

facilitates quick recovery.

2.2.3.3 Industrial Safety

Many event driven WSNs are being used in hazardous industrial environment such as

coal mines [138], oil refinery [163], nuclear power plants [164] etc. The sensors attached

with workers’ clothes identify the persons and environmental hazard, and monitors

their security situation by collaborating with other fixed nodes in the factory [165].

This detects any hazard toxic gas emission or lack of oxygen at the early stage and

warns the workers and lead them to safety.
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2.2.4 Emergency Health Applications

Wireless sensor technologies provide a ubiquitous and cost effective way to continuously

and autonomously monitor a person’s physiological conditions as well as activities of

daily living. Recent developments in implanted biomedical devices and smart inte-

grated sensors make the use of WSNs for medical applications possible. This enables

WSNs based applications to detect emergency health condition and inform correspond-

ing medical centre instantly. While these systems may not replace every aspect of the

conventional wellness monitoring approach, they provide a supplementary service for

data collection and greatly improve the emergency response through instant detection

of any anomaly in patients’ bodily functions and activities. Some of the emergency

health applications include accident management in assisted living [166, 167], fall de-

tection in elderly care [168], dangerous activity recognition [169], continuous health

monitoring and alarm system [170, 171, 172].

2.2.4.1 Emergency Fall Detection

Dokas et al. in [168] designed and developed a patient status monitoring system that

monitors the human activity and detects any threats on personal health such as el-

derly falls or patient collapses. The system uses motion sensors attached to patient’s

body together with microphone array and vision-enabled sensors installed in the envi-

ronment to capture audio, video and motion data. The audio directionality analysis

in conjunction with the motion information from body sensors and subject’s visual

location information are used to detect emergence fall incidents. The post fall visual

and motion information is also processed to determine the severity of fall. The system

utilises the context awareness concept for severity analysis in case of fall events, which

makes it suitable for complex real world living environment. The severity analysis is

performed via a rule based ontological representation of patient’s context awareness.

Such systems can replace the existing human based monitoring in elderly facilities and

provides a solution for the less invasive patient monitoring, which is getting more and

more desirable considering the privacy concern.
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2.2.4.2 AlarmNet

AlarmNet is a context-aware residential monitoring network for pervasive healthcare

in assisted living communities with residents or patients regarding diverse needs [166].

It accommodates heterogeneous devices in a common architecture as shown in Fig.

2.5 that spans wearable body networks, emplaced wireless sensors, user interfaces, and

back-end processing elements. Body network in AlarmNet is a network of wireless

sensor devices worn by residents that enables activity classification or physiological

sensing, such as an ECG, pulse oximeter, or accelerometers. A middleware gateway

system disseminates data from the body network and mediates interaction with the

surrounding WSN. Emplaced sensors are deployed in living spaces to sense ambient

properties of the environmental such as temperature, dust, and light, or resident activ-

ities. Motion and tripwire sensors, in particular, provide a spatial context for activities

and enable location tracking. The central gateway serves as a communication back-

bone and application-level gateway between the WSN and backend system. The flexible

user interface allow doctors, nurses, residents, family, and others to query sensor data,

subject to enforced privacy policies. One of the striking features is that, this real time

patient tracking system makes it possible to generate emergency situation alert to PDA

or hand-held devices carried by the doctors and attendants.

2.2.5 Home Applications

WSNs are a part of our everyday life with the advancement in sensor technology and

continuing standardisation efforts that bring heterogeneous devices under a common

platform. A multitude of sensors and actuators can be embedded in our everyday appli-

ances like vacuum cleaners, microwave ovens, stoves, dvd layers, water and electricity

monitoring system of our home. This paves the way to pervasive sensing environment

where WSNs can monitor our everyday life and determine real world phenomena that

needs to be taken care of automatically for smart home system [104, 173, 174, 175].

2.2.5.1 Water Monitoring

The Nonintrusive Autonomous Water Monitoring System (NAWMS) [175] is a recent

addition to home applications of WSNs. The main goal of NAWMS is to detection

and localise the wastage in water usage and inform tenants almost in real-time. Using
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Figure 2.5: Heterogenous WSN architecture for AlarmNET [166]
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a distributed WSN of sensor nodes attached to the water pipes, the water usage and

any potential leak in house plumbing system can be tracked at a low cost. NAWMS

estimates the water flow in a particular pipe by measuring the vibrations of that pipe

because of the proportional relationship between the two. Accordingly, wireless sensor

nodes are attached to the water pipes to measure the vibrations through accelerometers.

Because of the nonlinear relationship between vibration and water flow, however, each

sensor node needs to be calibrated to determine the optimal set of parameters that

relate acceleration information to water flow. Instead of manual calibration that can

be performed by individually installing water flow sensors at each pipe, in NAWMS

this calibration is performed automatically with the help of the main water meter. The

system provides real-time water usage information at different location in the house

which can be connected to the Internet in future and generate alarms to users via

mobile phones.

2.2.5.2 Abnormal Event Detection in Home WSN

Lee et al. [174] proposed a sensor network based anomaly detection mechanism for

rapidly identifying abnormal home events such as high temperature or unnoticed flow

of water or irregular airflow. To capture the real world phenomena occurring in our ev-

eryday life, it requires careful consideration of the context of the event characterised by

the state of the surrounding environment. The study in [174] shows that home sensor

networks usually consist of diverse types of sensor nodes, and correlating these nodes is

quite important for understanding the context of events. The proposed system analyzes

sensor network data for a set of related sensor data rather than for individual one and

generates a correlation graph based on long term dependency analysis. Features corre-

sponding to the events of interest such as high temperature in a room or unsupervised

water flow are extracted to construct the long-term dependency relationship among

correlation graphs for identifying abnormal events in home network. Sensor nodes in-

side a home can interact with each other and also with the external network via the

Internet which enables such home event detection to act as a part of next generation

Internet of Things. Such research effort makes event-centric sensor network an integral

part of the IoT.
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The potential application fields for WSN are expanding aggressively everyday and

we could only cover a few representative ones here due to time and space constraints.

Some more real world examples are listed in Table 2.2.

2.3 Event Detection Preliminaries

Event detection using WSN has received growing research interest over the recent years

due to its extensive real world applications in numerous domains as described earlier

this chapter. Typically event in WSN corresponds to a real world phenomena occurring

in the environment being monitored by the sensor network. The nature of such phenom-

ena has been extensively studied in the existing literature. Related research generally

characterises event as an exceptional change in the monitored attribute or any specific

distribution of the sensed data over space or time [27, 50, 63, 67, 100, 178]. In the fol-

lowing, we describe some of the fundamental concepts related to event detection using

WSN in the light of existing literature.

2.3.1 Signal Model

Physical phenomena usually emit or radiate energy signals and sensors perform detec-

tion by measuring the energy of the signals emitted by the target event. Such energy

is subject to attenuation with distance from the event location. Suppose a sensor si is

at a distance di from the event location and the energy emitted by the target event is

u0. Considering a signal decay function g(.), the measured signal power at sensor si is

given by,

ui = u0.g(di) (2.1)

Typically signal power decays isotropically as a function of distance. The most com-

monly used power decay model in literature [50, 63, 179] is,

g(x) =

{
1 , if 0 < x ≤ d0
dγu0
xγu , if x ≥ d0.

(2.2)

Zhu et al. [63] described a three dimensional unobstructed region monitored by a set

of sensors detecting the signal emitted from a target within the monitoring area. They

used a power attenuation model given by,

ui =
u0√

1 + cdγui
(2.3)
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Application Type Sensed At-

tributes

Goal

BorderSense [17] Border Security Audio, Video, Vi-

bration

Detection and tracking

of border intrusions

Forest Fire Detec-

tion [20]

Hazard Detection Temperature, Hu-

midity and Smoke

Detect & Predict forest

fire, provide early warn-

ing

Volcano Monitor-

ing [132]

Environmental

Monitoring

Seismic Wave Detection of seismic

events

Earthquake

Warning [90]

Disaster Manage-

ment

Seismic Wave,

GPS location

Early warning of earth-

quake

Fire Alarm in

Coal Mines [57]

Underground

Mine Monitoring

Temperature,

Carbon Monox-

ide and Oxygen

concentration

Early detection of fire

hazard in coal mines

Smart Building

Monitoring [156]

Structural Health

Monitoring

Vibration and

Vacuum

Real time crack detec-

tion

Radioactive

Source Detection

[176]

Nuclear Radia-

tion Monitoring

Gamma emission Detection and local-

ization of radioactive

sources

Emergency Fall

Incident Detec-

tion

Assisted Living

Facility [168]

Motion, Sound

and Visual

perceptual com-

ponents

Fall detection of pa-

tients in assisted living

facility

Gas leak detec-

tion [56]

Environmental

Monitoring

Sulfur dioxide,

Sulfurated hy-

drogen, Carbon

monoxide and

oxygen sensor

Detection and localisa-

tion of gas leak

Great Duck Is-

land [177]

Habitat Monitor-

ing

Video Bio diversity monitor-

ing

Greenhouse Mon-

itoring [126]

Agricultural Au-

tomation

Temperature, Air

& Soil Humidity

Monitoring environ-

ment inside greenhouse

Big awareness

[109]

Military Ambient Temper-

ature, Light, Vi-

bration, Acoustic

waves, Image

Situational awareness

and actuation

Table 2.2: WSN Event Detection Applications
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where, c is a system constant and γu is a signal attenuation exponent typically ranging

from 2 to 3. The attenuation model in (2.2) is quite general and can be used in most

of the event detection systems. For example, for a spherical acoustic wave radiated by

a simple source, the signal decays at a rate inversely proportional to the square of the

distance [179]. Most physical events can be characterised by the sensed signal following

such power decay model either employing some threshold value for detection or any

specific spatio-temporal pattern observed in the signal values.

2.3.2 Sensing model

In WSN based event detection system, the probability of detection by an individual

sensor depends on the signal strength of the event, environment around it and the

hardware of the node. These factors are characterised by the sensing model of a node.

Sensing models used in the existing literature can be broadly categorised into two

different types: i) Deterministic model and ii) Probabilistic model. We briefly discuss

these sensing models below.

2.3.2.1 Deterministic model

In majority event detection literature [30, 34, 180, 181, 182], the sensing range is as-

sumed to be a uniform disk of radius r. The disk model assumes that the occurrence of

an event within a distance r of a node will be detected deterministically. r is referred

to as the sensing range. On the other hand, an event occurring at a distance r+ ε can

not be detected at all. Such model is also called the boolean sensing disk model as it

supports only two states in a detection process, i.e. an event will either be detected or

completely missed out based on the distance, there is no possibility of partial detection

as shown in Fig. 2.6(a).

Such model is simplistic and does not consider the dependency on external factors

such as environmental condition (obstacles, buildings, foilage) and the strength of the

emitted signal on sensing capability. The disk sensing model is widely accepted as

it supports geometric treatment of the detection problem and simplifies the design of

coverage protocols for WSN. It also makes the analytical and asymptotic modelling

feasible. The key shortcoming of disk sensing model is that it doesn’t capture the

stochastic nature of sensing. Tan et al. [50] demonstrated the limitation of the disk

model in real time detection problem by studying the sensing performance of an acoustic
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sensor where real time performance of boolean sensing proved to be worse than proba-

bilistic model. Nonetheless, deterministic sensing still plays major role in the literature

as it ensures optimal solutions in many coverage problems for event detection.

2.3.2.2 Probabilistic model

Probabilistic sensing model assumes that the physical signal denoting an event does

not drop abruptly from high strength to zero beyond the sensing range r. For example,

Cao et al. in [183] analysed the experimental study of passive infrared (PIR) sensors

and showed that the sensing range is better modelled by a continuous probability

distribution, which is a normal distribution for PIR sensors. Several other works such

as [31, 32, 77, 184, 185] investigated the probabilistic nature of sensing to provide a

more realistic sensing model. We present here three variations of probabilistic sensing

models established in the existing literature.

• Staircase model: The authors in [77] proposed a staircase model for proba-

bilistic sensing. According to this, sensing range can be modelled as layers of

concentric circles with increasing diameters and each layer has a fixed probability

of sensing as shown in Fig. 2.6(b). The probabilities decrease in steps with ev-

ery layer. Although the authors claimed that their coverage evaluation protocol

can be extended to a dynamic event coverage protocol, no specific details of such

protocol exists yet. Use of this model is limited in WSN as such layered model

representing real world phenomena is not available a priori in most cases.

• Shadow fading model: This model considered the dependency of sensing prob-

ability on external factors that cause irregular and nonuniform sensing patterns

at different sensor nodes and in different directions. Such behaviour is similar

to the shadowing effect in radio wave propagation. Tsai in [186] examined the

impact of the shadowing effects, as well as that of the asymmetric property in the

sensing capability and presented an analytical model for shadow fading sensing.

Assuming a lognormal shadowing path loss model, the probability of detection

(Pdet ) for an event at distance x from sensor node is given by,

Pdet = Q

(
10γllog10(x/r)

σ

)
, (2.4)

42



2.3 Event Detection Preliminaries

0
0

0.2

0.4

0.6

0.8

1

Distance, x

P
ro

ba
bi

lit
y 

of
 s

en
si

ng

r
s

(a) Boolean disk sensing model.
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(b) Staircase sensing model.
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(c) Shadow fading sensing model.
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(d) Exponential model.

Figure 2.6: Different sensing models in the literature

where,

Q(x) =
1√
2π

∫ ∞
x

e−y
2/2dy, (2.5)

γl is the path loss exponent (2 ≤ γl ≤ 4),

r is the ideal sensing radius without fading,

and σf is the fading parameter.

While shadow-fading model captures the environmental factors in some real world

deployments, it is hard to capture the exact model parameters in diverse WSN

deployment scenario. This is not suitable for generic design of event detection

system and makes analytical models intractable.
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• Exponential model: Exponential models dominate the probabilistic sensing

literature because of the advantages it brings to the analytical modelling of event

detection [31, 32, 77, 179]. According to exponential sensing model, the sensing

probability degrades exponentially beyond a certain threshold distance as shown

in Fig. 2.6(d) . In this model, the probability that a sensor detects an event at a

distance x is given by,

p(x) =


1 , if x ≤ rmin
e−γ1(x−rmin)γ2 , if rmin < x < rmax

0 , if x ≥ rmax.
(2.6)

where, rmin is the starting point of uncertainty in sensing, and γ1 and γ2 are

sensing device specific parameters that are adjusted according to the physical

properties of sensor. rmax is the maximum sensing range of the node. This model

is more general as this can be applied to most sensing scenario adjusting the

tuneable parameters properly. It also capture the stochastic properties of the

device hardware.

In addition to these, few other recent research efforts [187] in the sensing model at-

tempted to capture the sensing irregularities present in physical event detection cases

considering further granular properties of sensing environment. The authors in [187]

investigated the sensing irregularities and its impact on real world applications and in-

troduced Physical Sensing Area Modelling (P-SAM), which provides accurate physical

sensing area for individual nodes. P-SAM uses training events in a controlled manner

to identify accurate nonparametric sensing patterns (areas), which are close to the on-

the-ground truth. This can be applicable when diverse event related data are available

and detailed architecture (obstacles, inaccurate hardware calibration) of WSN is known

at the design phase. However, such modes are unsuitable for analytical design. In this

thesis, we used Boolean model and exponential model whichever was appropriate in

the context.

2.3.3 Spatio-temporal correlation

Efficient design and development of event detection systems largely depend on exploit-

ing the correlation among sensor observations. Due to the high density in the network

topology compared to traditional ad-hoc networks, sensor observations are likely to be
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correlated in the space domain. For example, a fire event in a forest will generally

affect multiple sensor nodes as nodes are typically few meters or tens of meters apart.

In addition to this, physical phenomena constitute temporal correlation between con-

secutive observations by a node. Usually the monitored attributes such as temperature

or humidity do not abruptly change to a high value in one moment and drops to normal

value in the next instant, rather they observe gradual change over time. There has been

significant research effort to study such correlation in WSN data [16, 188, 189, 190, 191].

The extensive study [16] by Vuran et al. on spatio-temporal correlation among sensor

observations in a WSN summarises the characteristics of such correlation as follows:

• Spatial correlation: Typical WSN applications require spatially dense sensor

deployment in order to achieve satisfactory coverage. As a result, multiple sensors

record information about a single event in the sensor field. Due to high node

density in the network topology, spatially proximal sensor observations are highly

correlated with the degree of correlation increasing with decreasing internode

separation.

• Temporal correlation: Some of the WSN applications such as event tracking

may require sensor nodes to periodically perform observation and transmission

of the sensed event features. The nature of the energy-radiating physical phe-

nomenon constitutes the temporal correlation between each consecutive obser-

vation of a sensor node. The degree of correlation between consecutive sensor

measurements may vary according to the temporal variation characteristics of

the phenomenon.

The existence of such correlation in space and time among sensor observations enables

the design and development of efficient event detection and communication protocols

for sensor network. Dereszynski et al. [191] exploited the spatio-temporal correlation to

detect and correct faulty observations in an environmental monitoring sensor network.

Their proposed model is adaptive to specific WSN deployment through Bayesian learn-

ing [47, 192] that captures spatial relationships among sensor data, and it extends the

structure to a dynamic Bayesian network to incorporate temporal correlations as well.

Performance evaluation of their method on the dataset from SensorScope [88] project

shows the ability to flag faulty observations and predict the correct values of the miss-

ing or corrupt readings. Jindal et al. [190] investigated the impact of correlation in
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designing monitoring algorithms and attempted to obtain a simple and accurate model

of spatially correlated sensor network data. They proposed Markov model that cap-

tures correlation in sensor data irrespective of the node density, the number of source

nodes, or the topology. Vuran et al. [189] exploited such correlation to design a col-

laborative medium access control for WSN. Apart form these communication protocols

many collaborative event detection techniques take advantage of the spatial correlation

to increase the reliability/fidelity of detection via data fusion [52, 54, 174]. However,

the spatial correlation among the locations of the events and the temporal correlation

among consecutive occurrences are not well explored yet. We exploited such correlation

in our dynamic event coverage technique in Chapter 4.

2.3.4 Noise in sensed data

Sensor measurements of any signal are subject to an additive random noise from the

surrounding environment or sensor hardware flaws. Under such assumptions, for an

original signal value ui, the measurement at sensor i denoted as ûi is given by,

ûi = ui + εi,

where εi is the energy of noise at sensor i. Such noise is usually modelled by a Gaussian

distribution of mean µε and variance σwε
2, i.e., ni ∼ N(µwε, σ

2
ε) in the literature

[27, 50, 193].

2.3.5 Fault model

A generalised fault model was presented in [192] which is used in most event detection

techniques because of its generic nature. Without loss of generality, a particularly large

value can be considered as event, while the normal reading is typically a low value. Let

the event decision at the sensor node, si be modelled by a binary variable bi. Each

sensor decides between two hypothesis, event (H1) or normal situation (H0). b = 0

if sensor measurement indicates normal reading and bi = 1 if the sensor measurement

indicates an event. Now there are two different cases where an error is observed,

1. False positive: a sensor can report a normal reading as event with probability,

P (bi = 1|H0)
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2. False negative: a sensor may fail to report an event when it occurs with proba-

bility, P (bi = 0|H1).

Assuming symmetric and uncorrelated sensor fault probability, the fault probability,

pf is given by,

p = P (bi = 0|H1) = p(bi = 1|H0)

Let un be the mean normal reading and ue be the mean event reading for a sensor.

The authors [192] showed that, if the errors due to sensor faults and the fluctuations in

the environment can be modelled by Gaussian distributions with mean 0 and standard

deviation σe, and the threshold is taken to be 0.5(un + ue), the fault probability pf

would indeed be symmetric. This fault probability can be evaluated using the tail

probability of a Gaussian, the Q-function, as follows [192]:

pf = Q

(
0.5(un + ue)− un

σ

)
= Q

(
ue − un

2σ

)
(2.7)

As the Q-function is a monotonically decreasing function, it is evident from (2.7) that

the fault probability is higher when the mean normal and event readings are not suf-

ficiently distinguishable, or when the standard deviation of the sensor measurement

errors is low. While this model lays the foundation for fault probability modelling,

sensors faults are often correlated and asymmetric. More on this will be discussed on

Section 2.5.2.

2.3.6 Accuracy analysis

Accuracy of an event detection system is measured by both the detection probability

and false alarm rate. Receiver operating characteristics (ROC) curves are useful for

organising such classifiers and visualising their performance. ROC graphs are commonly

used in decision making and classification tasks especially in machine learning and data

mining research [194]. ROC graphs are two-dimensional graphs in which successful

detection probability (also called hit rate) is plotted on the Y -axis and false alarm

(false positive) rate is plotted on the X-axis. Conceptually, an ROC graph depicts

relative tradeoffs between benefits (true positives) and costs (false positives). A basic

ROC curve is shown in Fig. 2.7. The area under the curve indicates the accuracy of

the system.
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Figure 2.7: A basic ROC curve

Event detection using WSN is a decision making process in essence that distin-

guishes event situations from normal sensor readings. This is why it is increasingly

used in the study of event detection to illustrate the detection performance. We also

used ROC curves for performance evaluation in this thesis.

2.4 Overview of Event Detection Techniques

Theoretically, event detection using WSN is a descendant of the classical decision mak-

ing problem in the large-scale sensor network. Based on the decision system architec-

ture and how much information is sent to the base station, event detection systems can

be broadly categorised into two classes: i) Centralised detection, and ii) Distributed

detection. The decision making process for each of these techniques can be further cat-

egorised into two categories namely, threshold based and non-threshold based option.

In WSN, event signals are usually correlated as explained earlier, which makes the col-

laboration among neighbouring sensors necessary to successfully detect and localise any

physical event being monitored. Based on such collaboration, threshold based events

are again divided into two subclasses which are value fusion and decision fusion. A
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high level classification of the existing event detection techniques is presented in Fig.

2.8.
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Figure 2.8: Classification of event detection techniques.

2.4.1 Centralised detection

In a centralised detection system, each censor node transmits its observation directly

to a central base station without any loss of information. It is the responsibility of

the control centre to aggregate the data and decide whether an event of interest has

occurred or not. The main idea is to put the processing burden on the sink node

which is generally equipped with higher processing power. Fig. 2.10 shows a generic

centralised detection framework.

Typically Bayesian decision fusion and Neyman-Pearson detection are used to make

a detection decision at the sink node or base station [45]. Since the energy consump-

tion for sensing and data processing is generally less than that for data transmissions,

one of the major challenges in the centralised detection scheme is to reduce the av-

erage number of data transmissions for preserving the available energy in resources

constrained WSN. In addition to the energy, sensor networks are usually deployed in

outdoor environment and the communication channel to the control centre is subject

to non-uniform noise over the sensor field. The observation data from different sensors

may arrive at the central receiver at different instants of time, each being subject to

different time delay. In order to properly aggregate the streams of data arriving from

different sensors, these streams need to be synchronised [13]. Stringent requirements
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Figure 2.9: Centralised detection framework.

such as high volume data transmission, increased energy consumption, and synchro-

nisation make centralised detection architecture practically unattractive. However, in

certain applications the lossless transmission of sensor observation to the base station

may be a strict requirement for successful detection such as wireless camera sensor net-

work [195] or sensitive surveillance system consisting of smart sensors [196]. In addition

to this, the performance of centralised detection serves as a performance benchmark

for decentralised detection strategy.

2.4.2 Decentralised detection

Large scale sensor networks are increasingly being deployed in real world applications

[27, 110, 197, 198, 199, 200] and the transmission of large amount of data to base station

is becoming more costly. This also incurs significant delay in event detection. Since

sensor nodes are constrained by low power and low bandwidth communication, the

centralised detection schemes that require each node to transmit their measurements

directly to a central fusion centre are not suitable for WSN, especially for large network.
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Naturally, the decentralised detection has paved its way over the centralised scheme in

event-centric WSNs in recent years. In decentralised detection architecture, each sensor

node decides on the occurrence of an event based on its own sensed data and only the

detection decision is sent to the local or central fusion centre. Often the neighbouring

sensors collaborate to make local decision on the occurrence of an event and only the

final detection decision is sent to the fusion centre. A generic decentralised detection

model is presented in Fig. 2.10.
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Figure 2.10: Decentralised detection framework.

Evidently, in decentralised detection systems, nodes only send partial information to

the fusion centre. As a result, the overall detection performance under such architecture

is suboptimal compared to a centralised system in which the fusion centre receives the

observations from all sensors without any loss [201]. The availability of undistorted data

in fusion centre makes value fusion the most commonly used technique in centralised

detection while decision fusion dominates the decentralised detection domain. This
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trade-off between value fusion and decision fusion was explored elaborately by Costa

and Sayeed in [201] which showed the sub-optimality of decision fusion.

Nevertheless, such as energy constraint, transmission bandwidth limitation and

complexity make decentralised detection with fusion the most popular technique in the

event detection research [25, 46, 47, 64, 98, 198, 202]. The key challenges in decen-

tralised detection have been investigated by a number of researchers over the years

[27, 45, 47, 201]. The crux of a standard decentralised detection is to determine what

type of information each sensor should send to the fusion centre. It has been shown that

once the structure of the data being sent by each node is fixed, the fusion centre faces

a standard problem of statistical inference. So a likelihood-ratio test on the received

data will minimise the probability of error at the fusion centre for a binary hypothesis

testing problem, and a minimum mean square error for an estimation problem. In our

work we considered the decentralised detection and distributed architecture of sensor

network for its advantage and tried to determine the optimum setting for event detec-

tion satisfying the requirements set by applications. Designing efficient decision rules

for event detection in sensor network has been another major research issue.

2.4.3 Threshold Based Detection

An event occurrence is reported when any monitored attribute exceeds a predetermined

threshold value for that. The detection condition persists as long as the parameter

value is above the threshold set point. The threshold values may be determined based

upon historical parameter values, analogy to similar sensors and systems, engineering

estimates, or parametric analysis. A generic threshold based detection rule is presented

in [59]. It assumes that every sensor node in the network employs same threshold value

ηd and the signal strength εi for a sensor i can be given by (2.3) according to the

distance from the event location. The portability of detection, pdi and probability of

false alarm pfi is then derived as [59],

pdi =

∫ ∞
ηd

1√
2π
e
−(x−εi)

2

2 dx,

and

pfi =

∫ ∞
ηd

1√
2π
e
−x2
2 dx = Q(ηd),
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where Q(.) is the complementary distribution function of standard Gaussian as defined

in (2.5).

Different threshold based methods are studied in the literature [47, 51, 54, 59, 60,

61, 183, 203]. Chamberland et al. in [47] showed that if the structure of the information

supplied by each sensor is predetermined, the fusion centre faces a classical hypothesis

testing problem in event detection scenario. The probability of estimation error is then

minimised by the maximum a posteriori detector. This work considers the scenario

where the sensor network is constrained by the capacity of the wireless channel over

which the sensors are transmitting, and they studied the structure of an optimal sensor

configuration. In [183], Cao et al. proposed two novel algorithms based on statistical

hypothesis test (SHT). They considered the spatial and temporal correlation among

the sensor observation. They applied hypothesis test about temporal correlation on

sensor measurement series to locally disambiguate the event from faults accurately and

efficiently.

Among other works on statistical methods, Niu et al. in [179] derived the exact

analytical expression for the distributed detection performance, and proposed some

approximations via Binomial distributions and Demoivre-Laplace approximation, which

require much less computation load and yet yield fairly accurate results. Furthermore,

they investigated the detection performance for a more realistic scenario where the

total number of sensors is random and the wireless channels between sensors and the

fusion centre are noisy. Their work is largely motivated by [204] which shows that in

case of binary hypothesis testing in decentralised detection, likelihood-ratio tests at the

sensor nodes are optimal when the observations are conditionally independent given

each hypothesis. However, if the observations are stochastic in nature or if the sensors

are subject to external noise, these assumptions may not be valid.

Most of the existing event detection methods rely on a static threshold for all the

nodes. The static threshold method exhibits a memory less property from one obser-

vation to the next, assuming that the current observation and detection condition are

independent of all prior observations. However, in practice, observed values are depen-

dent upon prior observed values, and one would not reasonably expect the observed

values to radically change in the short period of time between successive observations.

Ray et al. in [60] proposed a dynamic local sensor threshold scheme. The intuition

behind their approach is that, as the nodes may be at different distances from the event
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and the external factors may not be the same for every node, different sensors have un-

equal signal-to-noise (SNR) ratios. This indicates that improved performance may be

achieved by using non-identical thresholds for different sensors. They proposed a false

discovery rate (FDR) based local sensor threshold selection method to dynamically up-

date the threshold for better performance. A similar approach was proposed by Chen et

al. in [61] where the authors exploited event dynamics to devise Hidden Markov Model

(HMM) based approach for adaptive threshold value. While adjusting threshold brings

certain enhancement to detection performance according to their experiments, it is not

always feasible to capture the realistic model of diverse sensing environments, and local

storage in sensor nodes limit the amount of history that can be maintained. This limits

the use of adaptive thresholds in event detection literature and static threshold makes

the analytical modelling of generic detection algorithm easier.

2.4.3.1 Data fusion

The distributed detection using data fusion or value fusion systems was studied in

[45, 193, 205]. In data fusion method, each node sends its own measurement of event

signal to the fusion centre without any loss of information. The fusion centre combines

the raw values obtained from collaborating sensors and compares the average value to

a threshold for final decision. Due to limited transmission capacity of sensor nodes,

value fusion is not suitable for WSN.

2.4.3.2 Decision Fusion

Existing literature uses a two layer detection system: i) a local decision rule at individ-

ual sensor node, and ii) a final decision fusion rule at the fusion centre where collabo-

rative detection is accomplished [45]. The occurrence of event is usually modelled as a

binary hypothesis testing problem with two hypothesis ”event” and ”no-event”. Each

sensor node within the sensing range of an event makes a binary decision independently

based on its own observation and sends binary decision to a local fusion centre. On re-

ceiving the decisions from all the neighbouring sensors, the local fusion centre employs

a decision rule to make the final decision. Let Hi, i = 0, 1 indicate whether an event

occurs or not, and n sensor nodes s1, s2, · · · , sn in the neighbourhood participate in the

local decision fusion. Let the binary variable bj , j = 1 to n denotes the local decision
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of a sensor.

bj =

{
1, if H1

0, if H0

The fusion centre takes the final decision, Ĥ by applying appropriate fusion rule on the

n binary values of bj . The design of the final decision fusion rule under such assumption

depends on the choice of the threshold value at the decision centre.

Decision fusion is a well investigated area in the distributed detection domain [45].

Several decision fusion techniques from this domain have been employed in event de-

tection systems in the existing literature, such as Bayesian fusion [27, 45, 63], Neyman-

Pearson fusion [45, 206], AND-fusion [47], OR-Fusion [63], Majority voting [64, 178]

and ‘k out of n’ rule [52].

• ‘k out of n’ rule: According to this rule, the fusion centre detects an event

(Ĥ = H1) if the number of ”1”s received from n participating sensors is greater

than or equal to k. Letting b̂ = 1 if the fusion centre decides H1 (event) and b̂ = 0

if the fusion centre decides H0, it gives,

uj =

{
1, b1 + b2 + · · ·+ bn ≥ k
0, b1 + b2 + · · ·+ bn < k

where k is an integer between 1 to n. In this thesis, we employed ‘k out of n’ rule

for decision fusion since it is the most general case of count based rules. Setting

k = n turns it into the AND rule, setting k = 1 makes it the OR rule and setting

k = n/2 + 1 gives the majority voting rule.

2.4.4 Non-threshold Based Detection

Threshold based techniques described above are only applicable for detecting events

that can be characterised by a cutoff threshold on some attribute of the monitored

environment. However, complex events that are characterised by a particular type

of sensor data distribution over space and time can hardly be captured by a simple

cutoff method. It is necessary to consider the exact state of the environment and

the context of the collected data to identify such events. For example, a gas leak

hazard in underground coal mine [56], chemical or bio-nuclear hazard [124, 139] or

complex context-sensitive event in home environment [174, 207] can not be accurately

captured by filtering simple sensed attributes using some thresholds. To detect such
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complex events, non-threshold based techniques has received significant attention in

the event detection research [35, 46, 48, 65, 100, 173, 174, 195, 207]. In such approach,

complex events are usually described through a certain spatio-temporal data pattern

and capturing the pattern from the variety sensor data using appropriate application

specific and context-aware technique.

Xue et al. [100] recently proposed a generic model for detecting non-threshold

based events in a distributed WSN. They identified the two main issues in complex

event detection as:

1. Event modelling: How to represent an event based on the sensor network deploy-

ment and a set of user inputs? The event model must be expressive in specification

in order to capture the subtle semantics of different events in the physical world.

2. Data matching: How to detect an event by developing algorithms to match the

event model with the real-time data collected from the sensor network? The

matching algorithms must be resilient against data faults in sensors [39, 40] and

rely on the light-weight computation to ensure the timeliness of detection.

Due to the stringent resource constraint in sensor network, it is also challenging to de-

sign energy-efficient data delivery method to the base station. 3D monitoring field also

raises non-trivial issues in abstracting the environment in case of non-threshold based

events. Li et al. [65] explored these issues in a non-threshold based event detection

for 3D environmental monitoring. They proposed a multi path routing architecture

to provide robust data delivery to generate a representative environmental data map

and evaluated the effectiveness of the proposed approach using datasets from a real

coal-mine environment. Few non-threshold based detection schemes in the literature

are presented below.

2.4.4.1 Pattern based detection

In this method complex non-threshold based events are considered as patterns and

lightweight pattern recognition techniques are used to detect event. These patterns

can be predefined by domain experts provided that history data on target event are

available. In case of unspecified events that may dynamically evolve throughout the

network lifetime, on-line learning of pattern was proposed [208, 209]. Diverse types of
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pattern based event detection schemes in distributed sensor network have been proposed

by a number of researchers over the last few years [46, 101, 208, 210, 211]. Contour

map matching proposed in [210] is an event detection technique with predefined event

patterns. Contour map for a physical attribute is a topographic map that displays the

distribution of the attribute value over the network. The proposed method abstracts

the event in the target WSN into spatio-temporal data pattern and matching is done

through contour map matching. A similar approach for complex event detection us-

ing predefined event pattern is proposed in [65] which extends the detection into 3D

environment.

However, sufficient history data or perfect knowledge on the contour map of event

related data may not always be available a priori for the above schemes to work. Zhang

et al. [209] proposed a pattern based detection for unspecified events in WSNs. The

basic idea behind their approach is to distinguish the infrequent events from frequently

occurring patterns, as the rare patterns are more likely to represent an event from

information theoretic point of view. The proposed method first learns the frequently

occurring patterns from the initial measurement, which is called the learning phase.

After the learning phase, it creates new patterns from incoming sensor data and de-

cides whether it is a frequent or infrequent pattern. Infrequent patterns are reported

as events. Similar learning based technique is discussed in [208] which converts real

valued sensor data into symbolic representation to handle non-linear and complex data

patterns efficiently. However, given the diversity of the application scenarios and user

requirements, no single pattern based technique is sufficient. This problem becomes

more challenging in the emerging IoT domains where sensors in a network need to

exchange information with a variety of heterogeneous devices.

