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Community Surveys:
First Survey

• Sufficiency of SE Knowledge
• Personally - 92% said yes 
• Science community - 63% said yes

• Research vs. Production

• Reported 4 Key Problems
• Rework
• Performance issues
• Regression
• Forgetting to fix bugs not tracked 4



Community Surveys:
Second Survey

• Broad subset of CSE audience – 151 
responses

• Level of usage of various SE practices

• Generally agreed with our definitions of 
SE terminology
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Community Surveys:
Second Survey
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Carver,	J.,	et	al.	“Self-Perceptions	about	Software	Engineering:	A	Survey	of	Scientist	and	
Engineers.”	Computing	in	Science	&	Engineering,	15(1):7-11



Case Studies



Case Studies
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Case Studies:
Lessons Learned

• Verification and Validation are difficult
• Performance competes with other goals
• Use of higher-level languages is low
• Developers prefer command line over IDE
• Agile development methods are useful
• Primary language does not change
• External software is risky
• Multi-disciplinary teams are important
• Success/failure depends keeping 
customers/sponsors satisfied
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Lessons Learned:
Validation and Verification
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http://dilbert.com/strip/2010-11-07



Lessons Learned:
Validation and Verification

• Vary in formality and completeness
• Core algorithms vs. User Interactions
• Percentage of code tested
• Dedicated testers vs. End users

• Required by sponsor?

• Existing verification techniques not useful
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“V&V	is	very	hard	because	it	is	hard	to	come	up	with	good	test	
cases”



Lessons Learned:
Validation and Verification
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“I	have	tried	to	position	CONDOR	to	the	place	where	it	is	kind	of	like	
your	trusty	calculator	– it	is	an	easy	tool	to	use.	Unlike	your	
calculator,	it	is	only	90%	accurate	…	you	have	to	understand	that	
then	answer	you	are	going	to	get	is	going	to	have	a	certain	level	of	
uncertainty	in	it.	The	neat	thing	about	it	is	that	it	is	easy	to	get	an	
answer	in	the	general	sense	<to	a	very	difficult	problem>.”

“We	have	a	rule	of	thumb.	We	plot	2	lines	(from	Matlab and	C++	
programs)	and	if	close,	then	it	is	ok.”

“It	is	an	engineering	judgment	as	to	which	errors	are	important	and	
which	ones	are	on	the	margins”



Lessons Learned:
Validation and Verification

• Implications
• Traditional software testing methods are not 

sufficient
• Need methods that ensure the quality and 

limits of software

• Suggestions
• Inspections
• Formal planning
• Use of regression test suites
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Lessons Learned:
Agile vs. Traditional Methodologies
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Lessons Learned:
Agile vs. Traditional Methodologies

• Requirements constantly change as scientific 
knowledge evolves

• “Agile” software development methods
• Tend to be more adaptable to change
• Favor individuals and practices over process and 

tools

• Teams operate with agile philosophy by 
default

• Implications
• Appropriate, flexible SE methodologies need to be 

employed for CSE software development
• Agile-inspired approaches may be most 

appropriate 15
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SE4Science Workshop Series
http://SE4Science.org

• Facilitate interaction between SE and 
Computational Scientists

• Held at ICSE, ICCS, and SC

• Discussion Topics
• Testing scientific software
• Trade-offs between quality goals
• Research Software vs. IT Software
• Crossing the communication chasm
• Measuring impact on scientific productivity
• Reproducibility of results 17



SE4Science Workshop Series
Testing Scientific Software

• Stakes not high enough to make testing 
important

• Needs differ across domains

• Focus on process transparency

• Guaranteed not to give an incorrect 
output
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SE4Science Workshop Series
Scientific Impact

• Need to evaluate impact

• Scientific productivity ≠ Software 
productivity

• Need results in a relatively short time
• Self-assessments
• Word of mouth
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SE4Science Workshop Series
http://SE4Science.org

• May 22 – during ICSE’17

• Buenos Aires

• Please consider submitting papers and 
attending

http://SE4Science.org/workshops/se4science17/
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Direct Interactions



One Possible Methodology
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Project Team
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Successful SE/CSE Interactions:
TDD - Sandia

• Student spent semester at Sandia

• Taught and modeled TDD on a science 
code project

• Developed 2 tests for each PDE
• Small number of steps
• Whole time evolution

• Lessons Learned
• Mitigated risks in changing requirements
• Reduced developer effort
• Continuous feedback from customer



Successful SE/CSE Interactions:
TDD - Sandia

Nanthaamornphong,	A.	Carver,	J.,	et	al.	“Building	CLiiME via	Test-Driven	Development:	
A	Case	Study.”	Computing	in	Science	&	Engineering,	16(3):	36-46



Successful SE/CSE Interactions:
Peer Review - ORNL

• Student spent summer with science team 
at ORNL

• Taught team peer code review process

• Team adopted and continued on own

• Anecdotal Benefits
• Found faults that would not have been 

found with traditional testing
• Adopted coding standard for readability



Ongoing Work



Study of Software Work
Overview

• Choose a domain (e.g. Ecology or 
Geosciences)

• Sample a year of papers from a journal

• Goals
• What does software work look like?
• How do those in the domain perceive 

software?



Study of Software Work
Interviews

• Characteristics of:
• Developers
• Software development process
• Domain
• Funding Model

• Status of software

• Peer-review of code for publication?

• Lessons learned



“Bad By Admission” Code

• Code that is actively recognized as 
deficient

• Indicated by TODO or FIX
• Often not fixed

• Compare Scientific and other software in 
GitHub

• Does the frequency differ?
• How often are these items fixed?



Summary

• Scientific Software Engineering needs:
• Diverse
• Deep

• Unique problems that lack simple 
solutions

• Successful interactions require
• Time
• Openness to new ideas
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Further Readings:
Community Surveys
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Further Readings:
SE for CSE
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Further Readings:
SE-CSE Workshops
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Further Readings:
Case Studies
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Further Readings:
Community Interactions

• Nanthaamornphong, A.; Morris, K.; Rouson, D.W.I.; Michelsen, 
H.A., "A case study: Agile development in the community laser-
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