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S.2. IMPLEMENTATION DETAILS FOR THE k-D TREE DATA STRUCTURE

S.2.1. k-d Tree Construction. The k-d tree data structure needs to be initialized at the start of the

simulation when an initial configuration is either read from a file or generated by the software. In

addition, the k-d tree needs to be reconstructed periodically to ensure the balance of the tree and,

hence, efficient insertions, deletions, and range searches (see discussion in Section S.2.4). During

the tree initialization, the memory is allocated for every node, and then parent-child points for each

node are assigned. For the tree reconstruction, the memory does not need to be reallocated because

the “in-place” sorting algorithm is used (see below). The k-d tree can be perfectly balanced at

time of the initialization or reconstruction by always first inserting the node whose coordinate in

the cutting dimension is the median among all the other nodes. This balancing procedure can be

achieved using the following steps:

1. Split all the nodes that have not yet been inserted into two halves based on the cutting

dimension coordinate.

2. Place the median node into the insertion queue.

3. Recursively carry out step (1) for the smaller and the greater half.

4. Insert all the nodes in the insertion queue to the tree.

The split is performed via the “in-place” quickselect algorithm and it scales as O(N),1 re-

sulting in an overall scaling of O(Nlog2N) for the tree construction. The treatment of the periodic

boundary condition (see below) might introduce beads that are periodic images and, hence, there

can be a tie when it comes to sorting or comparison in the k-d tree. In this case, the coordinate of

the next cutting dimension can serve as a tie breaker (e.g. comparing y coordinates if x coordinates

are equal) to ensure the balance of the tree.

The treatment of the periodic boundary condition can make a significant impact on the perfor-

mance. To reduce the number of nodes stored in the k-d tree, periodic images are stored in the k-d
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tree only if their coordinates in the ith dimension, ri (i = x,y,z), satisfies the following condition:

−rcut−2∆rintra ≤ ri ≤ rcut +2∆rintra (1)

This approach is used when molecules are “wrapped” into the central box on a COM basis, i.e.,

the coordinate of a particular bead may exceed the box length as long as the COM of the molecule

does not. For other “wrapping” options, similar approaches can be adopted accordingly. The

current approach ensures that only periodic images that may interact with nodes in the central box

are stored in the k-d tree. Because of the storage of coordinates for additional periodic images,

the faster range search of this extended k-d tree comes with the price of higher memory usage.

Nevertheless, this does not affect the performance of the MCCCS–MN program for the system

sizes considered here.

S.2.2. Node Insertion and Update. A new node is inserted into the tree by first traversing the

tree through a series of comparisons and then being added as a new leaf in the appropriate position.

The coordinate update during the course of a simulation is achieved by first deleting the old node

and then inserting the new one. The deletion involves finding the node that has the minimum

coordinate in the same cutting dimension in the right sub-tree (or equivalently, the maximum node

in the left sub-tree), exchanging the to-be-deleted node with this minimum node (or the maximum

node), and then iterating the previous two steps recursively until the to-be-deleted node has no

child node and can now be removed. The node update can result in an imbalance of the tree. For

local Monte Carlo (MC) moves, such as a translation or a rotation of the molecule, local updates

may be designed to maintain the balance of the tree. However, it is difficult to generalize the

design of this type of local operation to be applicable for non-local MC moves, such as the particle

transfer move between simulation boxes in the Gibbs ensemble or the aggregation-volume bias

MC move that utilizes large displacements to efficiently sample aggregation within a simulation

box.2 Therefore, a global tree reconstruction is performed here to maintain the balance of the tree

after multiple node updates (as described in Section S.2.4).
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S.2.3. Range Search. The range search for particles within rcut from any arbitrary position in

the simulation box (or reference position) can be performed via the following steps:

1. Examine the current node, and include it in the “found neighbor” list if it is within rcut from

the reference position.