2.4.4.2 Probabilistic detection

Probabilistic event detection methods consist of those methods in which the probability

distribution of event related data for different parameters are either known or can

be inferred or learned. For example, Ihler et al. in [212], developed a probabilistic

framework for unsupervised event detection and learning based upon a time-varying

Poisson process model that can also account for anomalous events. Their experimental

results indicate that the proposed time-varying Poisson model provides a robust and

accurate framework to adaptively separate unusual event from normal activity. This
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model also performs significantly better than a non-probabilistic, threshold-based event

detection technique.

Sauvageon et al. [213] investigated the Distributed Gaussian Method (DGM) for

detecting surface temperature changes. In this technique, Gaussian curves are gener-

ated such that they are centred on each node. Then, these curves are normalised and

summed in order to reduce the geometric effect of node placement. The maximum

predicted temperature value is then easily located in order to detect the temperature

peak. Abadi et al. presented a probabilistic detection approach in [200]. This work

considered the spatial correlation in event measurement and proposed Bayesian deci-

sion fusion to detect an event in collaboration among the neighbouring sensors. Geyik

et al. [214] employed a probabilistic context free grammar to recognise events from

raw sensor measurements. The proposed algorithm uses an evaluation metric based on

Bayesian formula for maximising grammar a posteriori probability given the training

data. The hypothetical system was evaluated using simulation on a real-world scenario

for monitoring a parking lot. Although there are several works on probabilistic event

detection, none of them assumes any distribution of the event occurrences in the sensor

field. We believe if the event distribution in the corresponding application domain can

be taken into consideration, the detection can be made far more efficient and accuracy

can be increased.

2.4.4.3 Fuzzy systems in detection

Few researchers attempted to exploit the advantages of fuzzy logic over crisp logic

based systems for improved event detection in WSNs [215, 216, 217]. Krasimira et al.

[216] indentified a number of properties of fuzzy logic that make it suitable for event

detection in WSN: i) it can tolerate unreliable and imprecise sensor readings, ii) it is

much closer to the natural way of thinking. For example, rather than defining a fire

event by a threshold (e.g. temperature > 80oC), we can think of fire as an event

described by high temperature; and iii) compared to other probability theory based

methods, fuzzy logic is much intuitive. In [216], Marin et al. developed a fuzzy logic

engine for rule-based detection in sensor network. The mote fuzzy validation and fusion

(Mote-FVF) algorithm was developed for wireless sensors network. This algorithm can

distinguish between sensor failures and abnormal environmental behaviours by using

network redundancy to compensate for sensor reliability. Fuzzy logic based methods
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for sensor validation and fusion are unique in that they do not require or rely upon a

mathematical model of the system. Despite sparse research efforts fuzzy logic is yet

to pave its way in the field of distributed event detection in WSN because the rule

base for fuzzy logic grows exponentially to the number of attributes that might require

significant amount of local storage in sensors.

Despite different practical limitations, non-threshold based detection is envisaged

to be of paramount importance in the pervasive environment and environmental in-

telligence in the emerging IoT paradigm. Capturing the true context of the collected

data is becoming the key issue event-centric WSNs that act as a building block of

IoT. Both threshold based and non-threshold based event detection systems have their

respective strengths and weakness. It needs careful consideration of the application

requirements and the environmental factors to adopt the appropriate method. In our

research, we primarily focused on threshold based events as they dominate the event

detection domain. However, considering the foreseeable application of event detection

in heterogeneous sensor network and pervasive environment, we also designed a non-

threshold based detection technique that incorporates context of event in a complex real

world environment. Event detection in pervasive environment employs non-threshold

based techniques [105, 208, 209, 214]. However, majority of the existing literature do

not consider the context of physical environment. Table 2.3 summarises a number of

non-threshold based techniques and their strengths and weaknesses.

2.5 QoS Consideration in Detection

Performance parameters of event detection systems are the detection probability, false

alarm rate, fault tolerance, detection delay and energy consumption. Majority of the

event detection research are devoted to designing energy efficient mechanisms to yield

high accuracy and low detection delay. There is an inherent trade-off between detection

performance and energy consumption. In addition to that, in many critical applications

achieving low detection delay often requires compromising false alarm probability. In

the following, we present the research efforts attempted to handle such trade-offs in

event detection using WSNs.
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Detection

Scheme

Strengths/Features Weakness/Limitations Context-

Awareness

Predefined

event patten

based [65, 210]

No training required,

Capture complex spatio-

temporal event pattern

Event patterns should

be specified in advance.

Can not be adjusted

once deployed.

No

On-line

learned

event pat-

tern [208, 209]

Traning process is on-line

and accomplished during

operation. Prior domain

knowledge is not important

and adaptive.

Only applicable for

finding infrequent event

patterns.

No

Regression

model based

detection [100]

Capture the complex event

data distribution and im-

proves performance with

time.

Selecting suitable re-

gression parameters re-

quire extensive domain

knowledge. Accuracy of

detection is largely af-

fected in case of wrong

selection.

No

Fuzzy systems

[215, 216]

Tolerant against imprecise

sensor reading. Easy to de-

scribe events intutitively.

Not suitable for in-

network processing. In-

creased delay in detec-

tion.

No

Grammatical

inference using

PCFGs [214]

High level event definition

is possible. Light-weight

processing.

Events should be pre-

defined, can not be

adapted or modified

easily.

No

Automata

based [105]

Easy to develop, handles

dynamic environment

Number of states grows

exponentially with the

complexity of the envi-

ronment

Partially

Rule based

sensor network

Suitable for high level

event definition

Rules are static, does

not adapt to changes in

dynamic environment

Partially

Table 2.3: Comparison among some non-threshold based event detection techniques
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2.5.1 Detection probability

Accurate detection of an event is the ultimate goal of any detection system. Hence,

most of the event detection approach in the literature attempts to maximise the de-

tection probability. However, false alarm rate of a system tends to increase along with

the detection probability. This requires careful consideration in designing event de-

tection techniques. It has been described in Section 2.3.5 that false alarm becomes

higher as the difference between event readings and normal readings decreases. Un-

der such circumstances, it is challenging to maintain high detection probability keep-

ing the false alarm minimal. Furthermore, there is an intrinsic trade-off between

energy consumption and detection accuracy in WSNs because continuous high qual-

ity monitoring and transmitting undistorted data in detection requires higher energy.

Energy-aware accurate detection has been the primary focus in event detection in WSN

[26, 27, 37, 48, 100, 179, 213, 214, 218, 219].

It is established in the literature that to improve detection performance, a certain

degree of redundancy is introduced in the sensor field through dense deployment so that

more than one node is guaranteed to capture an event. The final detection decision is

taken via collaborative decision fusion or value fusion [26, 51, 52, 54, 193]. The general

expression for detection probability in multi sensor value fusion in presence of noise is

derived in [193, 205] as,

PD = 1− χ

(
nηv −

n∑
i=1

U(xi).T

)
, (2.8)

where, χ(.) is the cumulative distribution function of a Chi-square distribution mod-

elling the combined noise value. Here, n is the number of nodes sensing the event, xi

is the distance of node si from the target and ηv is the threshold for multi-sensor value

fusion model.

An analytical expression for detection probability in a ‘k out of n’ based detection

scheme is derived in [193] as follows. For n sensors detecting an event the collaborative

detection probability using ‘k out of n’ rule is given by,

PD =

n∑
i=k

∑
ς∈Ωi,n

[
Πj = 1ipς(j)Π

n
j=i+1

(
1− pς(j)

)]
, (2.9)

where Ωi,n is the set of combinations of i nodes from n detecting sensors, ς is any specific

combination and the set {ς(j), 1 ≤ j ≤ i} are the indices of the sensors. This model
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is the basis for performance analysis in fault free collaboration among sensors. Later

works [26, 51, 52] augment such analysis considering the application specific properties

of the system such as noise, random deployment and known fault probability. Niu et

al. [179] derived an exact system level probability for lossy communication channel

and random deployment scenario. For N sensors deployed randomly in a L×L square

region of interest, the probability mass function of exactly k sensors detecting an event

correctly is derived as [179] ,

P (n = k|H1) =
1

L2

(
N
k

) ∫ L
2

−L
2

∫ L
2

−L
2

(pd(x, y))k (1− pd(x, y))N−k dxdy,

where, H1 denotes the hypothesis indicating an event occurring at (x, y) and pd(x, y) is

the probability of individual detection. The threshold selection for event characterisa-

tion is also very important as the difference between normal reading and threshold value

affects the sensitivity of the detection system. A rigid threshold selection may reduce

the detection probability while keeping the false alarm rate very low. On the other

hand, setting the threshold for guaranteed detection in a noisy environment makes the

system subject to increased possibility of false alarm [193]. Diverse environment and

sensing characteristics require careful analysis to guarantee desired detection probabil-

ity.

2.5.2 Fault tolerance

In most WSN-based applications, sensor nodes are expected to be low cost but error

prone and deployed in inaccessible terrain, hence the probability of node malfunction is

significantly higher in WSNs compared to the traditional networks such as TCP/IP and

cellular networks. Owing to random deployment, sensor nodes are significantly more

prone to damage. In addition, placing sensor nodes in a harsh or inaccessible area makes

the replacement costly and infeasible in some cases. This intrinsic unreliability of sensor

nodes make fault tolerance the most challenging QoS metric. Significant research works

have been conducted to achieve fault tolerant event detection in harsh and adverse

WSN environment [37, 40, 51, 52, 53, 54, 72, 192, 197, 200, 219, 220, 221, 222]. These

works mostly attempt to model the distribution of faults in sensor readings and design

preventive measures to deal with them.
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As mentioned above, spatio-temporal correlation is a unique characteristic of sensor

observations in a WSN [16]. This has been one of the keys to designing distributed

fault-tolerant mechanisms for event detection. One of the early works on fault tolerance

in event detection using the assumption of spatial correlation is presented in [192]. It

presents a generalised fault recognition and correction algorithm in a binary detection

system under the assumptions presented in Section 2.3.5. The method exploits the

spatial correlation among sensor readings to correct the decision of individual sensors.

Each sensor collects information about its neighbours’ observations to verify its own

reading. For a sensor si with neighbourhood size, Ne (excluding) among which n nodes

reports the same observation, the probability of its own observation being correct is

given by,

Pin =
(1− p)n

(1− p)n+Ne(Ne − n)

While this algorithm commends itself a robust fault detection and correction method, it

assumes that all nodes in the network have the same detection error probability and this

rate is known prior to deployment, which renders it unrealistic in many cases. Ould-

Ahmed-Vall et al. [54] used the collaboration among neighbouring nodes to increase

the reliability of the detection decisions without depending on the fault distribution to

be known a priori. This work is based on the assumptions that sensor observations are

correlated spatially but the sensor faults are not. Although this work is an improvement

over previous models, the idea that the failure at node is independent from failure of any

of its neighbours is highly unlikely, especially in case of physical damage, environmental

noise or energy depletion. Wang et al. [51] proposed a collaborative sensor fault

detection method where the local fusion centre is responsible to identify the faulty

sensors and discard their observations from the final decision fusion. The proposed

method uses Kullback-Leiblar distance (KL) to characterise the deviation of faulty

readings from normal values and devise a likelihood estimation to isolate faulty nodes

in real time during operation. The possibility of spatial correlation among sensor

faults is not considered and no analytical model is suggested to determine the required

neighbourhood size to minimise fault.

While these fault tolerant methods are suitable for threshold based binary detection,

they fail to capture the events where decision fusion is not sufficient. Banaerjee et al.

[53] presented a fault tolerant detection scheme for non-threshold based events which

takes into consideration both the spatial and temporal correlation among the nodes in
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close proximity to disambiguate faults and events. Due to spatial-correlation, neigh-

bouring sensors sense similar data values. In addition to that, in most cases a sensor’s

own reported reading will not be significantly different from the reading it reported in

the previous instant due to the property of temporal correlation. Therefore, identifica-

tion of sudden, irregular readings deviating from its readings at the previous instants or

highly different from its neighbours’ readings beyond a pre-specified threshold helps to

detect faulty sensors. Such deviations may occur due to several reasons. For example, a

sensor may have hardware failure. These are permanent faults that could cause a node

to die because of the communication hardware failure [39, 40]. Permanent failures can

also occur due to being accidentally damaged or by turning malicious. A sensor can

also give wrong, transient reading due to a temporary impact of environment. Since

the sensor undergoing permanent failure needs to be replaced or repaired, this work

reports the location of the faulty sensor. The work devised a tree based aggregation

approach that uses spatio-temporal characteristics of sensors in detecting multiple si-

multaneously occurring events after identifying faulty sensors in the network and quick

conveying of this information to the base station.

Hong et al. in [223] proposed a fault tolerant event region detection based on dis-

tributed weight system for sensor node. They also used the spatial correlation between

the neighbouring nodes but their algorithm assigns weight with sensor node that con-

trols its degree of participation in the fusion technique. The fault-event disambiguation

depends on the suitable weight assignment to neighbouring sensors. It is evident from

the above discussion that robustness against sensor faults can be achieved by intro-

ducing significant redundancy in the network; however, the existing literature lacks in

analytical modelling of proper neighbourhood size to realise the required fault tolerance.

2.5.3 Detection delay

One of the most important performance metrics for event monitoring WSNs is the

detection delay which indicates the delay between the occurrence of an event and its

detection. This is a crucial success parameter for an event detection system. Event

detection systems promise to reduce the damage and threat by natural or man-made

disasters [90, 92, 115, 116, 132, 143, 148, 156]. In such mission-critical applications, im-

mediate detection of event is more important to the users than detailed information to
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reduce the impact of the disaster. Real time detection is a requirement in many appli-

cations [116, 143, 148, 156]. A real world deployment of long term volcano monitoring

WSN described in [132] observes that the seismic events around an active volcano lasts

about 30 seconds. This indicates the detection task should be accomplished and control

centre should be notified within this short period of time. The studies on forest fire

detection [148] shows that the fire control centre needs to be notified of the fire within

6 minutes after the start of a fire incident to avoid any permanent damage. Number of

research works in recent years focused on minimising the detection delay in WSN based

event detection [42, 43, 72, 73, 75, 96, 182, 224]. The factors affecting delay as iden-

tified in the literature includes communication architecture (transmission bandwidth,

mac and routing protocols), event dynamics (duration of event, frequency and spread

of occurrence), sensor collaboration method, and node density and duty cycles of nodes

[12, 43, 72, 74, 99, 205, 225, 226]. Delay aware methods emphasise on one or more of

these factors to minimise the detection delay. Unpredictable environment and diverse

energy optimisation methods complicate the exact analysis of detection delay and only

few works (e.g. [72], [73], [226]) have been done in this regard so far.

Li et al. in [72] presents a delay bounded detection method in WSN where the

system attempts to guarantee an user specified delay. The authors explored the trade-

off between delay and energy consumption in this work and proved the energy effi-

cient bounded delay problem to be NP-hard. An approximation algorithm was pro-

posed that ensures given delay constraint, α and maintains the energy consumption to

∆
(

1 + ηmax
ηmin

nγ−1( 2
α−1)γ

)
, where ηmax, ηmin are the minimum and maximum detection

thresholds among the sensors and n is the number of nodes and γ ∈ [2, 4]. The duty

cycle and density of the nodes were not considered in this model, which leaves it incom-

plete for robust event detection employing node redundancy. A more comprehensive

analysis of delay in collaborative event detection was presented by Wang et al. in [99].

The assumptions considered were: i) the event detection delay consists of two parts,

namely, the discovery delay for individual nodes to sense and detect the event, and the

delivery delay for the network to relay reports to the sink; ii) an event is generally con-

sidered to be detected only when a given number, k, of reports are received by the sink.

The authors modelled the overall delay using a non-homogeneous Poisson distribution,

which was then used to estimate the mean event delay. However, the delay guarantee
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may not always be possible due to the randomness in the network topology and unpre-

dictable factors of the environment. To address this, a soft delay bound was proposed

[99] which is called (n, p)-delay bound. The (n, p)-delay indicates the time required for

n nodes to detect and report an event with probability p. Such analysis brings the

delay estimation closer to the ground truth. However, the duty cycles of the nodes and

event characteristics were not considered. The detection delay for periodic monitoring

t0 t1 t2 t3 t4 t5 t6 t7

Te

tn

Detection time 
without 

network delay

Detection time 
with network 

delay

network delay

Event 
occurrence time

TnwTw

Sampling interval

Figure 2.11: Event detection time considering network delay. tis denote the sampling

period. An event occurs at time Te and the sampling delay for this event is shown by the

shaded portion. The sampling period is given by, Tw = t3 − Te. The node gets a time slot

to send the decision to fusion centre after a successful contention. Tnw = Tw + tn denotes

the detection time with network delay.

case in a WSN is investigated by Karumbu et al. in [73]. Their work focuses on the

trade-off between decision delay and network-introduced delay. Under periodic sam-

pling, higher sampling rate reduces the detection delay but increases the random access

delay due to higher packet rate. The impact of sampling periods and network delay on

the overall detection delay is illustrated in Fig. 2.11. The authors presented a network

delay model and two different methods based on this : i) network oblivious processing

- that do not consider the network introduced delay, and ii) network aware processing -

that incorporates the network delay into event detection delay. Both of them attempts

to minimise the detection delay. However, closed form analytical expression could not

be derived.

The delay models discussed so far are based on the implicit assumption that the

underlying WSN consists of static nodes only. However, event detection using mobile
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nodes have become commonplace in many event detection applications [28, 29, 37, 70,

71]. The delay analysis becomes more complicated in the presence of mobile nodes and

this issue is not well explored in literature to date. Xu and Wang [226] investigated the

event reporting delay in a large-scale WSN taking node mobility and transmission power

into consideration. They assumed that any node detecting or relaying an event report

to sink may not always have a persistent communication link with the neighbouring

nodes. Each sensor meets a neighbour periodically when travelling around the region

of interest. This requires holding time at each node when an event report is travelling

from source to sink. Under such assumption, the event reporting speed ν is bounded

as,
(R− 2

√
2)3

4
√

2L2Tnd
≤ ν ≤ (R+ 1)(R+ 2)(2R+ 3)

2L2Tnd
,

where, R is the communication range, L is the side length of the square region of in-

terest and Tnd is the neighbour discovery period, i.e., each node attempts to discover

link availability to a neighbour once in every Tnd interval. This gives the reporting

delay after an event has occurred. From this model, it appears that mobility intro-

duces significant delay in detection and the delivery time dominates the detection and

processing time. Very large detection delay can render the use of mobile nodes in event

detection application infeasible. Therefore, more sophisticated node mobility model

that takes the spatial distribution of event occurrence and moves on-demand basis may

be developed to minimise this delay.

2.5.4 Energy Consumption

Energy constraint is a fundamental issue in any WSN based system as sensor nodes typ-

ically rely on limited battery power. The goal of event detection makes it more challeng-

ing, as there is a trade-off between the information accuracy and energy consumption.

An energy efficient detection scheme will extend the system’s lifetime while maintain-

ing the desired detection performance throughout the lifetime. This issue has been

addressed by many researchers under different contexts in event-centric WSNs over the

years [9, 10, 11, 25, 26, 42, 49, 74, 75, 76, 198, 199, 202, 227, 228, 229, 230, 231, 232, 233].

However, the design of energy-efficient techniques specific to event detection are still

far from perfection [26, 42, 74, 75, 76, 230, 232]. Research works on energy conser-

vation techniques include design and development of energy efficient routing protocols
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[9, 10, 228, 229], sensor specific MAC protocols [11, 225, 234], energy aware sleep

scheduling [76, 233, 235], node clustering [236, 237], and energy harvesting techniques

in WSN [76, 233, 235, 238].

Typically, sensor nodes are equipped with limited power source (current rating

< 0.5 Ah and voltage rating from 1.2V − 1.5V ) [38]. Sources of energy consumption of

a sensor node can be divided into three categories, namely, sensing, communication and

data processing. For example, a breakdown of power consumption of a MicaZ sensor

node is shown in Fig. 2.12. It is assumed that a sensor node can either be in active

mode or sleep mode [76, 233] and switching from sleep mode to active state consumes

some power to wake up which is included in the communication energy.
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Figure 2.12: Breakdown of energy consumption of a MicaZ mote [38]

Communication is considered as the primary source of energy consumption in WSNs

and most of the existing works focus on designing energy efficient communication among

nodes. According to the literature, the energy consumed by the transceiver in a sensor

node consists of energy spent in transmission and receiption. The transmission energy

depends on the packet size and the distance of the destination node from the source

node. The energy consumed to transmit a packet to a distance d is given by [44],

Etx(d) = lp(etd
γl + eo) = ctd

γl + ot,

where, lp represents the packet length in bits, γl represents the path loss component, et

denotes the loss co-efficient related to 1 bit transmission and eo is the overhead energy

due to the processing of the same amount of data. This energy model is widely adopted

in most event detection WSN systems. The increased energy consumption for large
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packet size motivates most of the existing works to employ decision fusion that sends

only 1-bit decision instead of data fusion at the fusion centre [25, 26, 27, 51, 52, 198, 202].

Yu et al. [26] investigated the energy-accuracy trade-off in event detection and showed

that the reduced energy consumption in the decision fusion based systems comes at the

cost of increased processing energy and reduced detection accuracy. They proposed a

hybrid detection scheme where each sensor sends its one bit decision if the expected

detection accuracy exceeds a predefined threshold; otherwise sends out undistorted

information. The energy-accuracy trade-off is also exploited by a number of other

researchers in designing energy efficient protocols [239] and detection algorithms [55].

Sleep scheduling or duty cycling is a commonly used technique in continuous moni-

toring sensor network applications to achieve the goal of energy efficiency [75, 76, 233].

Such techniques affect the detection delay as an event may occur when the nearby

nodes are in sleep mode. Similarly, a sufficiently long sleep period may cause missed

detection of transient events that disappears within the sleep duration [240]. Qing

Cao et al. in [42] investigated the trade-off between event detection delay and the

duty cycle of a sensor node. The authors developed a rotating sleep scheduling pro-

tocol to minimise the detection delay subject to a constraint on energy consumption

expressed as duty-cycle constraint. Xiao et al. [74] further analysed the problem of

energy aware sleep scheduling under the quality of service constraints such as bounded

detection delay, detection probability, and network coverage intensity. However, none

of these works considered the event dynamics such as event occurrence probability and

the distribution of inter-arrival delay, which renders the analysis incomplete. Among

the recent works, Shibo et al. in [240] and Yau et al. [241] attempted to optimise the

sleep schedules by exploiting the event dynamics and achieved significant improvement

in event detection compared to the traditional sleep schedule. The authors primarily

considered the temporal distribution of stochastic events, which leaves the correlation

of spatial distribution and energy consumption in such networks yet to be explored.

While communication energy remains the main bottleneck in static sensor nodes,

in mobile WSNs, bulk energy is consumed due to mobility. Designing energy-efficient

node movement has become a major research challenge in mobile sensor networks per-

forming long term surveillance [28, 29, 37, 70]. Tan et al. [29] presented a reactive

mobility scheme where nodes remain stationary until an event occurs and moves only

on-demand basis. Ammari in his work [37] proposed a distributed movement strategy
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that considers a node’s closeness to the target region to minimise mobility energy. How-

ever, comprehensive studies of spatio-temporal correlation in sensor observations [16]

and event distribution [24] indicate that only distance based sensor relocation scheme

is not adequate. We studied these shortcomings in Chapter 4 and achieved improved

energy efficiency in node movement strategy considering spatial distribution of event

occurrences.

2.6 WSN Coverage for Event Detection

Sensing coverage characterises the monitoring quality provided by WSN. From the

discussion above, it is evident that the performance of event detection techniques rely

on the effective collaboration among sensor nodes. Therefore, how many sensors cover

an event at any instant determines the accuracy and reliability of detection. This

effectively controls the above-mentioned QoS metrics in a WSN based event detection

system. This brings the notion of k-coverage in WSN [31, 180, 242]. A sensor network

is called k-covered if any point in the sensor field is within the sensing range of at least

k(≥ 1) nodes, k being the degree of coverage. An example k coverage is illustrated

in Fig 2.13. While some applications may require that every location in a region be

k=3

k=2

k=1

Sensor node

Sensing range

Figure 2.13: Concept of k cover.

monitored by one sensor only, other applications require higher degree of coverage.

For example, the counter sniper [116] system or shooter detection [114] sensor network

requires at least three nodes (k = 3) to detect the impact of shooting event to identify

and locate the event. Even though, higher degree of coverage ensures better detection

performance, the added redundancy introduces increased deployment cost, complex
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topology control and higher energy consumption. It is non-trivial to design a WSN

that would minimise cost, reduce computation and communication overhead, provide

a high degree of coverage and maintain network wide connectivity. The problem of

coverage has been extensively investigated over the last decade in different contexts

[30, 31, 32, 33, 34, 77, 78, 79, 87, 107, 180, 181, 182, 184, 185, 240, 243, 244]. However,

its impact on event detection system and the trade-off between detection performance

and degree of coverage yet remains inadequately explored. We present some general

coverage optimisation techniques here and discuss their shortcomings in regard to event

detection.

Once the nodes are deployed in a sensor field they form a communication network

and continue to monitor the region. Depending on whether they can dynamically

change the network configuration with time, the coverage techniques are divided into

two classes : static coverage and dynamic coverage.

2.6.1 Static coverage

Majority of the research works on coverage consider the nodes to remain stationary

after the initial deployment [30, 33, 77, 78, 79, 181]. Once they are deployed, they

do not change their locations. Coverage for such networks should be designed before

the deployment. Hafeez et al. [180] presented an analytical solution to determine the

minimum number of nodes to provide full coverage in an arbitrary shaped region.

The authors provided two different formulations for minimum cost coverage under

deterministic deployment and random deployment. According to their analysis, the

minimum number of nodes to k-cover an arbitrary shaped region under deterministic

deployment, is given by [180],

Ndet
min =

[
k[
∑n

i=1(xiyi+1 − xi+1yi) + (xny1 − x1yn)]

2r2{π − 2(θ − sinθ)}

]
, (2.10)

where, (xi, yi) is the location of sensor i, r is the sensing range, θ is the angle subtended

by the chord of intersection between two neighbouring sensors to the centre of one and

k is the degree of coverage. For random deployment, they showed that the number of

required nodes becomes almost seven times higher than that of deterministic deploy-

ment. This work gives a indicative idea how quickly the number of nodes grows with

higher degree of coverage.
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The Voronoi diagram is the basis for many research works in coverage [31, 243, 245,

246]. A Voronoi diagram for sensor network is a diagram of boundaries around each

sensor such that every point within a sensor’s own polygon is closer to that sensor than

any other sensor in the network. Fig. 2.14 illustrates the idea of Voronoi diagram in

a sensor network. Carbunar et al. [243] employed Voronoi diagrams as a means of

detecting and reducing coverage redundancy during deployment. They also proposed

a method to determine the boundary of each node’s individual coverage area. Their

algorithm can recompute the Voronoi diagram during the operation when the network

topology is affected by a sensor failure or addition of new nodes. However, such static

coverage algorithm is not suitable for handling the trade-off between the detection

performance and degree of coverage, as no event related parameters are taken into

consideration. Also, their algorithm does not effectively guarantee k-connectivity with

k-coverage.

Figure 2.14: Voronoi diagram for 9 sensors. The sensing disk is shown by the concentric

lager circle around each node and the polygon within which each node stays in denotes

their Voronoi polygon or cell.

Ahmed et al. [77] explored the coverage in case of probabilistic sensing range

mentioned in Section 2.3. They used the path loss to determine the probability of

event detection within the sensing range of a node. However, the actual spatio-temporal
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distribution of event and the nature of sensing was not considered. In addition to this,

the proposed method solves the coverage optimisation problem in general but it is not

specific to k-coverage. Their algorithm can not be easily extended to incorporate k

coverage. The k coverage issue was further explored in [242] where the authors present

an approximation algorithm to solve the k-coverage problem as set cover problem. The

effectiveness of their algorithm depends on dense deployment and hence it does not

scale well with the increase of network size. Xing et al. [30] presented a coverage and

connectivity configuration protocol (CCP) that integrates the coverage and connectivity

requirement together and determines the optimum coverage strategy for a required

degree of coverage, k. This work formally states the sufficient condition for guaranteed

connectivity in a 1-covered sensor network using the theorem below.

Theorem 1. For a set of nodes that at least 1-cover a convex region, the communication

graph is connected if Rc ≥ 2Rs, where Rc and Rs are the communication radius and

sensing range, respectively.

The general k-coverage optimisation approaches discussed above do not fit directly

to the event-centric WSN as they do not consider the event dynamics such as spatial

distribution of event occurrence, duration of events and arrival rate into consideration.

A number of recent works [34, 240, 247] addressed this issue and proposed optimum

temporal coverage where a number of sensor nodes are periodically put to sleep to

reduce energy consumption and while still ensuring sufficient coverage for events. Yau

et al. [247] analysed the quality of event monitoring in a sensor network where nodes

are periodically put to sleep. Each individual node was assumed to be active only

for ta amount of time in every tc, (tc ≥ ta) time and the stochastic processes of the

event arrivals/departures are pre known. The distribution of event duration (referred

to as staying time) was used to optimise the sleep schedule of a single sensor for event

capture. Two types of event staying time distribution is used in [247] ,

• Exponential distribution (λ1 > 0) :

f(x) = λ1e
−λ1x , x > 0, mean =

1

λ1
.

• Pareto distribution (γα, γβ > 0):

f(x) =
γαγ

γα
β

xγα+1
, x > β, mean =

γαγβ
γα − 1

, γα > 1.
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Based on such distributions of event known a priori, [247] presents a simulated anneal-

ing algorithm to find the sensor sleep schedule that maximises the overall fraction of

events captured. This method relies on centralised synchronisation of nodes for sleep

scheduling. Shibo et al. [240] extended this method by incorporating both synchronous

and asynchronous sleep. In addition to that, they proposed a regional synchronisation

method that can maintain synchronisation in a specifiable region. However, none of

these works provided any analysis of the unavoidable delay introduced in detection due

to periodic node sleep. In many applications, prior knowledge on the distribution of

event duration is not available [90, 124, 249] which limits the use of works [240, 247].

Apart from this, in case of sensitive event detection applications such as radiation leak

detection in a nuclear reactor monitoring system, the possibility of missing an event

during node sleep state may cause huge damage. To handle this issue, different prior-

ity in different region needs to be considered and ensure coverage accordingly. Table

2.4 presents a summary of the strengths and weaknesses of some static coverage based

methods.

Static sensor nodes complicate the deployment process for a desired coverage. It is

not always possible to deploy the nodes in a strictly deterministic fashion because of

the diverse nature of the terrain in the target sensor field. Random deployment is more

common in large-scale sensor network and nodes are often deployed from an aircraft

[31, 33, 78, 107]. In such cases, ensuring uniform degree of coverage all over the sensor

field involves significant redundancy, almost seven times higher than the deterministic

placement of nodes [180]. Therefore, it is very crucial from both economic and energy

consumption point of view to determine the optimum degree of coverage that guaran-

tees the required detection performance. QoS directed event coverage has not yet been

addressed thoroughly in the literature. Zhu and Ni [250] first formally approached the

QoS provisioning problem in event detection applications in WSNs. They suggested

detection latency and detection probability as the two key performance metrics for

event detection systems and proposed a probabilistic approach to QoS provisioning for

distributed event detection applications. Although their work formalised the concept

of provisioning QoS for event detection system, it does not consider the k -coverage de-

tection model. Wang et al. [182] presented an analysis of detection delay in the context

of probabilistic k -coverage detection model and considered latency as a performance

metric for detection. None of these works have taken the contention in medium access
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2.6 WSN Coverage for Event Detection

control (MAC) layer in consideration that may incur additional delay in k-coverage

event detection. To address this issue, we studied the sensor specific MAC protocols

[11, 12, 225, 234] such as S-MAC, B-MAC, Sift and Z-MAC in detail and incorporated

the MAC introduced delay in our detection model presented in Chapter 3.

2.6.2 Coverage hole recovery

Coverage hole recovery is another challenging issue in static coverage scenario. As we

have mentioned earlier, degree of coverage is not always uniform across the sensing

field due to random aerial deployment, node failures caused by power depletion or

manufacturing faults. In the post deployment scenario, nodes in a specific region can

be destroyed due to environmental factors like excessive heat or vibration, malicious

intrusion or explosion which creates a coverage hole [181]. In case of strict coverage

constraint, even a single coverage hole can disrupt required coverage and connectivity of

the network, which may reduce detection performance. Due to the intrinsic unreliability

of sensor nodes, holes are unavoidable in a WSN. It is important to incorporate hole

detection and recovery techniques to meet expected performance goals in WSNs.

Several authors have proposed different strategies to detect coverage holes and re-

cover from them [181, 244, 248, 251]. Most of them utilise computational geometry

approaches to discover the presence of coverage holes. In [252, 253], the authors pro-

posed various hole detection techniques using Voronoi diagram and Delaunay triangu-

lation approach. However, the proposed algorithms primarily depend on centralised

co-ordination and require exact location information which may not always be easily

obtained centrally. H.-C. Ma et al. [181] designed a distributed coverage hole detection

protocol based on local information in self-organised WSNs. The proposed compu-

tational geometry based approach also depends on the precise location information

exchange among sensors. Yigal Bejerano in his work [33] addressed the coverage ver-

ification without location information. The author defined the k-coverage hole as a

continuous area of target field comprised of point locations that are covered by at most

k− 1 sensors. Each node is capable of measuring the distance from its neighbours and

the proposed algorithm can verify if k-coverage exists based on this localised informa-

tion. While this is an improvement over the previous works none of these methods

except [248] provides a recovery technique when coverage holes are detected. Li et al.

[248] proposed a hole detection and recovery scheme which depends on the connectivity
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2.6 WSN Coverage for Event Detection

information only to discover holes. The proposed algorithm recovers from a coverage

hole by turning on minimum number of redundant nodes present in the network for

such recovery. Evidently, recovery from coverage holes is not a trivial problem in static

WSN and having redundant nodes all over the network is not always a cost efficient idea

as holes may not occur uniformly over the sensing field. Without proper hole recovery

measures, it is not possible to provide guaranteed QoS in an event detection systems

throughout the network lifetime. We have addressed this issue in our self-healing QoS

aware detection scheme presented in Chapter 3.

2.6.3 Dynamic coverage

A major limitation of the afore-mentioned coverage schemes is that they can only

provide a fixed degree of coverage designed during the deployment time. They can-

not reconfigure themselves during operation to provide application specific coverage

or adjust to the dynamic environment, sensor faults or spatio-temporal distribution of

physical phenomena. To address these issues and to make the WSN coverage more

scalable and adaptive to real world environments, recently attention is shifted towards

dynamic coverage in WSN. Major works in this domain are discussed here.

