PARASHIFT Probes: Solution NMR and X-ray Structural Studies of Macrocyclic Ytterbium and Yttrium Complexes

Kevin Mason^a, Nicola J. Rogers^a, Elizaveta A. Suturina^b, Ilya Kuprov^b, Juan A. Aguilar^a, Andrei S. Batsanov^a, Dmitry S. Yufit^a and David Parker^a*

NMR and DFT data for [Y.L¹]

Figure S1. ¹H, (*lower*) and ¹H with ¹H decoupling NMR spectra (*upper*) for [Y.L¹] (600 MHz, 298 K, D₂O, pD 6).

Figure S2. ¹H-¹H 2D NOESY/EXSY NMR spectrum (mixing time 500 ms) of **[Y.L¹]** (600 MHz, D₂O, 298 K). (*upper*) aliphatic region; (*lower*) aromatic region.

Figure S3. Aliphatic part of the 1 H- 13 C HSQC NMR spectrum (14.1 T, D₂O, 298 K) for [Y.L¹].

Table S1. Optimized geometry (M06-2X/cc-pVDZ SMD(water)) of [Y.L	¹] conformers with and without explicit water molecules.
--	--

	A-3333			$\Lambda - \lambda \lambda \lambda \lambda + H_{2}O$			٨-δδδδ			Δ-δδδδ+Η.Ο		
v	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
C	0.0000	-3.0789	-0.6257	0.5635	-3.0929	-0.6099	1 3956	-2 8875	-0.4093	1 4122	-2 9209	-0.3183
C	-0.4082	3 1796	-0.5534	-0.3725	3 2087	-0.5183	-1 2955	2 9408	-0.4543	-1 2663	3 0183	-0.2878
C	-3.1277	-0.4071	-0.6608	-3.1164	-0.4190	-0.6293	-2.9033	-1.3549	-0.4558	-2.9286	-1.3461	-0.3718
0	0.8321	-4 1074	-1 2587	0 7992	-4 1158	-1 2619	2 1265	-3 7848	-0.8471	2 1579	-3.8212	-0.7278
Ő	0.9347	-1.8927	-0.9698	0.9462	-1.9081	-0.9408	1.3788	-1.6796	-0.8468	1.4068	-1.7178	-0.7612
Õ	-4.1595	-0.5707	-1.3220	-4.1438	-0.5855	-1.2966	-3.8209	-2.0350	-0.9327	-3.8603	-2.0297	-0.8178
0	-0.5419	4.2294	-1.1969	-0.4834	4.2547	-1.1688	-1.9407	3.8569	-0.9802	-1.8495	3.9742	-0.8199
0	-0.8100	2.0227	-0.9406	-0.7617	2.0501	-0.9212	-1.2678	1.7287	-0.8801	-1.3083	1.8102	-0.7143
0	-1.9530	-0.7897	-1.0202	-1.9445	-0.8230	-0.9694	-1.6788	-1.4036	-0.8397	-1.7133	-1.4128	-0.7770
Ν	2.0998	0.0000	1.6510	2.0884	0.0000	1.6757	2.1184	0.0000	1.5238	2.1079	0.0000	1.6253
Ν	-0.0136	-2.0852	1.5717	-0.0011	-2.0979	1.5889	-0.0108	-2.1009	1.5291	-0.0228	-2.1113	1.5763
Ν	-2.1013	0.0053	1.5615	-2.0906	0.0059	1.5814	-2.1127	-0.0161	1.5193	-2.1017	-0.0088	1.5851
Ν	0.0151	2.0799	1.6374	0.0034	2.0920	1.6722	0.0051	2.1170	1.5453	0.0166	2.1201	1.6892
Ν	2.2034	0.9302	-0.9506	2.2058	1.0197	-0.8764	1.9317	1.5262	-0.8544	1.9152	1.6214	-0.6814
С	1.9185	-1.0125	2.7091	1.9242	-1.0183	2.7304	2.2783	-1.3311	2.1566	2.2653	-1.3439	2.2271
С	1.3148	-2.2980	2.1816	1.3251	-2.3057	2.2021	0.9572	-1.9042	2.6289	0.9401	-1.9222	2.6816
С	-1.0536	-1.9997	2.6135	-1.0404	-1.9998	2.6303	-1.3573	-2.3299	2.0954	-1.3696	-2.3361	2.1406
С	-2.3258	-1.3549	2.0958	-2.3128	-1.3561	2.1125	-1.9943	-1.0401	2.5811	-1.9979	-1.0465	2.6342
С	-1.9822	0.9853	2.6554	-1.9849	0.9802	2.6816	-2.2898	1.3155	2.1360	-2.2819	1.3091	2.2289
С	-1.3439	2.2792	2.1869	-1.3544	2.2805	2.2233	-0.9711	1.8754	2.6340	-0.9702	1.8546	2.7575
С	0.9942	1.9522	2.7327	0.9807	1.9433	2.7668	1.3435	2.3314	2.1397	1.3471	2.3138	2.3001
С	2.2974	1.3303	2.2655	2.2852	1.3288	2.2939	1.9980	1.0304	2.5857	1.9897	0.9990	2.7133
С	-0.2785	-3.1927	0.6441	-0.2673	-3.2128	0.6708	0.3907	-3.2390	0.6883	0.3731	-3.2590	0.7485
С	-3.2171	0.3435	0.6688	-3.2069	0.3449	0.6904	-3.2419	-0.3331	0.6311	-3.2383	-0.3001	0.6991
С	0.3352	3.2329	0.7830	0.3263	3.2574	0.8399	-0.4147	3.2813	0.7494	-0.3857	3.3092	0.9268
С	3.2761	-0.3325	0.8295	3.2594	-0.3341	0.8454	3.3054	0.2523	0.6824	3.2949	0.2753	0.7938
С	3.3640	0.5638	-0.3790	3.3604	0.5756	-0.3512	3.1216	1.4208	-0.2463	3.1205	1.4577	-0.1219
С	4.5831	1.0042	-0.8812	4.5882	0.9612	-0.8796	4.1406	2.3447	-0.4749	4.1780	2.3215	-0.4120
С	4.6005	1.8511	-1.9879	4.6240	1.8402	-1.9602	3.8999	3.4179	-1.3220	3.9689	3.3747	-1.2919
С	3.4020	2.2607	-2.5765	3.4334	2.3506	-2.4832	2.6528	3.5597	-1.9461	2.7086	3.5679	-1.8758
С	2.2289	1.7546	-2.0056	2.2540	1.8917	-1.8914	1.7154	2.5610	-1.6850	1.7246	2.6437	-1.5323
С	3.3139	3.2269	-3.7552	3.3525	3.3841	-3.6040	2.3410	4.7756	-2.8136	2.4412	4.7359	-2.8203
С	2.5810	4.4970	-3.2955	2.7929	4.6904	-3.0174	0.9190	4.7233	-3.3757	0.9859	4.7601	-3.2934
С	4.7027	3.6131	-4.2652	4.7285	3.6566	-4.2124	2.4820	6.0361	-1.9457	2.7424	6.0483	-2.0823
С	2.5322	2.5676	-4.9013	2.4127	2.8785	-4.7096	3.3385	4.8409	-3.9784	3.3619	4.6114	-4.0428
Η	1.2651	-0.5851	3.4807	1.2772	-0.5983	3.5113	2.9701	-1.2659	3.0148	2.9510	-1.2977	3.0921
Η	2.8862	-1.2356	3.1943	2.8986	-1.2383	3.2038	2.7473	-2.0068	1.4291	2.7399	-2.0052	1.4908
Н	1.9732	-2.7377	1.4199	1.9865	-2.7464	1.4432	1.1470	-2.8669	3.1373	1.1248	-2.8882	3.1861
Η	1.2431	-3.0342	3.0020	1.2532	-3.0411	3.0237	0.5060	-1.2314	3.3697	0.4848	-1.2541	3.4240