2. Compute the distance from the reference position to the left and right sub-trees of the current

node. The distance from a node to a sub-tree is defined as the shortest distance between the

reference coordinate and the bounding cube of this sub-tree, and it is zero when the reference

coordinate is within the bounding cube. This is the closest possible distance between the

reference position and every particle in the sub-tree.

3. Recursively examine the sub-tree that is “closer” in distance from the reference position

starting from step (1).

4. After all of the “closer” trees are examined, recursively examine the “farther” sub-tree start-

ing from step (1) when the distance from the reference coordinate to the sub-tree is smaller

or equal to rcut.

S.2.4. Scaling for a Balanced Tree and Tree Reconstruction. When the k-d tree is perfectly

balanced, then the height of the tree satisfies Hmin = dlog2Ntreee, where Hmin is the smallest inte-

ger number larger than log2Ntree and where Ntree is the number of interaction sites including the

ones in the periodic images that might interact with the interaction sites in the original simulation

box. In this case, insertions and deletions of a single bead scale as O(log2Ntree). Thus, the k-d

tree insertions and deletions are more expensive than the coordinate update in the standard array

implementation (O(1)). However, the range search using the k-d tree scales asymptotically as

O(log2Ntree), that is significantly improved over the O(N) scaling for the array implementation.

To maintain a well-balanced tree, the k-d tree needs to be reconstructed during the simulation.

In this work, the point of recronstruction depends on the ensemble. Since an accepted volume

move results in a change of all intermolecular distances, the tree is reconstructed at this point for
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Figure S1: The height of the tree as a function of the number of MC steps for a simulation without
tree reconstruction: Lennard-Jonesium in the NV T ensemble (T ∗ = 0.72, ρ∗ = 0.75, and r∗cut = 4).

all simulations carried out in the isobaric-isothermal and Gibbs ensembles. For simulations using

a fixed volume of the simulation box, the tree is reconstructed when the tree height exceeds a user

specified threshold value.

Figure S1 indicates the evolution of the tree height as a function of the number of MC steps

for simulations of Lennard-Jones particles in the NV T ensemble with three different system sizes.

The tree height is found to grow initially exponentially and to reach a plateau at around twice the

balanced tree height Hmin (with Hmin = 15, 15, and 16 for N = 1500, 3000, and 9000, respectively).

The effect of an imbalanced tree on the performance can be assessed through the dependence of

the CPU time on the reconstruction threshold used for the simulations. Here, the k-d tree is recon-

structed if H/Hmin, the ratio between the tree height and the balanced tree height, exceeds a user

specified threshold value. As can be seen in Figure 2, the efficiency is not strongly sensitive to

the threshold value. The timing data indicate that the CPU time initially decreases as the recon-
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Figure S2: CPU timings for simulations of Lennard-Jonesium in the NV T ensemble (T ∗ = 0.72,
ρ∗ = 0.75, and r∗cut = 4) as a function of the tree reconstruction threshold, (H/Hmin)threshold. The
tree is reconstructed if the reduced height of the tree, H/Hmin, exceeds this threshold value.

struction threshold is increased (i.e., the reconstruction frequency is decreased) and subsequently

the CPU time increases when the threshold value becomes too large. This behavior is caused by

two competing factors: the additional CPU time spent for reconstructing the tree and the CPU

time saved when performing tree operations on a better balanced tree. The optimal performance

is found here for a threshold value of 1.25. For this threshold value, the CPU time is about 10%

smaller compared to that of a simulation without tree reconstruction for the current length of sim-

ulations, but the difference may become slightly larger for longer simulations. Therefore, for all of

the simulations in the canonical ensemble, the tree reconstruction threshold is set at 1.25.