2.6.3.1 Dynamic coverage using node mobility

There have been fairly large amount of research efforts in dynamic coverage lately using

mobile sensor nodes that can patrol the target region of interest in order to provide

better quality of coverage and detection capability [28, 29, 37, 70, 71, 87, 205, 244, 251,

254, 255, 256, 257]. The quality of coverage using mobile sensor nodes depends on the

velocity, mobility patterns, surface condition of the terrain and the dynamics of the

event being monitored. Efficient design of dynamic coverage using mobile nodes is not

trivial mainly due to a number of practical limitations identified in the literature as,

• Energy consumption: Mobility consumes relatively high energy compared to com-

munication or sensing. For example, a Robomote [36] sensor depletes of energy in

20 minutes if constantly moving. WSNs are typically deployed in harsh environ-

ment and inaccessible terrain where replenishing energy is difficult and sometimes

impossible.

77



2.6 WSN Coverage for Event Detection

• Relocation time: Dynamic reconfiguration of coverage using mobile nodes requires

significant amount of time especially when the velocity is limited and the target

WSN is large. Typical velocity ranges from 0.2 m/s to 2 m/s (Packbot [258],

Robomote [36] ).

• Limited mobility: Node mobility can also be fully or partially limited by the

obstacles in terrain [251, 256].

One of the early works on this field was by Cortes et al. [255], that focused on

adaptive coverage control technique for autonomous vehicles performing sensing. The

authors addressed the inherent spatial distribution of events and communication con-

straints of a mobile network and designed a distributed coverage control algorithm

that can adapt to changes in sensing environment. Even though, the proposed scheme

specifically focused on multi-vehicle networks, the concept of coverage control using

mobility subsequently lead to a series of works in the domain of mobile sensor network.

s

vsT

s s

t=0 t=T

r r r

0 ≤ t ≤ T

Figure 2.15: Spatio-temporal coverage by a mobile node. If a sensor node s with sensing

range r remains static, it covers an area of πr2 within an interval T . If the node is kept

moving at a velocity vs, the same node can cover πr2 + 2rTvs area throughout the interval

T .

It is evident that, a mobile node covers more area than a static node within a given

interval of time as shown in Fig. 2.15, which ensures better temporal coverage. Liu et

al. [251] described how the coverage aspects of a WSN evolve from spatial to temporal

domain with the introduction of node mobility. Considering static distribution of node

according to a Poisson point process over a two-dimensional plane with a node density

ρ and sensing range r, the fraction of the region of interest (ROI) covered by at least
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one sensor at time t is given by [251],

Astatic(t) = 1− e−ρπr2 .

However, if nodes move around in the sensing field according to a random mobility

model and with velocity vs, then the fraction of area covered by a mobile node during

a time interval [0, t) is given by [251],

Amobile(t) = 1− e−ρ(πr2+2rE[vs]t),

where E[vs] is the expected velocity of the mobile nodes. The authors proposed a

random initial sensor placement and random mobility model to improve coverage and

derived analytical expressions for the detection time for both static and mobile targets.

However, their contribution is limited to fixed velocity mobile nodes and the model

is not adaptive to dynamic network parameters. It does not dynamically reconfigure

the spatial coverage according to the event specific QoS requirements. The proposed

random mobility model also does not attempt to minimise the energy consumption due

to mobility. Similar mobility model was proposed by Lambrou et al. in [259] which

presents a distributed architecture for collaboration among static and mobile nodes to

detect and locate event. They characterised the node movement strategy as a path-

planning problem that would minimise the coverage hole. Nonetheless their analysis

was based on the coverage hole detection and dynamic path selection for mobile nodes,

thereby the issue of balancing the energy consumption due to mobility and spatial event

clustering were deemed to be beyond the scope of their work.

Bisnik et al. [28] considered the fraction of events captured by mobile nodes as a

coverage quality metric and analysed the quality of coverage (QoC) in mobile sensor

network considering the event dynamics, node velocity and number of mobile sensors.

First, they modelled the coverage quality in terms of event loss probability. For a

given arrival rate of event around any point of interest (PoI), the method generates

a motion plan for the mobile sensors such that the missed detection probability is

bounded by some ε > 0. Two versions of this bounded event loss probability (BELP)

model is presented: i) minimum velocity BELP, and ii) minimum sensors BELP. In

the minimum velocity model, given a set of PoIs and event arrival rate around them,

the goal is to find the minimum velocity required for a mobile sensor to satisfy the

missed-detection probability constraint. In minimum sensor model, for mobile nodes
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with a fixed velocity v, the goal is to find the minimum number of sensor nodes required

to ensure the minimum miss probability. Both of these problems were proved to be

NP-hard and heuristic based approximate solutions were provided. These results can

be applied to a wide range of surveillance and detection problems where given detection

probability needs to be ensured. However, for long term event monitoring, which is the

most common scenario in environmental sensing and hazard detection, it is not feasible

from energy efficiency point of view to keep the nodes mobile throughout the network

lifetime. It is always efficient to move the nodes only on demand basis.

Based on such observation, Ammari and Das in [37] proposed a mission oriented

sensor mobility model that ensures k-coverage to a region whenever necessary by in-

troducing the idea of on-demand k-coverage. They proposed a pseudo-random sensor

placement technique and distributed movement strategy that considers a node’s close-

ness to the target region to minimise mobility energy. Thereby, target distance is the

dominating factor in their node selection method. Another significant property is that,

their model is based on the assumption of homogeneous mobile sensor networks and

the network topology and connectivity are vulnerable to node movement. That is why

an additional type of node called dMULE or data mule was introduced to maintain

connectivity and carry the data to sink. The node collaboration and energy minimi-

sation were maintained per mission basis, but that may not always guarantee the best

and balanced usage of energy. If the sensing field observes event clustering as discussed

in the previous section, some nodes may die at the early stage in the network lifetime

causing overall reduction in the fraction of events captured. Based on this observation,

we have tried to make the energy consumption due to mobility balanced, prioritising

nodes that are farther from the event location but much healthier in remaining energy

over a almost dying nearby node. A similar idea is explored by Tan et al. in [29] where

the authors proposed a reactive mobility technique to improve detection performance

in WSNs. In their approach, mobile sensors remain stationary until any target event

is detected and move toward the possible target location to increase the accuracy of

the final detection. Such scheme results in significant increase in delay because of the

limited physical movement speed. This limits the use of such scheme in case of high

frequency events. Table 2.5 gives a comparison of major mobility strategy in WSN for

event detection.
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As mentioned in the previous section, the existence of coverage holes is an indicative

measure of the health of a WSN and it may affect detection performance severely.

Detection of coverage holes in a WSN is as important as the presence of proper recovery

measures. Mobile nodes can play an important role to this end as they can relocate

to recover holes when necessary. Several works in the recent literature [87, 244, 255,

260, 261] attempts to minimise coverage hole using mobile nodes. Due to high energy

consumption in mobility, most of these hole recovery techniques deteriorate network

lifetime. Wu et al. addressed the energy issue in coverage hole self repair using mobile

nodes. However, energy can still be a bottleneck in large-scale sensor network and

limited node mobility. We have investigated this issue in Chapter 4 in case of event

detection systems and minimised node mobility significantly by incorporating the event

dynamics in mobile node selection process for hole recovery.

2.6.3.2 Dynamic coverage using variable range sensing

Energy and accuracy aware detection has been the primary focus of the research on

event centric WSN systems for the last decade. Most works discussed earlier proposed

redundant nodes using k-coverage. This could be an appealing solution when the

nodes are very inexpensive so that a large area can be covered with redundant node

deployment. However, unfortunately, that is not the case in general and especially

for sensors with active sensing technology, self localisation capability (equipped with

GPS) and multi-modal sensing capability [262, 263]. In such cases, full k-coverage all

over the target sensor field throughout network lifetime turns out to be an impractical

solution due to the prohibiting cost. To settle for an acceptable solution with sparse

node distribution, dynamic coverage using mobile nodes promised to reduce redundancy

while providing reasonable degree of robustness dynamically as discussed in the previous

section. However mobility comes with its own limitations such as energy consumption,

limited physical movement and delay, which limits the real world applications of mobile

sensor nodes. Such limitations demand an alternative approach to the dynamic coverage

schemes in WSN and an elegant solution would be to vary the sensing range of nodes

to reconfigure the degree of coverage dynamically.

Traditionally, event detection in WSN assumes a hard-limit sensing model of nodes,

i.e., the sensing radius is fixed and within this radius the probability of detection

by individual node remains the same. In practice sensing can be active or passive.
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2.6 WSN Coverage for Event Detection

Passive sensors detect radiation emitted or reflected by the object or surrounding areas,

examples of which include heat radiation, humidity, infrared, radiometer, etc. On the

other hand, in active sensing technique, sensors emit energy often in the form of a

beacon in order to scan presence of certain signals or objects and can control sensing

range through power adjustment. Many sensor devices in WSN are based on active

sensing technologies, such as those equipped with radars and sonars, thermocouple

based temperature sensors [264], underwater sensors relying on acoustic signals [262] or

piezoelectric transducers for structural health monitoring [263]. A number of sensors

with adjustable sensing radii are already commercially available [265, 266, 267].

The idea of adjustable range is known in the communication domain for almost

over a decade (e.g. [268]). However, the technique is employed primarily to vary the

communication radius of network entities to optimise communication power. Recently,

the increasing maturity in sensor technology enabled a number of sensor types with

variable sensing radius capability [266, 267]. One good example is the commercially

available adjustable range photoelectric sensor, EQ-501 by panasonic electronics [267].

The EQ-500 series of photoelectric sensors provide a long-range diffuse reflective solu-

tion that is suitable for applications where it is not feasible to get close to the sensing

object. The sensing range is conveniently adjustable within a range of 3.94 to 98.43

inches. Existence of such technology allows the WSN design to take a new step in

designing dynamic coverage and deployment strategies. A number of research efforts

already attempted to exploit this variable range sensing technology [268, 269, 270, 271].

Zhou et al. [269] addressed the minimum energy k-coverage problem by exploit-

ing the variable sensing and transmission range. Their work takes advantage of the

energy conservation in smaller sensing or transmission radius by providing an opti-

mum connected k-cover but the number of sensors can still be large since k-coverage

is maintained persistently from deployment time. Similar approach was presented in

[270]where Bartolini et al. employed the sensing range adaptation technique in hetero-

geneous sensor network to achieve prolonged lifetime of WSN. While these two works

conceptually establish the viability of adjustable sensing range in WSN operation, their

primary focus was on guaranteeing complete redundant coverage all the time. The pro-

posed algorithms optimise the sensing range during the deployment time to achieve

the required complete coverage, but do not dynamically adjust sensing radius locally
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according to system behaviours such as event occurrence. The authors focused only on

the generic coverage problem rather than event-specific properties of WSN.

In case of event centric WSN, it is more efficient to dynamically achieve the required

degree of coverage for any event by adjusting the sensing range of nearby sensors as

needed. Such an approach is more cost effective and energy-efficient while maintaining

desired level of event detection performance. We introduce the idea of dynamic on-

demand coverage using adjustable sensing range for event detection in our thesis in

Chapter 4. Adjustable sensing range can also be employed in coverage hole recovery as

an alternative approach to mobile nodes.

2.7 Event Detection in IoT

In 1991 Mark Weiser stated ‘the most profound technologies are those that disappear.

They weave themselves into the fabric of everyday life until they are indistinguishable

from it’ [272]. Such vision, supported by the advancement of Microelctromechanical

Systems (MEMS), paved the way to the Internet of Things. The notion of IoT promises

to revolutionise the idea of our current understanding of communication and connec-

tivity between the physical and virtual world. It views the future of the world wide

web as a global network of uniquely identifiable objects, sensors and mobile entities

that can dynamically join the network to collaborate and accomplish tasks collectively.

The International Telecommunication Union (ITU) introduced a new communication

paradigm, i.e., the IoT in early 2005 [14], stating - A new dimension has been added

to the world of information and communication technologies (ICTs): from anytime,

anyplace connectivity for anyone, we will now have connectivity for anything. Concep-

tually, IoT allows humans and any entities in the environment to be connected anytime,

anywhere with any other similar or heterogeneous objects and build a giant world wide

web of smart ‘Things’. IoT is already forecasted to have huge influence on a wide

range of domains including ambient intelligence, pervasive computing, environmental

monitoring, telecommunication, and intelligent healthcare. This adds a new dimension

in the corresponding research domains and necessitates the revision of several existing

networking concepts and application architectures.

Information sources are mostly homogenous in traditional event centric WSN. But

this is no longer the case when the WSN works as a part of the IoT. Recent years
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have seen an explosion of the IoT research which is anticipated as the next generation

Internet . While most of works focuses on services and architecture, some works in

recent times focus on detecting events using IoT platform. One popular example of such

effort is the fall detection method in the assisted living applications [273]. Alemdar et

al. in [273] designed a multi-modal fall detection mechanism in an ambient intelligent

environment using accelerometers together with a video sensor. The accelerometer

attached to the wearable clothes triggers a video processing of the target that detects

the fall. A major portion of the research in IoT focuses on the context awareness

that address the issues related to the integration of different devices, systems and

services [274, 275, 276]. The term context awareness refers to the capability of capturing

the state of physical environment and widely studied in literature within the scope of

various domains. Henricksen et al. [276] identified the challenges introduced by context

and attempted to address them by proposing a set of conceptual models designed

to support context consideration. Even though, their contribution is solely limited

to software engineering domain, it provides an indication of how important it is to

combine the contextual information from several heterogeneous sources for enhancing

system performance.

Detection of real world phenomena is one of the most important functionalities

required by the IoT applications as envisioned by many researchers [104, 105]. One of

the popular IoT applications that requires user activity recognition and event detection

is the ambient assisted living (AAL) by Dohr et al. [103]. They outlined an AAL

environment that is capable of processing relevant data and establishing communication

channels among elderly people and their environment and different groups of care-

givers (physicians, relatives, mobile care providers). However, in their work, context

is considered to collect relevant information on specific situations rather than early

detection of context sensitive events. Event detection requires a closer look at the

sensor data while considering the object-state interaction at the same time.

Jin et al. identified the composite nature of events in the IoT in their work [104].

They investigated the spatial and temporal relationship of events in the IoT envi-

ronment and proposed a middleware architecture for identifying events of interest.

However, their work does not consider the issues resulting from the integration of sen-

sor network with the IoT. As the contextual information in the IoT originates from

heterogeneous sources, a common standard for data interpretation and enhancement
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is a mandatory requirement for information exchange. To this end, Eno et al. [277]

outlined the importance of ontologies for semantic representation of data harvested

from real and virtual worlds. Strang et al. [278] presented the ontology based and

object-oriented based models as the two core models suitable for describing context for

pervasive computing. Even though, these studies do not focus on event-centric systems

in general, they suggest that, ontologies provide a powerful means for capturing the

generic nature of composite event patterns in the IoT. Based on such observations, we

resort to ontology based reasoning approach in designing our context-sensitive detec-

tion architecture that contains information from heterogeneous sources and expressed

in normalised forms. We present our context-aware detection framework in Chapter 6.

2.8 Research direction in Event Detection using WSN

1. Designing QoS guaranteed detection: It is evident from the above discussion

that most of the works on event detection using sensor networks attempt to max-

imise performance regardless of the specific need of the applications. With the

growing use of event detection systems in our everyday life, WSN designs needs to

more application specific and QoS aware. Soheterogeneous me applications may

require high detection probability while tolerate the detection delay. Accuracy

should be the primary design factor in such applications. Again, some applica-

tions may have stringent delay requirement while accuracy may be sacrificed up

to a certain level. For example, the non-critical environmental event detection ap-

plications such as bird detection [122] or fence monitoring [18]. The performance

of an event detection system such as detection probability, tolerance against node

faults and detection latency depends on the degree of coverage k. While increasing

the k will enhance the detection performance at the cost of higher network traf-

fic, energy consumption and deployment cost; lowering k would exhibit degraded

accuracy and loss of robustness. Therefore, an optimal coverage is of paramount

importance to attain a trade-off between the aforementioned opposing factors. It

raises the question, “What should be the appropriate value of k to guarantee given

detection probability and latency within certain tolerance level as directed by the

application need?”. Therefore, given the application specific values of the QoS

metrics such as detection probability, α, fault tolerance, β and detection latency
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Λ, the required degree of coverage, k for detection should be a function of them

as given by,

k = F (α, β,Λ).

2. Dynamic fault recovery: Sensor faults lead to coverage holes in a WSN which

results in degraded detection performance. While existing literature focuses on

fault finding techniques, it doesn’t provide sufficiently robust recovery techniques.

The issue of dynamic recovery considering the characteristics of the physical

events such as the occurrence probability in specific region or the duration of

an event is still unexplored. For example, an event detection system can estimate

the event occurrence probability in certain region based on historical data and

prioritise the recovery of coverage holes in the region with high frequency of oc-

currence in case of resource constraint, such as limited number of mobile nodes.

The system may predict the presence of holes by estimating spatio-temporal dis-

tribution of faults which helps in energy efficient recovery. Such dynamic fault

recovery techniques for event detection are still not present in literature.

3. Dynamic coverage with variable range sensing: As mentioned earlier in

Section 2.6.3.2, variable range sensing technique enables a WSN to dynamically

reconfigure the coverage in the post deployment scenario. This can be used in

robust event detection algorithms to increase the degree of coverage of an event

on-demand basis dynamically. The limitations of mobile node based systems can

be overcomes by careful design of sensing range adjustment during operation.

Existing event detection systems in WSN do not take advantage of this sensing

range adjustment capability to improve the QoS of event detection.

4. Mobility strategy adaptive to event dynamics: Event detection systems

using mobile nodes are becoming commonplace in many event detection applica-

tions. Most of the existing techniques attempt to optimise the travelling distance

of mobile nodes for the sake of energy efficiency. However, in an event detection

system, desired QoS should be the guiding parameters of the movement strat-

egy. The detection scheme should incorporate the distribution of events to design

energy-efficient node movement strategy that guarantees the given user specified

values of QoS metrics 〈α, β,Λ〉 rather than a general optimisation.
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5. Priority sensitive detection: Event centric WSN applications may exhibit si-

multaneous events occurring in close proximity, especially in disaster monitoring,

sensitive structure/plant monitoring or in military applications. In such case of

multiple events, it is natural that different types of events will have different sever-

ity levels depending on the consequences of missing that event, and thereby, will

have different performance requirements. It is not possible for resource limited

sensor network to provide the same QoS guarantee for all the events at the same

time. For example, a nuclear hazard detection and parking lot event monitoring

do not demand the same level of attention. In many cases, missing some high

priority sensitive events can lead to enormous loss or damage, while missing some

low priority events can be tolerable. Treating all the events similarly may yield

an apparent acceptable system performance but the huge damage possible by the

few sensitive missed events will render the detection system useless. Such event

detection system should consider the overall accuracy weighted by the priority to

reflect actual system performance. We have addressed these issues in Chapter 5.

6. Context-aware detection: As WSN are gradually becoming parts of the IoT,

the context of sensing environment is an important factor that will yield more

meaningful detection by the system. A particular distribution of sensor observa-

tion can lead to event in one context, while may be ignored in another context.

Therefore, the event detection systems in the IoT need to be context aware to

guarantee given performance metrics.

2.9 Conclusion

In this chapter, we have explored the major application domains in WSN and that

established the significance of reliable detection of real world events. After thoroughly

investigating the existing literature in WSN and event detection, we have conclusively

pointed out the shortcomings of the existing schemes and identified a number of pressing

research challenges that need to be resolved. In the following chapters, these research

problems are addressed.

88



Chapter 3

QoS Aware Event Coverage

Studies in the previous chapter evidence that in most WSN-based applications, sensor

nodes are expected to be low cost error prone and deployed in adverse terrains and

harsh condition. Therefore, the probability of node malfunction is significantly higher

in WSNs compared to traditional networks such as TCP/IP and cellular networks. In

addition to that, communication is more vulnerable to the environmental noise in WSNs

due to the relatively low signal strength used by sensors to preserve energy. Many event

based services, like fire monitoring, require immediate detection, that is the average

time elapsed between event occurrence and its detection by the system is very short,

which makes the timeliness very crucial in event detection. Overall, the issues that

should be addressed for event detection in WSNs are: i) reliable detection of events with

high accuracy, ii) robust event detection against sensor fault and environmental noise,

and iii) timeliness of detection. To overcome the intrinsic unreliability in detection, we

resort to the notion of k -coverage where every point in the network is within the sensing

range of at least k nodes, k (≥1) being the degree of coverage. While increasing the

degree of coverage k will enhance the detection performance metrics such as detection

probability, fault tolerance and latency at the cost of higher network traffic, energy

consumption and deployment cost; lowering k would exhibit degraded accuracy and

loss of robustness. Therefore, an optimal coverage is of paramount importance to

attain a trade-off among the aforementioned opposing factors. As the first step of our

QoS aware event detection, we derive an analytical framework to determine the optimal

degree of coverage to ensure given performance metrics.

It is also important for a WSN to deal with the post deployment degradation of
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degree of coverage to continue to maintain the expected detection performance. In

most mission-critical event based WSN systems, a small unmonitored area can render

the system useless if crucial events go undetected. Event detection performance largely

depends on how the WSN can adjust itself to sensor faults and resultant coverage

holes after the initial deployment. Sensor networks are usually deployed for long term

monitoring and detection over the area of interest and prevalence of sensor faults can

never be completely avoided. Sharma et al. in [40], demonstrated that it is impossible

to deploy a perfectly calibrated WSN studying sensor faults in real world deployments.

To recover coverage holes generated during network life and ensure energy-efficient QoS

guaranteed operation for prolonged period, we introduce variable range sensing in event

detection later in this chapter.

3.1 Optimal QoS support through k-coverage

As WSN applications are commonplace in our everyday life now, it is worthwhile to

formalise the design parameters based on the specific requirements of the target ap-

plications. This motivates us to provide analytical solution to determine the degree of

coverage i.e. value of k in WSN-based event detection to guarantee given performance

metrics. Zhu and Ni [250] first formalised the QoS provisioning problem in event detec-

tion applications in WSNs. They presented detection latency and detection probability

as the two key performance metrics for event detection systems and proposed a prob-

abilistic approach to provisioning QoS. Although their work formalised the concept of

provisioning QoS for event detection system, it did not consider the k -coverage detec-

tion model. We consider the detection probability, fault tolerance and detection delay

as the primary QoS metrics of a WSN system and propose a design guideline to prob-

abilistically guarantee the required QoS. To make the model realistic, we incorporate

the environmental noise, communication impairments and sensor fault probability in

our model. To address this issue we make following contributions:

• Event detection probability is modelled considering sensing noises, communica-

tion interferences and sensor malfunctions.

• An analytical measure is formulated for event detection latency for the k -coverage

WSN model.
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Figure 3.1: k -coverage detection

• Finally, a lower bound on k is obtained that probabilistically guarantees the

required performance metrics such as event detection accuracy, fault tolerance

and latency.

3.2 System Model and Problem Statement

3.2.1 The Network and Event Detection Model

We consider a WSN consisting of a set of sensor nodes deployed randomly over the

network area, where the number of sensors deployed is sufficient enough to achieve

k -coverage. We assume that the transmission range of each sensor is sufficient enough

to maintain the sensor connectivity across the network. Moreover, the sensing area

of a sensor follows the disc model i.e. the sensing range is a circle centred at that

node. In our approach, we divide time into a series of periodic sensing cycles where at

each cycle, a sensor senses its surrounding environment and the information acquired

thereby is used to decide on event occurrence. The event detection model is binary,

i.e. each node compares its local measurement with some threshold and takes a one
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bit decision whether an event has occurred or not, and the decision is sent to a local

fusion centre. For example, in Fig. 3.1 the event is sensed by four sensors (k=4), each

node sensing a circular area, and their sensing decision is sent to a node (marked by

a dotted circle) which acts as a sensing node as well as a local fusion centre. The

local fusion centre may be selected in a round robin fashion. A distributed decision

fusion scheme like majority voting in [51] is employed to take the final decision at the

local fusion centre aggregating the decisions sent from the k sensors monitoring the

event point. This decision is then sent to a base station (BS). Unlike [51], we consider

‘n out of k ’ rule for decision fusion which is more generic and offers more flexibility.

Considering real life incident such as fire, chemical pollution or natural disaster, events

are usually persistent and stationary. Then it can be safely assumed that the average

event lifetime, denoted by Te, is greater than the sensing cycle, denoted by tc, i.e. ,

Te � tc.

3.2.2 The Fault and Noise Model

A decision error in an individual sensor may arise from three different sources: i) noisy

measurement by the sensor due to environmental interference referred to as the sensing

noise, ii) sensor malfunction or physical damage referred to as fault, and iii) alteration

of a sensor decision due to the noise present in the communication channel during

transmission to the local fusion centre referred to as the communication noise. In the

following, we formally model each of the above impairments:

• Sensing noise: Let S = {s1, s2, ..., sk} be the set of k sensors monitoring an

event and u be the expected measure of the physical data sensed by a sensor

in the absence of any sensing noise. But due to the sensing noise, sensed data

may not exactly be u. Let the sensed data after imposing noise be denoted by û.

Sensing noises at different sensors might vary, and consequently their observation

data. Such sensing noise can be modelled using Gaussian distribution [279]. Let

the sensing noise at the i -th sensor be εi which follows a Gaussian distribution

with µε mean and σ2
ε variance ℵ(µε, σ

2
ε). Let {ûi}ki=1 be the set of observations

of the k sensors monitoring the event, where,

ûi = u+ εi. (3.1)
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• Fault probability: Sensor fault may arise from many sources, such as manu-

facturing fault, physical damage during deployment, energy depletion with time,

circuit malfunctioning due to environment impact or ageing, etc. While some

of these factors are dependent on the surrounding conditions where the sensor

is located, some are independent of sensor location. For simplicity we take the

mean of the fault probability over the entire sensor field to be individual node’s

fault probability which is denoted by pf .

• Communication noise: Let the binary decision taken by a sensor is sent to the

local fusion centre via a communication channel, which is subject to an Additive

White Gaussian Noise (AWGN) with zero mean and σ2
c variance. Since we are

concerned about sending a binary decision, a communication error event can alter

a single bit decision with the probability, pb, which is the bit error probability

of the channel. Given the AWGN model ℵ(0, σ2
c ), the approximated bit error

probability, as obtained in [280], has the following form,

pb = Pr (γb) =
Υ1M

log2M
Q

(√
γbΥ2M

log2M

)
(3.2)

where, Q denotes the standard tail probability of the standard Gaussian distri-

bution, M , Υ1M and Υ2M depend on the type of approximation and modulation

type, and γb is called the SNR per bit which can be calculated from σ2
c . While

this is a more generic form, different other models have also been proposed in lit-

erature for channel specific characteristic that calculate the bit error probability

as a function of SNR [281].

3.2.3 Problem Statement

As discussed in Section 3.1, the performance of an event detection system such as de-

tection probability, fault tolerance and latency are dependent on the degree of coverage

k. Our goal is to determine the minimum k so that the QoS requirements are satisfied

and can be formulated as the following optimisation problem:

minimise k,

s.t.,

93



3.3 Optimal Degree of Coverage


Pk,n ≥ α
Pf ≤ β and,

Dk,n ≤ Λ

(3.3)

where α, β and Λ are the QoS requirements for an application corresponding to the

detection accuracy, fault tolerance and latency, respectively. Pk,n and Dk,n are the event

detection probability and delay, respectively when an event is covered by k sensors and

‘n out of k ’ rule is applied for decision fusion.

3.3 Optimal Degree of Coverage

To derive the optimal degree of coverage, we first estimate the errors due to different

types of impairments in the detection environment as presented below.

3.3.1 Decision error due to sensing noise

Due to sensing noise , a sensor si ∈ S generates data ûi instead of actual event measure

ui. A sensor makes a binary decision, event occurrence (1) or non-event (0), by compar-

ing its generated data ûi with the threshold value ηd that characterises the occurrence

of an event. The threshold value is application specific and pre-calculated based on do-

main knowledge [51]. The noise may deviate the sensed reading in either direction, i.e.,

it may drive a non-event to an event occurrence resulting in a false detection, or it may

drive an event occurrence to a non-event situation missing an actual event. Therefore

having knowledge on sensing noise that may exist in the sensor field, it is possible to

estimate the tolerable noise margin (εmax) without causing any decision error which is

given by,

εmax = |ηd − u|. (3.4)

Then with reference to (3.1) the probability of decision error (Ps) at a sensor due to

the sensing noise can be calculated as follows:

ps = Pr(|εi| > εmax)

= 1
2

(
1− erf

(
εmax−µε
σε
√

2

))
.

(3.5)
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3.3.2 Decision error due to communication noise

Let {bi}ki=1 be the set of individual binary decisions made by k sensors monitoring the

event, where

bi =

{
1, if ûi ≥ ηd,
0, otherwise.

(3.6)

Once each individual sensor makes its decision, each sends its decision to the local

fusion centre through a communication channel whose noise model is given by (3.2).

Due to channel noise the fusion centre may receive an altered decision. Let {b̂i}ki=1 be

the set of decisions received at the fusion centre corresponding to the set {bi}ki=1. Since

each decision is a 1-bit binary value, the probability of error being introduced during

transmission from a sensor to the fusion centre can be expressed as

Pr(bi 6= b̂i) = pb.

3.3.3 Probability of detection

We assume that the observations are independent and identically distributed, and sen-

sor faults and communication noise are also independent of the observations. Then

considering error probabilities from all types of error, the probability that a sensor

would correctly detect an event and its decision would reach error free at the fusion

centre is given by,

Pd = (1− pb)(1− pf )(1− ps). (3.7)

Now, the decisions {b̂i}ki=1 from k sensors at the fusion centre can be considered as

a series of independent Bernoulli random variables with success probability Pd. The

fusion centre employing the ‘n out of k ’ rule will decide the hypothesis as correct pro-

vided that at least n nodes successfully detect the true event situation. The individual

decision from each of k sensors at the fusion centre can be given by k conditionally

independent and identically distributed Bernoulli random variables. The probability

for successful detection of an event at the fusion centre employing ‘n out of k ’ rule is

then given by,

Pk,n =
k∑
i=n

(
k

i

)
Pd

i(1− Pd)k−i. (3.8)

For a given detection probability Pd and fixed n, Pk,n is an increasing function of k. As

argued in Section 3.1, in addition to detection accuracy, latency is also a crucial QoS
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parameter. So an important WSN design issue would be to determine the value k to

satisfy a given latency constraint.

3.3.4 Detection Delay

The delay incurred has two components - the time required to detect the event by at

least n different sensors and the time required to transmit the results to the fusion

centre considering MAC layer contention. Let Ddet(k, n) be the time required for the

event to be successfully detected by n or more sensors and Dmac(n, k) be the delay

incurred due to contention in the transmission medium. In this regard we have the

following proposition:

Proposition 1. The expected latency Ddet(k, n) for successful detection of an event for

‘n out of k’ rule is,

Ddet(k, n) =

 (2 + Prep)−
√

(2 + Prep)
2 − 8nPrep

kPdet

2Prep

 τ. (3.9)

tc 2tc 3tc mtc

te

Sensing cycles

Event lifetime

Figure 3.2: Timing illustration of sensing cycles and event lifetime.

Proof. Let us consider an event occurring in the sensor field. Let te be the lifetime for

which the effect of an event persists and remains detectable as shown in Fig. 3.2 and

tc be the point in time when the first sensing cycle starts after the event begins. It is

assumed that the sensors are time synchronised.

In ‘n out of k ’ rule the fusion centre can declare the event as detected once at least n

sensors send positive result. Let m be the expected number of sensing cycles required

to detect the event by more than n sensors. The detection probability at individual

sensor in a given cycle is Pdet = (1−pf )(1−ps) and the detection outcomes of the event

by the sensor are independent in each cycle. The expected number of sensors detecting

the event in a given cycle is then kPdet. But a portion of this kPdet sensors may already

have detected the event in any previous cycle, so it is counted only once towards the

calculation of n. Let the probability that a node detects the event repeatedly in two

or more cycles be Prep. Then the number of distinct nodes νi detecting the event up
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to i-th cycle can be given by,

νi = kPdet + kPdet(1− Prep) + ...+ kPdet (1− (i− 1)Prep)

= kPdet

(
i−
(
i(i−1)

2

)
Prep

)
.

Solving νi ≥ n will give the expected number of cycles required for n detections,

leading to

kPdet

(
i−
(
i(i− 1)

2

)
Prep

)
≥ n

⇒ i ≥
(2 + Prep)−

√
(2 + Prep)

2 − 8nPrep
kPdet

2Prep

According to our definition,

m =
(2 + Prep)−

√
(2 + Prep)

2 − 8nPrep

kPdet

2Prep
. (3.10)

Therefore, Ddet(k, n) =

 (2+Prep)−
√

(2+Prep)2− 8nPrep
kPdet

2Prep

 tc, which completes the proof.

Now, all nodes detecting the event within m cycles may not be able to transmit the

data to the fusion centre due to contention in Medium Access Control (MAC) layer.

Let Pmac denotes the probability of successful transmission of a node in one time slot

in the contention window. The duration of a slot is given by td and one sensing cycle

consists of nslot slots, that is, tc = nslottd. Let %i be the expected number of unique

nodes that detect and transmit successfully upto i-th cycle.

%1 = nslotν1Pmac
%2 = %1 + nslot(ν2 − %1)Pmac

= nslotν1Pmac (1− nslotPmac) + nslotν2Pmac.

Proceeding this way, we get,

%m = nslotPmac

m∑
i=1

νi (1− nslotPmac)m−i . (3.11)

Even after n detections among k sensors, we still may have (νm− %m) nodes waiting to

send their detection decisions due to contention. The additional number of transmission
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slots that will be required to transmit these outstanding decisions is given by,
(
νm−%m
Pmac

)
.

Therefore,

Dmac(k, n) =

(
νm − %m
Pmac

)
td.

The overall expected delay before at least n distinct nodes can detect and transmit

their results to the fusion centre is given by,

Dk,n = Ddet(k, n) +Dmac(k, n). (3.12)

The term Pmac depends on the sensor specific MAC protocol and the number of com-

peting stations. It is practical to assume that a sensor detecting the event more than

once will send the result only once in the current cycle even if the result from any

previous cycle is still unsent, i.e. it will send the most recent data only. For simplicity,

the average number of competing stations can be assumed to be kPdet.

3.3.5 Finding the Optimal Degree of Coverage:

We are interested in finding the minimum value of k that satisfies the given performance

metrics. (3.7) indicates that Pd decreases with increasing sensor fault probability pf .

According to the given constraint in (3.3) the maximum allowable fault tolerance limit

is β, so to satisfy this we can replace pf by β in (3.7). This yields following expression

for the probability of successful detection of an event by an individual sensor at the

fusion centre that satisfies a given fault tolerance,

Pd = (1− pb)(1− β)(1− ps). (3.13)

Using the above expression in (3.8) gives an estimate of the detection probability Pk,n ,

that satisfies a given fault tolerance, β. Therefore, the minimum value of k that satisfies

required fault tolerance and detection probability can be expressed as,

kα,β = arg min
k

(
k∑
i=n

(
k

i

)
Pd

i(1− Pd)k−i > α

)
. (3.14)

The above kα,β can be calculated in a simple iterative fashion. From (3.12) latency

Dk,n is an increasing function of k for a given n. Let kΛ be the maximum number of

node coverage that satisfies the given latency constraint Λ. kΛ can be determined by

solving,  (2 + Prep)−
√

(2 + Prep)
2 − 8nPrep

kPdet

2Prep

nslottd +

(
νi − %i
Pmac

)
td ≤ Λ. (3.15)
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Now, two different cases are possible - i) kα,β > kΛ and ii) kα,β ≤ kΛ. In the first

case, it is not possible to satisfy all three performance metric concommitantly, because

setting kmin = kΛ will not meet the degree of coverage requirement for accuracy and

fault tolerance. Therefore, either latency (kmin = kΛ) or the other two (kmin = kα,β)

can be met. In the latter case, the solution is feasible. Combining the results from

(3.14) and (3.15), the expression for the minimum degree of coverage k with a ‘n out

of k ’ fusion rule satisfying all three QoS related constraints leads to the solution of the

optimisation defined in (3.3) as, kmin = min(kα,β, kΛ).

