SUPPLEMENTARY MATERIAL

Two new geranylphenylacetate glycosides from the barks of Cinnamomum cassia

Jun-Fen Zeng^a, Hu-Cheng Zhu^b, Jian-Wu Lu^a, Lin-Zhen Hu^c, Jin-Chun Song^{a*} and Yong-Hui Zhang^{b*}

^aDepartment of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China

^bHubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

^cCollege of Life Science, Hubei University, Wuhan 430062, China

*Corresponding authors. E-mails: zhangyonghui5@sina.com (Y. Zhang); songjc1234@126.com (J. Song)

Abstract: Two new glycosides, cinnacassides F (1) and G (2), with a rare geranylphenylacetate carbon skeleton, were isolated from the barks of *Cinnamomum cassia*, along with three known analogues, cinnacassides A (3), B (4), and C (5). The structures of the new compounds were elucidated on the basis of extensive NMR spectroscopic analyses and chemical method. Compounds 1-5 were investigated for their immunomodulatory activities, and compounds 1, 3, and 4 showed differential immunosuppressive activities against murine lymphocytes.

Keywords: *Cinnamomum cassia*; geranylphenylacetate glycosides; cinnacasside F-G; immunosuppressive activity

List of Figures

Table S1. ¹H and ¹³C NMR Data of compound **1** and **2** (400 MHz, CD₃OD).

Figure S1. Key ¹H-¹H COSY, HMBC correlations of compound 1 and 2.

Figure S2. Key NOESY correlations of compounds 1 and 2.

Figure S3. Newman projection of compounds 1 and 2

Figure S4. HRESIMS of compound 1

Figure S5. ¹H NMR spectrum of compound **1** in CD₃OD (400 MHz)

Figure S6. ¹³C NMR spectrum of compound **1** in CD₃OD (100 MHz)

Figure S7. DEPT-135 spectrum of compound 1 in CD₃OD (100 MHz)

Figure S8. ¹H-¹H COSY spectrum of compound 1 in CD₃OD

Figure S9. HMQC spectrum of compound 1 in CD₃OD

Figure S10. HMBC spectrum of compound 1 in CD₃OD

Figure S11. NOESY spectrum of compound 1 in CD₃OD

Figure S12. IR spectrum of compound 1

Figure S13. UV spectrum of compound 1

Figure S14. CD spectrum of compound 1

Figure S15. HRESIMS of compound 2

Figure S16. ¹H NMR spectrum of compound **2** in CD₃OD (400 MHz)

Figure S17. ¹³C NMR spectrum of compound 2 in CD₃OD (100 MHz)

Figure S18. DEPT-135 spectrum of compound 2 in CD₃OD (100 MHz)

Figure S19. ¹H-¹H COSY spectrum of compound 2 in CD₃OD

Figure S20. HMQC spectrum of compound 2 in CD₃OD

Figure S21. HMBC spectrum of compound 2 in CD₃OD

Figure S22. NOESY spectrum of compound 2 in CD₃OD

Figure S23. IR spectrum of compound 2

Figure S24. UV spectrum of compound 2

Figure S25. CD spectrum of compound 2

Figure S26. GC analysis of the D-glucose derivatives of compound 1 and 2

Table S1. 1 H-(400 MHz) and 13 C-NMR (100 MHz) Data for **1** and **2** in CD₃OD.