From Figure S1, it can also be deduced that the threshold value of 1.25 leads to a tree recon-

struction frequency of every few MC cycles, with values of 3, 1, and 4 MC cycles for N = 1500,

3000, and 9000, respectively. Since the frequency of volume moves for simulations in the isobaric-

isothermal and Gibbs ensembles is set to yield about one accepted volume move per MC cycle,

there is no need to reconstruct the k-d tree for simulations in which volume moves are used.
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S.3. EFFECTS OF CHANGING THE CUTOFF DISTANCE

Figures S3 and S4 show the CPU time as a function of the number of molecules, N, for simulations

of n-butane and TIP4P water, respectively, in the N pT ensemble using smaller rcut values of 10

and 12 Å. For n-butane, the simulation cost decreases significantly for the volume, translational,

and rotational moves compared to simulations with rcut = 14 Å (see Figure 4). In contrast, the

CPU time for CBMC moves decreases only slightly because a smaller inner cut-off value of 5 Å

is already used for the energy calculation of all the trial sites utilized for the Rosenbluth weight,

and the choice of rcut affects only the energy computation of the fully-grown n-butane molecule

used for the acceptance of the CBMC move.3 Despite these changes, the trends described in the

Section 3.3 of the main text remain valid: the use of the k-d tree method still results in an efficiency

increase for the total set of moves when N ≥ 3000.

For TIP4P water, the CPU time of all the moves at N = 2000 and 4000 decreases on average

by 40% for the k-d tree method and 20% for the COM cutoff method when a smaller rcut at 10 Å

is used instead of rcut = 14 Å. As the system size increases, the expense of the reciprocal space

calculation in Ewald summation increases due to the presence of more vectors in the reciprocal

space (the number of vectors in one dimension is inverse proportional to rcut). Therefore, when

N < 4000, the timing differences between all the methods are similar to those for a larger rcut value

of 14 Å. When N > 4000, due to the increase of the Ewald summation (equivalent to an overhead),

the relative differences between all the methods become smaller. For example, for the complete

set of moves, the time for the k-d tree method is only 7% greater than that for the COM cutoff

method for the system with 8000 water molecules and rcut = 10 Å, whereas it is 50% greater for

rcut = 14 Å.
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Figure S3: CPU timings for simulations of n-butane in the N pT ensemble (T = 255 K, p = 1 bar)
using rcut = 10 Å (left column) and 12 Å (right column) as functions of the number of molecules,
N: (a) volume moves, (b) translational or rotational moves, (c) CBMC conformational moves, and
(d) total set of moves.
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Figure S4: CPU timings for simulations of TIP4P water in the N pT ensemble (T = 298 K, p =
1 bar) using rcut = 10 Å (left column) and 12 Å (right column) as functions of the number of
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moves, and (d) total set of moves.
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S.4. NUMERICAL DATA

The following abbreviations are used in the data tables: MCS for Monte Carlo step, LOOP for the

complete loop method, COM for the center-of-mass cutoff method, CELL for the linked-cell list

method, and TREE for the k-d tree method.

The subscripts for the timing data denote the statistical uncertainty in the last digit given as the

95% confidence limit.

Table S1. CPU Timings for Simulations of Lennard-Jonesium in the NV T Ensemble

(kBT/ε = 0.72, ρσ3 = 0.75, rcut/σ = 4).

N Lbox/rcut Time per 104 MCSs [s]

LOOP CELL TREE
400 2.1 0.4751 N/A 0.8724

1000 2.8 0.8515 N/A 0.8803
1500 3.2 1.1623 1.0425 0.8664
3000 3.9 2.031 1.751 0.9475
4500 4.6 2.661 1.2506 0.9162
6000 5.0 3.052 1.6894 0.9521
7500 5.4 3.683 1.2518 0.9783
9000 5.7 4.353 1.521 0.9674

10500 6.0 4.992 1.5947 0.9535
12000 6.3 5.633 1.2126 0.9675
15000 6.8 6.925 1.4108 1.0206
20000 7.4 9.026 1.2907 1.0324
25000 8.0 11.258 1.0429 1.0355

10



Table S2. CPU Timings for Simulations of Lennard-Jonesium in the NV T -Gibbs Ensemble

(kBT/ε = 0.72, rcut/σ = 4, and 20% of the Molecules in the Vapor Phase).