Finally, we pose one validation check on the result to ensure minimising false alarm.

When no event occurs, the number of nodes that will erroneously detect an event is

kmin(1 − Pd). So, the condition n
kmin

> (1 − Pd) needs to be satisfied to reduce the

number of false alarms.

Figure 3.3: Impact of sensing noise on sensed temperature

3.4 Simulation and Results

We designed and developed a custom simulator in Matlab and conducted extensive

experiments to validate our analytical model. For experiments, we randomly deployed

sensors in a 400m×400m square sensor field and the number of nodes, N required for

k -coverage was determined according to 2.10, for different values of k. Each sensor is
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assumed to have a sensing range of 10m and a communication range twice the sensing

range. A set of temperature data were taken from [282] to generate events after impos-

ing noise and events were uniformly distributed over the sensor field. We measured the

accuracy of detection for different values of fault tolerance, β and k. We used B-MAC

[11] for simulation. ‘4 out of k ’ rule is employed in all cases unless otherwise specified

in legend. In each case 1000 trials were repeated and their average was reported. The

findings are presented in the figure.

Figure 3.4: k vs. fault tolerance and detection probability

Figure 3.3 shows how the simulated noise affects real data causing missed detection,

B and a false alarm, A. Fig. 3.4 represents the combined effect of given detection

probability and fault tolerance on the degree of coverage k, in a surface plot. This helps

to visualise the inherent relation of k with detection probability and fault tolerance. The

figure illustrates that higher degree of coverage is required if either required detection

probability (α) or fault tolerance (β) is increased. In Fig. 3.5 the experimental value of

k is compared with the one obtained from (3.14). The graph represents close match with

the theoretical solution and validates our analytically calculated k being the minimum.

It shows that at lower value of α, increasing k increases detection accuracy sharply,

however, when accuracy approaches very high value, increasing k does not bring any

added advantage.

Similarly Fig. 3.6 plots the relation between optimal k and fault tolerance for

a fixed detection probability. This also shows a closer match between theory and
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Figure 3.5: k vs. detection probability
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Figure 3.6: k vs. fault tolerance.
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simulation. This is because, while observing the effect of k on fault tolerance (Fig.

3.6), the detection probability (α) is kept constant and the noises are drawn from

the same distribution, i.e., the average noise components are constant. But in case

of k vs. detection probability with fixed fault tolerance, we let the noise components

(sensing and communication noise) vary that makes it more sensitive to noise hence

exhibits more change. It is also interesting to note from Fig. 3.5 that the theoretical

result matches simulation results more closely as k attains higher value. This means

very high accuracy at higher k ruling out inaccuracies and noise spikes in a more robust

way. Fig. 3.7 illustrates the trade-off between fault tolerance and detection probability.

It shows that one has to be sacrificed to achieve more of the other. Therefore, in case

of coverage constraint, our model gives a clear assessment of the trade-off between QoS

parameters which will be useful to applications for deployment purpose. The figure also

shows that ‘3 out of 8’ rule has a better tolerance against fault than ‘5 out of 8’ rule.

That is as the rule gets stricter , the robustness comes at the cost of compromising

fault tolerance.
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Figure 3.7: Detection probability vs. fault Tolerance.

Figure 3.8 shows the effect of degree of coverage k on latency. Increasing k yields

higher latency. The reason is that, not all the sensors are able to send the data as soon

as they detect the event due to the contention condition. So the delay incurred due

to the contention in MAC layer is increased as k increases because of more competing

nodes. The simulation shows slight deviation from theoretical result as k gets higher
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Figure 3.8: Expected delay vs. k (for B-MAC)

(especially for k ≥ 10). This is because our simulation setup is dependent on the

probabilistic model presented in [180] that determines the required number of nodes to

provide k -coverage and in that model the probability of full coverage drops as k goes

higher. So in simulation it can not guarantee full k coverage as k increases and that

is why the experimental latency deviates from the theoretical value as k is increased.

This deviation is not significant though, because in most real case scenarios, more than

10-coverage is not practical.

3.5 Discussions

The model presented above analytically determines the minimum k -coverage required

to probabilistically guarantee a given set of QoS metrics, namely detection accuracy,

fault tolerance and latency taking the environmental noise, sensor faults, communi-

cation impairments and MAC induced delay into consideration. Simulation results

indicated a close match between our theoretical model and the experimental results.

Adoption of this model will be useful in designing WSNs by determining appropriate

deployment strategy that satisfies QoS requirement of the application. However, this

is a deployment time method and changes in environment may necessitate changes in

the required degree of coverage with time. Therefore, this k-coverage model needs to

be extended to facilitate the post deployment performance guarantee.
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3.6 Self-Recovery for Event Coverage

3.6 Self-Recovery for Event Coverage

One of the major problems is the inherent inability of static k-coverage schemes to dy-

namically recover from the loss of coverage as the network coverage degrades with time

due to environmental impacts, sensor faults or any other external reasons. Node faults

prevail in real world deployment due to calibration error, battery depletion, physical

wearing and/or manufacturing fault [39, 40]. The physical impacts resulting from the

event may also cause node malfunction and create coverage holes. For example, unusual

high temperature or chemical reaction/erosion may render nodes non-operating after

the occurrence of an event. This necessitates an effective coverage recovery technique

sufficiently resilient against node failures to continue reliable detection. Some recent

works (e.g. [248]), rely on the presence of a set of reserved redundant nodes in addi-

tion to the number of nodes required for k coverage and activate those nodes when a

coverage hole is discovered. This increases the actual required degree of coverage, and

thereby, deploys more nodes than required.

Some other works in event coverage and target detection (e.g. [29, 257]) attempt

to exploit reactive mobility to improve event coverage performance and adjust with

the random nature of spatio-temporal distribution of faults. From the discussions in

Section 2.6.3.1, it is evident that relocation of mobile nodes in event-centric WSN is

not unarguably a viable alternative to the dense deployment of static nodes. On the

other hand, static fixed-range nodes inherently lack the flexibility to adapt to dynamic

degradation of coverage during operation. To face these challenges, we exploit the idea

of variable sensing range to ensure reliable detection and dynamic adaptation to network

changes. In the case of node failures in a k-covered WSN or coverage hole, neighbouring

sensors can increase their sensing range to regain k-coverage. In the proposed approach,

we take advantage of variable sensing range technology as discussed in Section 2.6.3.2

to design a self-healing WSN that maintains desired detection performance by ensuring

stable k-coverage through dynamic recovery of coverage holes.

There are several challenges to overcome before the above idea of self-healing sensor

network with variable radii sensors can be made to work. Noting that detection accu-

racy and energy consumption (i.e., network lifetime) remain the key aspects to ensure,

the challenges are:
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• Since the capability to adjust the sensing range is limited, the network topology

and sensor density should be maintained in such a way as to make the hole

recovery feasible.

• Enhancing sensing radius involves increased energy consumption according to the

sensing model described in Section 3.7.3. Hence the sensor selection process needs

to ensure balanced energy consumption among sensors to yield a better network

life.

• To make such system scalable, the self-recovery of k-coverage scheme needs to

be distributed. This involves a local collaboration and decision making among

sensors to dynamically detect coverage holes and recover from it.

To the best of our knowledge, this is the first work to exploit the benefits of variable

sensing range technology to provide dynamic coverage recovery in event-centric WSNs

with only static sensors. This adds the following contributions-

• Low cost and fault tolerant event coverage by introducing the variable sensing

radius for coverage hole detection and recovery.

• Selection of nodes participating in hole recovery in a way so that energy con-

sumption is minimised and detection probability is maximised. This will lead to

enhanced network life.

• Optimisation of sensing radius for hole recovery to reduce any unnecessary re-

dundancy in coverage.

3.7 System Model for Self-Healing

In this section, we extend the basic model in Section 3.2. The main components of

the system model for variable range sensing such as variable sensing and transmission,

dynamic sensor failure model, probabilistic sensing model, energy consumption model,

network coverage model and WSN lifetime definition are presented.
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3.7.1 Sensing Model

The WSN in this scheme comprises of static sensors equipped with a sensing and a

communication unit capable of range adjustment. In case of variable sensing radii, the

nodes can adjust their sensing ranges from rmin to rmax, i.e. r ∈ [rmin, rmax]. The

transmission radii are adjusted accordingly so that any two sensors with intersecting or

tangential sensing circles can communicate with each other. This condition is implied

by the constraint R ≥ 2r. The transmission range can vary from Rmin to Rmax, i.e.,

R ∈ [Rmin, Rmax] along with the adjustment of sensing radius as needed. Variable
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x
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(a) Variable sensing model.
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Figure 3.9: Probabilistic sensing model

range sensing are inherently probabilistic. Probabilistic sensing models assume that

the sensing probability is dependent on the distance of the event from the sensor node.

To make the model realistic, we adopt the Elfes probabilistic sensing model from robot

perception literature [283], that is suitable for the adjustable sensing range. According

to this model, the probability that a sensor senses an event at a distance x is,

p(x) =


1 , if x ≤ rmin
e−γ1(x−rmin)γ2 , if rmin < x < rmax

0, , if x ≥ rmax.
(3.16)

where, rmin is the starting of uncertainty in sensing and γ1 and γ2 are sensing device

specific parameters that are determined from the physical properties of the sensor.
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γ1 and γ2 determine how fast the sensing probability decays beyond the minimum

sensing range. These parameters can be determined from manufacture’s specification

or experimental data. Fig. 3.9 illustrates the probabilistic sensing model adopted in

this work.

3.7.2 Dynamic Fault Model

The fault model used in Section 3.2, was not dynamic and can not capture the time

dependent failure characteristic. With ageing and the dynamic nature of environmental

impact, the failure rates in nodes can vary and become time-dependent. The analysis

of reliability requires real-time consideration of fault models. In this extended model,

we address this dynamic nature of faults and adopt a parametric time-dependent fault

model that captures the real-life nature of nodes in WSN systems.

Faults in sensor nodes can be categorised in several types such as -

• Crash faults - node fails completely due to mechanical malfunction.

• Omission faults - the sensed values are not delivered properly to the fusion node.

• Transient faults - faults referring to temporary malfunction or glitches.

Reliability analysis involves the study of survivor and hazard functions [284]. The

survivor function S(t) is defined as the probability that the lifetime (T ) of an object is

at least as much as t, that is,

S(t) = P (T ≥ t), 0 < t <∞ (3.17)

The probability density function of T is ,

f(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t)

∆t
= −dS(t)

dt

The hazard function, specifies the instantaneous rate of failure at t = T , conditional

upon survival up to time t. It is defined as:

h(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

We propose a parametric distribution for the hazard model to make the system adaptive

to the dynamic nature of the environment where WSNs are usually deployed in. The
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most common and robust model in reliability literature is the Weibull distribution as

it fits the device reliability models closely [284]. The Weibull distribution for lifetime

analysis for a sensor node is given by,

h(t) =
1

cw
δ(

t

cw
)δ−1 (3.18)

where cw and δ are the shape and scaling parameters respectively. The hazard function

of Weibull distribution is monotonically increasing if δ > 1 and decreasing if δ < 1.

A typical Weibull curve for hazard rate is shown in Fig. 3.10. For δ = 1 the Weibull

distribution becomes exponential distribution and for δ = 2 it assumes the Rayleigh

distribution. This way, the Weibull distribution is generic in nature and can be adjusted

to use in various WSNs by adjusting the parameters. We use these definitions for

analysing the overall network lifetime and detection performance of our event detection

system. It is assumed that each sensor node in the proposed WSN system is aware of

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

F
ai

lu
re

 r
at

e 
(s

ca
le

d 
to

 1
)

δ ≈ 1

δ < 1

δ >1

Figure 3.10: Hazard frequency using Weibull distribution

its failure model parameters. Thereby, in the post deployment scenario, nodes may
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have different failure rates depending on their individual lifetimes and device specific

parameters. The hazard rate of a node si at time ti after its deployment is denoted by

hi(ti) hereafter. This parameter will be used to discard high error-prone nodes in the

dynamic recovery method described in Section 3.8.3.2.

3.7.3 Energy consumption

A sensor node consumes energy mainly for sensing, data transmission and reception.

In the proposed approach, to achieve the goal of efficient and reliable event detection,

data transmission and sensing are done in both fixed and adjustable range mode. For

the purpose of this work, we consider the sensing energy model introduced in [269]. If

a sensor s has sensing radius r, the energy consumption in sensing is given by,

Es (r) = csr
γs + os. (3.19)

The parameters cs and os are device specific constants, and γs is related to the sensing

technology in use and typically varies in the range of 2 to 4 in case of sensors adopting

an active sensing technology [269].

When sensor nodes increase their sensing radii to cover for a neighbouring node

failure, their transmission radii may also need to be adjusted accordingly for estab-

lishing communication among all the detecting nodes to accomplish local fusion. This

is accomplished by varying the transmission power. It indicates that the adjustable

sensing technique affects both sensing and transmission energy and thereby the overall

total energy. For transmission power consumption in such scenario, we adopt the model

for adjustable transmission power used in [285]. In this model, the energy consumption

for transmitting one packet to any node or sink at d distance is given by,

Etx(d) = ctd
γt + ot, (3.20)

where, ct denotes the path loss component, γt stands for the loss coefficient and ot is

the overhead energy required for transmitting one packet. Usually in existing literature

[285], commonly used values of ct lies between 2 to 4.

Total communication energy consumption in a communication between two nodes

is given by,

Ec(d) = Etx(d) + Er, (3.21)

where Er is the receive energy required per node.
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3.7.4 Network Lifetime Definition

Conceptually, the lifetime of a sensor network is defined as the duration of time for

which the network provides guaranteed coverage and can be deemed as operational.

But in reality, the lifetime definition depends on the application requirement and a

number of different definitions exist in literature. In many studies (e.g. [285]), the

lifetime is defined as the time when the first node dies. An alternative definition based

on the duration as long as the network remains fully connected is adopted in [286, 287].

Another widely accepted definition is the moment when a certain portion of node dies

[288]. According to this, the network lifetime is the period before the number of live

nodes drops below (1−ψ)N , where ψ < 1 and N denotes the total number of nodes in

the network. ψ is referred to as the lifetime threshold. In this chapter, we adopt the

definition based on the ratio of dead nodes, since it is more generic and includes the

definition using first node die, half node die or last node die.

3.7.5 Network Coverage Model

In this model, we consider a WSN consisting of a set of N sensor nodes deployed ran-

domly over the area of interest to achieve full k-coverage. Each sensor senses any event

occurring within its sensing range and reports the sensed event to a local fusion node,

as described in Section 3.2.1. In a full coverage scenario, the connectivity requirement

is that any node should be within the communication range of one or more active

nodes so that all nodes can form a connected communication backbone. As established

in [30], for a set of nodes that at least 1-cover a convex region, the connectivity in

communication is guaranteed if, R ≥ 2r. Our coverage recovery method maintains this

relationship while enhancing the sensing radius by adjusting the communication radius

accordingly.

3.8 Variable sensing range k-cover

Primarily, our goal is to make the event detection method fault tolerant by adjusting

sensing radius to recover from the coverage hole caused by node faults described in

Section 3.7.2. The method consists of two phases. In the first phase, any coverage

hole is detected as soon as it occurs. In the second phase, the newly generated hole is
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recovered by extending the sensing range of one of the neighbouring sensors using our

energy-aware recovery technique.

3.8.1 Preliminary concepts

In order to address the problem of coverage in the presence of heterogeneous devices,

namely devices with different sensing ranges and different capabilities of adjusting their

settings, we employ the notion of Voronoi diagrams in Laguerre geometry. Our target

is to exploit such geometric properties to decrease coverage redundancy (and thus

the energy consumption due to sensing and transmission) while preserving network

coverage and connectivity. In a Voronoi diagram, the Vor line is defined as the axis

generated by two sensors which is equidistant from them and perpendicular to the line

segment connecting their centres. This line divides the plane into two halves as shown

by the dashed line in Fig. 3.11. In the case of sensors with the same sensing radius,

the Voronoi line properly delimits the responsibility regions of the two sensors as it

is the symmetry axis between the two. However, if the sensors have heterogeneous

radii (e.g. operational sensing range in our scheme), the Voronoi line fails to determine

the responsibility region correctly, as demonstrated in Fig. 3.11. On the other hand

C1
C2

Vor-Lag 
line

Vor Line

C1

C2

Vor-Lag 
line

Vor Line

(a) (b)

s1 s2 s1 s2

Figure 3.11: Voronoi-Laguerre geometry demonstrating the responsibility regions of sen-

sors for - (a) overlapping sensing circle, and (b) non-overlapping sensing circle. The shaded

regions are wrongly assigned to s1 by Voronoi line, while they are closer to s2 and should

be s2’s responsibility. Vor-Lag line correctly assigns these regions to s2

a Vor-Lag line between two circles is the locus of the points equi-distant from them

and it is perpendicular to the line segment connecting the centres (shown by the solid
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line in Fig. 3.11). The Vor-Lag line between two intersection circles is the chord

connecting their intersection points. Computing the pairwise Vor-Lag lines among a

set of circles will generate the Voronoi-Laguerre diagram. Let us consider we have N

sensors, s1, s2, ..., sN in a sensor field and the sensing disk of sensor si having the radius

ri, is denoted by circle Ci. The Voronoi-Laguerre polygon of circle Ci comprises of all

the points that are closer to Ci than Cj , ∀j 6= i. Such a polygon is always convex and a

tessellation of the plane of system of circles is called a Vorono-Laguerre diagram. We

denote the Voronoi Laguerre polygon of circle Ci as VL(Ci), e.g. VL(C1) for C1 shown

in Fig. 3.12. By definition, every point in such a polygon is closer to the sensor that

generates the circle, than any other sensor. Thereby, Voronoi-Laguerre diagrams are

the appropriate tool for event coverage in heterogenous case. It can partition the area

of interest into regions of respective responsibility of the sensors proportional to their

sensing ranges. Two sensors are Voronoi-Laguerre neighbours if their polygons have one

edge in common. For a sensor si, the set of its Voronoi-Laguerre neighbours is hereafter

referred to as NV L(si). We assume that each sensor is aware of its own location via

GPS or any other localisation method available [289]. This facilitates the distributed

computation of Voronoi-Laguerre polygon of each node. We employ Voronoi-Laguerre

polygons first to detect a coverage hole, second to determine the appropriate node(s)

and their enhanced range(s) to cover the hole, and third to lower ranges of other nodes,

whenever possible, to reduce unnecessary coverage redundancy.

3.8.2 Hole Detection

We emphasise on the local detection of coverage hole because a node failure can occur

anytime in the network and continuous centralised monitoring is infeasible due to en-

ergy constraint in WSNs. Every sensor node performs a periodic coverage verification

scheme and inform the higher level entity (usually a cluster head or base station) for

further recovery measures. The complete Voronoi-Laguerre tessellation of a WSN may

be costly. However, we adopt a simpler method where each sensor can estimate its own

polygon and use this information to determine if there is any coverage hole around it.

This process starts by a sensor sending a hello message to its one hop neighbours and

each neighbour receiving this message acknowledges its presence with a hello acknowl-

edgement that includes its current radius and position. The sensor sending the hello

message can now estimate the Vor-Lag axis between itself and each of its neighbours
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Figure 3.12: Detection of coverage hole by s1 using Vor-Lag geometry and example of

irreducible sensing radius case for s1.

individually and thereby calculates its own Voronoi-Laguerre polygon. To determine

if a coverage hole exists, a node checks whether its distance to the farthest vertex of

its polygon is longer than the sensing range. If yes, then some coverage hole exists

and this sensor is a candidate to heal this. For example, in Fig. 3.12, s1 calculates its

Voronoi Lageurre polygon, A1A2A3A4, denoted by VL(C1), after receiving the location

and range information from s2, s3, s4, s5. The distance of the furthest vertex, A4 from

s1 is longer than r1, which indicates a coverage hole around A4. Following the similar

method, s3, s4 and s6 also find that they border a coverage hole around the common

vertex A4. Note that, this coverage hole can be healed by either increasing the sensing

ranges of s3, s4 and s6 up to A4 or enhancing the range of each of the four bordering

sensors individually. Our self-healing recovery algorithm described in Section 3.8.3.2

will select which subset of the s1, s3, s4, s6 should increase their sensing ranges to heal

the coverage hole.
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(d) Further radius reduction by s1.

Figure 3.13: Radius adjustments and re-computation of Voronoi-Laguerre polygon

3.8.3 Dynamic Hole Recovery

3.8.3.1 Coverage redundancy and radius adjustment

Upon deployment, the Voronoi-Laguerre diagram for the whole WSN is calculated.

During the operation nodes are subject to dynamic reduction or enhancement of sensing

range to remedy the holes generated from the failure of neighbouring nodes. This

adjustment of sensing radius requires the Voronoi-Laguerre polygon of certain nodes to

be recomputed. In this section, we characterise the radius adjustments in such cases,
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which forms the basis of our recovery algorithm. In our method, upon detection of a

coverage hole, one or more sensors with sensing circle bordering the hole will enhance

their sensing ranges to cover the hole. The selection of such nodes is described in the

next section. As a result of radius enhancement by one node, the Vor-Lag polygons

of its neighbouring nodes are affected and may be eligible for radius reduction. We

characterise such reduction of sensing radius in three different cases.

(i) Null polygon: It may happen that the Voronoi-Laguerre polygon VL(Ci) of a

sensor si does not contain any point of the plane. This happens when the half-

planes generated by the Vor-Lag axes formed by Ci and its neighbouring sensors’

sensing circles have no overlap. In this case, VL(Ci) is called a null polygon. The

newly computed polygon can subsume the responsibility region of another node

completely.

(ii) Partially covered polygon: If the newly computed Vor-Lag polygon for a

sensor is partially covered by the generating sensor, its sensing range can not be

further reduced without affecting the coverage. This case occurs when at least one

vertex of the generated polygon is on or outside the sensing circle. In Fig. 3.12,

assume VL(C1) is the new Vor-Lag polygon of s1. It is evident from the figure

that its sensing range can not be further reduced as such reduction will increase

the coverage hole.

(iii) Reducible sensing range: If a sensor covers its generated polygon completely

and the vertices of the polygon are not necessarily on the sensing border (as shown

in Fig. 3.13(b)), it may reduce its sensing radius to certain extent determined by

the position of the vertices of the polygon. Fig. 3.13(a)-3.13(c) illustrates such

cases.

We now address the third situation in detail as it has more complex impact on the re-

covery algorithm and it can lead to cascaded range reduction. Let us consider an initial

configuration of 5 sensors s1, s2, s3, s4 and s5 operating with sensing radii r1, r2, r3, r4

and r5 respectively as shown in Fig. 3.13(a). Let us assume that node s2 increases

its sensing radius up to r′2 to account for any neighbouring sensor fault. This makes

the Vor-Lag polygons of s1, s3 and s5 to be recomputed as shown in Fig. 3.13(b). It

is evident from the figure and sensor s1 falls under case (iii) mentioned above and can
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reduce its sensing radius up to the furthest vertex of its Vor-Lag polygon. Let the

new radius to be r′1. This causes its Vor-Lag polygon to be further recomputed as

shown in Fig. 3.13(c) which makes it possible to reduce the radius to r′′1 (Fig. 3.13(d)).

This iterative process continues until the newly computed polygon falls under case (ii)

which completes the reduction process. The proof of convergence of such process is

established in [270] using Voronoi-Laguerre geometry.

Let the initial sensing radius of sensor si be rinii and the final radius of the sensor si

upon convergence be rfini . If the adjustment is radius enhancement, this will increase

the energy consumption and the amount of additional energy required is,

∆E−s (si) = a
(

(rfini )γs − (rinii )γs
)
. (3.22)

At the same time, increasing the radius may decrease event sensing probability accord-

ing to the probabilistic model described in (3.16). The loss in sensing probability is

given as,

∆P−(si) = p(rinii )− p(rfini ). (3.23)

On the other hand if the adjustment is radius reduction, the gain in energy consumption

is,

∆E+
s (si) = a

(
(rinii )γs − (rfini )γs

)
. (3.24)

Similarly, the gain in sensing probability of sensor si is,

∆P+(si) = p(rfini )− p(rinii ). (3.25)

Our self-healing coverage process considers these two factors of each neighbouring node

of a hole in selecting the suitable nodes whose sensing range needs to be enhanced to

heal the coverage hole. The node selection scheme is described in the next section.

3.8.3.2 Self-Healing Algorithm

Upon detection of a node fault and uncovered region, our method selects one or more

neighbouring nodes to enhance their sensing radii to cover the uncovered region. First,

the nodes bordering a coverage hole are identified using the method described in Sec-

tion 3.8.2. We call this set Sc, the candidate set, since one or more nodes from this

set will be chosen for range enhancement. For example, {s4, s5, s6, s7, s9, s10, s11, s12}
is the candidate set for the hole shown in Fig. 3.14(a). Upon selection of the candidate
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Figure 3.14: Self-healing algorithm for coverage hole recovery

set, a local cluster head collects the current sensing radius, lifetime and fault model

parameters of each node in Sc. Using the fault model parameters and individual life-

time, the instantaneous hazard rate, hi(ti) of node si, for each si ∈ Sc is computed.

Then the range adjustment procedure is simulated by a local cluster head by virtually

selecting each subset of node as the candidate set for enhancement. The overall energy

cost of adjustments in each case and the overall loss (gain) in sensing accuracy in the

changed condition are computed using the probabilistic sensing model.

Let us consider Se ⊂ Sc is the set of nodes selected to enhance their radii in the

coverage healing process. As a result of this, a set of nodes may reduce their sensing

range as described earlier in Section 3.8.3.1 and let this set be Sr. Then following

(3.22)-(3.25), the total gain (loss) in sensing energy consumption, TGE and total loss

(gain) in sensing probability, TLS in such process with Se as the selected set, is given

by,

TGE(Se) =
∑
sj∈Sr

∆E+
s (sj)−

∑
si∈Se

∆E−s (si), (3.26)

and,

TLS(Se) =
∑
si∈Se

∆P−s (si)−
∑
sj∈Sr

∆P+
s (sj). (3.27)
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The problem can be formulated as an optimisation problem expressed as:

Select Se ⊂ Sc as to,

minimise
TLS(Se)

TGE(Se)
(3.28)

s.t., hi(ti) ≤ hth,∀si ∈ Se

Here, hth is the maximum tolerable hazard rate for a node to be selected and hi(ti)

is the hazard rate of node si having individual life time ti. This constraint ensures

the exclusion of highly error prone or nearly dying nodes from the range adjustment

process.

The selection algorithm for our self-healing coverage is outlined in Algorithm 3.8.3.2.

Steps 3-7 of this algorithm enforces the hazard rate constraint and steps 9-15 are

executed for each subset of the candidate set. Step 9 simulates the range enhancement

for current subset and step 10 computes all the other nodes that are affected by this

range adjustment. Steps 11-14 estimates the energy-accuracy trade-off and the current

best selection is saved in step 13-15. Finally, the best selected set of nodes is returned in

step 17. The computational complexity of the proposed algorithm is exponential in the

size of candidate set, O(|Sc|×2|Sc|). However, the number of nodes in the candidate set

is usually very small (typically less than seven) [30], the computation time is negligible.

At the end of this selection phase, the selected nodes are informed by the cluster

head to adjust their sensing ranges. After the radius adjustment, the selected nodes

and all the Voronoi-Laguerre neighbours recompute their Vor-Lag polygons and apply

iterative radius reduction as explained in Section 3.8.3.1.

3.9 Performance Analysis

In this section we analyse the performance of the proposed method in terms of detection

performance and network lifetime. It is noteworthy that both the energy consumption

and detection probability depend on the sensing range of the sensors covering an event

and sensing range is variable in the proposed method. To facilitate further analysis we

first estimate the expected radius that a sensor maintains in its lifetime.
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Algorithm 3.1: Node Selection For Hole Recovery

Require: Sc: set of candidate nodes

Ensure: Se : set of selected nodes

1: temp←∞
2: Se ← ∅
3: for each sj ∈ Sc do

4: if hj(tj) > hth then

5: Sc ← Sc\sj
6: end if

7: end for

8: for each S′ ∈ 2Sc do

9: simulate radius enhancement for each si ∈ S′

10: Sr ← ∪si∈S′NV L(si)

11: TGE(S′) =
∑
sj∈Sr

∆E+
s (sj)−

∑
sj∈S′

∆E−s (sj)

12: TLS(S′) =
∑
sj∈S′

∆P−s (sj)−
∑
sj∈Sr

∆P+
s (sj)

13: if TLS(S′)
TGE(S′) ≤ temp then

14: Se ← S′

15: temp← TLS(S′)
TGE(S′)

16: end if

17: end for

18: return Se

3.9.1 Average Sensing Radius

Sensing radius adjustment of a sensor is affected by two factors - the number of neigh-

bours of a node within its R radius and the probability of one or more of those neigh-

bours to fail. Let, the average failure rate and the number of neighbours of a node

within R radius are h̄ and ne respectively. In case of deterministic deployment, the

number of neighbour of a sensor within its communication radius can be easily cal-

culated using the angle subtended by two consecutive neighbours to its centre. For a

rectangular grid deployment shown in Fig. 3.15(a), the angle created by s5 and s6 to

the centre of s8 is θ = π
4 . For a grid deployment any two consecutive neighbours of

a node maintain equal angular distance, θ in reference to its centre which gives the
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S9

S12S11S10

S7

S4
S6S5

S8

θ
=
π
/4

(a) Neighbours placement in grid deployment.
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Figure 3.15: Number of neighbours, ne of a faulty node

number of neighbours as,

ne =
2π

θ
. (3.29)

However, random deployment is more common in sensor networks (Fig. 3.15(b)). To

calculate the number of neighbours in such case, we consider the complete spatial

randomness (CSR) as a generalised node distribution model which is a point process

controlled by a density (ρ) parameter [290]. In such case, the number of neighbours

within certain radius of a node depends on the deployment density. According to

this distribution, the probability of finding exactly κ nodes within an area A with

deployment density ρ is given by,

P (κ, ρ,A) =
(Aρ)κe−(Aρ)

κ!
(3.30)

The number of neighbours of a node can be estimated by the expected number of nodes

within an area A = πR2 centred around itself. Therefore, for random deployment, the

number of neighbours of a node is estimated as,

ne =

∞∑
κ=0

(πρR2)κe−(πρR2)

(κ− 1)!
− 1. (3.31)

120



3.9 Performance Analysis

Lemma 1. Given that a sensor can vary its sensing range from rmin to rmax, i.e.

r ∈ [rmin, rmax], and has ne number of neighbours, the expected sensing radius of a

node in the self-healingproof network model is given by,

r̄ = rmin
(
(1− h̄)ne

+1−
∑ne

i=1

[
1− (1− 1

ne
)i
]
h̄i(1− h̄)ne−i

)
+rmax

∑ne
i=1

[
1− (1− 1

ne
)i
]
h̄i(1− h̄)ne−i.

(3.32)

Proof. In the proposed method, a sensor will increase its sensing radius only when one

or more of its neighbours fail and create a coverage hole, and it is selected to recover

the hole. In case of one node failure, ne nodes are eligible to repair the hole. From Fig.

3.14(a), when the node, s8 fails, the set of eight nodes, {s4, s5, s6, s7, s9, s10, s11, s12}
are eligible for radius increment and recovery. In ideal case, probability of any one of

them to be selected is 1
ne

. Let us consider a node participating in the recovery process

and the average failure rate of a node is given by h̄. The probability of exactly one

neighbour of this node to fail is h̄(1− h̄)ne−1 and in consequence, the probability of this

node to get selected is 1
ne

. In the same way, the probability of two neighbouring node

failures is h̄2(1− h̄)ne−2 and in such case, this node will be selected with a probability

of 1 − (1 − 1
ne

)2. Therefore, in case of one or more failures among the neighbours, a

node will be selected for range enhancement with a probability, ph given by,

ph =
1

ne
h̄(1− h̄)ne−1 +

[
1− (1− 1

ne
)2

]
h̄2(1− h̄)ne−2 + · · ·+ h̄ne

=

ne∑
i=1

[
1− (1− 1

ne
)i
]
h̄i(1− h̄)ne−i.

Otherwise, not being selected in the healing process means that it will continue to

operate in its normal sensing range. Similarly, in case of no node failure occurring in its

neighbourhood, it will continue to operate in its normal sensing range, the probability

of which is (1− h̄)ne . Therefore, the expected radius of a node is given by,

r̄ =rmin(1− h̄)ne + rmaxph + rmin(1− ph)

=rmin

(
(1− h̄)ne + 1−

ne∑
i=1

[
1− (1− 1

ne
)i
]
h̄i(1− h̄)ne−i

)

+ rmax

ne∑
i=1

[
1− (1− 1

ne
)i
]
h̄i(1− h̄)ne−i.
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Considering the network coverage and connectivity model described in Section 4.2,

the expected communication radius, R̄ throughout the network lifetime will be bounded

by, R̄ ≥ 2r̄.

3.9.2 Detection Performance Analysis

In this section, we derive the false alarm probability and detection probability of our

system. According to the coverage model described in Section 4.2, k sensors collaborate

in detecting an event via decision fusion. In practice, the measurement of each sensor

is susceptible to an environmental noise. Since the distance from the sensed event is

not same for every participating node, the effect of noise will be different on each node

and so will be its individual detection capability as per (3.16). Such sensing noise can

be modelled using a Gaussian distribution with 0 mean and unit variance, ℵs(0, 1). Let

the event signal measured at sensor si be ui and the threshold for event detection be

ηd, that is a sensor considers an event as detected if the measured signal value is greater

than or equal to ηd. The probability of detection, Pdi for sensor si is then given by,

Pdi = p(di)

∫ ∞
ηd

1√
2π
e−

(x−ui)
2

2 dx, (3.33)

where di is the estimated distance of sensor si from the event location and p(di) as

defined per (3.16). The false alarm probability, i.e. the probability of noise being

greater than or equal to the threshold, ηd, is given by,

Pf =

∫ ∞
ηd

1√
2π
e−

x2

2 dx. (3.34)

We assume the decision fusion threshold as k1, which means at least k1 or more sensors

among the k collaborating sensors must have measured signal above the threshold

before making a final decision. Similarly, false alarm in decision fusion occurs when

k1 or more sensors generate a false detection. So the overall false alarm probability is

given by,

PF =
k∑

i=k1

(
k

i

)
P if (1− Pf )k−i. (3.35)

Now collaborative detection takes place when k1 or more sensors individually detects

an event after its occurrence. According to the variable range sensing model used

here, the sensing probability of each node is a function of the distance from the event
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as shown in (3.16). Hence, the aggregated detection probability will depend on which

combination of at least k1 nodes are selected. Let Ωk,i denotes the set of combinations of

i sensors selected from k detecting sensors and ϑ ∈ Ωk,i denotes a specific combination

of detecting sensors where ϑ(.) denotes the indices of the sensors. For any set of

detecting sensors, ϑ, the probability of detection will be Πi
j=1Pdϑ(j)Π

k
j=i+1(1 − Pdϑ(j)).

