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Free Energy Perturbation Method

Free energy perturbation (FEP) is a well-established technique and is proven to be effective to

calculate the free energy landscape along the path between the reference and the target system. In

FEP, the free energy difference between two states can be calculated as

∆A =− 1
β

ln〈exp(−β∆λi∆U)〉i (1)

where ∆λi = λi+1−λi. We assign λ=0 for the reference state and λ=1 to target state. Any inter-

mediate state takes a value between reference and target systems so that 0 < λ < 1.

To capture the free energy difference landscape, we introduce M sub-stages and then calculate

the free energy difference between two successive sub-stages. This approach is usually called
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multi-stage free energy perturbation (MEFP). We note that in Eq. 1 the free energy difference can

be in forward or backward direction. Due to the fact that in most systems (including the current

one) the width of probability of potential energy difference in the forward direction Pi(∆Ui,i+1) and

backward direction Pi+1(∆Ui+1,i) are different, the free energy calculation might be substantially

different depending on the considered direction. To address this issue, we have applied the simple

overlap sampling (SOS) technique. SOS is a simple yet effective approach to increase the accuracy

of free energy calculations.1 In this technique we can imagine the existence of an intermediate state

between sub-stages λi and λi+1. The perturbation from each sub-stage to the intermediate state and

therefore includes both forward and backward perturbation contribution (see Figure S1).

Figure S1 – Cartoon presentation of the perturbation states. Three successive sub-stages are de-
noted as λi−1, λi, λi+1 illustrated with the blue pattern. The intermediate states are shown as grey
stripe patterns. The energy perturbation from an actual sub-stage (blue patterns) to an imaginary
state (grey stripe pattern) and vice versa is shown with the related notation used in this work.

Assuming a linear variation of the potential energy between two successive sub-stages (that is

the energy between two states at the middle is the average of both states), free energy difference

becomes,

∆Ai,i+1 =−
1
β

ln
[
〈exp(−β∆Ui,i+1/2)〉i
〈exp(−β∆Ui+1,i/2)〉i+1

]
(2)

where β = 1
kBT , and kB is the Boltzmann constant and T is the system temperature. The forward

and reverse perturbation from each state is presented in Figure S1. In this work, the temperature

in all simulations is 300 ◦k. The charge of the atoms and their interaction are extracted from the
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CSH-FF force-field. In the following, we elaborate on the face-to-face (FTF) and sliding FEP

simulations along with the bootstrap resampling measurements.

Face-to-Face Interaction

In this study, we introduce 61 sub-stages between face to face (FTF) distances (ξ ) from 0 to 12.25

Åto calculate the free energy difference landscape. Since we expect wider P(∆U) at the shorter

distances because of strong interlayer interaction, we choose a step size of 0.125 Åfor 0≤ ξ ≤ 2.5

while for larger distances 2.5 < ξ < 12.25 the step size is 0.25 Å. Since the FEP calculations are

independent, we run parallel molecular dynamics (MD) simulations for each stage for 3 ns. During

the MD runs we output the system configuration every 1 ps, keeping aside the first 0.5 ns to let the

systems reach the equilibrium state. Then we perturb the second layer at each output configuration

along the reaction coordinate, toward and opposite of the moving path. From here, we calculate the

energy arising from forward and reverse perturbation used in Eq. 2. At each stage water molecules

are removed from the interlayer spacing and placed outside. We consider infinitely long C-S-H

layers by introducing periodic boundary condition in all directions. In order to test that the results

for frozen case are reliable, we compare results of both cases in Figure S2. As it is evident from

Figure S2, the equilibrium point (F = 0) shows a small shift toward zero, and the maximum force

per area required to separate the layers is 5.8 GPa compared to 6.5GPa for frozen case. In total,

the results do not show a considerable difference, while the computational cost and uncertainties

of FEP results for simulation times in the scale of a few nanoseconds in the unfrozen case is much

higher than the frozen case.

Sliding Interaction

To study the resistance against sliding of two C-S-H layers on top of each other, we perform FEP

calculations along and perpendicular to the silicate chains. The choice of the directions are mainly

because, force barriers are independent in these directions. Hence, we expect that the barriers along

each arbitrary path can be defined as a function of the barriers experienced in these two directions.
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Figure S2 – A comparison between the FTF mean force for frozen and unfrozen cases below the
distance of one layer of water.