N Lliq/rcut Lvap/rcut LOOP TREE TREE CELL
(both) (liq) (liq)

Volume Moves [10−1 s]
1500 2.8 12.6 0.321 0.561 N/A N/A
3000 3.6 15.9 1.322 1.123 1.031 1.211
4500 4.1 18.2 2.311 1.674 1.602 1.213
6000 4.5 20.0 4.152 2.373 2.333 2.085
7500 4.8 21.6 6.204 2.922 3.142 3.264
9000 5.1 22.9 8.395 3.455 4.054 3.435

10500 5.4 24.1 11.03 4.035 4.752 4.296
12000 5.7 25.2 16.04 4.904 6.053 6.016
15000 6.1 27.2 N/A 6.307 8.204 8.301

Translational Moves [10−4 s]
1500 2.8 12.6 0.931 0.941 N/A N/A
3000 3.6 15.9 1.671 1.071 0.9955 1.451
4500 4.1 18.2 2.351 0.931 1.1525 1.191
6000 4.5 20.0 3.132 0.941 1.231 1.501
7500 4.8 21.6 3.754 0.961 1.3658 1.871
9000 5.1 22.9 4.483 1.001 1.432 1.621

10500 5.4 24.1 5.214 1.111 1.521 1.661
12000 5.7 25.2 5.871 1.021 1.602 2.072
15000 6.1 27.2 N/A 1.231 1.711 2.011

Swap Moves [10−4 s]
1500 2.8 12.6 9.932 1.401 N/A N/A
3000 3.6 15.9 19.23 1.651 8.653 17.52
4500 4.1 18.2 29.03 1.671 7.743 12.64
6000 4.5 20.0 38.75 2.681 9.635 19.92
7500 4.8 21.6 48.56 2.632 12.21 26.33
9000 5.1 22.9 58.25 2.902 14.32 23.14
10500 5.4 24.1 67.33 3.122 16.51 27.24
12000 5.7 25.2 78.25 2.991 18.72 30.56
15000 6.1 27.2 N/A 3.052 24.53 31.75

Total Move Set [10−4 s]
1500 2.8 12.6 3.671 1.811 N/A N/A
3000 3.6 15.9 4.253 1.811 2.121 3.871
4500 4.1 18.2 6.102 1.791 2.482 3.205
6000 4.5 20.0 6.923 1.811 2.353 3.706
7500 4.8 21.6 7.614 1.771 2.431 4.197
9000 5.1 22.9 8.903 1.791 2.562 3.517

10500 5.4 24.1 9.974 2.011 2.842 3.805
12000 5.7 25.2 11.01 2.031 3.103 4.261
15000 6.1 27.2 N/A 2.081 3.553 3.894
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Table S3. CPU Timings for Simulations of TraPPE–UA n-Butane in the N pT Ensemble

(T = 255 K, p = 1 bar, rcut = 14 Å).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [10−1 s]
1500 3.3 N/A 1.001 1.081 2.437
3000 4.2 N/A 2.621 1.944 4.8214
4500 4.8 N/A 4.761 3.302 7.32
6000 5.3 N/A 7.584 3.881 9.43

Trans/Rot Moves [10−4 s]
1500 3.3 15.32 2.745 2.611 4.515
3000 4.2 30.01 3.663 2.491 4.707
4500 4.8 44.81 4.485 2.842 4.875
6000 5.3 59.13 5.152 2.553 5.167

CBMC Moves [10−3 s]
1500 3.3 N/A 2.111 2.213 2.113
3000 4.2 N/A 2.726 2.302 2.196
4500 4.8 N/A 3.267 2.683 2.2111
6000 5.3 N/A 3.791 2.623 2.293

Total Move Set [10−3 s]
1500 3.3 N/A 1.333 1.37414 1.444
3000 4.2 N/A 1.7242 1.4146 1.452
4500 4.8 N/A 2.062 1.633 1.442
6000 5.3 N/A 2.382 1.562 1.432