Inorg.	Chem.	Supp	lementa	ry Infor	mation	Mas	son, Rog	ers et al				
Н	-0.6486	-1.4164	3.4511	-0.6338	-1.4098	3.4623	-1.3062	-3.0417	2.9388	-1.3228	-3.0523	2.9810
Н	-1.2896	-3.0054	3.0057	-1.2798	-3.0012	3.0320	-1.9818	-2.7969	1.3234	-1.9966	-2.7970	1.3674
Н	-2.7500	-1.9679	1.2880	-2.7381	-1.9687	1.3052	-2.9940	-1.2670	2.9927	-3.0015	-1.2689	3.0395
Н	-3.0788	-1.3269	2.9040	-3.0646	-1.3290	2.9219	-1.4040	-0.6165	3.4025	-1.4082	-0.6384	3.4636
Н	-1.3778	0.5360	3.4546	-1.3838	0.5300	3.4827	-2.9998	1.2614	2.9802	-3.0040	1.2361	3.0619
Н	-2.9758	1.2055	3.0864	-2.9825	1.1909	3.1080	-2.7336	1.9887	1.3898	-2.7154	2.0005	1.4940
Н	-1.9617	2.7370	1.4016	-1.9740	2.7427	1.4418	-1.1600	2.8193	3.1757	-1.1680	2.7855	3.3196
Н	-1.3113	2.9981	3.0253	-1.3246	2.9927	3.0678	-0.5204	1.1760	3.3501	-0.5309	1.1396	3.4653
Н	0.5439	1.3377	3.5233	0.5297	1.3143	3.5454	1.2720	2.9974	3.0186	1.2717	2.9552	3.1977
Н	1.2061	2.9413	3.1780	1.1910	2.9240	3.2311	1.9685	2.8497	1.4035	1.9839	2.8489	1.5863
Н	2.7773	1.9852	1.5253	2.7618	1.9883	1.5562	2.9986	1.2636	2.9922	2.9901	1.2122	3.1319
Н	2.9931	1.2542	3.1204	2.9830	1.2504	3.1471	1.4196	0.5933	3.4092	1.4031	0.5445	3.5211
Н	-1.3311	-3.1645	0.3238	-1.3242	-3.1967	0.3645	-0.4987	-3.6066	0.1547	-0.5105	-3.6081	0.1930
Н	-0.0967	-4.1717	1.1200	-0.0680	-4.1879	1.1477	0.7880	-4.0706	1.2944	0.7382	-4.0983	1.3647
Н	1.4095	3.2309	0.5397	1.4067	3.2764	0.6257	0.4764	3.7735	0.3298	0.5109	3.8063	0.5262
Н	0.1127	4.1873	1.2908	0.0751	4.2042	1.3487	-0.9303	4.0329	1.3703	-0.8972	4.0494	1.5659
Н	3.1887	-1.3753	0.4906	3.1614	-1.3716	0.4948	3.4714	-0.6433	0.0664	3.4679	-0.6078	0.1610
Н	4.2052	-0.2498	1.4212	4.1910	-0.2684	1.4357	4.2004	0.4052	1.3093	4.1899	0.4181	1.4242
Н	5.5105	0.6983	-0.3970	5.5096	0.5849	-0.4351	5.0988	2.2306	0.0317	5.1488	2.1661	0.0584
Н	5.5589	2.1989	-2.3730	5.5885	2.1397	-2.3700	4.6844	4.1600	-1.4831	4.7911	4.0567	-1.5179
Н	3.1409	4.9984	-2.4908	3.4649	5.0875	-2.2410	0.1640	4.6997	-2.5745	0.2830	4.8413	-2.4496
Н	1.5716	4.2704	-2.9201	1.8005	4.5353	-2.5664	0.7687	3.8422	-4.0180	0.7314	3.8565	-3.8682
Н	2.4840	5.1998	-4.1374	2.6957	5.4475	-3.8109	0.7380	5.6210	-3.9846	0.8328	5.6304	-3.9480
Н	4.5984	4.3039	-5.1145	4.6289	4.3946	-5.0216	2.2606	6.9312	-2.5470	2.5680	6.9031	-2.7534
Н	5.2654	2.7323	-4.6102	5.1687	2.7417	-4.6376	3.5017	6.1384	-1.5454	3.7880	6.0912	-1.7430
Н	5.2946	4.1200	-3.4886	5.4286	4.0650	-3.4686	1.7790	6.0059	-1.0984	2.0888	6.1604	-1.2032
Н	2.4763	3.2576	-5.7570	2.3862	3.6071	-5.5341	3.1307	5.7263	-4.5985	3.1874	5.4528	-4.7307
Н	1.5036	2.3171	-4.6022	1.3814	2.7533	-4.3461	3.2570	3.9463	-4.6144	3.1666	3.6742	-4.5862
Н	3.0298	1.6439	-5.2343	2.7605	1.9148	-5.1124	4.3752	4.9156	-3.6177	4.4225	4.6257	-3.7504
Н	1.2500	2.0231	-2.4109	1.2902	2.2595	-2.2455	0.7275	2.5829	-2.1454	0.7204	2.7165	-1.9511
Н	-3.1815	1.4155	0.4236	-3.1706	1.4153	0.4384	-3.5295	0.5824	0.0919	-3.4928	0.6180	0.1479
Н	-4.1921	0.1384	1.1437	-4.1816	0.1437	1.1678	-4.1203	-0.6795	1.2009	-4.1286	-0.6116	1.2711
0				-0.2845	0.3989	-3.1984				0.0709	0.1257	-2.5542
Н				0.4805	0.7366	-3.6879				-0.4676	0.9182	-2.7208
H				-0.5138	1.1301	-2.5924				0.9476	0.3620	-2.8978