Considering different combinations, ϑ ∈ Ωk,i and different number of sensors, i, (where

k1 ≤ i ≤ k), the overall detection probability after decision fusion is given by,

PD =
1

(k − k1 + 1)

k∑
i=k1

1(
k
i

)× ∑
ϑ∈Ωk,i

(
Πi
j=1Pdϑ(j)Π

k
j=i+1(1− Pdϑ(j))

) . (3.36)

Next, we determine the expected lifetime of an event detection system with self-recovery

scheme. For this, we need the average sensing and communication radius of nodes

modelled above as the energy consumed in sensing depends on these range.

3.9.3 Network Lifetime Analysis

As demonstrated in the energy model for variable sensing, energy consumption in-

creases with the increased sensing and communication range. The self-healing coverage

recovery technique select one or more nodes to increase their sensing radius to cover

a hole created in the neighbourhood. This results into consumption of additional en-

ergy by that node from this point forward and affects the network lifetime. Therefore,

the lifetime of such WSN depends primarily on three factors: i) node failure rate, ii)

spatiotemporal event distribution, and iii) average sensing radius. In this section, we

present an analytical model for the network lifetime considering these key factors.

1. Event distribution: We assume that events occur randomly and independently

over the sensor field following a spatio-temporal Poisson distribution with mean

λ′ per unit area. Such distribution is commonly used in literature to model

random and independent events [291, 292]. We assume a cluster based WSN

model as demonstrated in Fig. 2.1. In this model, when an event occurs, each

sensor sensing the event reports it to the local cluster head. Since each sensor
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reports all events occurring within its sensing range, r, the number of events

processed between 0 and T time units, follows the distribution,

P (M = q) =
e−λ

′πr2T (λ′πr2T )q

q!
=
e−λT (λT )q

q!
, (3.37)

where, λ = λ′πr2 stands for the mean of event occurrence rate for any sensor

node. In the k-coverage event detection technique, a node will always process

an event which occurs within its current sensing range, r. Since a node may

maintain different sensing ranges over the time, it can be assumed that a node

responds to any event within its average sensing range, r̄. The effective rate of

event occurrence within the responsibility region of a sensor is then given by,

λk = πr̄2λ′.

Assuming a sensor generates a fixed number of packets to process an event, the

number of packets generated by a sensor within the time interval [0, T ] follows

the distribution,

P (M = m) =
e−λkT (λkT )m

m!
.

2. Individual node survival time: As mentioned earlier, we adopt the Weibull dis-

tribution as a generalised reliability model. Using (3.17) and (3.18), the survivor

function becomes,

S(t) = exp

[
−(

t

cw
)δ
]
, t > 0.

Therefore, S(τ) indicates the probability that a node will achieve a lifetime, τ for

a given hazard model.

3. Average sensing radius: Both of the energy consumption and the effective event

occurrence rate depend on the average sensing radius which was derived in Section

3.9.1.

Now, we first consider the lifetime of an individual sensor node based on these factors

and then extend the analysis to derive the expected network lifetime. Let the idle-time

sensing energy for a node is eidle per unit time. The total number of events that can

be processed by one sensor in its lifetime, τ is given by,

φi =
Ein − τeidle

Es(r̄si) + Ec(R̄ci)
. (3.38)
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Here, Ein is the initial energy of a sensor node, and r̄ and R̄ denote the expected sensing

and communication radius, respectively. We assume that all nodes have the same initial

energy. The average sensing radius, r̄ is derived in (4.11) and average communication

radius, R̄ is bounded by R̄ ≥ 2r̄. Now the total number of events that can be detected

by a node in its lifetime eventually indicates the lifetime of a single sensor.

Theorem 1. For an initial energy Ein, the conditional probability of a sensor node to

achieve lifetime exceeding τ is given by,

P (ti ≥ τ |φi) = S(τ)

(
1− γ(φi, λkτ)

Γ(φi)

)
(3.39)

where γ(., .) and Γ(.) represent the lower incomplete gamma function and the gamma

function, respectively , and are given by,

γ(a, x) =

∫ x

0
ta−1e−tdt

Γ(x) =

∫ ∞
0

tx−1e−tdt

Proof. A node can die either from energy depletion or it can incur node fault. If we

consider node failure probability, the lifetime would be S(τ) as derived earlier. On

the other hand, assuming node faults do not occur, the total lifetime, ti of a sensor si

can be computed by summing the inter-arrival delays of all the events it detects in its

lifetime. Let ti,j be the interval between event j − 1 and j within the range of sensor

si. Then,

ti|φi =

φi∑
j=1

ti,j .

Since event occurrences follow a Poisson process, the inter-arrival times between con-

secutive events, i.e. ti,js are independent random variables that take an exponential

distribution with mean 1
λk

. and expressed as,

fint(x) = λke
−xλk (3.40)

The sum of independent and identically distributed (i.i.d.) random variables follows a

gamma distribution [293]. Therefore, for a given φi, the probability density function of

lifetime, ti of a node, i can be expressed as,

fti|φi(x) = λφik
xφi−1e−λkx

Γ(φi)
, (3.41)
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Now, considering both node faults and energy depletion leads to,

P (ti ≥ τ |φi) = S(τ) (1− P (ti < τ |φi))

= S(τ)

(
1−

∫ τ

0
λφik

xφi−1e−λkx

Γ(φi)
dx

)
= S(τ)

(
1− γ(φi, λkτ)

Γ(φi)

)

To estimate the network lifetime as defined in Section 3.7.4, we have to consider the

individual lifetime of all the nodes deployed in the network. For random deployment

over an area, φi is a random variable with pdf fφ(x). This distribution depends on the

shape of the area and energy dissipation model. Such distribution for some common

shape of networks and random deployment scenario is derived in [294].

Theorem 2. For a WSN with total N number of nodes deployed uniformly over an

area of interest, A and all nodes having same initial energy, the probability of achieving

network lifetime, L to be at least τ is,

P (L ≥ τ) = Q(

√
N(1− ψ − µl)√
µl(1− µl)

) (3.42)

where,

µl =
∫
A
S(τ)

(
1− γ(x,λkτ)

Γ(x)

)
fφ(x)dx,

Q(x) = 1√
2π

∫∞
x e−

u2

2 du.

and ψ is the lifetime threshold.

Proof. From the definition of network lifetime based on the ratio of dead nodes as

stated in Section 3.7.4, the network will achieve a lifetime of at least τ if the number

of individual nodes that live up to τ period of time is at least ψN . To compute the

number of such nodes, let us define a Bernoulli random variable, li for each sensor si

in the following manner,

li =

1, if sensor si achieves lifetime more than τ.

0, otherwise.
(3.43)

The success probability of li given φi, denoted by ps|φi follows from (4.16),

ps|φi = P (ti ≥ τ |φi) = S(τ)

(
1− γ(φi, λkτ)

Γ(φi)

)
.
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Since lis are Bernoulli random variable, the conditional mean and variance of li are

given by, E[li|φi] = ps|φi and V ar[li|φi] = ps|φi(1− ps|φi), respectively. Let us define a

new random variable ω to denote the number of sensor nodes that live till at least τ

period of time. From the definition of li, ω is the sum of successes of N Bernoulli trials

as described above, that is, ω =
∑N

i=1 li. Since the event occurrences are i.i.d. according

to the event model described above, lis are also independent and identically distributed

random variables. Therefore, by definition, ω follows a Binomial distribution, B(N, ps).

The number of sensor nodes is usually large in a typical WSN. According to Central

Limit Theorem [293], the Binomial distribution can be approximated with a Gaussian

distribution for large N . This leads to the following probability distribution function

of ω,

fω(x) =
1√

2πσω
e
− (x−µω)2

2σ2ω (3.44)

where µω and σω are the mean and variance of ω, respectively. From the definition of

ω, its mean and variance can be calculated from unconditional mean and variance of

li. The unconditional mean and variance of li, denoted as µl and σ2
l can be calculated

using its conditional mean and variance [293] as follows,

µl = E[li] = E[E[li|φi]] = E[ps|φi ]

=
∫
A
ps|xfφ(x)dx,

which leads to,

µl =

∫
A

S(τ)

(
1− γ(x, λkτ)

Γ(x)

)
fφ(x)dx, (3.45)

and,

σ2
l = V ar[li] = E[V ar[li|φi]] + V ar[E[li|φi]]

= E[ps|φi(1− ps|φi)] + V ar[ps|φi ]

= E[ps|φi ]− (E[ps|φi ])
2,

which follows from the fact that, E[x+ y] = E[x] +E[y] and V ar[x] = E[x2]− (E[x])2.

Therefore,

σl =
√
µli − µ2

li
. (3.46)

Since, ω is a sum of lis and lis are i.i.d. random variables, µω = Nµl and σ2
ω = Nσ2

l .

Now,

P (L ≥ τ) = P (ω ≥ (1− ψ)N)

=

∫ ∞
(1−ψ)N

1√
2πσω

e
− (x−µω)2

2σ2ω dx
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Network Parameters

Number of sensor [200, 500]

Minimum sensing radius, rmin 10m

Maximum Sensing radius, rmax 25m

Area of Interest 200x200 m2

Sensing prob. decay factor, γ1=0.09, γ2=0.81

Dead node ratio for network life, ψ 0.4

Energy Parameter

Initial Energy, Ein 2J

Energy consumption model cubic law

Table 3.1: System parameters for simulation

Substituting (x−µω)
σω

= u, the above can be written as,

P (L ≥ τ) = 1√
2π

∫∞√
N(1−ψ−µl)√
µl(1−µl)

e−
u2

2 du

= Q(
√
N(1−ψ−µl)√
µl(1−µl)

)

Having analysed the characteristics of our proposed approach, in the following sec-

tion, we evaluate its performance both theoretically and through simulation.

3.10 Performance Evaluation

The performance gain of dynamic fault recovery technique using variable sensing radius

is two-fold. First, it provides the performance guarantee of full k-coverage for longer

period of time during the operation. It does not require an additional set of sensors to

activate on hole detection which is desirable from economic and deployment perspective.

At the same time it achieves better network lifetime compared to other models where

all the nodes operates in fixed sensing range all the time. In this section, we analyse

the theoretical results and compare those with the simulation results.

We designed our simulation using the network simulator ns − 3 and derived the

theoretical results using MATLAB. We developed and incorporated the variable radius

model described in this Section 3.16 to ns-3 platform and conducted a series of event
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detection tasks by varying the sensing range of sensors dynamically to recover from

coverage holes as per Algorithm 1. The events are generated using a Poisson process of

rate λ = 1/hour. Each simulation was run 100 times and averaged results are presented

in this section. Simulation parameters are formally listed in Table 4.1.
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Figure 3.16: Theoretical values for average sensing radius (r̄) vs. node fault probability

(k) and number of nodes deployed (N).

First, to verify our theoretical findings, we compare the analytical values of average

sensing radii and lifetime derived in Section 3.9.3 with our simulation results. Fig. 3.16

plots the analytically derived average sensing radius for different values of average node

fault probability and number of nodes. It shows that average sensing range remains

close to the minimum sensing range for moderate node fault probability (< 40%). Even

at 40% node failure rate, our method will ensure successful recovery by extending the

sensing range by only 2m on an average. The left hand side corner corresponds to

the scenario of high node fault probability to be recovered with low number of nodes.

The plot indicates that, in such case, nodes need to operate at more than half of the

maximum sensing range (∼ 16m ). However, even in such case, certain energy saving

will be ensured as the average sensing range is still much lower than the maximum range.

Fig. 3.17, shows how the average sensing radius increases with higher node failure rates.

It is interesting to note that the average radius is much lower in case of higher degree

of coverage, k = 4 than in the case with k = 3. This is a significant characteristic of
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Figure 3.17: Theoretical values for average sensing radius (r̄) for different k and different

node failure rates.
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Figure 3.18: Lifetime comparison between theoretical value vs simulation result at 20%

node failure rate.
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our method as it ensures better performance with respect to sensing energy in higher

node density. Since, sensing range of a node is usually characterised by isotropic sensing

around the node, when a node increase its range to recover from one hole, it also creates

unnecessary overlapping in other sides. It is evident from the Fig. 3.17 that our scheme

exploits this overlapping and the cascading range reduction described in Section 3.8.3

results in reduced sensing range increment in high node density. Fig. 3.18 plots the

analytical value for expected lifetime along with the average lifetime achieved in the

simulation for a certain degree of coverage (k = 3). The simulation result shows close

match with the theoretical values, especially in high node density.
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Figure 3.19: Hole recovery performance

Figure 3.19-3.22 provides the simulation results. The dynamic hole detection and

recovery performance of the proposed scheme is shown in Fig 3.19. It plots the total

number of holes created in the whole sensor field against the number of holes dynami-

cally recovered by our scheme. The figure shows that majority of the holes are recovered.

The fact that some holes are left uncovered is because of the random deployment. Some

holes exist that can not be triangulated by the neighbouring nodes and can not be de-

tected without central coordination and location aware services. The number of such

unrecoverable holes increases with time as node failure rate increases with time accord-

ing to our Weibull fault model with β > 1 and more unrecoverable holes are created.

However, the overall percentage of recovery is still above 90% in almost all cases. The
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Figure 3.20: Comparison of the required number of nodes to enable coverage hole recovery

in our method and 3MESH-DR method [248]

economic perspective of our scheme is established by comparing the number of nodes

required in our method and in the triangular mesh distributed hole recovery (3MESH-

DR) method proposed in [248] in Fig. 3.20. 3MESH-DR scheme assumes the presence

of redundant nodes all over the network and activates them to recover holes during the

operation. This requires the number of nodes for one additional degree of coverage to

be in reserve. Fig. 3.20 evidences that our method requires lower number of nodes for

same degree of coverage as it eliminates the need for additional redundant number of

nodes in reserve. This results in much lower deployment cost in fault recovery scheme.

The overhead cost of fault recovery techniques using mobile nodes is presented in

Fig. 3.21 and 3.22 in terms of recovery time and energy. We compared the time to

recover from a detected node fault in our method and the mobility assisted coverage

optimisation method described in [295]. In [295], holes are detected and healed in the

post deployment scenario by relocating nodes to the coverage holes. The energy and

mobility parameters are taken from [295] for fair comparison. Fig. 3.21 shows that the

time required to recover from holes is much higher in the mobility based method due

to limited movement speed. Although, the time decreases with high node density, it

still is not suitable for event detection method. On the other hand, our variable range

scheme maintains a constant recovery time which is nearly zero as enhancing sensing
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Figure 3.21: Comparison of the time required for successful hole recovery using node

mobility [295] and the proposed range adjustment method
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Figure 3.22: Comparison of energy consumption between variable range recovery and

mobile node recovery [295]. Combined energy spent in sensing, communication and mobil-

ity.
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3.11 Conclusion

range does not take up any significant time. Fig. 3.22 plots the energy requirement in

the coverage healing process in two methods. Our method consumes much less energy

than the method in [295] as the energy spent for sensing with enhanced range is much

less than the energy spent for node relocation.

3.11 Conclusion

In this chapter, first we presented an analytical model to determine the appropriate

degree of coverage that ensures a given set of QoS metrics at the deployment time.

Then we extended the scheme by introducing the idea of distributed fault recovery

technique employing variable range sensing in WSNs. We developed a geometry based

scheme to make such technique applicable considering the key issues in fault-tolerant

event-centric WSNs such as detection performance, instantaneous failure rate and en-

ergy consumption. Simulation results show the effectiveness of our approach yielding

enhanced network lifetime and improved fault recovery technique compared to tradi-

tional fixed range sensing used in static coverage or dynamic coverage using mobile

nodes. The scheme is easily implementable due to its distributed nature. However,

the k-coverage schemes discussed in this chapter still require a large number of nodes

to be deployed to ensure redundant coverage and required detection performance. In

the following chapters, we will overcome this by introducing dynamic event coverage

techniques.
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Chapter 4

Dynamic Event Coverage

In the previous chapter, we introduced redundant degree of coverage in WSN to en-

sure robust detection from unreliable sensor readings while conserving energy using

distributed detection. However, increased deployment cost and energy limitation make

such approach unrealistic as the number of required static sensor nodes grows pro-

hibitively large to maintain desired level of fault tolerance and accuracy. In this chap-

ter, we explore two potential solutions to overcome such limitation - one using the

variable range sensing and the other employing mobile nodes.

4.1 Dynamic Coverage Using Variable Range Sensing

The trade-off between detection performance and energy consumption is still a funda-

mental challenge in event centric WSNs. Though traditional cheap tiny sensors consume

most energy for communication purpose only, new generation sensors are multimodal

equipped with camera, radar, sonars or infrared which consume significant amount of

energy for sensing as well. These new generation sensors, being increasingly smarter

and sophisticated, are also costly. The higher cost and energy consumption makes

redundant (i.e, static k) coverage cost prohibiting and environmentally unfavourable

due to increasing carbon footprint. This motivates the research community towards

providing redundant coverage not by maintaining a permanent k-coverage all the time

but, only to provide redundancy in an on-demand basis. On-demand coverage refers to

the technique of providing instantaneous k-coverage only after an event is detected by
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4.1 Dynamic Coverage Using Variable Range Sensing

at least one sensor. Here, we exploit the concept of adjustable sensing radius to handle

this trade-off between deployment cost, energy requirement and event coverage.

Exploiting variable range sensing technology, we propose the idea of on-demand

k-coverage for event detection using static nodes with adjustable sensing range. The

main idea is to guarantee redundant coverage for event dynamically while ensuring

1-coverage at the time of the deployment. In such setting, each sensor works in its

lower end of sensing limit leaving the provision for increasing the sensing range later

when necessary. During the operation, as soon as a node detects an event, it requests its

neighbours to collaborate. A selected set of neighbour nodes then increase their sensing

ranges temporarily to ensure redundant coverage for that event. Event detection is then

accomplished via local decision fusion among these selected nodes. The proposed on-

demand k-coverage scheme ensures instantaneous k-coverage without having to deploy

a large number of nodes. It saves sensing energy operating at the minimum range

during normal operation.

There are several challenges to overcome before the above idea of event detection

system with variable range sensor technology can be made workable. Noting that

detection accuracy and energy consumption (i.e., network lifetime) remain the key

aspects to ensure, the challenges are:

• For an specific event location, determination of the set of sensors that need to

adjust sensing range and the extent of adjustment required to yield expected

detection performance with minimum energy consumption.

• Since the capability to adjust the sensing range is limited, the network topology

and sensor density should be maintained in such a way as to make the on-demand

coverage feasible.

• Increasing sensing radius involves increased energy consumption according to the

sensing model described in Section 3.7.3. Hence, the sensor selection process

needs to ensure balanced energy consumption among sensors to yield a improved

network lifetime.

• To make such system scalable, the on-demand k-coverage scheme needs to be

distributed. This involves a local collaboration and decision making among the

sensors.
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In this work, we deal with these challenges using a greedy approach for distributed

sensor selection and an analytical model to outline sensor deployment. To the best of

our knowledge, this is the first work to exploit the benefits of variable sensing range

technology to provide on-demand k-coverage in event-centric WSNs with only static

sensors. Our contributions are-

• Mission oriented on-demand k-coverage for event detection by adjusting the sens-

ing range of static nodes.

• Decentralised sensor selection algorithm to ensure joint optimisation of energy

consumption and detection performance.

• Analytical model to guide the sensor deployment strategy to facilitate the effective

implementation of variable sensing radii technique in real world applications.

• Lifetime analysis of the proposed detection scheme considering the variable sens-

ing range.

4.2 System Model

The main components of the system model for this scheme, namely variable sensing

and transmission, probabilistic detection model, energy consumption model, and WSN

lifetime definition were introduced in Section 4.2. The event coverage model for on-

demand k-coverage using variable range sensing and the event occurrence model to

facilitate the performance analysis are described in the following.

4.2.1 Event Occurrence Model

In an event driven network, sensors sense the environment for event and transmit

the information to sink when an event of interest occurs. We assume that events

occur randomly and independently over the sensor field following a spatio-temporal

Poisson distribution with mean λ′ per unit area. Such distribution is commonly used

in literature to model random and independent events [291, 294, 296]. We adopt a local

decision fusion based detection model. In this model, after an event has occurred, each

sensor detecting the event participates in the local decision fusion. Since each sensor
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Figure 4.1: On demand event coverage for enhanced detection performance

reports all events occurring within its sensing range, r, the number of events processed

between 0 and T time units, follows the distribution,

P (M = m) =
e−λ

′πr2T (λ′πr2T )m

m!
=
e−λT (λT )m

m!
, (4.1)

where, λ = λ′πr2 stands for the mean of event distribution within the sensing disk of

a sensor node.

4.2.2 Event Coverage Model

Let us consider a WSN consisting of a set of N sensor nodes deployed over the area

of interest to provide 1-coverage in the sensor field. In our approach, full k-coverage is

not assumed all the time. Rather, the number of nodes deployed over the sensor field

is sufficient enough to provide static 1-coverage. To ensure such goal, the number of

sensors, N is determined according to (2.10). This means the network will be at least

1-covered throughout its lifetime. Deployment guideline for this 1-coverage is presented

in Section 4.3.3. After an event has occurred, at least one sensor detects the event and

broadcasts the occurrence of the event to all its neighbouring nodes. If more than one

node sense the same event, they are within each other’s communication range and it

can be locally decided which sensor senses the strongest signal. The node with the
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strongest signal initiates collaborative detection phase and here after referred as the

initiating node. Additional (k− 1) number of nodes then adjust their sensing range (if

necessary) to provide dynamic k-coverage.

Consider the scenario presented in Fig. 4.1(a) which shows an area 1-covered by

sensors and each sensor operating in its normal sensing range (rmin) indicated by the

solid circle around it. Suppose, an event occurs within the sensing range of s4. Ac-

cording to (3.16), the event will be detected by s4. Now to increase the reliability of

detection, additional sensor nodes are required to cover the event. Let us consider 3-

coverage is required in this case. Based on the sensor selection technique demonstrated

in Section 4.3, sensors s6 and s7 are selected and they increase their sensing ranges

to provide dynamic 3-coverage for the event as shown in Fig. 4.1(b). The extended

sensing ranges are shown by the large concentric dashed circles around s6 and s7. Now

each of the three sensors (s4, s6, s7) measures the event signal and the final detection

decision is taken via decision fusion. In this scenario, node s4 is the initiating node.

The set of nodes that can extend their sensing ranges up to rmax to cover an event is

called the candidate set. In Fig. 4.1, the set of nodes {s1, s2, s3, s5, s6, s7} comprises

the candidate set.

Since our WSN is 1-covered during the normal time, it is important to facilitate

decision fusion among nodes that will make dynamic k-coverage possible for events.

To ensure on-demand k-coverage using variable sensing radii, we need to maintain a

certain ratio between sensing radius, r and communication radius, R to ensure network

connectivity. In 1-coverage scenario, the connectivity requirement is that any node

should be within the communication range of one or more active nodes so that all

nodes can form a connected communication backbone, while any point in the coverage

region to be within the sensing range of at least one node. As established in [30, 33], for

a set of nodes that at least 1-cover a convex region, the connectivity in communication

is guaranteed if, R ≥ 2r. Our on-demand coverage model maintains this relationship by

adjusting the communication radius according to the enhancement the sensing radius.

4.2.3 QoS Aware Degree of Coverage (k)

The focus of this work is not determining the required degree of coverage to attain

certain performance goal. In the previous chapter we derived an analytical model

that suggests an optimal value of k satisfying the requirement of an event detection
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application. Here we assume that, the required degree of coverage (k) is known a priori

depending on the type and purpose of the event detection application. Our proposed

method achieves the detection performance by ensuring the same required degree of

coverage on-demand through adjusting the sensing range.

4.3 On Demand k-coverage Model

As described in Section 4.2.2, on-demand k-coverage technique does not maintain a full

k-coverage (k > 1) all the time. It exploits the variable sensing range capabilities of

a sensor to provide dynamic k-coverage after an event has occurred. The key idea is

to reduce cost and achieve energy efficiency while at the same time maintain reliable

and accurate detection. From the discussions in the previous chapters, we know that

the contribution of each additional node in improving detection accuracy diminishes

gradually with the increment of spatial redundancy. From Fig. 4.1(b), it is evident

that there can be more than k nodes in the candidate set. The actual number of

sensors in the candidate set depends on the deployment strategy, network topology

and communication radius. The problem of on-demand k-coverage with variable sensing

radius is to determine the sensor set that yields the maximum detection performance

with minimum energy consumption for an specific event.

4.3.1 Problem Formulation

Let us consider s∗j is the initiating node for an event and Sc = {s1, s2, ..., sn} is a set of n

candidate sensors as defined in the previous section. To achieve on demand k-coverage,

a set S′e ⊆ Sc with (k − 1) nodes needs to be selected in such a way that the set of

nodes, Se = S′e∪{s∗j} minimises the energy consumption and maximises the aggregated

detection probability. Let us define the cost function,

z(Se) =

∑
si∈Se [Es(rsi) + Ec(d(si, s

∗
j ))]

ζ(Se)
, (4.2)

where,

d(si, s
∗
j ) is the distance from node si to node s∗j

Es(rsi) denotes the sensing energy consumption with increased sensing radius rsi

of node si,

Ec(d(si, s
∗
j )) is the energy required for communication between node si and s∗j , and

140



4.3 On Demand k-coverage Model

ζ(Se) is the estimated detection probability achievable by the subset of nodes, Se.

This value is estimated by the initiating node by considering the potential participating

nodes in Se. This can be done by estimating the expected probability of detection of

the event by individual nodes and predicting the outcome of fusion of those individual

detections. A number of fusion rules were discussed in Chapter 2. In Section 4.3.4, we

present a theoretical analysis for estimating detection probability by individual nodes

as well as ‘n out of k’ decision fusion technique, which is used to calculate ζ(Se).

z gives the normalised cost of accuracy in terms of energy, i.e., hypothetically,

z(Se) stands for the average energy consumption per unit accuracy achieved by the

collaboration of the set of nodes in Se.

Let Erem(si) denotes the remaining energy of a node si at a given time. The problem

can now be formulated as the selection of subset of nodes from the possible candidate

nodes around an event. For a set of candidates Sc, select Se ⊆ Sc such as to,

minimise z(Se)

s.t., Es(rsi) + Et(d(si, s
∗
j )) < Erem(si),∀i ∈ Se

ζ(Se \ si) < ζ(Se) and ζ(Se) > 0,∀si ∈ Se

The first constraint enforces that the selected sensors has adequate remaining energy

to carry out the detection task and the second constraint ensures that no redundant

sensor is added to the set Se.

4.3.2 On Demand k-Coverage Algorithm

In this section we present the energy-accuracy aware node selection for on demand

k-coverage using variable sensing radii. From our network model described in Section

4.2.2, it is evident that an event will always lie within the minimum sensing range

(rmin) of at least one sensor first and then additional neighbouring sensors may increase

their radius to cover the event as needed. The initiating node co-ordinates the whole

process of on demand event coverage. All the nodes within its communication range

are the possible candidates to adjust their radius. A two way message passing between

the initiating node and neighbours takes place to determine the sensors in such a

way as to minimise the energy consumption and maximise the collaborative detection

performance as per (4.2).
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First, the node detecting the event estimates the approximate event distance relative

to its own location information available via GPS or any other localisation method

available [289]. Then it sends a reinforce request to all the neighbouring sensors within

its communication range. Each node receiving the request replies acknowledging its

availability along with its current remaining energy level and location information.

The initiating node then estimates the amount of energy to be consumed for each node

if that corresponding node is included in the detection process.

The node selection task is accomplished in an iterative and incremental manner

employing greedy approach. In each pass, our algorithm selects one node from the set

of the candidate nodes. Initially, the initiating node is the only member in the target

set, Se (steps 1-2 of Algorithm 4.2). The algorithm runs for (k− 1) iterations to select

a new node at each pass greedily (steps 3-7). At i−th iteration, the node, ν(i) that

contributes the most in minimising the cost function in (4.2), is selected as follows,

ν(i) = argsj∈Sc{minz(Se ∪ {sj})}.

The process in Algorithm 4.2 returns the sensor set, Se that participates in dynamic

event coverage and collaborative detection by adjusting the sensing range of its mem-

bers. After this selection phase, the initiating node notifies the selected nodes. Upon

receiving this notification, each selected node starts increasing its sensing radius and

stops when it can sense the specific event. After the sensing range adjustment, those

nodes also increase their communication ranges to maintain the relationship, R ≥ 2r,

that is, the connectivity requirement. The collaborative detection of event is accom-

plished by the decision fusion among these participating sensor nodes (Section 4.3.4).

Once the detection task is completed, participating nodes return back to their normal

range.

The computational complexity of the proposed algorithm is O(|Sc|2). Since the

number of nodes in the candidate sets is usually very small (typically around seven)

[31, 243], the computation time is negligible.

Before moving on to the detection performance and network lifetime analysis, we

provide a deployment guideline for variable range on-demand event coverage in the

next section for both deterministic and random deployment scenario.
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Algorithm 4.1: Greedy On Demand Node Selection

Input: Sc: set of candidate nodes

Output: Se : set of selected nodes

1: Se ← ∅
2: Se ← Se ∪ {initiating node}
3: for i = 1 to k − 1 do

4: ν(i) = argsj∈Sc{minz(Se ∪ {sj})}
5: if z(Se ∪ {ν(i)}) > z(Se) then

6: Sc ← Sc \ {ν(i)}
7: Se ← Se ∪ {ν(i)}
8: end if

9: end for

10: return Se

4.3.3 Node Placement for Variable Range Sensing

The deployment strategy and topology of the sensor network play an important role

in the practical implementation of our proposed technique. In reality, the possible

enhancement in sensing radius is limited by device capability and energy. In most cases,

any node can extend its range to mostly cover the area monitored by its immediate

neighbours. Fig. 4.2 illustrates that the overlapping area between the neighbouring

nodes are different in different node arrangements. It is evident that larger overlapping

during initial deployment will require smaller increment in sensing radius to cover the

immediate neighbours when necessary. As such, the probability of providing effective

coverage depends on the network topology. The relationship between the maximum

sensing range and such overlapping needs to be known before deployment to make

on-demand k-coverage technique applicable. The amount of overlapping required for

effective on-demand coverage depends on the maximum achievable sensing range of the

device. To express the capability of sensing range adjustment of a sensor, we define the

sensing radius Adjustment ratio, υr,

Definition 1. The sensing radius adjustment ratio of any node is the ratio of its

maximum and minimum sensing radius which, in turn, determines the percentage of

the additional area that can be covered by radius adjustment.

Adjustment ratio, υr =
rmax
rmin

. (4.3)
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(a) Triangle lattice (b) Square lattice (c) Hexagonal lattice

Figure 4.2: Different type of grid deployment

Now, we derive the relationship between the adjustment ratio and network topology

for both deterministic and random deployment scenario that will guide the deployment

process.

4.3.3.1 Deterministic deployment

From Fig. 4.2, we see that the triangular grid yields the least overlapping area while

the hexagonal grid results in the most overlapping among the given three scenarios.

The overlapping among the immediate neighbours can be characterised by the angle

subtended by the chord of intersection between two sensing disks to the centre of the

disk. Consider the two sensors with intersecting sensing disk in Fig. 4.3(a). Clearly,

the percentage of overlapping is determined by the angle, θ. For such deterministic

deployment the required adjustment ratio is given by the following lemma.

Lemma 1. Assuming a deterministic grid deployment and known adjustment ratio,

υr, the deployment should be such that the angle subtended by the intersecting chord of

overlapping sensing disks is bounded as,

θ ≥ 2 cos−1

(
υr − 1

2

)
.
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Proof. Without loss of generality, we consider the triangle lattice for grid deployment

here. Let us consider two sensors s1 and s2 operating in their normal sensing range

(rmin) and sharing an overlapped region as shown in Fig. 4.3(a). θ is the angle sub-

tended by the intersecting chord AB to the centre of s1. Now, to provide on-demand

θ 
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Figure 4.3: Probabilistic sensing model

coverage to an event primarily sensed by s2, s1 needs to extend its sensing radius to

the point when it can sense the same event within s2’s disk. In the worst case scenario,

this enhancement may extend up to the farthest point, C on s2’s perimeter from the

centre of s1. This maximum sensing radius, rmax of s1 depends on the width of the

intersection lens between these two disks as denoted by ∆r in Fig. 4.3(a).

From figure, it is obvious that,

∆r = 2rmin(1− cos
θ

2
).

Therefore, maximum sensing radius required will be,

rmax ≥ 3rmin −∆r = rmin(1 + 2 cos
θ

2
), (4.4)

leading to,
rmax
rmin

≥ (1 + 2 cos
θ

2
).
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Rearranging,

θ ≥ 2 cos−1

(
υr − 1

2

)
.

The relationship holds for any other grid deployment strategy. Now the maximum

and minimum sensing ranges are supposed to be known for any specific type of device.

Therefore, the appropriate deployment strategy can be guided by the adjustment ratio

using its relationship with θ.

4.3.3.2 Random deployment

For random deployment, we consider the complete spatial randomness (CSR) which is a

point process modelled by the density (ρ) parameter [290]. In such case, the overlapping

region among the sensors and consequently the required adjustment ratio depends on

this density. Since the accurate estimation of overlapping in case of complete spatial

randomness is not possible, we propose an probabilistic approximation of the actual

measure.

Lemma 2. Assuming complete spatial randomness during deployment and known ad-

justment ratio, the required deployment density is bounded by,

ρ ≥ 1

r2
min (υr − 1)2 .

Proof. As explained before, the maximum required sensing radius for a node depends

on the distance of any event occurred on its neighbour nodes sensing disk. Consider a

node s1 and its nearest neighbour s2 (Fig. 4.3(b)). To cover an event that occurs within

the sensing disk of s2, s1 has to increase its radius up to the point when it can sense

the same event too. In the worst case, the maximum sensing range required to cover

an event detected by a neighbouring sensor requires extending the radius to completely

cover the neighbour’s sensing disk as shown in Fig. 4.3(b). So we need to determine

the average distance from a sensor to its nearest neighbour. From the definition of

complete spatial randomness [290], the probability of presence of l − th neighbour of

any node at a radial distance, d is given by,

Pl(d) =
2πlρld2l−1e−πρd

2

(l − 1)!
(4.5)
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The expected distance from the centre of s1 to the centre of its immediate nearest

neighbour, s2 can be found by putting l = 1 in 4.5 as,

E[d] =

∫ ∞
0

xPl(x) =

∫ ∞
0

2πρx2e−πρx
2
dx (4.6)

Using the result of the Gaussian integral of the following form,∫ ∞
0

xne−ax
2
dx =

(n− 1)!!