12



Table S4. CPU Timings for Simulations of TraPPE–UA n-Butane in the N pT Ensemble

(T = 255 K, p = 1 bar, rcut = 12 Å).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [10−1 s]
1500 3.7 N/A 0.791 0.831 1.731
3000 4.7 N/A 2.201 1.492 3.433
4500 5.4 N/A 4.111 2.082 5.172
6000 5.9 N/A 6.749 3.041 6.744

Trans/Rot Moves [10−4 s]
1500 3.7 N/A 2.182 2.051 3.171
3000 4.7 N/A 3.101 1.912 3.233
4500 5.4 N/A 3.912 1.791 3.293
6000 5.9 N/A 4.592 1.962 3.323

CBMC Moves [10−3 s]
1500 3.7 N/A 2.041 2.171 1.921
3000 4.7 N/A 2.632 2.294 2.073
4500 5.4 N/A 3.203 2.342 2.084
6000 5.9 N/A 3.741 2.5632 2.113

Total Move Set [10−3 s]
1500 3.7 N/A 1.25513 1.29315 1.2457
3000 4.7 N/A 1.6365 1.3288 1.24911
4500 5.4 N/A 2.013 1.363 1.2475
6000 5.9 N/A 2.3335 1.4714 1.2637
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Table S5. CPU Timings for Simulations of TraPPE–UA n-Butane in the N pT Ensemble

(T = 255 K, p = 1 bar, rcut = 10 Å).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [10−1 s]
1500 4.2 N/A 0.641 0.4534 1.241
3000 5.3 N/A 1.871 0.9251 2.411
4500 6.1 N/A 3.675 1.361 3.592
6000 6.7 N/A 6.098 1.911 4.792

Trans/Rot Moves [10−4 s]
1500 4.2 N/A 1.761 1.132 2.141
3000 5.3 N/A 2.696 1.181 2.061
4500 6.1 N/A 3.481 1.151 2.213
6000 6.7 N/A 4.161 1.251 2.273

CBMC Moves [10−3 s]
1500 4.2 N/A 2.012 1.821 1.867
3000 5.3 N/A 2.611 2.021 1.822
4500 6.1 N/A 3.142 2.154 1.908
6000 6.7 N/A 3.703 2.331 1.863

Total Move Set [10−3 s]
1500 4.2 N/A 1.1764 1.0301 1.091
3000 5.3 N/A 1.56311 1.1302 1.081
4500 6.1 N/A 1.932 1.1892 1.101
6000 6.7 N/A 2.2575 1.2948 1.251
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Table S6. CPU Timings for Simulations of TraPPE–UA Ethanol in the N pT Ensemble

(T = 323 K, p = 1 bar).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [s]
1500 2.9 N/A 0.2331 N/A 0.4495
3000 3.6 N/A 0.6972 0.7232 1.04314
4500 4.2 N/A 1.5727 1.4687 2.02711
6000 4.5 N/A 2.8765 2.65114 3.33814

Trans/Rot Moves [10−3 s]
1500 2.9 1.7533 0.6707 N/A 1.031
3000 3.6 3.363 1.0007 0.9806 1.301
4500 4.2 4.772 1.2571 1.0995 1.482
6000 4.5 6.373 1.6171 1.36611 1.761

CBMC Moves [10−3 s]
1500 2.9 N/A 2.5922 N/A 2.925
3000 3.6 N/A 3.392 3.5427 3.113
4500 4.2 N/A 4.112 3.48813 3.303
6000 4.5 N/A 4.893 4.12 3.303

Total Move Set [10−3 s]
1500 2.9 N/A 2.125 N/A 2.402
3000 3.6 N/A 2.9197 3.002 2.774
4500 4.2 N/A 3.765 3.272 3.253
6000 4.5 N/A 4.4453 3.782 3.513
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Table S7. CPU Timings for Simulations of TIP4P Water in the N pT Ensemble (T = 298 K,

p = 1 bar, rrcut = 14 Å).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [s]
2000 2.5 N/A 0.4751 N/A 1.2088
4000 3.1 N/A 1.1124 1.1993 2.39910
6000 3.6 N/A 1.8644 2.02013 3.554
8000 3.9 N/A 2.92011 3.2063 5.15413

