Supporting Information

Boosted Electron Transport and Enlarged Built-in Potential by Eliminating Interface Barrier in Organic Solar Cells

Chunyu Liu¹, Dezhong Zhang¹, Zhiqi Li¹, Xinyuan Zhang¹, Wenbin Guo^{1*}, Liu Zhang^{2*}, Liang Shen¹,

Shengping Ruan¹, and Yongbing Long³

¹State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering,

Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

²College of Instrumentation & Electrical Engineering, Jilin University, 938 Ximinzhu Street,

Changchun 130061, People's Republic of China

³School of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, China

Corresponding Author

*E-mail: W. B. Guo, guowb@jlu.edu.cn; L. Zhang, zhangliu@jlu.edu.cn.

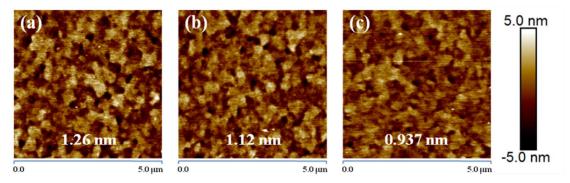


Figure S1. AFM images of (a) ITO/P₁, (b) ITO/P₂ and (c) ITO/P₃ composite films with a scale of 5 μ m×5 μ m.

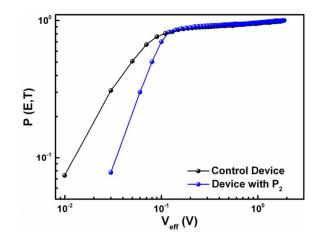


Figure S2. P(E,T) versus V_{eff} characteristics of the control device and device with P₂ interlayer.

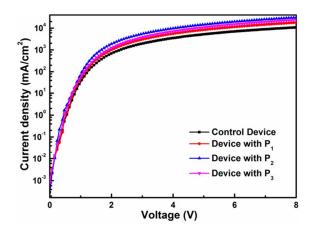


Figure S3. *J-V* characteristics curves of electron-only devices with the structure of ITO/TiO₂/ PCDTBT:PC₇₁BM/BCP/Ag and ITO/TiO₂/P₁ or P₂ or P₃/PCDTBT:PC₇₁BM/BCP/Ag.