Figure S4. Optimized structure of $\Lambda - \lambda \lambda \lambda \lambda$ (left) and $\Lambda - \delta \delta \delta \delta$ (right) with explicit water molecule showing different types of interactions with water (hydrogen bonding *vs.* direct coordination).

NMR and DFT data for [Y.L²]

Figure S5. Labels for atoms used in the assignment tables. The cyclen protons and carbons are labeled with 'c' and ordered clockwise, where 'ax' stands for axial and 'eq' stands for equatorial protons. Exocyclic methylene protons are labeled with 'a' and numbered the same way, and the pyridine arm is labeled 'ap'.

Figure S6. Difference in distances between 'apax' proton and nearest cyclen protons of (RRR)-Λ-(λλλλ) (left) and (RRR)-Λ-(δδδδ) (right) of **[Y.L²]** used to discriminate structures based on NOESY cross-peaks. Distances for (RRR)-Λ-(λλλλ) in Å: apax-c2ax 2.023; apax-a1eq 2.704; apax-c2eq 3.545; apax-c1ax 3.620, and for (RRR)-Λ-(δδδδ): apax-c1ax 2.025; apax-c1eq 3.030; apax-c2eq 4.424; apax-a2ax 4.438 Å.

Table S2. Assignment of ³¹ F	13 C and 1 H	resonances of major conformer of	[Y.L ²]
---	------------------------	----------------------------------	---------------------

Label	Shift, ppm
P1	43.9
P2	43.3
P3	41
c1	50.1
c2	53.2
c3	51.6
c4	53.9
c5	51.8
c6	53.5

Inorg. Chem.

