
What We Have Learned 
About Using Software 

Engineering Practices in 
Scientific Software

Jeffrey Carver
Presented by Dan Katz
University of Alabama

March 1, 2017



Science	Community

Surveys

Case	Studies

Workshops

Direct	Interactions



Community Surveys



Community Surveys:
First Survey

• Sufficiency of SE Knowledge
• Personally - 92% said yes 
• Science community - 63% said yes

• Research vs. Production

• Reported 4 Key Problems
• Rework
• Performance issues
• Regression
• Forgetting to fix bugs not tracked 4



Community Surveys:
Second Survey

• Broad subset of CSE audience – 151 
responses

• Level of usage of various SE practices

• Generally agreed with our definitions of 
SE terminology

5



Community Surveys:
Second Survey

6

Carver,	J.,	et	al.	“Self-Perceptions	about	Software	Engineering:	A	Survey	of	Scientist	and	
Engineers.”	Computing	in	Science	&	Engineering,	15(1):7-11



Case Studies



Case Studies

8



Case Studies:
Lessons Learned

• Verification and Validation are difficult
• Performance competes with other goals
• Use of higher-level languages is low
• Developers prefer command line over IDE
• Agile development methods are useful
• Primary language does not change
• External software is risky
• Multi-disciplinary teams are important
• Success/failure depends keeping 
customers/sponsors satisfied

9



Lessons Learned:
Validation and Verification

10

http://dilbert.com/strip/2010-11-07



Lessons Learned:
Validation and Verification

• Vary in formality and completeness
• Core algorithms vs. User Interactions
• Percentage of code tested
• Dedicated testers vs. End users

• Required by sponsor?

• Existing verification techniques not useful

11

“V&V	is	very	hard	because	it	is	hard	to	come	up	with	good	test	
cases”



Lessons Learned:
Validation and Verification

12

“I	have	tried	to	position	CONDOR	to	the	place	where	it	is	kind	of	like	
your	trusty	calculator	– it	is	an	easy	tool	to	use.	Unlike	your	
calculator,	it	is	only	90%	accurate	…	you	have	to	understand	that	
then	answer	you	are	going	to	get	is	going	to	have	a	certain	level	of	
uncertainty	in	it.	The	neat	thing	about	it	is	that	it	is	easy	to	get	an	
answer	in	the	general	sense	<to	a	very	difficult	problem>.”

“We	have	a	rule	of	thumb.	We	plot	2	lines	(from	Matlab and	C++	
programs)	and	if	close,	then	it	is	ok.”

“It	is	an	engineering	judgment	as	to	which	errors	are	important	and	
which	ones	are	on	the	margins”



Lessons Learned:
Validation and Verification

• Implications
• Traditional software testing methods are not 

sufficient
• Need methods that ensure the quality and 

limits of software

• Suggestions
• Inspections
• Formal planning
• Use of regression test suites

13



Lessons Learned:
Agile vs. Traditional Methodologies

14



Lessons Learned:
Agile vs. Traditional Methodologies

• Requirements constantly change as scientific 
knowledge evolves

• “Agile” software development methods
• Tend to be more adaptable to change
• Favor individuals and practices over process and 

tools

• Teams operate with agile philosophy by 
default

• Implications
• Appropriate, flexible SE methodologies need to be 

employed for CSE software development
• Agile-inspired approaches may be most 

appropriate 15



SE4Science Workshops



SE4Science Workshop Series
http://SE4Science.org

• Facilitate interaction between SE and 
Computational Scientists

• Held at ICSE, ICCS, and SC

• Discussion Topics
• Testing scientific software
• Trade-offs between quality goals
• Research Software vs. IT Software
• Crossing the communication chasm
• Measuring impact on scientific productivity
• Reproducibility of results 17