Trans/Rot Moves [10−3 s]
2000 2.5 1.9235 0.9905 N/A 2.123
4000 3.1 3.4724 1.1916 1.2364 2.365
6000 3.6 4.971 1.3774 1.341 2.294
8000 3.9 6.572 1.5622 1.581 2.615

Total Move Set [10−3 s]
2000 2.5 N/A 1.4853 N/A 3.102
4000 3.1 N/A 1.7207 1.843 3.141
6000 3.6 N/A 1.8753 1.9986 3.041
8000 3.9 N/A 2.3393 2.4603 3.514
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Table S8. CPU Timings for Simulations of TIP4P Water in the N pT Ensemble (T = 298 K,

p = 1 bar, rrcut = 12 Å).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [s]
2000 2.8 N/A 0.3632 N/A 0.8653
4000 3.5 N/A 0.9376 1.0022 1.85813
6000 4.2 N/A 1.8082 1.6311 2.94111
8000 4.4 N/A 2.9786 2.6771 4.41915

Trans/Rot Moves [10−3 s]
2000 2.8 N/A 0.7679 N/A 1.531
4000 3.5 N/A 1.0123 1.0414 1.735
6000 4.2 N/A 1.3111 1.0694 1.933
8000 4.4 N/A 1.502 1.2615 2.096

Total Move Set [10−3 s]
2000 2.8 N/A 1.1162 N/A 2.191
4000 3.5 N/A 1.4323 1.51411 2.391
6000 4.2 N/A 1.8381 1.6461 2.562
8000 4.4 N/A 2.282 2.2051 2.923
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Table S9. CPU Timings for Simulations of TIP4P Water in the N pT Ensemble (T = 298 K,

p = 1 bar, rrcut = 10 Å).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [s]
2000 3.3 N/A 0.3091 N/A 0.6293
4000 4.1 N/A 0.9811 0.9043 1.5363
6000 4.9 N/A 2.4544 2.2775 3.08915
8000 5.2 N/A 4.1325 3.6363 4.8181

Trans/Rot Moves [10−3 s]
2000 3.3 N/A 0.6656 N/A 1.1156
4000 4.1 N/A 1.0283 0.9204 1.38715
6000 4.9 N/A 1.4693 1.2153 1.70616
8000 5.2 N/A 1.722 1.3884 1.9396

Total Move Set [10−3 s]
2000 3.3 N/A 0.9922 N/A 1.6303
4000 4.1 N/A 1.4943 1.3571 2.0033
6000 4.9 N/A 2.2182 2.00711 2.5265
8000 5.2 N/A 2.8272 2.562 3.0112
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Table S10. CPU Timings for Simulations of TIP4P Water in the Gibbs Ensemble (T = 298 K,

20% of the Molecules in the Vapor Phase, and rvap
cut /Lvap = 0.4).

N Lbox/Lcell LOOP COM CELL TREE

Volume Moves [s]
2000 2.3 N/A 0.3905 N/A 1.04510
4000 2.8 N/A 0.9483 N/A 2.24611
6000 3.2 N/A 1.7475 N/A 3.762
8000 3.6 N/A 2.57812 N/A 5.05512

Trans/Rot Moves [10−3 s]
2000 2.3 N/A 0.7897 N/A 1.935
4000 2.8 N/A 0.9816 N/A 2.173
6000 3.2 N/A 1.1964 N/A 2.356
8000 3.6 N/A 1.3664 N/A 2.396

Swap Moves [10−3 s]
2000 2.3 N/A 4.447 N/A 2.253
4000 2.8 N/A 7.824 N/A 2.411
6000 3.2 N/A 10.835 N/A 2.754
8000 3.6 N/A 13.516 N/A 3.415

Total Move Set [10−3 s]
2000 2.3 N/A 2.682 N/A 2.841
4000 2.8 N/A 4.206 N/A 3.115
6000 3.2 N/A 5.738 N/A 3.544
8000 3.6 N/A 6.893 N/A 3.8710
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Table S11. CPU Timings for Simulations of TraPPE–UA C36H74 in the N pT Ensemble

(T = 440 K, p = 1 bar).