Supplementary Information Mason, Rogers et al

c7 51.6 $c8$ 52.6 $a1$ $56.7/56.0$ $a2$ $55.9/55.3$ $a3$ $56.3/55.7$ ap 59.4 $py3$ 123.6 $py4$ 138.4 $py6$ 145.2 $m1$ 15.6 $m2$ 15.7 $m3$ 16.3 tBu 33.3 $c1ax$ 3.51 $c1eq$ 2.47 $c2ax$ 3.58 $c2eq$ 2.59 $c3ax$ 3.41 $c3eq$ 2.40 $c4ax$ 3.53 $c4eq$ 2.50 $c5ax$ 3.42 $c5eq$ 2.32 $c6ax$ 3.82 $c6eq$ 2.48 $c7ax$ 3.37 $c7eq$ 2.29 $c8ax$ 2.98 $c8eq$ 2.43 $a1ax$ 3.43 $a1eq$ 2.59 $a3ax$ 2.77 $a3eq$ 2.48 $apax$ 4.55 $apeq$ 3.65 $py3$ 7.35 $py4$ 7.97 $py6$ 8.60 $Me1$ 1.26 $Me2$ 1.44 $Me3$ 1.26 tBu 1.24		145011, 100 <u>5</u> 01
c8 52.6 a1 $56.7/56.0$ a2 $55.9/55.3$ a3 $56.3/55.7$ ap 59.4 py3 123.6 py4 138.4 py6 145.2 m1 15.6 m2 15.7 m3 16.3 tBu 33.3 c1ax 3.51 c1eq 2.47 c2ax 3.58 c2eq 2.59 c3ax 3.41 c3eq 2.40 c4ax 3.53 c4eq 2.50 c5ax 3.42 c5eq 2.32 c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c7	51.6
a1 $56.7/56.0$ a2 $55.9/55.3$ a3 $56.3/55.7$ ap 59.4 py3 123.6 py4 138.4 py6 145.2 m1 15.6 m2 15.7 m3 16.3 tBu 33.3 c1ax 3.51 c1eq 2.47 c2ax 3.58 c2eq 2.59 c3ax 3.41 c3eq 2.40 c4ax 3.53 c4eq 2.50 c5ax 3.42 c5eq 2.32 c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c8	52.6
a2 $55.9/55.3$ a3 $56.3/55.7$ ap 59.4 py3 123.6 py4 138.4 py6 145.2 m1 15.6 m2 15.7 m3 16.3 tBu 33.3 c1ax 3.51 c1eq 2.47 c2ax 3.58 c2eq 2.59 c3ax 3.41 c3eq 2.40 c4ax 3.53 c4eq 2.50 c5ax 3.42 c5eq 2.32 c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	a1	56.7/56.0
a3 $56.3/55.7$ ap 59.4 py3 123.6 py4 138.4 py6 145.2 m1 15.6 m2 15.7 m3 16.3 tBu 33.3 c1ax 3.51 c1eq 2.47 c2ax 3.58 c2eq 2.59 c3ax 3.41 c3eq 2.40 c4ax 3.53 c4eq 2.50 c5ax 3.42 c5eq 2.32 c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	a2	55.9/55.3
ap 59.4 py3123.6py4138.4py6145.2m115.6m215.7m316.3tBu33.3c1ax3.51c1eq2.47c2ax3.58c2eq2.59c3ax3.41c3eq2.40c4ax3.53c4eq2.50c5ax3.42c5eq2.32c6ax3.82c6eq2.48c7ax3.37c7eq2.29c8ax2.98c8eq2.43a1ax3.43a1eq2.59a3ax2.77a3eq2.48apax4.55apeq3.65py37.35py47.97py68.60Me11.26Me21.44Me31.26tBu1.24	a3	56.3/55.7
py3123.6py4138.4py6145.2m115.6m215.7m316.3tBu33.3c1ax3.51c1eq2.47c2ax3.58c2eq2.59c3ax3.41c3eq2.40c4ax3.53c4eq2.50c5ax3.42c5eq2.32c6ax3.82c6eq2.48c7ax3.37c7eq2.29c8ax2.98c8eq2.43a1ax3.43a1eq2.59a2ax3.61a2eq2.59a3ax2.77a3eq2.48apax4.55apeq3.65py37.35py47.97py68.60Me11.26Me21.44Me31.26tBu1.24	ap	59.4
py4138.4py6145.2m115.6m215.7m316.3tBu33.3c1ax3.51c1eq2.47c2ax3.58c2eq2.59c3ax3.41c3eq2.40c4ax3.53c4eq2.50c5ax3.42c5eq2.32c6ax3.82c6eq2.48c7ax3.37c7eq2.29c8ax2.98c8eq2.43a1ax3.43a1eq2.59a2ax3.61a2eq2.59a3ax2.77a3eq2.48apax4.55apeq3.65py37.35py47.97py68.60Me11.26Me21.44Me31.26tBu1.24	py3	123.6