2n/2+1an/2

√
π

a
, for n even, (4.7)

the integral in (4.6), evaluates to

E[d] =
1

2

√
1

ρ
.

This means, in case of random deployment, a node may have to increase its range up

to E[d] + rmin distance. Therefore, the required maximum radius is given by,

rmax ≥
1

2

√
1

ρ
+ rmin,

leading to,

υr ≥
1

2rmin

√
1

ρ
+ 1.

Rearranging this,

ρ ≥ 1

r2
min (υr − 1)2 .

Therefore, having known the maximum and minimum sensing radius a priori, the

appropriate node density for random deployment can be determined in Lemma 2.

The above-mentioned deployment guidelines provide the minimum required over-

lapping of sensor coverage (in case of deterministic deployment) and minimum required

density (in case of random deployment case). These guidelines can be used in conjunc-

tion with any popular hole-aware deployment time coverage optimisation algorithm

such as [31, 33, 79, 180] to ensure 1-coverage which is required for our on-demand

coverage algorithm.
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4.3.4 Detection Performance Analysis

In this section, we derive the false alarm probability and detection probability of our

system. According to the on-demand k-coverage technique described in Section 4.3.2, k

sensors collaborate in detecting an event via decision fusion. In practice, the measure-

ment of each sensor is susceptible to an environmental noise. Since the distance from

the sensed event is not same for every participating node, the effect of noise will be

different on each node and so will be its individual detection capability as per (3.16).

Such sensing noise can be modelled using a Gaussian distribution with 0 mean and unit

variance, ℵs(0, 1). Let the event signal measured at sensor si be ui and the threshold

for event detection be ηd, that is a sensor considers an event as detected if the measured

signal value is greater than or equal to ηd. The probability of detection, Pdi for sensor

si is given by,

Pdi = p(di)

∫ ∞
ηd

1√
2π
e−

(x−ui)
2

2 dx, (4.8)

where di is the estimated distance of sensor si from the event location and p(di) as

defined per (3.16). The false alarm probability, i.e. the probability of noise being

greater than or equal to the threshold, ηd, is given by,

Pf =

∫ ∞
ηd

1√
2π
e−

x2

2 dx. (4.9)

We assume the decision fusion threshold as k1, which means at least k1 or more sensors

must have measured signal above the threshold before making a final decision. Similarly,

false alarm in decision fusion occurs when k1 or more sensors among the k collaborating

sensor generates a false detection. So the overall false alarm probability is given by,

PF =

k∑
i=k1

(
k

i

)
P if (1− Pf )k−i,

where Pf is as defined in (4.9).

Now collaborative detection takes place when k1 or more sensors individually detects

an event in the presence of an event. According to the variable range sensing model,

the sensing probability of each node is a function of the distance from the event as

shown in (3.16). Hence, the aggregated detection probability will depend on which

combination of at least k1 nodes are selected. Let Ωk,i denotes the set of combinations

of i sensors selected from k detecting sensors and ς ∈ Ωk,i denotes a specific combination
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of detecting sensors where ς(.) denotes the indices of the sensors. For any set of detecting

sensors, ς, the probability of detection will be Πi
j=1Pdς(j)Π

k
j=i+1(1−Pdς(j)). Considering

different combinations, ς ∈ Ωk,i and different number of sensors, i, (where k1 ≤ i ≤ k),

the overall detection probability after decision fusion is given by,

PD =
1

(k − k1 + 1)

k∑
i=k1

1(
k
i

)× ∑
ς∈Ωk,i

(
Πi
j=1Pdς(j)Π

k
j=i+1(1− Pdς(j))

) . (4.10)

Next, we determine the expected lifetime of a event detection system employing our

proposed technique. For this, we need to estimate the average sensing radius of nodes

over the network lifetime as the energy consumed in sensing depends on the sensing

range.

4.3.5 Average Sensing Radius

Lemma 3. Given that a sensor can vary its sensing range from rmin to rmax, i.e.

r ∈ [rmin, rmax], the expected sensing radius in the on-demand event coverage model for

k degree of coverage is given by,

r̄ =

(
nc−1
k−2

)(
nc
k−1

) (2r3
max − r3

min − rminr2
max

3r2
max

)
+ rmin, (4.11)

where,

nc =

∞∑
κ=0

(πρR2)κe−(πρR2)

(κ− 1)!
− 1.

Proof. The expected sensing range of a node depends on how frequently a node is se-

lected for enhancing its sensing range. This can be estimated using i) the expected

number of candidates around an event, ii) the desired degree of coverage, k, and iii)

spatial distribution of events. The expected number of candidates in case of an event oc-

currence depends on the average number of neighbour nodes within the communication

radius of the initiating node. Consider a complete spatial randomness with density ρ

for node distribution as described in Section 4.3.3.2. In such case, the number of neigh-

bours within certain radius of the initiating node depends on the deployment density.
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4.3 On Demand k-coverage Model

According to this distribution, the probability of finding exactly κ nodes within an area

A with deployment density ρ is given by,

P (κ, ρ,A) =
(Aρ)κe−(Aρ)

κ!

The number of neighbours of an initiating node can be estimated by the expected

number of nodes within an area A = πR2 centred around it. Therefore, for random

deployment, the expected number of nodes, nc in a candidate set Sc for an event is

given by,

nc =
∞∑
κ=0

κ
(πρR2)κe−(πρR2)

κ!
− 1. (4.12)

Considering uniform probability of getting selected in the detection process, such prob-

ability is given by,

pc,k =

(
nc−1
k−2

)(
nc
k−1

) . (4.13)

Now, we need the probability that a node requires range enhancement. In our method,

a sensor needs to increase its sensing radius when an event occurs between the distance

rmin to rmax from the node. Considering the uniform spatial distribution of events, the

probability density function of the distance of an event from the sensor is given by,

fr(x) =
2x

r2
max

. (4.14)

We consider three possible cases for a node: i) an event occurs between the distance

rmin to rmax and the node is selected for range adjustment. In this case range is

increased up to event location, i) an event occurs between the distance rmin to rmax

but the node is not selected in which case sensing range remains unchanged. and iii) an

event anywhere else in the sensor field, in which case sensing range remains unchanged.

The expected sensing radius can be found by,

r̄ =
∫ rmax
rmin

pc,kxfr(x)dx+
∫ rmax
rmin

(1− pc,k)rminfr(x)dx+ rmin[1−
∫ rmax
rmin

fr(x)dx]

=
∫ rmax
rmin

pc,kxfr(x)dx− pc,krmin
∫ rmax
rmin

fr(x)dx+ rmin

= pc,k

∫ rmax

rmin

x2

2r2
max

dx− pc,krmin
∫ rmax

rmin

x

2r2
max

dx

= pc,k

(
2r3
max − r3

min − rminr2
max

3r2
max

)
+ rmin

Substituting the values of pc,k from (4.13), we get,

r̄ =

(
nc−1
k−2

)(
nc
k−1

) (2r3
max − r3

min − rminr2
max

3r2
max

)
+ rmin,
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Considering the network coverage and connectivity model described in Section 4.2.2,

the expected communication radius, R̄ throughout the network lifetime will be bounded

by, R̄ ≥ 2r̄.

4.3.6 Expected Lifetime Analysis

As demonstrated in the energy model for variable sensing, energy consumption increases

with the increased sensing and communication range. On-demand k-coverage technique

requires at most (k−1) nodes to increase their ranges to k-cover an event. This results

into consumption of additional energy beyond the normal sensing mode. In this section,

we model the relationship between the maximum sensing radius and the lifetime of WSN

for a given spatiotemporal distribution of events. According to the model described in

Section 4.2.1, the occurrence of events follows a Poisson distribution with an average

rate of λ′ per unit area. A node will always process an event which occurs within its

minimum range, rmin. In addition to that, any event occurring at a distance from

rmin to rmax from a node will be processed by it with a probability pc,k as per (4.13).

Considering a uniform spatial distribution of events and required degree of coverage

k, the effective rate of event occurrence within the responsibility region of a sensor is

given by,

λk = πr2
minλ

′ + pc,k(πr
2
max − πr2

min)λ′.

Assuming a sensor generates a fixed number of packets to process an event, the number

of packets generated by a sensor within the time interval [0, T ] follows the distribution,

P (M = q) =
e−λkT (λkT )q

q!
.

First, let us consider the lifetime of one sensor. Let the idle-time sensing energy for a

node is eidle per unit time. The total number of events that can be processed by one

sensor in its lifetime, τ is given by,

φi =
Ein − τeidle

Es(r̄si) + Ec(R̄ci)
. (4.15)

Here, Ein is the initial energy of a sensor node. r̄ and R̄ denote the expected sensing

and communication radius, respectively. We assume that all nodes have the same initial

energy. The average sensing radius, r̄ is derived in (4.11) and average communication

radius, R̄ is bounded by R̄ ≥ 2r̄. Now the total number of events that can be detected

by a node in its lifetime eventually indicates the lifetime of a single sensor.
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4.3 On Demand k-coverage Model

Lemma 4. For an initial energy Ein, the conditional probability of a sensor node to

achieve lifetime exceeding τ is given by,

P (ti ≥ τ |φi) = 1− γ(φi, λkτ)

Γ(φi)
(4.16)

where γ(., .) and Γ(.) represent the lower incomplete gamma function and the gamma

function, respectively and φi is defined by (4.15).

Proof. The total lifetime, ti of a sensor si can be computed by summing the inter-arrival

delays of all the events it detects in its lifetime. Let ti,j be the interval between event

j − 1 and j within the range of sensor si. Then,

ti|φi =

φi∑
j=1

ti,j .

Since event occurrences follow a Poisson process, the inter-arrival times between con-

secutive events, i.e. ti,js are independent random variables that take an exponential

distribution with mean 1
λk

. The sum of independent and identically distributed (i.i.d.)

random variables follows a gamma distribution [293]. Therefore, for a given φi, proba-

bility density function of lifetime, ti of a node, i can be expressed as,

fti|φi(x) = λφik
xφi−1e−λkx

Γ(φi)
, (4.17)

which leads to,

P (ti ≥ τ |φi) = 1− P (ti < τ |φi)

= 1−
∫ τ

0
λφik

xφi−1e−λkx

Γ(φi)
dx

= 1− γ(φi, λkτ)

Γ(φi)

To estimate the network lifetime as defined in Section 3.7.4, we have to consider the

individual lifetime of all the nodes deployed in the network. For random deployment

over an area, φi is a random variable with pdf fφ(x). This distribution depends on the

shape of the area and energy dissipation model. Such distribution for some common

shape of networks and random deployment scenario is derived in [294, 296].

Theorem 1. For a WSN with total N number of nodes deployed uniformly over an

area of interest, A and all nodes having same initial energy, the probability of achieving
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4.3 On Demand k-coverage Model

network lifetime, L to be at least τ is,

P (L ≥ τ) = Q(

√
N(1− ψ − µl)√
µl(1− µl)

) (4.18)

where,

µl =

∫
A

(
1− γ(x, λkτ)

Γ(x)

)
fφ(x)dx,

and

Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du.

Proof. From the definition of network lifetime based on the ratio of dead nodes as

stated in Section 3.7.4, the network will achieve a lifetime of at least τ if the number

of individual nodes that live up to τ period of time is at least ψN . To compute the

number of such nodes, let us define a Bernoulli random variable, li for each sensor si

in the following manner,

li =

1, if sensor si achieves lifetime more than τ.

0, otherwise.
(4.19)

The success probability of li given φi, denoted by ps|φi follows from (4.16),

ps|φi = P (ti ≥ τ |φi) = 1− γ(φi, λkτ)

Γ(φi)
.

Since lis are Bernoulli random variable, the conditional mean and variance of li are

given by, E[li|φi] = ps|φi and V ar[li|φi] = ps|φi(1 − ps|φi), respectively. Let us define

a new random variable ω to denote the number of sensor nodes that live till at least

τ period of time. From the definition of li, ω is the sum of successes of N Bernoulli

trials as described above, that is, ω =
∑N

i=1 li. Since the event occurrences are i.i.d.

according to the event model described in Section 4.2.1, li’s are also independent and

identically distributed random variables. Therefore, by definition, ω follows a Binomial

distribution, B(N, ps). The number of sensor nodes is usually large in a typical WSN.

According to Central Limit Theorem [293], the Binomial distribution can be approxi-

mated with a Gaussian distribution for large N . This leads to the following probability

distribution function of ω,

fω(x) =
1√

2πσω
e
− (x−µω)2

2σ2ω (4.20)

where µω and σω are the mean and variance of ω, respectively. From the definition of

ω, its mean and variance can be calculated from unconditional mean and variance of
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li. The unconditional mean and variance of li, denoted as µl and σ2
l can be calculated

using its conditional mean and variance [293] as follows,

µl = E[li] = E[E[li|φi]] = E[ps|φi ]

=
∫
A
ps|xfφ(x)dx,

which leads to,

µl =

∫
A

(
1− γ(x, λkτ)

Γ(x)

)
fφ(x)dx, (4.21)

and,

σ2
l = V ar[li] = E[V ar[li|φi]] + V ar[E[li|φi]]

= E[ps|φi(1− ps|φi)] + V ar[ps|φi ]

= E[ps|φi ]− (E[ps|φi ])
2,

which follows from the fact that, E[x+ y] = E[x] +E[y] and V ar[x] = E[x2]− (E[x])2.

Therefore,

σl =
√
µli − µ2

li
. (4.22)

Since, ω is a sum of lis and lis are i.i.d. random variables, µω = Nµl and σ2
ω = Nσ2

l .

Now,

P (L ≥ τ) = P (ω ≥ (1− ψ)N)

=

∫ ∞
(1−ψ)N

1√
2πσω

e
− (x−µω)2

2σ2ω dx

Substituting (x−µω)
σω

= u, the above can be written as,

P (L ≥ τ) =
1√
2π

∫ ∞
√
N(1−ψ−µl)√
µl(1−µl)

e−
u2

2 du

Therefore,

P (L ≥ τ) = Q(

√
N(1− ψ − µl)√
µl(1− µl)

)

Having analysed the characteristics of our proposed approach, in the following sec-

tion, we evaluate its performance both theoretically and through simulation.

4.4 Performance Evaluation

The performance gain of on-demand dynamic k-coverage using variable sensing radius

is two-fold. First of all, it provides the similar performance guarantee of full k-coverage
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Figure 4.4: Performance gain in terms of number of nodes and network life in our method

compared to static coverage

with significantly low number of nodes, which is desirable from economic perspective.

At the same time it achieves better network lifetime compared to other models where

all the nodes operates in full sensing range all the time.
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Network Parameters

Number of sensor [200, 600]

Minimum sensing radius, rmin 10m

Maximum Sensing radius, rmax 25m

Area of Interest 400x400 m2

Sensing prob. decay factor, γ1=0.29, γ2=0.71

Dead node ratio for network life, ψ 0.4

Energy Parameter

Initial Energy, Ein 2J

Energy consumption model square law

Table 4.1: System parameters for simulation

4.4.1 Cost Effectiveness

From the study of k-coverage [180], it is evident that for higher value of k, the required

node density is significantly high and so is the number of nodes during deployment time.

But in many cases, nodes are not cheap and such dense deployment is unrealistic due to

the huge cost. Our on-demand dynamic k-coverage with variable sensing range requires

only 1-coverage during deployment time which makes it extremely cost effective. Using

the model described in [180] for full static k-coverage, the numerical values of the

required number of nodes for static and dynamic k coverage is shown in Fig. 4.4(a).

This shows the benefit of our method in terms of deployment cost.

4.4.2 Lifetime Enhancement

In our model, nodes maintain the minimum sensing range (rmin) for majority portion

of the time which consumes less energy and extend the sensing radius only on demand

and return back to the normal range once the detection task is completed. In fixed

static k-coverage, sensors consume much more energy as they operate at the maximum

sensing range all the time. The theoretical lifetime of these two methods are compared

in Fig. 4.4(b) where the event rate is taken, λ = 1/hour. The probability of a WSN

achieving a lifetime of more than 1000 hours is shown which establishes the performance

gain in lifetime in our scheme.
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Figure 4.5: Theoretical values for average sensing radius (r̄) vs. degree of coverage (k)

and number of nodes deployed (N).

4.4.3 Simulations and Results

We designed our simulation using the network simulator ns − 3. We developed and

incorporated the variable radius model to this platform and conducted a series of event

detection tasks by varying the sensing range of sensors dynamically on demand. The

events are generated using a Poisson process of rate λ = 1/hour. Each simulation was

run 100 times and averaged results are presented in this section. Simulation parameters

are formally listed in Table 4.1.

First, to verify our theoretical findings, we compare the analytical values of average

sensing radii and lifetime with simulation results. Fig. 4.5 plots the analytically derived

average sensing radius for different degrees of coverage and number of nodes. It shows

that average radius sensing range is usually much less than the maximum sensing range.

The corner at the left hand side corresponds to the scenario of high degree of coverage

requirement with low number of nodes. This indicates that, in such case, nodes need to

operate at near-maximum sensing range most of the time. However, even in the worst
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Figure 4.6: Validation of theoretical result for average sensing radius (r̄) for different k

and number of nodes.
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Figure 4.7: Lifetime comparison between theoretical value vs simulation result.
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case, certain energy saving will be ensured as the average sensing range is still lower

than the maximum range. Fig. 4.6, shows the comparison between analytical values

of average sensing radii and the simulation results. The figure shows fairly close match

between theory and simulation validating our analysis. Fig. 4.7 plots the analytical

value for expected lifetime along with the average lifetime achieved in the simulation

for a certain degree of coverage (k = 3). The simulation result shows close match with

the theoretical values, especially in high node density.
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Figure 4.10: Network life comparison between fixed range sensing [242] and our method

for different number of nodes.

Figure 4.8 illustrates how well the events are covered by adjusting sensing range

over network life even with 1-covered initial deployment. Results for desired degree of

coverage k = 3 and k = 4 are presented for both random and deterministic deployment

cases. Results for the deterministic case show that, for the simulation scenario with

number of nodes greater than 300, more than 95% of the time 3-coverage and more than

85% of the time 4-coverage is ensured at any event location. The random deployment

scenario exhibits a lower value for dynamic coverage. This is because, due to random

deployment, 1-coverage was not ensured in some event locations, which, in turn reduced

coverage performance compared to deterministic deployment. However, the overall

performance of on-demand coverage still ensures 3-coverage for more than 90% of the

time and 4-coverage for more than 80% of time. Application of coverage verification

algorithms (such as [33]) to ensure 1-coverage at deployment time as mentioned in
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Figure 4.11: Required number of nodes for different degrees of coverage using variable

range static sensor and mobile sensor.

Section 4.3.3.2 will certainly improve coverage performance in random deployment to

a level comparable to the deterministic scenario.

To compare the detection performance of our variable range method with a fixed

range sensing method as described in [242], we considered a simulation scenario using

equal number of nodes (300 in this case) in both methods. Sensing range in our method

was varied from 10m to 25m, while the fixed range sensors operated in the mean range

(17.5 m) for fair comparison. For equal number of nodes, the static event coverage

method [242] with no range adjustment only ensures k = 2, while our on-demand k-

coverage can yield dynamic degree of coverage exceeding three (k ≥ 3). This results in

more than 14% improvement in the overall accuracy as shown in Fig. 4.9. We have used

the ROC curve here as illustrated in 2.3.6. From the results showing average sensing

radius in Fig. 4.5 & 4.6, it is clear that a fixed range sensor providing k-coverage spends

more energy than our variable range method. This energy efficiency results in longer

network lifetime in our method as shown in Fig. 4.10.

The cost effectiveness of our method becomes more vivid when we compare the cost

of deployment to its mobile counterpart. We choose the method called Distributed

Approach for Mobile Sensor Selection (DAMSEL) proposed by Ammari [37] for on-

demand event coverage using mobile nodes. For a fair comparison with DAMSEL we

designed a simulation scenario with 600 × 600m2 square area of interest with nodes
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Figure 4.12: Deployment cost comparison (Mobile vs. Variable range static sensor).
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having sensing range r = 20m in normal mode of operation. We accomplished the

event detection task with static sensors having adjustable sensing range in [10m, 25m].

The results are presented in Fig. 4.11, 4.12 and 4.13. Fig. 4.11 shows that our

method requires more nodes compared to the mobile nodes in DAMSEL to provide

a certain degree of coverage to any event location. However, considering the cost

of expensive mobile nodes and significant energy consumption due to mobility, the

trade-off in number of nodes is justified in our case. We have used the commercial

price information for iRobot mobile nodes [297] and EQ-501 [267] variable range nodes

to demonstrate the cost implication of these two methods in Fig. 4.12. It is quite

evident from the figure that high cost of mobile units makes the real life deployments

of them infeasible in many event detection applications, especially when high degree

of coverage is required. Use of adjustable sensing range makes it quite feasible to

attain this goal of higher performance gain at a lower cost. Fig. 4.13 shows the total

energy (movement+communication+sensing energy) consumed by all nodes in a WSN

in DAMSEL compared to our method for 1000 hours of operation maintaining same

degree of coverage. The high energy consumption is primarily due to mobility while

the energy spent in our on-demand k-coverage for adjusting sensing range is negligible.

While, on-demand event detection using variable range sensing is an attractive

solution, the capability of adjusting range is limited mostly to active sensing based

devices. This necessitates the search for alternative mobile node based solution that

can ensure efficient use of node mobility to make such scheme feasible from energy

consumption point of view. Below, we propose a dynamic event coverage technique

employing node mobility.

4.5 Dynamic Coverage using Mobile Nodes

Studies presented in Chapter 2 explored several research attempts to exploit node

mobility to improve dynamic coverage and detection. These works mostly focus on

maintaining connectivity and minimising coverage hole. But in case of event detection,

the movement strategy in many cases may lead to random movements and unbalanced

energy consumption among mobile nodes due to mobility. This may deteriorate the

detection performance by reducing network life and detection capability. We focus on

the issue of event detection in such a mixture of mobile and static sensor network,
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(i.e., in a hybrid network) with a view to enhancing the detection performance by

emphasising on fair energy consumption due to mobility, minimising movement and

keeping node density balanced. To achieve these through better node selection and

movement strategy, we exploited the spatial locality of the occurrences of events.

For dynamic coverage, it is intuitive to keep the mobile nodes roaming around the

region of interest for enhanced coverage. But mobility is a costly operation for resource

limited sensor nodes and excessive movement can lead to early demise. Therefore,

minimising the overall distance travelled by a node is a major issue. This is usually

addressed by moving the nodes towards event proximity only when necessary [37, 257].

But considering the inherent nature of event detection systems, several other factors

should also be considered.

Figure 4.14: Number of accidents at each accident location demonstrating event cluster-

ing [24].
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4.5.1 Spatial Locality of Events

An interesting phenomena observed in most event detection systems is that events

usually tend to cluster around some points of interest over time. Steenberghen et

al. in [24] attempted to identify this inherent clustering nature among traffic events

in road networks and proposed a method to compute spatial concentrations of point-

based events in a network. They studied the dense road network of Brussels and

determined the distribution of accidents over the accident locations (Fig. 4.14) based

on the accident data from the year 1997 to 1999. In our work, we argue that exploiting

this nature of events can be advantageous to event-centric wireless sensor networks. In

such context, mobility in sensor network can be useful to a great extent as mobile sensor

nodes are capable of adapting to the dynamic nature of event distribution. Using a

priori domain knowledge and keeping track of event locations, our model attempts to

position the mobile nodes in the proximity of the high event occurring regions. When

two distant nodes are equally likely to be relocated to cover an event, we assign priority

to the one whose current location is less susceptible to future event than the other. We

introduce a new concept in WSN namely, event occurrence probability, and divide the

sensor field into a set of regions based on the frequency of event occurrence in that

region. This plays a major role in designing our node selection method in dynamic

event coverage as a node from lower frequency region is a better candidate.

4.5.2 Other Factors in Movement Strategy

Another significant observation from the studies in Chapter 2 is that, in most cases the

movement strategies give the highest priority to a node’s distance from target location

[37, 257]. This can cause mobile nodes around a region with high event occurrence

frequency to get selected recurrently and consequently they will be depleted of energy

required for mobility quickly while much healthier node (in terms of energy) may reside

a little farther. Such phenomena may degenerate to unbalanced energy consumption

over the network. That is why the selection and mobility strategy in the proposed

model takes the remaining energy into consideration. Lastly, the density of the areas

from where nodes are being relocated can also be an issue since it is better to move

nodes from high density region rather than sparsely deployed region for the sake of

uniformity. Moving a node from a low density region while its closest competitor

165



4.5 Dynamic Coverage using Mobile Nodes

resides in relatively higher density region will cause imbalance in node density. Our

method will attempt to keep this selection fair from the density point of view as well

as the other factors mentioned above. Such a model should be parametrised enough to

assign appropriate priority to each factor.

To the best of our knowledge, the proposed method is the first to concomitantly

address all the aforementioned factors, namely, i) distance, ii) remaining energy, iii)

density and iv) event occurrence probability, in an on-demand event coverage approach

in a hybrid sensor network. We adopt a sparse deployment of mobile nodes in conjunc-

tion with a 1-coverage of stationary nodes. We propose a fair policy for node mobility in

order to provide dynamic event coverage and our method ensures k-coverage with sig-

nificantly fewer number of nodes. We have characterised the problem of selecting nodes

to move to ensure coverage as a coalition formation game among nodes and employed

a simple game theoretic approach that facilitates the automated coalition formation

among mobile nodes without any central intervention. The following contributions are

made in this regard,

• A self-organised autonomous node movement strategy to provide dynamic k-

coverage in event-centric mobile WSN.

• Introduction of the concept of spatial event occurrence probability in different

regions of a sensing field. The local clustering of events is utilised to enhance

detection performance.

• Simple game theory based distributed scheme that minimises energy spent due

to mobility.

• Minimisation of movement distance in a way that attains balanced consumption

of mobility energy and uniform node density.

Another research area relevant to our work is the implementation of game theory

in communication which has gained attention in recent literature. The network entities

usually tend to work selfishly by seeking performance advantage over others. Each

entity prefers to save its own resources to prolong its lifetime and perform better in the

network. This very nature fits the inherent idea of game theory [298]. Game theory

can model the actions and preferences of independent players in order to capture the

interaction of players in a competitive or cooperative environment. Even though it
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originated from the field of Economics, recent studies have revealed huge potential of

utilising game theory in communication networks and multi-agent systems [299]. This

work employs a major class of cooperative game theory called Coalitional Game that

aids in forming group or coalition among a set of agents considering their multi-objective

preferences.

4.6 System Model for Hybrid WSN

4.6.1 Network Model

So far in this thesis, we have used only static nodes. Here, we consider a hybrid sensor

network with Ns number of static sensor nodes and Nm number of mobile sensor nodes

deployed over an arbitrary shaped area of interest. Sensor nodes are location aware

via a localisation technique such as Global Positioning System (GPS) [289] and both

static and mobile nodes have the same sensing radius, r and a communication radius,

R. The number of static nodes are sufficient to ensure at least 1-coverage which is

calculated according to (2.10). Mobile sensors are uniformly deployed over the sensor

field initially and Nm is taken to be large enough so that each static sensor is within

the communication range of at least k − 1 mobile nodes, k being the dynamic degree

of coverage. Since communication range is usually much greater than sensing range

(R ≥ 2r), required number of mobile nodes for such communication coverage will be

much less than that required for k sensing coverage. Each mobile node is equipped

with a sensing unit and a locomotion unit and capable of movement with a constant

velocity. The movement energy is directly proportional to the distance travelled.

4.7 Proposed Dynamic Event Coverage Model

4.7.1 Event Occurrence Probability

To meet our goal of keeping more nodes in higher event density region, the centralised

entity (base station) keeps record of event occurrence statistics with spatial information.

The entire region is then divided into an B1 × B2 rectangular grid (as shown by the

3× 3 dotted grid in Fig. 4.15). We define the event occurrence probability in any grid
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cell (a1, a2) at the end of each observation cycle of period, tc by,

$(a1, a2) =
E(a1, a2, tc)∑B1−1

i=0

∑B2−1
j=0 E(i, j, tc)

, (4.23)

where 0 ≤ a1 ≤ B1, 0 ≤ a2 ≤ B2, and E(a1, a2, tc) are the number of events occurred

in cell (a1, a2) within the observation period [0, tc]. For any mobile sensor mi, the event

occurrence probability in its current location (xi, yi) can be given by,

ζi = $(b xi
B1
c, b yi

B2
c).

Our base station advertises an UPDATE packet containing the cell co-ordinate and

probability (< (a1, a2), $(a1, a2) >) periodically after every observation cycle of time

tc. Each node listening to the packet, compares its location (xi, yi) with (a1, a2) and

updates its local estimation of ζi with the relevant value. If the spatial distribution

is known a priori, sufficient number of cells can be employed to properly distinguish

the differences in event occurrence probabilities in different regions. In absence of such
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knowledge, equi-probable event occurrence is assumed and any arbitrary B1 ×B2 grid

can be taken in the design phase. After initial design, a cell exhibiting wide variation

of event occurrence frequency within its area can be further subdivided.

4.7.2 Node Density Formulation

We define the density around a mobile node by the number of nodes per square unit area

within its communication range. To compute the density without any additional mes-

sage passing, we have incorporated the Ad Hoc On Demand Distance Vector (AODV)

routing in our model. AODV [6] is a pure on-demand routing acquisition algorithm

that does not depend on periodic routing table exchange. Rather a node acquires the

route information by broadcasting discovery packets only when it needs to communi-

cate. Thereby, whenever a mobile node receives a REINFORCE request, it initiates the

Path Discovery process which eventually identifies its immediate neighbours. Based on

this observation, we define the density around a mobile node sm as, ρm = neighbour(sm)
πR2 ,

where neighbour(sm) is the number of single hop neighbours. Due to the on-demand

route discovery method in AODV, this provides the freshest estimation of density that

is used in our on-demand event coverage algorithm. Density is an important metric

since when two nodes from different density regions are to be considered, having other

factors remaining same, the one from the higher density region should receive higher

preference.

4.7.3 Event Coverage Protocol

According to the aforementioned network model, our network is at least 1-covered and

any event will be captured by at least one static sensor. To improve the cooperative

sensing performance, additional mobile sensor nodes are needed to participate in the

collaborative detection. On detection of an event individually, the static sensor broad-

casts a REINFORCE packet containing its current location as target destination. The

request is received by a set of mobile nodes within its communication range (Fig. 4.15).

A mobile node receiving the request measures its distance from the target and calcu-

lates the density around its current location. An weight factor is calculated using this

distance, density and remaining energy, and sent back as a REINFORCE ACK packet

to the requesting node. The set of nodes responding to the REINFORCE request is
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called the candidate set and a subset of them is to be selected according to our pro-

posed technique presented in Section 4.8.2. Selected nodes are then informed to move

towards the event and start sensing. The mobile nodes move towards the destination

location and stops when they can start sensing the event. The final decision on detec-

tion of event occurrence is taken in collaboration among those nodes using a distributed

decision fusion rule as demonstrated in Section 2.4.3.2.

For convenience, a mobile node will be represented by its distance from the target

event (d), remaining energy (Erem), density (ρ) and event occurrence probability in the

current location (ζ). That is, node mi is represented by, mi〈di, Eremi , ρi, ζi〉. We call

this tuple, 〈d,Erem, ρ, ζ〉, a node profile of a mobile node.

4.7.4 Problem Formulation

According to the proposed model, any event is covered by at least one stationary

sensor and on detection of an event, the stationary node requests a set of mobile nodes

to collaborate and improve the overall detecting performance. Let the mobile nodes

listening to the REINFORCE request be denoted as candidate nodes. Our primary

problem is to select the optimal combination of candidate nodes that will provide

dynamic k-coverage while balancing among the following objectives,

1. Move nodes preferably from lower event probability regions.

2. Minimise node movement

3. Balance the consumption of energy among nodes due to mobility.

4. Minimise the diversity in density around the mobile nodes, i.e., nodes in higher

density region should get greater priority

4.8 Game Theoretic Approach to Node Selection

According to our formulation, selection of the most suitable subset of mobile nodes and

their relocation to improve coverage can be characterised as a coalition formation prob-

lem among mobile nodes to perform collaborative detection. Each mobile node may

have individual preference about joining a coalition based on their profile (〈ε, d, ρ, ζ〉).
So they need to agree on common course of actions. This is a classic characterisation of
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coalition formation games. It is evident that our problem of selecting suitable combina-

tion of nodes can easily be mapped into such coalition formation games. Considering

the resource constraints of sensor nodes, we choose the simplest class of coalitional

games called simple weighted voting game as defined next.

4.8.1 Preliminary Definitions

Definition 1. A coalitional game is defined by a pair (NG,V) where NG = {1, 2, ..., n}
is a set of players or agents and V : 2NG → <+ is the characteristic function of the

game. For every SG ⊆ NG,V(SG) denotes the worth of the coalition.

The problem of group formation is closely related to the concept of coalition for-

mation in economics domain.

Definition 2. A Colaitional Game is called simple if the characteristic function is given

by V : 2NG → {0, 1}. Coalitions with V(SG) = 1 are called winning and those with

V(SG) = 0 is called losing.

In our work we are going to focus on a special class of simple coalitional games known

as Weighted Voting Games (WVG) since each of our candidate nodes may have different

weights on different criteria. The concept is to assign each mobile node a numerical

weight based on its profile that can be used to measure its expected contribution to a

coalition.

Definition 3. A Weighted Voting Game (WVG) is given by a set of agents NG =

{1, 2, ..., n}, a vector of agents’ weights w = (w1, w2, ..., wn) and a quota q ∈ [0,
∑
wi].

The weight of a coalition, w(SG) =
∑

i∈SG wi. The characteristic function v is given

by, V(SG) = 1 if w(SG) > q and V(SG) = 0, otherwise. A coalition SG with V(SG) = 1

is called a winning coalition.

A power index of an agent in a coalition is the measurement of its voting power in

that coalition. It eventually measures the ability of an agent to affect the final goal.

The Banzhaf index is considered to be the most suitable voting power of voting game

theorists [300].

Definition 4. A player i is critical in a coalition SG, when SG is a winning coalition

and (SG \ i) is a losing coalition. For each i ∈ NG let the number of coalitions in which

i is critical be denoted by n′i. The Banzhaf index in weighted voting game is defined

as, Bi =
n′i∑

i∈NG
n′i

. The probabilistic Banzhaf index, B′i is, B′i =
n′i

2n−1 .
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4.8.2 Node Selection Algorithm

The objective is to form a coalition among the candidate mobile nodes that will even-

tually lead to provide dynamic coverage to an event location. Conceptually the weight,

i.e., voting power of an agent should be proportional to its capability of contribution to

the coalition. In our formulation a node’s voting power depends on : i) distance from

the target location - closer is better; ii) remaining energy of the node- higher energy

means better candidate because it is less likely to die by taking part in collaboration

and consideration of this criteria helps the low energy nodes to preserve their energy;

iii) density around its current location - a node from densely deployed region is a bet-

ter candidate because such region can afford to spare nodes; and finally iv) the event

occurrence probability in the node’s current cell - higher probability means nodes are

highly likely to be needed here in future. We call the selected set of nodes, the winning

coalition. The inclusion of a mobile node in a winning coalition is based on its voting

power or weight. We define the binary preference relation �C that orders the candidate

nodes according to their weight w.r.t. the criterion, C. “i �C j” is read as, node mi is

preferred over node mj in the winning coalition for criterion C. For two different nodes

mi〈di, Eremi , ρi, ζi〉 and j〈dj , Eremj , ρj , ζj〉,

1. di ≤ dj =⇒ mi �d mj

2. Eremi ≥ Eremj =⇒ mi �Erem mj

3. ρi ≥ ρj =⇒ mi �ρ mj

4. ζi ≤ ζj =⇒ mi �ζ mj

It is obvious that each of the individual preference relation is a total order w.r.t. the

corresponding criterion. However, one ordering may not be completely complying with

the others. Each node may have different preferences for different coalitions. That is

why, it is suitable to assign a numerical weight to them combining their preferences.

