Appendix A: Derivation of the probability of having an event be-

 fore calendar time t.Assume subjects are accrued over an accrual period of length t_{a}, with an additional follow-up time t_{f}, so that the study duration $\tau=t_{a}+t_{f}$, and that the entry time Y is uniformly distributed with $H(t)$ over $\left[0, t_{a}\right]$. With no patient loss to follow-up or drop out, the censoring distribution $G(t)=H(\tau-t)$ is a uniform distribution over interval $\left[t_{f}, t_{a}+t_{f}\right]$, that is, $G(x)=1$ if $x \leq t_{f} ;=\left(t_{a}+t_{f}-x\right) / t_{a}$ if $t_{f} \leq x \leq t_{a}+t_{f} ;=0$ otherwise. Let T be the event time with survival distribution $S_{i}(x)$ under the alternative for $i=1,2$. The probability of a subject in the $i^{t h}$ group having an event before calendar time t can be calculated by

$$
\begin{aligned}
p_{i}(t) & =P\left(T_{i}+Y \leq t\right)=\int_{0}^{\infty} P\left(T_{i}+Y \leq t \mid Y=x\right) d H(x) \\
& =\int_{0}^{\infty} P\left(T_{i} \leq t-x\right) d H(x)=\frac{1}{t_{a}} \int_{0}^{t \wedge t_{a}}\left\{1-S_{i}(t-x)\right\} d x \\
& =\left(t \wedge t_{a}\right) / t_{a}-\frac{1}{t_{a}} \int_{\left(t-t_{a}\right)^{+}}^{t} S_{i}(x) d x .
\end{aligned}
$$

By letting $t=\tau$, we have the equation (9).

Appendix B: Formulae for calculating expected sample size, num-

 ber of events, and study time for sequential tests with information time for survival dataFor a group sequential test with information time for survival data, let \hat{s} be the stopping time for the calendar time t over $[0, \tau]$, and let \hat{s}^{*} be the corresponding stopping time for the corresponding information time t^{*} over $[0,1]$. Let $N_{a}(t)$ be the number of patients enrolled by calendar time t, then for a study with uniform enrollment over $\left[0, t_{a}\right], N_{a}(t)=\left(t / t_{a}\right) N_{\max }$ for $0<$ $t<t_{a}$ and $N_{a}(t)=N_{\max }$ for $t_{a} \leq t \leq \tau$, where $N_{\max }$ is the maximum sample size for the group sequential trial. For a group sequential test with K looks, assume t_{1}, \cdots, t_{K} are calendar times and $t_{1}^{*}, \cdots, t_{K}^{*}$ are the corresponding information times. Assume the probability that the sequential test statistic W_{t} on information time stops at time t_{k}^{*} is denoted as $P_{t_{k}^{*}}=P\left(\hat{s}^{*}=t_{k}^{*}\right)$, which is usually available from the distribution of W_{t}. Under the alternative hypothesis, the expected sample size is $E\left[N_{a}(\hat{s})\right]=\sum_{k=1}^{K} N_{a}\left(t_{k}\right) P_{t_{k}^{*}}$; and the expected study duration is $E(\hat{s})=\sum_{k=1}^{K} t_{k} P_{t_{k}^{*}}$. For the traditional method, the expected number of events is $E[d(\hat{s})]=d_{\max } E_{t^{*}}$ with $E_{t^{*}}=$ $\sum_{k=1}^{K} t_{k}^{*} P_{t_{k}^{*}}$, where $d_{\max }$ is the maximum number of events for the group sequential design. For the new method, the expected number of events is $E[d(\hat{s})]=\sum_{k=1}^{K} d_{a}\left(t_{k}\right) P_{t_{k}^{*}}$ with $d_{a}\left(t_{k}\right)=N_{a}\left(t_{k}\right) P\left(t_{k}\right)$, where $P\left(t_{k}\right)=$ $\omega_{1} p_{1}\left(t_{k}\right)+\omega_{2} p_{2}\left(t_{k}\right)$ with $p_{i}\left(t_{k}\right)$ by (14).

Appendix C: R code for sample size and information time calculation

```
SIZEinfTime=function(s1, s2, x, pi, ta, tf, alpha, beta, t)
{
### s1 and s2 are the survival probabilities at x for groups 1 and 2 ####
### pi is the proportion of patients assign to group 1 ###################
### ta and tf are the accrual time and follow-up time ####################
### alpha and beta are the type I and II error, study power=1-beta #######
### for a two-sided test, input half of alpha as alpha in this function ##
### t is the calendar time at which to calculate the information time#####
### one can calculate the sample size and information time for any #######
### distribution by change S1 and S2 to the corresponding distributions###
z0=qnorm(1-alpha); z1=qnorm(1-beta)
lambda1=-log(s1)/x; HR=log(s1)/log(s2)
S1=function(t){ans=exp(-lambda1*t); return(ans)}
S2=function(t){ans=S1(t)^(1/HR);return(ans)}
dSC=ceiling((z0+z1)^2/(pi*(1-pi)*(log(HR))^2))##expected total number of events#
p1=1-integrate(S1, tf, ta+tf)$value/ta
p2=1-integrate(S2, tf, ta+tf)$value/ta
P0=pi*p1+(1-pi)*p2
NSC=ceiling((z0+z1)^2/(pi*(1-pi)*(log(HR))^2*PO))##Schoenfeld formula (6)#
NXW=ceiling((z0+z1) ^ 2*P0/(pi*(1-pi)*(log(HR))^ 2*p1*p2))##New formula (7)##
dXW=ceiling(NXW*PO)
a=t-min(t,ta); b=min(t,ta)
pt1=b/ta-integrate(S1, a, t)$value/ta
pt2=b/ta-integrate(S2, a, t)$value/ta
dt=NSC*(pi*pt1+(1-pi)*pt2)
dtau=(z0+z1)^2/(pi*(1-pi)*log(HR) ^2)
Dt=NXW*(1/(pi*pt1)+1/((1-pi)*pt2)) ^(-1)
Dtau=(z0+z1)^2/log(HR) ^2
```

```
    td=round(dt/dtau,3) ### information time td based on traditional method #
    tD=round(Dt/Dtau,3) ### information time tD based on new method #
    ans=data.frame(dSC=dSC, NSC=NSC, dXW=dXW, NXW=NXW, td=td, tD=tD)
    return(ans)
}
SIZEinfTime(s1=0.5, s2=0.6, x=3, pi=0.3, ta=5, tf=3, alpha=0.05, beta=0.1, t=2)
dSC NSC dXW NXW td tD
438697413656 0.106 0.109
```