py6145.2m115.6m215.7m316.3tBu33.3c1ax3.51c1eq2.47c2ax3.58c2eq2.59c3ax3.41c3eq2.40c4ax3.53c4eq2.50c5ax3.42c5eq2.32c6ax3.82c6eq2.48c7ax3.37c7eq2.29c8ax2.98c8eq2.43a1ax3.43a1eq2.59a3ax2.77a3eq2.48apax4.55apeq3.65py37.35py47.97py68.60Me11.26Me21.44Me31.26tBu1.24	py4	138.4
m115.6m215.7m316.3tBu33.3c1ax3.51c1eq2.47c2ax3.58c2eq2.59c3ax3.41c3eq2.40c4ax3.53c4eq2.50c5ax3.42c5eq2.32c6ax3.82c6eq2.48c7ax3.37c7eq2.29c8ax2.98c8eq2.43a1ax3.43a1eq2.59a3ax2.77a3eq2.48apax4.55apeq3.65py37.35py47.97py68.60Me11.26Me21.44Me31.26tBu1.24	py6	145.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ml	15.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m2	15.7
tBu 33.3 c1ax 3.51 c1eq 2.47 c2ax 3.58 c2eq 2.59 c3ax 3.41 c3eq 2.40 c4ax 3.53 c4eq 2.50 c5ax 3.42 c5eq 2.32 c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	m3	16.3
c1ax 3.51 $c1eq$ 2.47 $c2ax$ 3.58 $c2eq$ 2.59 $c3ax$ 3.41 $c3eq$ 2.40 $c4ax$ 3.53 $c4eq$ 2.50 $c5ax$ 3.42 $c5eq$ 2.32 $c6ax$ 3.82 $c6eq$ 2.48 $c7ax$ 3.37 $c7eq$ 2.29 $c8ax$ 2.98 $c8eq$ 2.43 $a1ax$ 3.43 $a1eq$ 2.59 $a2ax$ 3.61 $a2eq$ 2.59 $a3ax$ 2.77 $a3eq$ 2.48 $apax$ 4.55 $apeq$ 3.65 $py3$ 7.35 $py4$ 7.97 $py6$ 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	tBu	33.3
$\begin{array}{c c} c1eq & 2.47 \\ c2ax & 3.58 \\ c2eq & 2.59 \\ c3ax & 3.41 \\ c3eq & 2.40 \\ c4ax & 3.53 \\ c4eq & 2.50 \\ c5ax & 3.42 \\ c5eq & 2.32 \\ c6ax & 3.82 \\ c6eq & 2.48 \\ c7ax & 3.37 \\ c7eq & 2.29 \\ c8ax & 2.98 \\ c8eq & 2.43 \\ a1ax & 3.43 \\ a1eq & 2.59 \\ a2ax & 3.61 \\ a2eq & 2.59 \\ a3ax & 2.77 \\ a3eq & 2.48 \\ apax & 4.55 \\ apeq & 3.65 \\ py3 & 7.35 \\ py4 & 7.97 \\ py6 & 8.60 \\ Me1 & 1.26 \\ Me2 & 1.44 \\ Me3 & 1.26 \\ tBu & 1.24 \\ \end{array}$	c1ax	3.51
c2ax 3.58 $c2eq$ 2.59 $c3ax$ 3.41 $c3eq$ 2.40 $c4ax$ 3.53 $c4eq$ 2.50 $c5ax$ 3.42 $c5eq$ 2.32 $c6ax$ 3.82 $c6eq$ 2.48 $c7ax$ 3.37 $c7eq$ 2.29 $c8ax$ 2.98 $c8eq$ 2.43 $a1ax$ 3.43 $a1eq$ 2.59 $a2ax$ 3.61 $a2eq$ 2.59 $a3ax$ 2.77 $a3eq$ 2.48 $apax$ 4.55 $apeq$ 3.65 $py3$ 7.35 $py4$ 7.97 $py6$ 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	cleq	2.47
$\begin{array}{c c} c2eq & 2.59 \\ c3ax & 3.41 \\ c3eq & 2.40 \\ c4ax & 3.53 \\ c4eq & 2.50 \\ c5ax & 3.42 \\ c5eq & 2.32 \\ c6ax & 3.82 \\ c6eq & 2.48 \\ c7ax & 3.37 \\ c7eq & 2.29 \\ c8ax & 2.98 \\ c8eq & 2.43 \\ a1ax & 3.43 \\ a1eq & 2.59 \\ a2ax & 3.61 \\ a2eq & 2.59 \\ a3ax & 2.77 \\ a3eq & 2.48 \\ apax & 4.55 \\ apeq & 3.65 \\ py3 & 7.35 \\ py4 & 7.97 \\ py6 & 8.60 \\ Me1 & 1.26 \\ Me2 & 1.44 \\ Me3 & 1.26 \\ tBu & 1.24 \\ \end{array}$	c2ax	3.58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c2eq	2.59