No.	1		2	
	$\delta_{\! ext{C}}$	$\delta_{\rm H}$ (J in Hz)	$\delta_{\! ext{C}}$	$\delta_{\rm H}$ (J in Hz)
1	130.4		130.7	
2	148.1		148.0	
3	136.1		136.1	
4	117.4	6.70 (d, 3.0)	117.4	6.72 (d, 2.9)
5	154.9		154.8	
6	116.3	6.53 (d, 3.0)	116.2	6.51 (d, 2.9)
7a	36.6	3.93 (d, 16.3)	37.1	3.94 (d, 16.4)
7b		3.81 (d, 16.3)		3.75 (d, 16.4)
8	175.1		175.3	
9a	33.6	3.03 (dd, 14.2, 2.4)	33.2	3.00 (dd, 14.6, 2.2)
9b		2.87 (dd, 14.2, 10.4)		2.85 (dd, 14.6, 10.1)
10	78.9	3.76 (dd, 10.4, 2.4)	78.5	3.78 (dd, 10.1, 2.2)
11	87.2		87.2	
12α	34.4	2.18 (m)	35.2	2.16 (m)
12β		1.67 (m)		1.69 (m)
13	27.5	1.87-1.95 (m)	28.0	1.78-1.90 (m)
14	86.3	3.84 (t, 7.7)	88.3	3.85 (dd, 9.5, 6.0)
15	72.6		72.5	
16	27.2	1.23 (s)	26.5	1.18 (s)
17	25.9	1.15 (s)	24.8	1.17 (s)
18	23.2	1.27 (s)	22.9	1.24 (s)
19	52.4	3.69 (s)	52.4	3.69 (s)
1'	106.9	4.59 (d, 7.6)	106.6	4.80 (d, 7.4)
2'	75.6	3.48 (dd, 9.1, 7.6)	75.7	3.45 (dd, 8.7, 7.4)
3'	77.8	3.41 (t, 8.9)	78.1	3.38 (m)
4'	71.7	3.35 (m)	71.6	3.34 (m)
5'	78.2	3.14 (m)	78.1	3.15 (m)
6'a	62.8	3.75 (dd, 12.0, 2.4)	62.8	3.76 (dd, 11.9, 2.4)
6'b		3.63 (dd, 12.0, 5.8)		3.63 (dd, 11.9, 5.5)

Figure S1. Key ¹H-¹H COSY, HMBC correlations of compound **1** and **2**.

Figure S2. Key NOESY correlations of compounds 1 and 2.

Figure S3. Newman projection of compounds ${\bf 1}$ and ${\bf 2}$

Figure S4. HRESIMS of compound 1

Figure S5. ¹H NMR spectrum of compound 1 in CD₃OD (400 MHz)

Figure S6. ¹³C NMR spectrum of compound 1 in CD₃OD (100 MHz)

Figure S7. DEPT-135 spectrum of compound 1 in CD_3OD (100 MHz)

Figure S8. ¹H-¹H COSY spectrum of compound **1** in CD₃OD

Figure S9. HMQC spectrum of compound 1 in CD₃OD

Figure S10. HMBC spectrum of compound 1 in CD₃OD

Figure S11. NOESY spectrum of compound 1 in CD₃OD

Figure S12. IR spectrum of compound 1

Figure S13. UV spectrum of compound 1

Figure S14. CD spectrum of compound 1

Figure S16. ¹H NMR spectrum of compound **2** in CD₃OD (400 MHz)

Figure S17. 13 C NMR spectrum of compound 2 in CD₃OD (100 MHz)

Figure S18. DEPT-135 spectrum of compound 2 in CD₃OD (100 MHz)

Figure S19. ¹H-¹H COSY spectrum of compound 2 in CD₃OD

Figure S20. HMQC spectrum of compound 2 in CD₃OD

Figure S21. HMBC spectrum of compound 2 in CD₃OD

Figure S22. NOESY spectrum of compound 2 in CD₃OD

Figure S23. IR spectrum of compound 2

Figure S24. UV spectrum of compound 2

Figure S25. CD spectrum of compound 2

a 16.416 772631 b C

Figure S26. GC analysis of the D-glucose derivatives of compound 1 and 2

a GC chromatogram of trimethylsilylthiazolidine derivatives of compound 1

d

- ${\bf b}$ GC chromatogram of trimethylsilylthiazolidine derivatives of compound ${\bf 2}$
- ${f c}$ GC chromatogram of trimethylsilylthiazolidine derivatives of D-glucose
- d GC chromatogram of trimethylsilylthiazolidine derivatives of L-glucose