We express the weight for node mi as,

wi = c1

(
1− exp(−R

di
)

)
+ c2

(
ρi − ϕ

ρmax − ρmin

)
+ c3

Eremi
Ein

. (4.24)

Here, R is the communication radius, ϕ is a constant denoting the density with

k-coverage, εin is initial node energy, ρmax and ρmin are maximum and minimum
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Algorithm 4.2: SimpleWVG(M, q, w)

Input: M: set of mobile nodes

w: vector of node weights

Output: MWC: set of selected mobile nodes for relocation

1: WC ← ∅
2: for S ∈ 2M do

3: W (S)←
∑

i∈S wi

4: if W (S) ≥ q then

5: WC ← S

6: end if

7: end for

8: MWC ← ∅
9: ζmin ←∞

10: for S ∈WC do

11: ζS ←
∑

mi∈S ζi

12: if ζS ≤ ζmin then

13: MWC ← S

14: ζmin ← ζS

15: end if

16: end for

17: return MWC

achievable density, respectively and c1, c2, c3 ∈ [0, 1] are adjustment constants. Our

formulation of weight considers the first three of the above four preference relations.

The fourth preference relation (ζi ≤ ζj =⇒ mi �ζ mj ) is employed to break ties among

multiple solution sets and to ensure the uniqueness of solution.

Now, we can model our problem of coalition formation among candidate nodes as

a weighted voting game defined by the set of n mobile nodes, M = {m1,m2, ...,mn}
that receive the REINFORCE request towards an event, a vector of nodes’ weights,

w = (w1, w2, ..., wn), where w is defined by (4.24) and a threshold, q = cwavg, where c

is an adjustment constant. First an straightforward solution to this problem is given

in Algorithm 4.2 (SimpleWVG).

Combinatorial complexity of Algorithm 4.2 is given by
∑n

i=k−1

(
n
i

)
∼ O(2n−1). But

this exponential computation complexity is not suitable in case of a dense deployment
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of mobile nodes where a candidate set contains more than ten nodes. To tackle this, the

winning coalition is formed by enumerating the mobile nodes according to their voting

power indices because the power index actually measures the capability of a mobile node

to affect the coalition’s wining prospect. We will use the Banzhaf index as described in

Section 4.8.1 as the voting power measure in our approach. Since computing Banzhaf

index is computationally hard [300], our proposed algorithm is based on probabilistic

Banzhaf Index (B′i) and exploits an approximation approach similar to [301]. We

assume that node weights can be defined by a normal distribution with average weight

µw and variance σw. Now, a node mi can turn a losing coalition into a winning one

if current weight of this coalition is in the interval [q − wi, q − ε] (where ε is a small

quantity). For any coalition size X, the expected marginal contribution (EMC) of a

node mi to the coalition is:

EMCXi ←
1√

2πσwX

∫ lim2

lim1

e−X
(x−Xµw)2

2σw dx,

where lim1 = q − wi and lim2 = q − ε. Based on this measure, the Banzhaf indices of

all candidate nodes can be computed using Algorithm 4.3. Then our desired coalition

of mobile nodes are formed by selecting according to descending order of their Banzhaf

power indices. It is quite likely that two or more nodes will have similar voting power.

In such cases, ties are broken based on the ordering of event occurrence probability,

ζi ≤ ζj =⇒ i �ζ j, as mentioned earlier. It is straightforward to see that the worst case

complexity of this algorithm is O(n2).

The stability of a this solution depends on the core, which is the most significant

solution concept of coalitional games. The core of a weighted voting game is non-empty

if and only if there is a player i, that is present in all winning coalitions. Since WVG

is a subclass of simple game, this property follows straightforward from the definition

of simple game as proved in [302]. This ensures the stability of our solution.

4.9 Simulation and Results

To evaluate the performance and effectiveness of our dynamic coverage model, we de-

signed and implemented our model in MATLAB, conducted a series of simulations. We

compared results of our model with Distributed Approach for Mobile Sensor Selection

(DAMSEL) [37], which also takes an approach to employ on-demand k-coverage with
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Algorithm 4.3: MobileNodePBI(M, q,w, µw, σw)

Input: M: set of mobile nodes

w: vector of node weights

1: for i=1 to n do

2: Ji ← 0

3: for X=1 to n do

4: lim1 ← q − wi
5: lim2 ← q − ε

6: EMCXi ← 1√
2πσwX

∫ lim2

lim1
e−X

(x−Xµw)2

2σw dx

7: JXi ← EMCXi ×
(
n
X

)
8: Ji ← Ji + JXi
9: end for

10: end for

11: for i = 1 to n do

12: B′i ←
Ji

2n−1

13: end for

14: return B′i

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Degree of Coverage, k

T
ot

al
 n

um
be

r 
of

 s
en

so
rs

 

 

Static k−coverage
Dyanmic k−coverage

Figure 4.16: Number of sensors in static vs. dynamic coverage.
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Figure 4.17: Fraction of events captured in different event probability classes given by

ζ = {0.10, 0.15, 0.25, 0.1, 0.1, 0.15, 0.05, 0.05, 0.05}

mobile nodes. 400 static sensors were deterministically deployed over a 600m × 600m

sensor field. Sensing and communication radii were taken to be r = 10m and R = 40m,

respectively. Energy ratings to drive the mobile nodes are taken from [303]. Ini-

tially 200 mobile nodes were deployed randomly but it was varied in some cases (Fig.

4.21). Event arrival rate was taken to be 1/hour. To observe the impact of differ-

ent event occurrence probabilities in different regions as described earlier, we divided

the sensor field in nine 200m× 200m square grids with event occurrence probabilities,

ζ = {0.10, 0.15, 0.25, 0.1, 0.1, 0.15, 0.05, 0.05, 0.05} and generated a series of events ac-

cording to this spatial distribution. Upon detection of an event by a stationary node,

a subset of mobile nodes within its communication range were selected based on their

profiles 〈Eremi , d, ρ, ζ〉, measuring weights with c1 + c2 = 0.7 and c3 = 0.3 as per

(4.24). We have experimented with other values of c1, c2 and c3 as well which showed

comparative trends.

We consider that, the network life ends when the first mobile node dies out of

energy and each simulation was run until the network dies. All the experiments were

carried out 1000 times and average results are presented. First, in Fig. 4.16, we show

a comparison between the number of sensors required to provide full k-coverage in a

static sensor network and in our hybrid network . In case of static coverage, k nodes
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Figure 4.18: Impact of remaining energy on selection.
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Figure 4.19: Impact of target distance on selection
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need to be within the sensing range of the event while in our model, additional nodes

are only required to be within the communication range of the detecting static node.

That is why the number of sensors is significantly low compared to static configuration,

indicating huge cost saving especially in higher value of k.
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Figure 4.20: Variance of node energy vs. number of events.

Figure 4.17 shows comparison of the fraction of events captured in each of the

nine ζ classes between our method and DAMSEL. Evidently, our method outperforms

DAMSEL and the gain is significant in regions with high event occurrence probability

(ζ2 = 0.15, ζ3 = 0.25, and ζ6 = 0.15). This is an important gain by our method,

as in practice, event-prone regions need more attention, and our method performs

equally good as DAMSEL in other regions. The t-test comparing the two methods at

various probability of occurrence yielded p-values, p ≤ 1.75× 10−11 at 99% confidence

level, validating their performance difference being statistically significant. This gain

follows from two main features of our model. First, if two different nodes have similar

strengths in other components of the profiles, the one currently located in low event

occurring area will be relocated. Thus our method promises to provide better coverage

in the vicinity of high event frequency region. Second, in DAMSEL, always the nearest

nodes are selected irrespective of their remaining energy, which causes nodes in the

neighbourhood of high event frequency to die out quickly. But our method prefers

a distant healthier node than a closer node low in energy. The comparison of the

probability of a node getting selected w.r.t. its remaining energy is presented in Fig.
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Figure 4.21: Comparison of network lifetime.

4.18. This shows that the nodes superior to others in energy have the greater probability

of getting selected. However, as a result of this, our method exhibits a slightly higher

node displacement compared to DAMSEL which is depicted in Fig. 4.19. It shows that

DAMSEL is highly likely to select the closest nodes while our method may select a

slightly distant nodes with moderate probability. However, our method hardly selects

any node from the farthest region. But DAMSEL has to drag nodes from those regions

since the closer nodes die out quickly. The probability of distant mobile nodes getting

selected falls near-exponentially in our method as well.

Figure 4.20 plots the change of variance in node energy among the mobile nodes due

to mobility vs. number of event occurrences. It shows that, approaches that always

select the nearest nodes without considering remaining energy (such as DAMSEL),

cause imbalance in energy consumption. But our method ensures moderate growth in

the energy variance. As a consequence, our method achieves greater lifespan considering

the aforementioned definition of network life. Such gain is depicted in 4.21. Joint impact

of energy and event distance is shown in Fig. 4.22. The results are consistent with

our idea to prefer nodes with higher energy even if they are little farther from event,

when nearby nodes are low in energy. In that way, we ensure that the nodes will not

die out quickly when they are in the vicinity of frequently occurring event. Fig. 4.23

presents the joint effect of distance and node density in selection. It shows that, nodes
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Figure 4.22: Joint impact of distance and remaining energy.
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Figure 4.23: Joint impact of distance and node mobility
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Figure 4.24: Accuracy comparison between DAMSEL and our on-demand k-coverage

[37]

in highly dense regions get preference over nodes in sparse density region. This nature

of our method prevents the possibility of leaving some regions out of mobile nodes at

a time when some other regions may have greater concentration of nodes. Finally Fig.

4.24 plots the ROC curve for our method and also for DAMSEL which shows the gain

in overall accuracy in the proposed method (Area under ROC 0.7876 vs. 0.6872).

4.10 Conclusion

In this chapter we introduced the idea of on-demand event coverage that can ensure

desired performance metrics using much lower number of nodes than the fixed cover-

age schemes presented in the previous chapter. The on-demand event detection using

variable range technique is suitable for the sensor devices with active sensing capability

and easily implementable as the node selection overhead is very low. We developed

a theoretical foundation to make such technique applicable considering the key issues

in event-centric WSNs such as detection performance, energy consumption and de-

ployment strategy. Simulation results show the effectiveness of our approach yielding

enhanced network lifetime and improved detection performance compared to traditional

fixed range sensing used in static coverage or dynamic coverage using mobile nodes.
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4.10 Conclusion

The mobility based strategy is also made feasible by minimising the node movement

exploiting the spatial locality in event occurrence distribution. However, all events

are treated uniformly in both of the proposed method. In the following chapter, we

explore the scenario of multiple concurrent events and the potential gain in providing

differentiated treatment to them.
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Chapter 5

Priority Sensitive Event

Detection

In the earlier chapters, we have considered single event detection task and treated all

events uniformly. However, this may not be the case in critical event detection appli-

cations such as nuclear reactor monitoring [164] or fault detection in highly expensive

system. For example, in some mission critical applications like nuclear leakage detec-

tion or tusmani warning, particular events need to be detected immediately after their

occurrences with high accuracy to avoid human and financial losses [129, 138]. On the

other hand, non-critical applications, such as inventory alarm notification system or

smart home WSN systems, are not such crucial phenomena like the previous examples,

and thereby can tolerate certain delay and loss in accuracy. In the worst case scenario,

even occasional failure to detect these type of phenomena will not bear the same level of

consequences as that of the previous examples. This means there is a need to treat each

type of phenomena/events differently according to their priorities as indicated by their

natures of application. To the best of our knowledge, all event detection techniques

available in the existing literature treats all events equally and uniformly [29, 37, 257]

which clearly lacks practical consideration. With the decreasing cost of sensors, it is

expected that sensors will be deployed in mass scale, and the advancements of multi-

modal nodes will enable sensing of simultaneously occurring events, possibly of varied

priorities, in the same monitoring area. In such cases a detection technique should

be geared to detect high priority events with very high accuracy, even at the cost of

missing some occurrences of low risk events. Such a task is not trivial, but requires the
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5.1 Necessity of Priority Consideration

consideration of severity and cost of missed-detection of different events. To accomplish

this, we introduce the notion of priority sensitive event detection in WSN under such

circumstances.

5.1 Necessity of Priority Consideration

The concept of priority sensitive detection/classification stems from the wider machine

learning domain where false positive (falsely detecting an event) and false negative

(missing an event) decisions are often treated differently [304], [305]. Especially in the

case of imbalanced data classification where the occurrences of most important and sen-

sitive class are rare, misclassifying a rare class member is more significant than missing

a regular one. To easily understand the idea, let us consider a disease diagnosis system.

Missed detection of a cancer cell in body is much more sensitive than missing a benign

mole or cyst on the body. Clearly, the diagnosis system should devote more sophisti-

cated measures to ensure accurate detection of cancer than any other less lethal disease.

The same scenario occurs in event detection too. An event inside a nuclear plant core is

much more sensitive than an event outside the core or an event in the parking bay of the

plant. Unfortunately, no existing even detection technique in the WSN addresses this

issue. Jiang et al. [306] observed such concepts in the software fault prediction model.

They established the fact that the cost implication of mistakenly classifying a faulty

module as fault free and the cost of predicting a fault-free module as faulty are rarely

equal in reality. In case of high risk sensitive software projects, such as safety related

spacecraft navigation system or nuclear reactor monitoring system, the cost of missing

a fault may lead to extreme consequences. Fig. 5.1 presents the cost implications of

13 different software projects with 11 different cost matrices. Their analysis clearly

shows how the costs are associated with the risk level of the component faults. It is

evident from the above discussion that events in real-world WSN applications should

be treated according to priority. Priority of any specific type of event is determined

by the cost implications of the damage resulting from missing that event in the sensor

field. Usually, event centric WSN applications exhibit multiple simultaneous events oc-

curring in close proximity, especially in disaster monitoring, sensitive structure/plant

monitoring or in military applications [89, 108, 124, 138, 139, 164]. In March 2011 the

world experienced one of the most horrifying disaster of this decade in Japan. First
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Figure 5.1: Misclassification Cost for 13 different projects.

came the earthquake and then a tsunami quickly followed. The tsunami shockwaves

caused a core meltdown occurring at the Fukushima Daichi nuclear reactor along with

an explosion of the reactor’s housing structure causing fire hazard. These all lead to

the understanding that disaster or hazard monitoring can no longer be thought of as a

homogenous event detection task. Also, same type of events may have different impact

and sensitivity depending on its origin of occurrence. A fire event originating near a fuel

reservoir is much more sensitive than similar events in other places near non-flammable

object.

Majority of the research in event detection literature treat events uniformly and

equally, which is not always true in event-centric WSNs as discussed above. A range of
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5.1 Necessity of Priority Consideration

different events with varied priority can occur in the sensor field and available mobile

nodes need to be efficiently allocated to those events. Basnik et al. and others [28, 29,

70] devised an algorithm to assign series of tasks to multiple mobile robots in a hybrid

sensor network consisting of low cost static nodes and mobile robots. Their attempt

minimises the communication cost and message passing for the static nodes but does

not consider any priority among different types of events. When multiple events with

varied priority occur at the same time, there is no way to distinguish between them. We

formally introduce variable priorities for multiple simultaneous events and incorporate

this in our on-demand event coverage scheme presented in Chapter 4 to attend them in

best possible way. In a hybrid WSN, this scheme requires efficient allocation of mobile

nodes to different events to satisfy varied performance requirements.

In the light of the above discussion on the necessity of differentiated treatment

in detecting events, we propose an event detection system, that would consider event

priority and missed-detection cost to reflect the actual system performance. However,

several challenges exist in the aforementioned priority sensitive event model in WSN-

1. Priority management: Events need to be assigned different priority values

depending on the projected loss or damage caused (materialistic, financial or

social). This is application specific and needs to be consistent with the real life

cost incurred by respective events. No notable work has been done in WSN

literature addressing this.

2. Scalable QoS support: QoS support techniques for event detection as described

in Chapter 3 are not scalable with respect to event sensitivity. Events with

different priorities demand different performance requirements.

3. Resource allocation: The limited WSN resources (relocatable mobile nodes)

need to be allocated to multiple simultaneous events according to priority. To

ensure superior detection performance for high priority events, the low priority

events may suffer. The trade-off between higher and lower priority events need

to be balanced to achieve acceptable overall detection performance.

Detection performance of events in WSN are typically enhanced using k-coverage as

demonstrated in Chapter 3. In this chapter, we adhere to the on-demand k-coverage

model for QoS guarantee for event detection presented in the previous chapter. Under
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5.2 System Model for PSED

such model, in an event centric WSN with static-mobile intermix, mobile sensors will

move closer to an event and increase the fidelity of detection through the collaboration

with other nodes. Due to the deployment cost, it is not realistic to assign adequate

additional mobile nodes to equally over-provision for all the simultaneous events. The

limited number of additional mobile nodes, which are costly and higher energy consum-

ing, needs to be assigned carefully to events on-demand in such a manner as to ensure

better performance for higher priority events while still not ignoring lower priority

events. The timeliness of detection should also be maintained. The proposed Priority

Sensitive Event Detection (PSED) scheme deals with the aforementioned challenges.

To the best of our knowledge, this scheme is the first to handle simultaneous occurrence

of priority sensitive events in an event centric hybrid WSN. Our contributions in this

chapter are :

• Introduction of the concept of event priority and cost of missed-detection in WSN

based event detection.

• Quality of Service (QoS) of event detection such as accuracy and timeliness are

provisioned on a priority basis, which ensures superior overall detection perfor-

mance.

• Analytical modelling of event detection in our proposed model.

• Finally, maximising the overall priority sensitive detection performance through

the optimisation of mobile node allocation to events.

5.2 System Model for PSED

5.2.1 Network Model

We modify the hybrid WSN model described in Section 4.5 to account for the presence

of multiple events at the same time. We consider a hybrid sensor network with Ns

number of static sensor nodes and Nm number of mobile sensor nodes deployed over an

arbitrary shaped area of interest. We assume that sensor nodes are location aware via

some localisation technique (e.g. GPS or other systems). Mobile sensors are initially

uniformly deployed over the sensor field. Static sensors provide 1-coverage to cover

every point of the WSN and to maintain connectivity and the number of nodes Ns
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Figure 5.2: System Model.

required for such coverage is computed using the technique described in [180]. Each

mobile node is equipped with a sensing unit and a locomotion unit and capable of

movement with a constant velocity, v. The movement energy is directly proportional

to the distance travelled. In Fig. 5.2, solid circles denote static node and squares denote

mobile nodes. Sensing range for the static nodes are shown by concentric dotted circles.

5.2.2 Priority Scheme

In the PSED case, a range of different types of events may occur in a sensor field.

Each type of event has an associated priority value π ∈ [0, 1] depending on the severity

and risk of damage caused by the corresponding event. Each event has one or more

designated sensing attributes and each sensor node stores a lookup table to assign

priority to the event depending on the specific sensed attributes for corresponding

event types.
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5.2.3 Event Detection Model

Here, we adopt a two phase detection model where each event is first detected by one or

more static sensor nodes. Each static node notifies a local cluster head of the event and

the corresponding priority. The cluster head determines which mobile nodes can move

forward to enhance the fidelity of detection, assigns mobile nodes to specific events

and sends request to them. The mobile nodes within the communication range of that

cluster head are candidate for all those simultaneous events. Consider the scenario

presented in Fig. 5.2 where two events with different priorities take place at the same

time and are detected by two static sensors s1 and s2 first. Those two static sensors

inform the cluster head CH1. The cluster head requests the six mobile nodes (m1, m2,

m3, m4, m5, m6) within its communication range denoted by the large dotted circle.

These six mobile nodes will be referred to as the candidate nodes. We see that nodes

m1 and m2 are candidates for both events but they can move towards only one at a

time. In such case, the priority has to be taken into consideration and the high priority

event should get preference.

We employ the sensing and noise model well established in the literature of signal

detection and event sensing as described in Chapter 2. An event is characterised by

the power of the signal it emits. When a sensor senses the emitted signal from an event

for a duration of time T , the total energy measured by sensor s is given by,

Ûs = U(xs).T + ℵ2
s(T ). (5.1)

where U(xs) is the total power measured by a sensor at distance xs without the noise

and ℵ2
s(T ) is the noise having a Gaussian distribution with zero mean. After the initial

detection of an event by at least one sensor close to the event, a set of mobile nodes are

assigned to collaborate and enhance the detection performance. Those mobile nodes

move forward to sense the assigned event and send their measurements to a local cluster

head. The cluster head decides on the presence or absence of the event comparing the

average power to a threshold ηv. Such multi-sensor fusion model was explored in [45].

5.2.4 Problem Formulation

In this model, mobile nodes are allocated to events depending on the event’s priority.

Higher priority events are attended by greater number of nodes. However, critical events
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require faster detection while allocating more mobile nodes may slow down the detection

process as all the assigned nodes need to move forward before detection decision can

be taken. That is why we formulate the problem as a bi-criteria optimisation problem

as described below. Consider,

n events occurring simultaneously, E= {e1, e2, ... , en}.
l candidate mobile nodes, M= {m1, m2, · · · , ml}.
q different priorities, Π = {π1, π2, · · · , πq}.
ti,j is the normalised movement delay for node mj to reach event ei.

Event coverage is represented as a n× l allocation matrix, Cov = [cij ], where,

cij =

{
1, if event ei is covered by mobile node mj .

0, otherwise.

fdet(x) is the detection accuracy of an event covered by x nodes which can be defined

according to the k-coverage detection model in Chapter 3. We define the following

optimisation problem with the goal to determine the optimum allocation matrix, Cov,

for event coverage,

maximise
n∑
i=1

πifdet(
l∑

j=1

cij)

minimise
n∑
i=1

πi

(
max
1≤j≤l

cijtij

)
s.t.,

∑
i

∑
j

cij = l∑
i

cij = 1, for all 1 ≤ j ≤ l

(5.2)

In determining the allocation matrix, i.e. to select the best positioned nodes, the first

objective in the above formulation aims to maximise the overall prioritised accuracy

while the second objective aims to minimise delay in detection. The cluster head in

our detection model will run an algorithm to compute the allocation matrix.

5.3 Solving the PSED problem

5.3.1 Probabilistic Approach

The most intuitive solution to the described problem is the probabilistic assignment

of mobile nodes to events based on the priority. First, we approach the problem as
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a priority based resource scheduling task. We adopt the lottery scheduling [307] from

operating system domain which is a proportional-share scheduling algorithm. We allo-

cate the mobile nodes to events in proportion to their normalised priority. For n events

occurring simultaneously, normalised priority of event ei is defined as,

πNi =
πi∑n
j=1 πj

.

A total of nL =
∑n

j dπNime lottery tickets are allocated to n events in proportion

to their normalised priority values. Event ei gets nl = dπNi le tickets. For each m

candidate mobile nodes, cluster head picks a ticket randomly and assigns the node to

the corresponding ticket owner. The expected number of mobile nodes allocated to

event ei is lnl
nL

.

Proposition 1. For two simultaneous events ei and ej with priority πi and πj ,

1. πi ≥ πj =⇒ PFi ≤ PFj .

2. πi ≥ πj =⇒ PDi ≥ PDj .

where PF and PD are the corresponding false alarm probability and detection proba-

bility, respectively.

Proof. Let us consider the multi sensor value fusion model as discussed in Chapter 2.

Suppose there are k sensors sensing an event. Each sensor measures the signal energy

for duration T . False alarm probability PF can be expressed as,

PF = P
(

1
k

∑k
s=1 ℵ2

s(T ) > ηv

)
= 1− P

(∑k
s=1 ℵ2

s(T ) ≤ kηv
) (5.3)

Since the signal strength follows a zero mean normal distribution,
∑k

s=1 ℵ2
s(T ) follows

the Chi-square distribution with k degrees of freedom. Denoting its cumulative distri-

bution function as χk (.),

PF = 1− χk(kηv). (5.4)

Let the expected number of mobile nodes allocated to events ei and ej are ki and

kj . Then the false alarm rates are PFi = 1 − χki(kiηv) and PFj = 1 − χkj (kjηv),

respectively. According to the method described above, ki = dπNime and kj = dπNjme.
The condition πi ≥ πj leads to,

πi ≥ πj =⇒ πNi ≥ πNj
=⇒ ki ≥ kj
=⇒ 1− χki(kiηv) ≤ 1− χkj (kjηv)

(5.5)
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Therefore, πi ≥ πj =⇒ PFi ≤ PFj .
Again the probability of detection is,

PD = P
(

1
k

∑k
s=1

(
U(xs).T + ℵ2

s(T )
)
> ηv

)
= P

(∑k
s=1 ℵ2

s(T ) > kηv −
∑k

s=1 U(xs).T
)

= 1− χk
(
kηv −

∑k
s=1 U(xs).T

)
.

(5.6)

πi ≥ πj =⇒ ki ≥ kj
=⇒

∑ki
s=1 U(xs).T ≥

∑kj
s=1 U(xs).T

=⇒ kiηv −
∑ki

s=1 U(xs).T ≤ kjηv −
∑kj

s=1 U(xs).T

=⇒ 1− χki
(
kiηv −

∑ki
s=1 U(xs).T

)
≤ 1− χkj

(
kjηv −

∑kj
s=1 U(xs).T

)
.

(5.7)

Therefore, πi ≥ πj =⇒ PDi ≥ PDj .

5.3.2 Combinatorial Optimisation

Probabilistic approach described above is fast and requires very little computational

resource. However, it does not meet the delay constraint. To achieve both the objectives

formulated in (5.2), we view this as combinatorial optimisation problem which considers

all the possible combinations of the coverage matrix. Naturally the problem is NP -

hard. Considering the computational limitation, energy and delay constraint, the exact

optimisation is not always feasible in the sensor node. That is why, we need to use

a heuristic based algorithm to mitigate the exponential time complexity. We consider

the meta heuristic for randomised priority search (Meta-RaPS) [308] algorithm to solve

the optimisation problem stated in Section 5.2.4.

The philosophy behind Meta-RaPS stems from three basic ideas: (i) the incorpo-

ration of randomness in a particular heuristic may dramatically improve the solution

quality, (ii) random combinations of heuristics may lead to better results than each

heuristic individually, and (iii) it basically depends on one heuristic - the priority rule.

Meta-RaPS has been proved to be highly effective and efficient in resource allocation

problem [309]. We approach the aforementioned problem as a resource constrained

allocation problem which motivates us to exploit Meta-RaPS here.
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5.3.3 Delay Analysis

To model the detection delay for any event, let us revisit our two phase detection model.

In the first phase, the event gets detected by nearest sensor. In the second phase a set of

mobile nodes are allocated by the cluster head to move forward and increase the quality

of detection. Since all the allocated nodes need to move to within the sensing distance

to complete the decision fusion, detection delay is determined by the time required

for the furthest node to move within sensing range, assuming constant velocity for all

mobile nodes. We ignore the decision fusion delay and transmission latency here as

they are negligible compared to the time required for node motion.

Definition 1. We define the Allocation Radius, AR, of an event as the distance of the

furthest node among the set of nodes allocated to that event. Let the number of mobile

nodes allocated to event ei be ki. Allocation radius, ARi is given by,

ARi = max
1≤j≤ki

xij . (5.8)

where, xij is the distance of node mj from event ei.

Definition 2. Detection Delay is defined as the time required for the furthest node to

move to within the sensing range of the event. For ki nodes assigned to event ei, this

delay is given by,

Di =
max1≤j≤ki xij

v
=
ARi
v
. (5.9)

where, v is the constant velocity of the mobile nodes.

Theorem 2. For uniform node distribution, the expected detection delay becomes an

increasing function of the number of nodes allocated to that event. The expected detec-

tion delay, D̄i for an event ei with ki nodes allocated to it, with the nodes selected from

a circle of radius R, is given by,

D̄i =
R
(
1− (2ki + 1)−1

)
v

. (5.10)

Proof. For a circle of radius R having uniform node distribution, it is known [310] that

the pdf of the distance of any point from the centre is

fX(x) =
2x

R2
. (5.11)

The probability distribution function for a node to be at most at distance x from the

target is,

gX(x) =

∫ x

0
fX(x) =

x2

R2
. (5.12)
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For a set of ki nodes allocated to an event, the probability distribution for the maximum

distance of any node from event is expressed as,

GX(x) =
(
ki
1

)
fX(x) (gX(x))ki−1 = 2kix

2ki−1

R2ki
. (5.13)

The expected value of the allocation radius as defined above is derived from (5.13)

as,

ĀRi =
∫ R

0 xGX(x)dx

=
∫ R

0
2kix

2ki

R2ki
dx

= R
(

1− (2ki + 1)−1
)
.

(5.14)

Therefore, the expected detection delay,

D̄i =
ĀRi
v

=
R
(
1− (2ki + 1)−1

)
v

. (5.15)

Now, let us consider two events ei and ej with respective priority πi and πj and the

number of nodes assigned to them are ki and kj , respectively. From (5.5), πi ≥ πj =⇒
ki ≥ kj . From (5.10), ki ≥ kj =⇒ D̄i ≥ D̄j . Therefore, πi ≥ πj =⇒ D̄i ≥ D̄j .

That is, for uniform distribution, the average time required to detect an event

increases with the priority of that event. However, this holds only for the initial period

as long as the distribution remains uniform. But assuming that each specific type of

event has a tendency to occur in a specific region of the sensor field, mobile nodes will

cluster around the high priority event locations with time and the distribution of node

will become non-uniform. Therefore, after sufficient number of occurrences, the overall

delay will reduce for higher priority events since they are likely to have the required

nodes in close proximity.

Theorem 3. Consider two different regions regi and regj with dominant event priority

πi and πj. Let D̂i and D̂j be the delay for events ei and ej that occurs in regi and

regj respectively, with priorities πi and πj. For non-homogenous distribution generated

after a series of occurrences of both type of events, πi ≥ πj =⇒ D̂i ≤ D̂j.

Proof. Let us consider two circular areas of radius R around both the event locations.

Since the distribution of nodes is no longer uniform, we model the regional node dis-

tribution around those two events as Poisson process, which is usually used to model

the number of neighbours in non-homogenous distribution [311], [290]. From [290], for
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Figure 5.3: Clustering effect.

a region with poisson distributed nodes with density ρ, the pdf of the distance x from

the centre of a node to its k − th nearest neighbour is given by,

fX(x) =
2πρx2k−1

(k − 1)
e−πρx

2
. (5.16)

Without loss of generality, let events ei and ej occur at the centres of regi and regj

respectively and mobile nodes within the circle of radius R are requested (Fig. 5.3).

The number of mobile nodes assigned to event ei and ej are ki and kj , respectively,

and similarly, the node density in regi and regj are ρi and ρj . The average distance

for the ki-th node from the event ei is then,

ÂRi =

∫ R

0
xfX(x)dx =

∫ R

0

2πρix
2ki

(ki − 1)
e−πρix

2
dx. (5.17)

Similarly,

ÂRj =

∫ R

0

2πρjx
2kj

(kj)
e−πρjx

2
dx. (5.18)

Since mobile nodes tend to cluster around the high priority events with time, the non-

homogenous distribution after a series of events leads to, ρi ≥ ρj given that, πi ≥ πj .

We already know, πi ≥ πj =⇒ ki ≥ kj . Evaluating the integrals we have, ÂRi ≤ ÂRj .

Now, D̂i =
ÂRi
v and D̂j =

ÂRj
v , which leads to, πi ≥ πj =⇒ D̂i ≤ D̂j .
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5.4 Simulation and Results

5.4.1 Simulation setup

To evaluate the performance and effectiveness of our PSED technique, we designed and

implemented an event centric WSN in NS-3 containing both mobile and static nodes and

conducted a series of simulations. We considered events with different priority values

ranging from 0 to 1.0 and 3 to 5 events each run. Each experiment was carried out 500

times and the average results are presented in this section. We compared some results

from our method with an otherwise similar but priority ignorant event coverage method

known as Distributed Approach for Mobile Sensor Selection (DAMSEL), described in

[37, 257]. The mobile nodes are moved using the mobility model in [303].

5.4.2 Cost of missed detection

Table 5.1: Even classification

Sensitivity/Risk Priority Comment

Low 0 ≤ p < 0.4 Low risk events, minor damage (e.g. empty

space in parking lot)

Medium 0.4 ≤ p < 0.8 Medium risk events (e.g. fire hazard in pub-

lic area)

High 0.8 ≤ p < 1.0 High risk events, missed detection is fatal

(radiation leakage inside a nuclear reactor)

For better perceivability of the results we divided the available event priorities in

three different classes namely- Low, Medium and High as shown in Table 5.1. As

explained in Section 5.1, the cost implications of missing an event of High risk class

is much higher than a missing a Low risk event. The cost, either monetary or in

terms of fatality, indicates the loss or damage that follows from missing an event of any

specific priority. From the real life example presented in Fig. 5.1, we infer that the cost

increases nearly exponentially with priority. We use the following cost matrices in our

simulation. Such cost matrices are widely used in machine learning domain to penalise

classifier for misclassification[304, 306]. Here, TP - True Positive, FP - False Positive,

TN - True Negative and FN - False Negative.
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Table 5.2: Cost matrix for event class Low

Event Occurred No event

Event detected 0(TP) 1(FP)

Not detected 1(FN) 0(TN)

Table 5.3: Cost matrix for event class Medium

Event Occurred No event

Event detected 0(TP) 1(FP)

Not detected 5(FN) 0(TN)

Table 5.4: Cost matrix for event class High

Event Occurred No event

Event detected 0(TP) 1(FP)

Not detected 25(FN) 0(TN)

5.4.3 Performance evaluation

Figure 5.4 shows the event detection probability achieved by PSED and its comparison

with DAMSEL [37]. The experimental result establishes that our method ensures

better detection performance for higher priority events while still maintaining significant

detection probability for the low priority ones. It shows that, even though our PSED

scheme performs little worse for the low priority events, it ensures superior detection

performance for the medium and high priority events which is the primary objective of

this chapter. The proposed system ensures an average of 91% detection probability for

high priority event while with the priority-ignorant method there is almost 26% risk of

missed detection.

Figure 5.5 compares our method with DAMSEL with respect to the average degree

of coverage ensured in different priority events. In our method, the overall average

degree of coverage is high for the High and Medium priority events as would be

desired in practice, while priority ignorant method results into a uniform coverage for

all types of events. Even though Low priority events are getting better coverage in

such case, the more sensitive events suffer from less than adequate coverage. In reality,
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Figure 5.6: Cost of missed detection vs. event priority.

the high priority events are more sensitive and the effectiveness of a system depends

on the performance guarantee ensured to them.