$\begin{array}{c cccc} c3eq & 2.40 \\ c4ax & 3.53 \\ c4eq & 2.50 \\ c5ax & 3.42 \\ c5eq & 2.32 \\ c6ax & 3.82 \\ c6eq & 2.48 \\ c7ax & 3.37 \\ c7eq & 2.29 \\ c8ax & 2.98 \\ c8eq & 2.43 \\ a1ax & 3.43 \\ a1eq & 2.59 \\ a2ax & 3.61 \\ a2eq & 2.59 \\ a3ax & 2.77 \\ a3eq & 2.48 \\ apax & 4.55 \\ apeq & 3.65 \\ py3 & 7.35 \\ py4 & 7.97 \\ py6 & 8.60 \\ Me1 & 1.26 \\ Me2 & 1.44 \\ Me3 & 1.26 \\ tBu & 1.24 \\ \end{array}$	c3ax	3.41
$\begin{array}{c cccc} c4ax & 3.53 \\ c4eq & 2.50 \\ c5ax & 3.42 \\ c5eq & 2.32 \\ c6ax & 3.82 \\ c6eq & 2.48 \\ c7ax & 3.37 \\ c7eq & 2.29 \\ c8ax & 2.98 \\ c8eq & 2.43 \\ a1ax & 3.43 \\ a1eq & 2.59 \\ a2ax & 3.61 \\ a2eq & 2.59 \\ a3ax & 2.77 \\ a3eq & 2.48 \\ apax & 4.55 \\ apeq & 3.65 \\ py3 & 7.35 \\ py4 & 7.97 \\ py6 & 8.60 \\ Me1 & 1.26 \\ Me2 & 1.44 \\ Me3 & 1.26 \\ tBu & 1.24 \\ \end{array}$	c3eg	2.40
$\begin{array}{c c} c4eq & 2.50 \\ c5ax & 3.42 \\ c5eq & 2.32 \\ c6ax & 3.82 \\ c6eq & 2.48 \\ c7ax & 3.37 \\ c7eq & 2.29 \\ c8ax & 2.98 \\ c8eq & 2.43 \\ a1ax & 3.43 \\ a1eq & 2.59 \\ a2ax & 3.61 \\ a2eq & 2.59 \\ a3ax & 2.77 \\ a3eq & 2.48 \\ apax & 4.55 \\ apeq & 3.65 \\ py3 & 7.35 \\ py4 & 7.97 \\ py6 & 8.60 \\ Me1 & 1.26 \\ Me2 & 1.44 \\ Me3 & 1.26 \\ tBu & 1.24 \\ \end{array}$	c4ax	3.53
c5ax 3.42 c5eq 2.32 c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26	c4eq	2.50
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	c5ax	3.42
c6ax 3.82 c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c5eg	2.32
c6eq 2.48 c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c6ax	3.82
c7ax 3.37 c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c6eq	2.48
c7eq 2.29 c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c7ax	3.37
c8ax 2.98 c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c7eq	2.29
c8eq 2.43 a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	c8ax	2.98
a1ax 3.43 a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me3 1.26 tBu 1.24	c8eq	2.43
a1eq 2.59 a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	alax	3.43
a2ax 3.61 a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	aleq	2.59
a2eq 2.59 a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	a2ax	3.61
a3ax 2.77 a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	a2eq	2.59
a3eq 2.48 apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	a3ax	2.77
apax 4.55 apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	a3eq	2.48
apeq 3.65 py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	apax	4.55
py3 7.35 py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	apeq	3.65
py4 7.97 py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	py3	7.35
py6 8.60 Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	py4	7.97
Me1 1.26 Me2 1.44 Me3 1.26 tBu 1.24	py6	8.60
Me2 1.44 Me3 1.26 tBu 1.24	Mel	1.26
Me3 1.26 tBu 1.24	Me2	1.44
tBu 1.24	Me3	1.26
	tBu	1.24