Aside from interlayer calcium atoms, we let the bridging sites in layers move freely. To capture

the force profile for the sliding case, we use the step size of 0.0625 Å. Given the periodicity

length along x1 and x2,we perform 125 and 190 independent MD simulations respectively. The

total simulation length is 1 ns and sampling is started after 200 ps where the systems reach the

equilibrium state. We sample the MD trajectory every 0.5 ps corresponding to 1600 frames for

each simulation.

Bootstrapping

To obtain the variability of the mean force calculated in this work, we use the bootstrap-resampling

method. We notice that sampling of a random set of 100 frames would converge well to the results

of FEP presented in this study. Consequently, we choose 1000 resamples of size 100 from the total

population of the samples to estimate the shape of the mean distribution. We repeat this process for

all MD simulations and then calculate the standard deviation for each simulation. Figure S3 to S5
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show the standard deviation for ξ , x1, and x2 directions, respectively. Furthermore, the potential

energy (U) during the sampling of the cases where the magnitude of the force is maximum is

depicted in the inset. It is worth mentioning that for the FTF case, the standard deviation shows

a jump at dcc ≈ 14.7 Åwhere we have doubled the size of the perturbation step. For all cases the

standard deviation is within an acceptable range.
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Figure S3 – Standard deviation of mean force calculation using FEP for FTF case. The inset shows
the potential energy during the sampling at dcc = 13.5Å.

Fitting the results

To fit the theoretical models to the FEP results, we used non-linear least square method with the

cost function as follow:

E =
M

∑
i=1

[FEP(xi)−Fth(xi)]
2 (3)

then E is minimized using trust region algorithm. In trust region algorithm, we consider that we

have an appropriate initial guess of the solution is available, then we seek an approximate point
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Figure S4 – Standard deviation of mean force calculation using FEP for sliding of unfrozen case
along the x1 direction. The inset shows the potential energy during the sampling at x1 = 6Å.
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Figure S5 – Standard deviation of mean force calculation using FEP for sliding of unfrozen case
along the x2 direction. The inset shows the potential energy during the sampling at x2 = 10.5Å.

6



closer to the solution in a limited (trusted) region around the current solution. The constants of the

fitting for the FTF and sliding models are given in Table S1.

Table S1 – The theoretical model coefficients

Coef. value Coef. value Coef. value
Fn Fs

1 Fs
2 Fs

1 Fs
2

b0 0 0
a1 6046 b1 -0.5557 0.0176 c1 -25.78 -15.25
a2 3.2 b2 0.0676 -0.0174 c2 1.567 -3.367
a3 241 b3 -0.06796 0.0175 c3 -1.05 -2.448
a4 2.3 b4 -0.263 -0.0175 c4 -3.043 -0.3317
a5 -39 b5 -0.2159 0.0176 c5 1.995 -0.3054
a6 1.6 b6 0.1918 -0.0175 c6 1.475 -0.3054
a7 2.4 b7 0.0544 0.0175 c7 0.3582 -0.3085

b8 0.1246 -0.0175 c8 0.7157 0.5505
2π

lp
0.8584 0.5712

Material Properties

To calculate the elastic modulus, once the force is determined, we use the following equation:

E =
dcc

Sint

(
∂ 〈Fn〉

∂ξ

)
d0

(4)

where d0 is the distance in which the force is cancelled out (equilibrium point). Sint is the

interaction area between the two layers. Similarly, we calculate the shear modulus using the sliding

FEP results as,

Gi =
dcc

Sint

(
∂ 〈Fs

i 〉
∂xi

)
x0

(5)

where i=1, and 2 represents the parallel and perpendicular direction to the silicate chains. x0

is the position where the force is zero and lies at the beginning (ending) of each periodic length.

We compute the surface energy of the FTF interaction as the ratio of the amount total potential of
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mean force (PMF) required to separate two C-S-H layers and interaction area,

γs =
PMFtotal

2×Sint
(6)

where

PMFtotal =−
∫

∞

d0

〈Fn〉 .dξ (7)

or alternatively

PMFtotal =
N

∑
i=n

∆Ai,i+1 (8)

where n is the number assigned to the closest sub-stage where the force is cancelled, and N is the

number assigned to the largest distance sub-stage in the simulation.
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