Figure 5.6 compares the expected cost of missed detections in PSED and the cor-

responding priority ignorant method using the cost matrices in Table 5.2, 5.3 & 5.4.

Following [304], the expected cost is calculated as, expected mis-detection cost= number

of events *(1- probability of detection) * cost. The rapid increase in the cost of missed

detection in case of the priority-insensitive method establishes the importance of con-

sidering priority. In real world applications, high priority events have much serious

consequences in terms of damage caused. Our priority sensitive method yields almost

400 units cost savings for High priority events compared to its priority insensitive

counterpart.

Figure 5.7 shows false alarm probability for different priority events in our priority

sensitive model. This figure shows that our method maintain acceptably low false alarm

for all classes of events. Fig. 5.8 demonstrates the average remaining energy of mobile

sensor nodes after detecting each occurrences. DAMSEL treats each event equally and

selects the nearest nodes to move which yields a moderate energy consumption. Results

show that, our method spends a little more energy than DAMSEL because some nodes

may have to move longer distance to provide better coverage for high priority event.

However, the significant performance gain in missed detection cost in our method makes
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Figure 5.7: False alarm probability vs. event priority.
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Figure 5.9 compares the theoretical expected delay as derived in (5.15) with the

value obtained in simulation for uniform node distribution at each run. Simulation

shows close match between our theory and experiment. The experimental delay is little

higher which follows from the fact that, we have only considered movement delay while

ignoring any other source of delay such as decision fusion time or data transmission

latency in theory. This is practical because movement delay is the most dominant part

in case of mobile nodes.

Fig. 5.10 shows how the average delay for different event priorities changes as the

distribution of nodes changes from uniform to non-homogenous (considering that mo-

bile nodes do not return to their original locations after the detection task). As more

number of events occur the distribution of mobile nodes changes to non-homogeneous.

The experimental result supports the assumption of node clustering around high pri-

ority events since the delay for higher priority events decreases with the number of

occurrences. Initially higher priority events suffer higher latency which results from

the fact described in (5.10). But after few occurrences of each type of events, the

availability of mobile nodes increase in the proximity of high priority event locations

and the average delay decreases for such events. Fig. 5.11 plots delay vs. priority for
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non-uniform distribution of node generated after a series of 200 events. Since mobile

nodes cluster around high priority event locations with time, the detection delay re-

duces with priority which is evident from the figure. Our method is about 1.7 times

faster in detecting high priority events. In other method, high priority events take

about the same time as low priority events, which may lead to disastrous consequences

in real world scenario.

5.5 Conclusion

In real world applications, high priority events have much serious consequences in terms

of damage caused. It is evident that the efficient and timely detection of multiple

simultaneous events with different performance requirements in a WSN is a practical

issue. In this chapter, we introduced the idea of event priority for different types of

events, and presented a novel technique to assign mobile nodes to events depending on

their priority to enhance the quality of detection. Simulation results demonstrated that

the proposed method outperforms existing method in overall event detection accuracy

and delay.

We have considered the events in a stand-alone WSN so far in this thesis. However,

interaction of nodes with external objects and consideration of surrounding context

is becoming important as WSNs are becoming a part of the Internet of Things. We

explore the such event detection in the following chapter.
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Chapter 6

Context-Aware Event Detection

in the Internet of Things

In the previous chapters, we considered the detection of event in stand-alone WSNs.

However, the physical events in the real world environments are closely coupled with

the surroundings atmosphere. Same event may be interpreted differently depending on

the state of the environment it occurs in. This necessitates the consideration of the

context defined by the state and the presence of other objects in the environment in

reaching a decision on event occurrence. WSN based event detection systems need to

communicate with other external objects and services to correctly capture the context

of the event. This facilitates the detection of events in a more pervasive environment

where WSNs coexist with other intelligent objects that are connected to the Internet

to form a wider network of WSNs and objects, and builds the backbone of the Internet

of things. In this chapter, we explore the potentials of integrating WSNs to the IoT for

context-aware event detection.

One of the most important services expected from the IoT applications is the ca-

pability of detecting and locating events of interest. IoT is envisaged to augment our

everyday objects with sensors and actuators. This augmented visibility of environment

is only be useful through IoT applications if they can detect events of interest and act

on them. As an example, a smart home system with embedded sensors in the envi-

ronment will monitor people living inside and assist them under certain circumstances.

This requires precise detection of real world phenomena. WSN technology dominates

the field of such real world event detection [95] in the existing literature and is natu-
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rally paving its way in the IoT domain. Traditional WSN event detection techniques

does not provide a platform for WSN-to-WSN or WSN-to-objects interactions which

is necessary for event detection in a complex and dynamic environment, whereas IoT

facilitates such a platform. They also lack proper framework to incorporate and handle

contextual information that might strengthen detection system. WSN is deemed as

one of the primary building blocks of IoT as sensors are the only means of observing

the physical world. This chapter addresses such shift of event detection architecture in

WSN and explores how it evolves in the IoT.

The paradigm shift of event detection technologies from traditional WSN to IoT

introduces a series of new challenges. Existing approaches for event detection are

mainly based on some predefined attribute values in regard to the sensed data. This

is quite limiting and can be extended through the IoT platform which enables it to

deal with the sensed data as well as the context of the data. The term context, refers

to the pieces of information that capture the characteristics of sensing environments

[276]. Therefore, event detection in IoT environment must be context-aware. An event

of interest in such setting is inherently composite in nature and needs to be defined as

a function of time, object state and context.

The way an event is defined and viewed in WSN is no longer appropriate for the

IoT. In traditional WSN, an event is defined as a change of a real-world state which

is characterised by the sensed measurements of one or more sensor nodes. Typically,

threshold based event detection is prevalent in WSN where a sensor node reports a

detected event when its average measurement of the raw sensor data is greater than

the detection threshold which is an application specific parameter. However, in IoT

sensors alone may not capture the event of interest since the context of the measurement

defined by the state of other surrounding objects and temporal relationship among them

are also important. This requires an abstract definition of event that brings the spatio-

temporal relationship between sensor values and real world states together. Some of

the information comes from the sensed values, some from the Internet defining user

interest and some from the presence of other neighbouring objects.

Another key challenge is that imposed by the heterogeneity and interoperability of

the wide range of varieties of devices present in the environment. Heterogeneity is char-

acterised by the presence of different computing devices, such as desktop computers,

PDAs and mobile phones, as well as different network technologies integrating these
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devices. The event detection framework should adopt a way to deal with the hetero-

geneity and scale the information from diverse sources up to a homogenous platform so

that events can be defined and detected according to user interest defined dynamically.

The event detection solution needs to manage any type of sensed information regardless

of the particular information source.

The third issue in event detection in IoT is the presence of so called smart and dumb

objects in the region of interest. Smart objects are those that can sense the environment

and are equipped with active communication and computation capability. But there

are other objects in the environment that can only identify themselves when asked

(low powered RFID) but do not connect directly to the internet. Consider a smart

home environment where a lot of objects in the home are only equipped with RFID

so as to facilitate the identification of them. Now, consider a temperature monitoring

sensor in that environment. It will be considered as a hazard if the temperature of a

certain region is beyond the ignition level and there is a flammable object such as a

match or a pressurised deodorant spray container. Since, such flammable objects are

usually not directly connected to IoT, it is the responsibility of the smart sensor to

locate and identify their presence nearby and lookup via the Internet to know if that

object is introducing fire risk. So the event definition needs to be dynamic, composite

and customisable via Internet.

To tackle the aforementioned challenges, it is necessary to move from the traditional

threshold based detection and adapt to the IoT environment by designing a new way

of event detection via a generic event representation and detection framework. Event

detection in IoT is still in its infancy and to the best of our knowledge, no existing work

addresses the aforementioned issues in relation to the implementation of event-centric

WSN as a subsystem of IoT. In this chapter, we propose a ontology based universal

event representation model in the IoT and design an event detection architecture that

provides WSNs with an abstraction layer to capture event related information from

heterogeneous sources in IoT. We take the advantage of the Internet connectivity of

objects to push the overhead of ontology processing in the application layer that resides

in the internet and provides a generic template based method to define events based

on user interest. The main contributions in this chapter are -

1. Identified the key challenges to adapt event-centric WSN to the IoT architecture.
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6.1 Preliminary Concepts

2. For generic and dynamic event definition, proposed an ontology based event defini-

tion language suitable for the event detection in collaboration of WSNs, hand-held

devices and objects with RFID attached to them under the umbrella of IoT.

3. Designed and developed an event detection and notification subsystem that re-

sides in the application layer and interpret the information retrieved from the

underlying WSNs.

6.1 Preliminary Concepts

The IoT is an amalgamation of different technologies and standards such as Radio

Frequency Identification (RFID), Wireless Sensor Network (WSN) and mobile commu-

nication technology with existing Internet as the communication backbone (Fig. 6.1).

We describe these building blocks in brief in this section.

Internet 
of

Things

WSN RFID

Mobile

Figure 6.1: IoT Technologies.

6.1.1 RFID

RFID is a widely accepted technology for automatic identification and tracking of ob-

jects and people. It uses a wireless non-contact system based on radio-frequency to

store IDs in tags attached to objects [312]. The tag contains a unique identifier (e.g.,
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Figure 6.2: Internet of Things.

EPC code that identifies each product distinctively [313]) and an antenna for trans-

mitting and receiving radio signals. Such an electronically stored ID can be retrieved

by a reader devices that operates in a designated frequency. RFID usually uses very

low powered radio and tags can be read from up to several meters of distance. RFID

is one of the most important building blocks of IoT that makes it possible to identify

and track trillions of physical objects or persons with a tag attached.

6.1.2 Smart Phone and PDA

Smart phones are equipped with various sensors and are capable of connecting to the

Internet. With the introduction of fourth generation mobile technology, large amounts

of multimedia traffic apart from the voice traffic are generated from hand held devices.

Such smart devices, PDAs and similar mobile devices can capture voice, video and

location data, and act as autonomous agents in the IoT architecture.

The other component is WSN which is described in previous chapters.
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6.2 Key Challenges

6.2.1 Context Awareness

Context is a set of information that characterises the sensing environment and the

interactions among entities (i.e. persons, objects), either directly and indirectly. IoT

applications are inherently context sensitive, as they promise to bring the physical world

and virtual world together. Context sensitive events cannot be defined or detected

independently by sensors without considering the contextual information within the

environment of interest. While traditional event-centric systems focus only on sensed

information, we suggest context-aware model that integrates sensed information, user-

supplied (QoS), and derived information and their contextual relationship to exploit

the full power of IoT.

6.2.2 Interoperability and Integration

IoT applications face the natural challenge of interoperability among different devices

and systems, and integration to standard communication protocols [314]. The under-

lying WSNs need to interface with all the other devices present in the environment and

maintain Internet connectivity via an IPV6 addressing scheme. This communication

details are beyond the scope of this work. Here we focus on the standardized data

representation language for event definition and detection.

6.2.3 Data Heterogenity

As shown in Fig. 6.2, contextual information in the IoT originates from a wide range

of different devices which leads to heterogeneity in data. To capture the true real world

picture, the underlying WSN needs to identify and capture data streams from them

apart from its on sensing devices. For example, a fire hazard detection subsystem for

smart home needs to combine data from temperature and Carbon Monoxide sensors

and at the same time needs to detect the presence of flammable and hazardous objects

nearby. Therefore, in addition to sensing the environment, they also need to be smart

enough to locate and identify other relevant devices via RFID reader or other means.

Beside capturing data, there is a need for generic representation of all relevant data.
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6.2.4 Event Representation

An event pattern is defined as a combination of data gathered from all or a subset of

those sources. Apart from various sources, complex events often need to be defined

in terms of multiple temporally or spatially related atomic events. The object state

interaction is explained below with a detailed example.

Let us consider a smart home monitoring system. All the objects, like household

appliances and human agents inside the home are trackable using RFID. Only the

household appliances are equipped with sensors besides the standard temperature and

smoke sensors mounted in fixed strategic locations. The sensor are equipped with

RFID reader and directly connects to the smart home server via Internet. However,

the RFID objects are usually large in number, placed randomly or change location with

time, and do not directly connect to the Internet due to cost and energy restriction.

So it is the responsibility of the sensors to identify the objects near them and transmit

this information to the higher layer. Now let us consider a potential fire hazard and a

child susceptible to the vulnerability. The temperature > 200 and smoke > 100mg/L

detects a potential fire hazard which could be detected by typical threshold based

event system. However, to determine whether the child is within the danger zone or

not, the sensor need to make use of RFID technology and track the RFID tag attached

to the child. Thus the WSN deals with a heterogenous forms of data and enormous

number of combination of information. Therefore, we require a uniform methodology

of representing the IoT data and interfacing with the event detection subsystem.

6.3 Event Detection Architecture

As described in the previous example, a WSN in IoT needs to be wrapped with an

abstraction layer so as to interface with the event detection subsystem. Let us con-

sider an environment with N sensors and M passive objects identifiable via RFID. In

our model, we assume that the RFID objects do not communicate with the Internet

directly, rather they only store their IDs and other related description in their tags,

and are readable via nearby sensors equipped with RFID reader. Sensors are location

aware and equipped with RFID reader and communication module that enable them to

communicate with the Internet. Each sensor can be in φ different states. Each object
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Figure 6.3: Conceptual Architecture.

can be near to one or more sensors. So there are a total of φN × NM different com-

binations of objects and states, only few of which denote events of interest. Because

of this combinatorial explosion, the event detection algorithm is pushed in the internet

layer in our detection architecture as shown in Fig. 6.3. The WSN will conform to

an information exchange format provided by the higher layer IoT application and send

the collected data periodically to the detection subsystem after translating them using

the representation described below.

6.3.1 Ontology Model

Ontologies can be viewed as a representation of the application domain. We describe the

IoT event detection application via the ontology model which presents the underlying

WSN with an information abstraction layer. The ontology model is described as a set

of classes, C and properties, P . The main classes in our model are,

• Sensor Entity: Describes all the sensors in the IoT system such as temperature,
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pressure, smoke or light sensors.

• Object Entity: Any physical object with an unique ID. The entities of this class

do not maintain direct connectivity with the Internet

• Person Entity: Mobile agents with unpredictable or random movement pattern

such as human beings or pets.

Each object class has a set of attributes associated with them an can be described

by a taxonomy similar to the example is shown in Fig. 6.4.

6.3.2 Data Representation

According to our model, the underlying WSN is responsible for capturing data from

different sources and presenting them using a generic model suitable for information

exchange within the IoT. To accomplish this, the WSN layer is provided with a com-

mon abstraction layer to manage data uniformly from different system entities such as

sensors, RFID reader, hand-held devices and people. To this end, we employ the sensor

model language (SensorML) described in [315] that provides the metadata model in the
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Figure 6.5: XSD schema for sensor type ‘Thing’ in the IoT.

eXtensible Markup Language (XML) format to describe sensors and their capabilities,

and other nearby objects and people reachable via the RFID reader. SensorML ensures

the interoperability with other devices and the event detection application residing in

the web layer. For metadata representation, we use the XML schema definition lan-

guage (XSD). Our core event detection system provides the XSD for representation

of relevant data in the corresponding IoT domain using the ontology description pre-
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sented in the previous section. Figure 6.5 presents an example schema definition for a

sensor in an IoT application that includes four different types of sensors along with the

presence of passive physical objects and persons. A list of base schemas that can be

customised and extended to describe an IoT environment is available online [315]. We

leave the details of complete definition here, since it is application oriented. The sensor

devices in the proposed method are initially aware of the schema definition and capable

of generating xml strings complying with the given schema with sensed values. In reply

to the query from the web layer, each device generates and delivers an xml string. The

data acquisition and detection subsystem extracts the values of corresponding class

from the generated string.

6.3.3 QoS Manager

The typical QoS metrics in a sensor network based event detection are detection proba-

bility, fault tolerance and detection delay. The QoS manager in our architecture defines

the QoS requirement of a particular event in the corresponding IoT environment. The

physical sensor network is not directly responsible for maintaining the QoS because

of the possible influence of external factors, e.g., the context of the surroundings, on

the event of interest. Rather the higher layer event detection subsystem decides on

the data frequency and reliability required from the sensor network and asks for data

accordingly. Since the detection subsystem resides in the Internet layer, it monitors

all the data feeds, can aggregate data from multiple sources and introduce redundancy

to guarantee expected QoS. The QoS manager enables the data acquisition subsystem

to generate QoS-aware query to the sensor network when necessary. We exploit the

quality adjustable query processing method of WSN described in [316]. This enables us

to integrate a delay and accuracy aware query processing framework which is capable

of dynamic adjustment to meet user/application requirements.

6.3.4 Detection Algorithm

The context-aware event detection algorithm in the proposed architecture is an online

algorithm with two sets of inputs. One is a set of rules defining the events of interest

which comes from the event register. The event register in Fig. 6.3 is populated from

user input defining event pattern and can be updated anytime through the Internet.

The other sets of input comes from different sources such as WSNs, mobile phones
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and RFID tagged objects as shown in the figure. One notable feature of the proposed

architecture is the external WSN service as shown in Fig. 6.3, which enables the

detection system to collect information from geographically distributed WSNs. The

data acquisition submodule extracts the sensor values and proximity information of

objects and person entities from the periodic WSN responses. The detection submodule

then feeds the detection algorithm with the gathered data and the rule set from the

event register. The algorithm detects an event as soon as finds a match against the

rule set.

Since the detection algorithm runs on a server, the rules defining events can be

complex and can be updated when new objects enter into the environment and augment

the context. It considers all types of spatial and temporal relations among the sensor

values along with the presence of different IoT objects, and accordingly define events

using complex rules. In general, a event can be specified using the following format,

rule 〈predicates, attributes〉 context〈sensor value, object location and time〉 measur-

ing accuracy 〈[0, 1]〉.
Consider the sample, rule 〈 temprature> 65◦C ∧ distance< 2m ∧ interval> 2min

〉 context〈sensor T1, fuel container #1, time〉 measuring accuracy = 0.9. The first

part defines the event in terms of attribute values without context. The second part

specifies the context indicating which sensor and object needs to be monitored. This

rule is interpreted as, ”If the temperature data from sensor T1 exceeds 65◦C while its

distance of the fuel container numbered #1 is less than two metres and such observa-

tion continues for at least 2 minutes, notify the user about the event of interest. The

measuring accuracy denotes the required confidence for the specified event.

Each event rule corresponds to one specific entry in QoS Manager in the given

architecture (Fig. 6.3). It denotes the confidence level of the corresponding sensed

data to declare the event as detected. If any reading does not meet this pre-defined

accuracy, the data acquisition subsystem performs a QoS aware query to the specific

sensor to re-acquire values, and the detection algorithm is re-run.

6.4 System Prototype

To demonstrate the proposed event detection paradigm in the IoT using context-aware

sensing, we designed and implemented a Safe Home network. This constitutes actually
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Figure 6.6: Safe Home kitchen layout.

a sub-system of the wider smart home domain. The idea is to equip the home with

strategically positioned sensors and monitor the object-state interactions within it for

potential hazard or unsafe activity. The layout plan of our safe home system is shown

in Fig. 6.6. We define two representative context-sensitive events. They are,

• Fire Hazard: The placement of any flammable item in a kitchen location that

exhibits a high temperature may trigger an ignition. Such as, placement of com-

pressed oil or spray container near the stove while it is on. Temperature sensing,

proximity sensing and location awareness are taken into consideration to identify

the context denoting this event.

• Unsafe Activity : This type of event is characterised by the distance between

a person in the kitchen and the stove and heat sensed at certain distance. The

person’s potentially dangerous movement (running or falling abruptly) in the

kitchen is also monitored. We denote a speed of more than 8km/h in the kitchen

when the stove region temperature is more than 45◦C as a unsafe movement

event.
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6.4.1 Indoor Position Tracking

Global Positioning System (GPS) is not suitable for indoor location tracking, since high

frequency signals from satellite will be attenuated and scattered by several obstructions

such as roofs, walls and other objects. Therefore our prototype does not rely on GPS. To

know the position of the movable objects or users in our safe home network, we employed

received signal based approximations by positioning three static nodes in three fixed

known locations and the co-ordinates of them are entered into the system. We call

these nodes the anchor nodes. Each mobile node can approximate its own location by

estimating the distance from these three anchor nodes using RSSI measurements from

each of them [317]. This triangulation based on RSSI is illustrated in Fig. 6.7.

P

d2

d1

d3

Static anchor 
node 

Figure 6.7: Indoor location approximation using received signal strength measurements

from three static anchor nodes. The three dashed circles denotes the estimated distance of

the anchor nodes from the target object. P indicates the estimated location.

6.4.2 Sensor types

For temperature sensing in strategic locations of our safe kitchen, we used the DS1921G

thermochron iButton [318]. DS1921G is a self-sufficient system that measures temper-

ature and records the result at a user-defined rate. Up to 2048 temperature values

taken at equidistant intervals ranging from 1 to 255 minutes can be stored. It logs the

time when the temperature goes beyond a user-programmable range and also records

for how long the temperature stayed outside the permitted range. An additional 512
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(a) Thermocon (DS1921G-F5) tem-

perature sensor

(b) Realtime temperature monitoring

Figure 6.8: iButton temperature monitoring for our home network.

bytes of battery-backed SRAM allows storing information pertaining to the object to

which the DS1921G is associated. We used the additional SRAM to store the static

location of the sensor in the kitchen. To detect movement speed and direction of the

users and the movable objects inside the house, we used a smartphone with built-in

accelerometer, gyroscope and Wi-Fi connectivity. We developed an application that

takes the raw movement data from phone sensors and transmits to a web service via

Intranet. It also estimates the location of the mobile object or user using triangulation

based on RSSI as explained earlier. A smart phone (iPhone) with described location

tracking application running is referred to as the movement tracker in this prototype

system. The acceleration monitoring feature is shown in Fig. 6.9(a).

In our experiment four Thermochron temperature sensors were placed in the kitchen

as shown in the layout in Fig. 6.6. We attached one movement tracker to the spray

container containing flammable material and another tracker to the wearable of the

person (Fig. 6.6). We developed two-tier application server. A Java based console

application acts as a data acquisition layer which logs data from the temperature sensors

via wired connection and location data via wi-fi connection from the movement trackers

and store the realtime data in a remote mysql server. A web application continuously
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(a) Prototype iPhone applica-

tion tracking user’s acceleration

in three different axes.

Define the context:
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Fire Hazard

Select Sensor: Sensor T1  Low: 55  High:

65
Select Object: Object1 (Flammable)  Distance:

2  (min. 1m)

Realtime Data:

Temp...

6:00
6:30

7:00
7:30

8:00
0

15

30

45

60

page http://localhost/SafeHome/prototype.html

1 of 1 28/05/12 6:51 AM
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Figure 6.9: User interfaces of our Safe Home System.
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Figure 6.10: Testbed result : Fire hazard detection.
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Figure 6.11: Testbed result : Unsafe movement event.

monitors this realtime data and triggers an event when the defined event context is

matched. The web interface for defining context shown in Fig. 6.9 facilitates the user

input for event of interest.

We logged data for about two and a half hours in the morning period of the day and

used the stove twice during that time (between 7:00 - 7:30 AM and 8:15 - 8:30 AM).

Fig. 6.10 plots the temperature recorded from sensor T1 which is placed within 1 m of

the stove. The temperature values within the stove region was recorded and shown in

the figure that exhibit a rise beyond our predefined threshold of 45◦C when the stove

was on. However, only the second time, the flammable container was near the stove as

shown in Fig. 6.10 and thereby triggers a potential fire hazard event at around 8:15

AM as shown in the figure. Even though the Thermochron sensor itself is capable of

generating an alarm when the temperature is beyond the designated range, it cannot
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capture the event defined here by itself since it is unaware of the surroundings. The

potential fire hazard defined above was only detected when the sensor information was

coupled with the location information of the flammable container.

Similarly, Fig. 6.11 plots the movement speed of a person working in the kitchen.

It shows that the speed crossed the threshold of 8km/h on three different occasions.

However, only the third occasion triggered an event (marked by the rectangle in the

figure), as expected, coincided the time window while the stove was running and the

temperature for the stove region was too high. Evidently, none of these two events could

be captured using the threshold-based event-centric WSN. The object-state interactions

are needed to be considered to capture the event.

6.5 Conclusion

In this chapter, we outlined how event centric WSNs presented in previous chapters can

evolve to adapt to a broader Internet of Things domain. The proposed event detection

framework provides WSNs with an abstraction layer for seamless integration with the

IoT event based systems and enables them to operate with heterogenous devices and

standards to accomplish reliable event detection in a pervasive IoT environment. The

testbed implementation demonstrated the idea via the detection of two representative

events in the IoT under the proposed event detection architecture. In the following

chapter, we conclude this thesis by presenting conclusive remarks and directions on

further extensions of the current work.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we developed a formal QoS aware event detection framework using a

WSN. First, we identified the key performance metrics that characterise a detection

system and investigated the factors affecting the performance. Having studied the

existing WSN applications extensively, it became evident that the structure of a WSN

is tightly application dependent. Therefore, we approached the goal of QoS provisioning

from a design perspective. The foundation of the proposed event detection framework

was laid by devising an analytical model where performance requirements are used as

design parameters. The initial design was based on providing redundant coverage where

the optimal degree guaranteeing a set of QoS metrics is determined in our method. Then

this model was extended to incorporate a dynamic node failure model and the variable

range sensing technology was exploited to attain robustness against such fault.

However, the deployment cost in fixed k-coverage detection method is not always

practical. Therefore, a dynamic event coverage technique was proposed where QoS

guarantee for event detection is provided on-demand in a specific region of interest

after the occurrence of an event. In essence, this scheme provides the same QoS at

the cost of only 1-coverage at the deployment time. This also attains energy efficiency

and enhances WSN lifetime compared to maintaining complete fixed coverage through-

out its lifetime. Investigating the active and passive sensing technology, we proposed

two different methods for on-demand coverage. First, we exploited the variable range

sensing technique to ensure redundant coverage of an event only when necessary by ad-
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justing the sensing range of the nodes in the close vicinity of event location. However,

the range adjustment technology is limited to a certain set of the physical attributes

of the environment being monitored and irregular event distribution can lead to un-

balanced energy consumption in some cases. To handle such a scenario, we proposed

an on-demand event coverage technique using mobile nodes in conjunction with static

nodes. To mitigate the random movements of mobile nodes, the proposed node move-

ment strategy considers the spatial distribution of the occurrence of events in a network

and attempts to position the mobile nodes accordingly. Our dynamic coverage scheme

thereby minimises the energy spent due to mobility while taking advantage of the spa-

tial locality tendency of event occurrences to enhance detection performance.

The prevalence of multiple simultaneous events occurring in the same WSN ne-

cessitates differentiated treatments for different events. We introduced the concept of

differentiated priority and missed-detection cost of events to enhance detection perfor-

mance. Our a priority sensitive event detection method facilitates the provisioning of

QoS metrics, such as accuracy and timeliness, on priority basis which ensures enhanced

overall detection performance. We presented detailed analysis of the delay and accu-

racy for the proposed model. The experimental results showed superior performance

of our method compared to traditional flat priority based event detection systems in

terms of both energy and accuracy.

Finally, we focused on the evolution of event detection from a WSN to the Internet

of Things that connects the physical and virtual world. We identified the key challenges

to fit event-centric WSN into the IoT architecture. For generic and dynamic detection

of real-world phenomena, we introduced an ontology based event definition language

suitable for the IoT environment where sensors, objects and persons, all collaborate in

event detection. The proposed method takes the context of the surrounding environ-

ment into account in which a potential event is occurring. This approach eliminates

some of the drawbacks of threshold based event detection and makes it suitable for

the diverse and composite nature of the events that WSNs are responsible for in the

Internet of Things.
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7.2 Future Work

Our extensive study of the event detection literature identified a number of research

problems that we could not solve in this thesis due to time and other limitations. We

briefly outline them in the following which can be investigated in future research.

1. 3D k-coverage problem: Traditionally, the target sensing field was considered

to be a two dimensional flat plane where any location can be described using only

two co-ordinates. However, recently, WSN based monitoring has been adopted

in underground and underwater environments where the events can occur in any

three dimensional location. This means a more complicated geometric plane

needs to be handled. This change in the WSN design from a 2D to a 3D setting

necessitates the extension of our QoS aware coverage presented in Chapter 3 to

3D k-coverage.

2. Heterogeneous coverage: In Chapter 4 we have seen that irregular spatial

distribution of event occurrence is common in the real-world environment. In ad-

dition, the environmental noise considered in our model can be diverse in nature

and vary largely in different areas, especially in a large-scale WSN. Therefore,

the same QoS guarantee everywhere in a sensing field may lead to over provi-

sioning and inefficient use of resources. Using variable range sensing technology,

we can model a heterogenous event coverage strategy where different regions in

a WSN can be monitored with different levels of performance guarantee. This

needs to consider the dynamic nature of event distribution and also the temporal

change in environmental noise patterns. For a large-scale sensor network, loca-

tions more susceptible to noise at the beginning may change their patterns over

time. Similarly, the spatial distribution of event occurrence may also change and

the network may dynamically change the degree of coverage in those locations by

adjusting the sensing range accordingly.

3. Clustering effects among mobile nodes: In Chapter 4, we presented a dy-

namic event coverage scheme using mobile nodes. It was noted that the node

movement delay reduces over time as the mobile nodes organise themselves in

the proximity of high frequency events. While we experimentally observed such
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clustering effects, we did not thoroughly analyse such phenomena. Proper inves-

tigation and modelling of such clustering effects can lead to meaningful insights

that will help designing improved event detection schemes using mobile nodes.

4. Priority sensitive coverage using variable range sensing: In Chapter 5 we

proposed a priority sensitive multiple event detection scheme using node mobility.

A similar result could be achieved by exploiting variable range sensing technique

where applicable. The sensor nodes can extend their sensing ranges to provide

more robust detection for high priority events. Instead of moving mobile nodes

on-demand, the sensors can be informed from a base station about high priority

event locations and redundant coverage can be provided before the event occurs.

This will further reduce missed detection of high priority events to a greater

extent. In addition, it will facilitate the dynamic adaptation of the detection

scheme in different locations if the priority of the event locations change over

time.

5. Time varying sensing range: We have modelled the time-dependent node fail-

ure rates in Chapter 3. In a simpler way, the sensing range can also be subject to

degradation due to ageing and battery depletion over time. A complete analytical

modelling of event detection systems should account for such a scenario.

6. QoS aware detection in Vehicular Sensor Network (VSN): In Chapter 4,

we devised a node movement strategy to facilitate dynamic event coverage using

mobile nodes. However, there are special types of mobile nodes in the practical

environment where we have little control over the mobility strategy. One such

domain is the vehicular sensor network mostly found in intelligent transportation.

Such networks can be used to detect real-world events such as the presence of pot-

holes in the road and rear-end collisions [319] between cars, and report them to

the base station. Fig. 7.1 illustrates the example of congestion event and fog

hazard detection near a gas station in a VSN. Here VS1, VS2, VS3, VS4 and

VS5 detect congestion locally and transmit it through BS1 or VS8 whichever is

closer. Similarly VS14 detects a local fog pocket on its way and transmits the fog

hazard event via road side base station (BS3) that broadcasts this event to other

cars behind. Momen et al. [320] proposed a random structure VSN, where the
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Fig 8. Illustration of traffic congestion detection in a VSN 

 
To successfully deploy an event-centric VSN it necessary to analyse the detection 

performance that can be achieved given a particular mobility pattern and vehicle density in 

any urban region. To the best of our knowledge no one has addressed this issue so far. In our 

work we will eventually derive a model to maximize the detection performance metrics based 

on the mobility metrics which will aid into the deployment of event-centric vehicular sensor 

network. 

4.2.5 WSN and Internet of Things 

Wireless sensor networks are increasingly getting an integral part of our everyday life. No 

wonder it is a strong candidate to be get integrated with the future internet of things. The 

future Internet, designed as an “Internet of Things” is foreseen to be “a world-wide network 

of interconnected objects uniquely addressable, based on standard communication protocols 

[65]. Identified by a unique address, any object including computers, sensors, RFID tags or 

mobile phones will be able to dynamically join the network, collaborate and cooperate 

efficiently to achieve different tasks. Integrating sensor networks to this ubiquitous internet of 

things can open a new horizon in the field of detection and monitoring. The future internet of 

things and integration with WSN is illustrated in Fig 9(a). and Fig 9(b). 

Figure 7.1: Illustration of traffic congestion and fog pocket event detection in a VSN

coverage property is managed and controlled by introducing a method for resource

allocation and coverage control based on the real vehicle mobility model. But the

event detection using VSN still has not yet attracted much attention. If it is

possible to devise an efficient event detection technique that can be applied even

in high mobility of the participating sensor nodes, we can extend the classical

event detection approaches to vehicular sensor networks.

To apply the proposed QoS-aware event detection framework in such settings is

not straightforward due to low control over the mobility pattern. Besides, the

nodes can travel through only a predefined road network rather than randomly.

The only factors that can be controlled are the node velocity (with defined speed

limit) and lane change behaviours. In Hugo et al. [321] a methodology for char-

acterising the mobility pattern for vehicular sensor network in the typical urban

environment has been developed. They provided a framework for capturing the

trajectories followed by the nodes in a typical urban setting. There are several

other models of mobility outlined in literature that model the spatial distribu-

tions of mobile nodes (vehicles), direction of movement and velocity, and allows

the derivation of mathematical expressions describing mobility metrics. Two such

notable models are Car Following model [322] and Cellular Automaton model

[323]. The car following model follows the principle that the mobility metrics

(direction, velocity etc.) of one vehicle depend on the vehicle it is following. The
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Cellular Automaton model divides the road into cells and modelling is done in

time steps where each vehicle is allowed to move only if the following cell is empty.

Based on the mobility pattern and application requirements, three different types

of communication are possible: i) Inter vehicular, ii) Vehicle to roadside base sta-

tions, iii) Hybrid of the two. It will be a significant contribution in the detection

domain to analyse the expected detection performance that can be achieved given

a particular mobility pattern and vehicle density in any urban region.

7. Event detection in WSAN: The increasing application of event-based systems

in our everyday life will lead to greater use of Wireless Sensor and Actuator

Networks (WSANs). In the case of WSANs, the state of the environment and

the context of an event must account for the current state of the actuators too.

For example, if a sensor equipped with an actuator is already busy in performing

one task, the system should be able to sense that and redirect any simultaneous

event to the next best sensor (in terms of position, capability or energy etc.).

Considering the role of WSANs in the future Internet of Things, it will be worth

extending the proposed context-aware event detection described in Chapter 6 to

incorporate the actuator state into the context modelling.

7.3 Broader Impact

The proposed method in this thesis facilitates efficient event detection in a pervasive

intelligent environment and contributes in reducing any economic and human loss.

Energy efficiency achieved by employing the state-of-the-art technology promises sig-

nificant decrease in the carbon footprint and thereby promotes green communication

in large scale sensor networks.
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