Figure S7. Aliphatic part of the ¹H-¹H TOCSY NMR spectrum (14.1 T, D₂O, pD 6, 298 K) for **[Y.L²]**. Arm pairs are shown with dashed lines and groups of four *J*-coupled cyclen protons are shown with solid lines.

Figure S8. Aliphatic part of the ¹H-¹³C HSQC NMR spectrum (14.1 T, D₂O, pD 6, 298 K) for **[Y.L²]**, showing cyclen-CH₂ (*blue* box), PCH₂N (*green*) and pyCH₂N resonances (*red* box).

NMR data for [Y.L³]

Figure S9. ¹H-¹³C HSQC NMR spectrum (600 MHz, 298 K, pD 7) of the aliphatic region of **[Y.L³]²⁻**. The cyclen-CH₂ resonances are highlighted in green, pyCH₂N in blue, and PCH₂N in red.

Figure 10. ¹H, (*lower*), ¹H with ¹H decoupling (*centre*), and ¹H with 1H and ³¹P decoupling (*top*) NMR spectra (600 MHz, 298 K, pD 7) of **[Y.L³]²⁻**. Crossed out peaks are from a (hydroxymethyl)(methyl)phosphinic acid impurity.

Supplementary Information Inorg. Chem. Macon Rogers et al 6.4 6.6 6.8 -7.0 7.2 7.4 7.4 7.6 8.7 8.2 8.2 00 Ö -8.4 -8.6 -8.8 9.0 8.6 8.5 8.4 8.3 8.2 8.1 chemical shift / ppm 9.1 9.0 8.9 8.8 8.7 8.0 7.9 7.8 7.7

Figure S11. ¹H-³¹P HMBC NMR spectrum (600 MHz, 298 K, D₂O, pD 7), of $[Y.L^3]^{2-}$ shows correlations between the phosphonate ³¹P resonance at 7.5 ppm and the aromatic protons of the major isomer (8.64 and 7.93 ppm), as well as cross peaks belonging to the minor conformer (³¹P = 7.9 ppm, ¹H = 8.96, 7.88 ppm).

Figure S12. ¹H ³¹P HMBC NMR spectrum, (600 MHz, 298 K, D₂O, pD 7), of [Y.L³]²⁻.

Figure S13. Aliphatic region of the ¹H NMR spectrum of $[Y.L^3]^{2-}$ (500 MHz, 295 K, D₂O), varying the pD from 4.4

Figure S14. Aromatic region of the¹H NMR spectrum of [Y.L³]²⁻, (500 MHz, 295 K, D₂O), varying pD from 4.4 to 9.3.

Figure S15. ³¹P-³¹P 2D NOESY/EXSY NMR spectrum (14.1 T, D₂O, 295 K, pD 7, mixing time = 300 ms) of the phosphonate ³¹P (*upper*) and phosphinate ³¹P resonances (*lower*) for $[\mathbf{Y}.\mathbf{L}^3]^2$, showing exchange correlations (*blue*).

Structure and analysis of [Yb.L¹] magnetic properties

Figure S16. X-ray molecular structure of $[Yb.L^1]$ ·2MeOH·H₂O. Thermal ellipsoids are drawn at the 50% probability level; H atoms are omitted for clarity, except those of hydroxyl groups and water.

Figure S17. ¹H-¹H 2D EXSY NMR spectrum of [Yb.L¹] (4.7 T, D₂O, 295 K), acquired using a 5 ms mixing time.

Label	Shift, ppm	Width, Hz	R_1, s^{-1}	Diamagnetic reference, ppm
c7ax	124.13	89	105	3.5
clax	112.84	93	110	3.5
c5ax	115.68	94	115	3.5
c3ax	97.92	82	99	3.5
py6	61.38	105	231	8.47
c7eq	40.62	51	61	2.5
c8eq	28.47	52	69	2.5
c6eq	15.13	51	62	2.5
c3eq	19.2	46	56	2.5
c4eq	20	53	69	2.5
cleq	11.15	49	61	2.5
c5eq	13.59	52	47	2.5
py4	7.51	35	4.6	7.93
tBu	6.12	33	6.6	1.19
c2eq	4.71	-	-	2.5
c8ax	0.68	90	91	3.5
py3	-1.68	41	16	7.31
apeq	-9.13	49	45	3.84
c4ax	-20.31	69	79	3.5
a2eq	-20.82	55	52	2.5
a3eq	-47.45	54	46	2.5
aleq	-47.68	52	48	2.5
c6ax	-56.03	68	83	3.5
apax	-66.18	66	78	4.26
a3ax	-67.43	62	69	3.5
alax	-69.89	66	78	3.5
a2ax	-72.55	71	78	3.5
c2ax	-72.55	71	78	3.5

Table S3. Assigned paramagnetic shifts of major conformer of $[Yb.L^1]$ protons (4.7 T, D₂O, 295 K) and phosphorus atoms.

Figure S18. Comparison of the observed and the best fit PCS values for [Yb.L¹].

Inorg. Chem. Supplementary Information Mason, Rogers et al

Table S4. Traceless part of the magnetic susceptibility tensor (Å³ in SI units) for **[Yb.L¹]** extracted from the paramagnetic shifts (± 0.002 Å³) using the geometry of Λ - $\lambda\lambda\lambda\lambda$ conformer and computed by CASSCF (*T*=300.2 K) for various structures. Axiality, rhombicity (Å³ in SI units) and Euler angles in degrees are shown for convenience.

	fit			Λ-λλλλ			$\Lambda - \lambda \lambda \lambda \lambda + H_2O$			Λ-δδδδ			Λ -δδδδ+H ₂ O		
	-0.028	0.014	-0.000	0.297	0.093	0.028	0.110	-0.027	0.006	0.198	0.072	0.016	0.114	0.037	0.018
×	0.014	-0.056	0.009	0.093	0.156	-0.005	-0.027	0.309	-0.026	0.072	0.263	0.002	0.037	0.318	-0.011
	-0.000	0.009	0.084	0.028	-0.005	0.047	0.006	-0.026	0.097	0.016	0.002	0.034	0.018	-0.011	0.081
ax	0.127			0.268			0.215		0.218			0.231			
rh	0.021		0.036		0.007		0.060			0.024					
α	[58 4 54]				[26 86 167]	[98 97 349]		[57 88 354]		[260 88 208]				

 Table S5. Optimized geometry (M06-2X/cc-pVDZ SMD(water)) of [Yb.L¹] conformers with and without explicit water molecules.