SE4Science Workshop Series
Testing Scientific Software

• Stakes not high enough to make testing 
important

• Needs differ across domains

• Focus on process transparency

• Guaranteed not to give an incorrect 
output

18



SE4Science Workshop Series
Scientific Impact

• Need to evaluate impact

• Scientific productivity ≠ Software 
productivity

• Need results in a relatively short time
• Self-assessments
• Word of mouth

19



SE4Science Workshop Series
http://SE4Science.org

• May 22 – during ICSE’17

• Buenos Aires

• Please consider submitting papers and 
attending

http://SE4Science.org/workshops/se4science17/

20



Direct Interactions



One Possible Methodology

22

Project Team
Strengths	&	
Weaknesses	

in	
Development	

Process

Software	
Engineering	
Techniques

1.	Perform	
Case	Study

2.	Develop	
Software	

Engineering	
Techniques

3.	Deploy	
and	

Evaluate

4.	Synthesize	
Results



Successful SE/CSE Interactions:
TDD - Sandia

• Student spent semester at Sandia

• Taught and modeled TDD on a science 
code project

• Developed 2 tests for each PDE
• Small number of steps
• Whole time evolution

• Lessons Learned
• Mitigated risks in changing requirements
• Reduced developer effort
• Continuous feedback from customer



Successful SE/CSE Interactions:
TDD - Sandia

Nanthaamornphong,	A.	Carver,	J.,	et	al.	“Building	CLiiME via	Test-Driven	Development:	
A	Case	Study.”	Computing	in	Science	&	Engineering,	16(3):	36-46



Successful SE/CSE Interactions:
Peer Review - ORNL

• Student spent summer with science team 
at ORNL

• Taught team peer code review process

• Team adopted and continued on own

• Anecdotal Benefits
• Found faults that would not have been 

found with traditional testing
• Adopted coding standard for readability



Ongoing Work



Study of Software Work
Overview

• Choose a domain (e.g. Ecology or 
Geosciences)

• Sample a year of papers from a journal

• Goals
• What does software work look like?
• How do those in the domain perceive 

software?



Study of Software Work
Interviews

• Characteristics of:
• Developers
• Software development process
• Domain
• Funding Model

• Status of software

• Peer-review of code for publication?

• Lessons learned



“Bad By Admission” Code

• Code that is actively recognized as 
deficient

• Indicated by TODO or FIX
• Often not fixed

• Compare Scientific and other software in 
GitHub

• Does the frequency differ?
• How often are these items fixed?



Summary

• Scientific Software Engineering needs:
• Diverse
• Deep

• Unique problems that lack simple 
solutions

• Successful interactions require
• Time
• Openness to new ideas



Acknowledgements

• Roscoe Bartlett
• Victor Basili
• Thomas Epperly
• Christine Halverson
• Dustin Heaton – PhD student
• Lorin Hochstein
• Jeff Hollingsworth
• Richard Kendall
• Karla Morris
• Aziz Nanthaamornphong - PhD student
• Damian Rouson
• Forrest Shull
• Susan Squires
• Doug Post
• Marvin Zelkowitz



Further Readings:
Community Surveys

• Carver, J., Heaton, D., Hochstein, L., Bartlett, R. "Self-Perceptions about 
Software Engineering: A Survey of Scientists and Engineers." Computing in 
Science and Engineering. 15(1): 7-11. Jan/Feb 2013.

• Dustin Heaton, Jeffrey Carver, Roscoe Bartlett, Kimberly Oakes and Lorin
Hochstein. “The Relationship Between Development Problems and Use of 
Software Engineering Practices in Computational Science.” Proceedings of the 
First Workshop on Maintainable Software Practices in e-Science.

32



Further Readings:
SE for CSE

• Carver, J., Kendall, R., Squires, S. and Post, D. “Software Development 
Environments for Scientific and Engineering Software: A Series of Case 
Studies.” Proceedings of the 2007 International Conference on Software 
Engineering. Minneapolis, MN. May 23-25, 2007. p. 550-559.