N Lbox/rcut Lbox/Lcell COM TREE

Volume Moves [s]
100 3.4 1.1 0.1761 0.1832
200 4.3 2.2 0.5251 0.3491
300 5.0 2.5 0.7902 0.5073
400 5.5 2.8 1.01711 0.6654

Trans/Rot Moves [10−3 s]
100 3.4 1.1 7.0173 4.865
200 4.3 2.2 10.522 4.874
300 5.0 2.5 10.704 4.906
400 5.5 2.8 10.638 4.927

CBMC Moves [10−2 s]
100 3.4 1.1 1.4659 1.0085
200 4.3 2.2 1.581 1.111
300 5.0 2.5 1.662 1.112
400 5.5 2.8 1.671 1.111

Total Move Set [10−2 s]
100 3.4 1.1 1.6456 1.2056
200 4.3 2.2 2.091 1.2084
300 5.0 2.5 2.122 1.201
400 5.5 2.8 2.061 1.211
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Table S12. CPU Timing Decomposition from the Allinea MAP Profile for Simulations of Lennard-

Jonesium in the NV T Ensemble (N = 12000, kBT/ε = 0.72, ρσ3 = 0.75, rcut/σ = 4).

CPU Time LOOP CELL TREE

a. Overhead [s] 8.4 1.6 2.4
a1. energy 6.4 1.1 0.9
a2. pressure 2.0 0.5 0.4
a3. data structure initialization < 0.01 < 0.01 1.1
a4. other < 0.01 < 0.01 < 0.01

b. Translation [10−4 s per MCS] 5.51 1.24 1.03
b1. energy 5.51 1.23 0.99

b1-1. range search 5.41 1.13 0.89
b1-2. potential calculation 0.10 0.10 0.10

b2. coordinate update < 0.01 0.01 0.04
b3. other < 0.01 < 0.01 < 0.01
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Table S13. CPU Timing Decomposition from the Allinea MAP Profiler for Simulations of TraPPE–

UA Ethanol in the N pT Ensemble (N = 3000, T = 323 K, p = 1 bar).

CPU Time LOOP COM TREE

a. Overhead [s] 7.2 5.1 4.5
a1. energy 4.6 4.7 2.6
a2. pressure 2.6 0.4 0.8
a3. data structure initialization < 0.01 < 0.01 1.1
a4. other < 0.01 < 0.01 < 0.01

b. Translation/Rotation [10−3s per MCS] 3.30 0.66 1.12
b1. direct space energy 3.08 0.45 0.90

b1-1. range search 2.92 0.29 0.74
b1-2. potential calculation 0.16 0.16 0.16

b2. reciprocal space energy 0.22 0.21 0.20
b3. coordinate update < 0.01 < 0.01 0.01
b4. other < 0.01 < 0.01 < 0.01

c. CBMC [10−3 s per MCS] N/A 3.35 3.06
c1. direct space energy N/A 2.01 1.70

c1-1. range search N/A 1.56 1.25
c1-2. potential calculation N/A 0.45 0.45

c2. reciprocal space energy N/A 0.43 0.41
c3. coordinate update N/A < 0.01 0.03
c4. other N/A 0.91 0.92

d. Volume [s per MCS] N/A 0.70 1.24
d1. direct space energy N/A 0.36 0.81

d1-1. range search N/A 0.26 0.70
d1-2. potential calculation N/A 0.10 0.11

d2. reciprocal space energy N/A 0.34 0.36
d3. coordinate update N/A < 0.01 0.07
d4. other N/A < 0.01 < 0.01
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