• Basili, V., Carver, J., Cruzes, D., Hochstein, L., Hollingsworth, J., Shull, F. and 
Zelkowitz, M. "Understanding the High Performance Computing Community: 
A Software Engineer's Perspective." IEEE Software, 25(4): 29-36. 
July/August 2008. 

• Carver, J., Hochstein, L., Kendall, R., Nakamura, T. Zelkowitz, M., Basili, V. 
and Post, D. “Observations about Software Development for High End 
Computing.” CTWatch Quarterly. November, 2006. p. 33-37. (Invited Paper).

• Hochstein, L., Nakamura, T., Basili, V., Asgari, S., Zelkowitz, M. Hollingsworth, 
J., Shull, F., Carver, J., Voelp, M., Zazworka, N., and Johnson, P. “Experiments 
to Understand HPC Time to Development.” CTWatch Quarterly. 2(4A): 24-32. 
November, 2006

33



Further Readings:
SE-CSE Workshops

• 2013
• http://secse13.cs.ua.edu/ICSE (ICSE)
• http://sehpccse13.cs.ua.edu (SC)

• 2011
• http://SECSE11.cs.ua.edu
• Carver, J. “Software Engineering for Computational Science and Engineering.” 

(Guest Editor’s Introduction). Computing in Science and Engineering, 14(2):8-11. 
March/April 2012.

• 2010
• http://SECSE10.cs.ua.edu 
• Carver, J. “Software engineering for computational science and engineering,” 

Computing in Science & Engineering, vol. 14, no. 2, pp. 8–11, 2011.

• 2009
• http://SECSE09.cs.ua.edu 
• Carver, J. “Report from the Second International Workshop on Software 

Engineering for Computational Science and Engineering (SE-CSE 09).” Computing 
in Science & Engineering. 11(6): 14-19. Nov/Dec. 2009.

• 2008
• http://SECSE08.cs.ua.edu 
• Carver, J. "First International Workshop on Software Engineering for Computational 

Science and Engineering." Computing in Science & Engineering. 11(2): 8-11. 
March/April 2009.

34



Further Readings:
Case Studies

• Kendall, R., Carver, J., Fisher, D., Henderson, D., Mark, A., Post, D., 
Rhoades, C. and Squires, S. "Development of a Weather 
Forecasting Code: A Case Study." IEEE Software, 25(4): 59-65. 
July/August 2008.

• Kendall, R.P., Carver, J., Mark, A., Post, D., Squires, S., and Shaffer, 
D. Case Study of the Hawk Code Project. Technical Report, LA-UR-
05-9011. Los Alamos National Laboratories: 2005. 

• Kendall, R.P., Mark, A., Post, D., Squires, S., and Halverson, C. 
Case Study of the Condor Code Project. Technical Report, LA-UR-
05-9291. Los Alamos National Laboratories: 2005. 

• Kendall, R.P., Post, D., Squires, S., and Carver, J. Case Study of the 
Eagle Code Project. Technical Report, LA-UR-06-1092. Los Alamos 
National Laboratories: 2006. 

• Post, D.E., Kendall, R.P., and Whitney, E. "Case study of the Falcon 
Project". In Proceedings of Second International Workshop on 
Software Engineering for High Performance Computing Systems 
Applications (Held at ICSE 2005). St. Louis, USA. 2005. p. 22-26

35



Further Readings:
Community Interactions

• Nanthaamornphong, A.; Morris, K.; Rouson, D.W.I.; Michelsen, 
H.A., "A case study: Agile development in the community laser-
induced incandescence modeling environment (CLiiME)," 5th 
International Workshop on Software Engineering for 
Computational Science and Engineering (SE-CSE), 2013. doi: 
10.1109/SECSE.2013.6615094



What We Have Learned 
About Using Software 

Engineering Practices in 
Scientific Software

Jeffrey Carver
University of Alabama

carver@cs.ua.edu