		Δ-λλλλ			Λ-λλλλ+Η.)	1	Δ-δδδδ			Λ-δδδδ+Η₃()
Yb	0 0000	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000	0.0000	0 0000
C	0.6036	-2 9922	-0.7562	0.4335	-2 9843	-0.8650	2 7919	1 3516	-0.6211	1 4613	-2 7929	-0.3932
C	-0.3207	3 0491	-0.7863	-0 3981	3 0969	-0.6875	-2.8824	-1 2097	-0.5986	-1 2907	2.9084	-0.4573
C	-2.9966	-0.4386	-0.8640	-3.0461	-0.4153	-0.7311	1 3129	-2.8159	-0.6334	-2.8397	-1 3713	-0.4828
0	0.8620	-3.9989	-1.4268	0.6126	-3.9702	-1.5878	3.6681	2.0309	-1.1686	2.2394	-3.6548	-0.8220
0	0 9798	-1 7994	-1 0336	0.8158	-1 7881	-1 1348	1 5471	1 3621	-0.9303	1 4369	-1 5697	-0.7739
0	-3.9933	-0.6596	-1.5634	-4.0405	-0.5369	-1.4555	2.0073	-3.6919	-1.1625	-3.7368	-2.0717	-0.9719
0	-0.4029	4.0417	-1.5207	-0.5378	4.1028	-1.3905	-3.8007	-1.7337	-1.2442	-1.9100	3.8158	-1.0267
0	-0.7093	1.8681	-1.0969	-0.7852	1.9137	-1.0079	-1.6396	-1.2682	-0.9049	-1.2976	1.6765	-0.8110
0	-1.7924	-0.7678	-1.1596	-1.8748	-0.8686	-0.9908	1.2822	-1.5839	-0.9859	-1.6024	-1.4242	-0.8010
N	2.0733	0.0000	1.5536	2.0643	0.0000	1.4752	-0.0285	2.0854	1.3986	2.0868	0.0000	1.5266
Ν	-0.0060	-2.0556	1.4472	-0.0300	-2.0773	1.3915	2.0911	0.0000	1.3696	-0.0131	-2.0809	1.4980
Ν	-2.0829	-0.0074	1.3899	-2.0618	0.0106	1.4824	0.0273	-2.0915	1.3920	-2.0908	-0.0093	1.4626
Ν	0.0156	2.0630	1.4591	0.0275	2.0668	1.5167	-2.0900	0.0061	1.4503	0.0171	2.0902	1.5137
Ν	2.0761	0.8814	-1.0372	2.0473	0.9877	-1.0713	-1.4071	1.7255	-1.0488	1.8377	1.4635	-0.8393
С	1.9138	-1.0143	2.6171	1.9328	-1.0461	2.5135	1.3236	2.2988	1.9754	2.2598	-1.3230	2.1745
С	1.3044	-2.2993	2.0877	1.3132	-2.3187	1.9656	1.9460	0.9984	2.4544	0.9341	-1.9050	2.6190
С	-1.0636	-1.9975	2.4785	-1.0309	-2.0186	2.4782	2.3352	-1.3373	1.9578	-1.3613	-2.3308	2.0513
С	-2.3291	-1.3589	1.9419	-2.3105	-1.3449	2.0238	1.0483	-1.9686	2.4586	-2.0129	-1.0412	2.5219
С	-2.0032	0.9965	2.4689	-1.9526	0.9918	2.5777	-1.3031	-2.3035	2.0055	-2.2861	1.3124	2.0947
С	-1.3528	2.2824	1.9879	-1.3191	2.2830	2.0967	-1.8877	-1.0025	2.5210	-0.9685	1.8653	2.6005
С	0.9703	1.9709	2.5849	1.0178	1.9445	2.6057	-2.3128	1.3252	2.0880	1.3416	2.3259	2.1308
С	2.2788	1.3350	2.1575	2.3071	1.3138	2.1174	-1.0014	1.9624	2.5124	1.9843	1.0281	2.5917
С	-0.2595	-3.1486	0.4962	-0.3398	-3.1612	0.4444	3.2039	0.3762	0.4796	0.4125	-3.1993	0.6422
С	-3.1720	0.3137	0.4556	-3.1733	0.3530	0.5821	0.3630	-3.2123	0.4957	-3.2087	-0.3138	0.5551
С	0.3548	3.1936	0.5779	0.3328	3.2130	0.6484	-3.2501	-0.3689	0.6217	-0.3951	3.2638	0.7252
С	3.2368	-0.3330	0.7164	3.2097	-0.3231	0.5999	-0.3759	3.2395	0.5411	3.2752	0.2539	0.6900
С	3.2651	0.5044	-0.5352	3.2406	0.5939	-0.5926	-1.4647	2.9264	-0.4534	3.0579	1.3681	-0.2937
С	4.4608	0.8474	-1.1563	4.4330	1.0204	-1.1665	-2.4625	3.8457	-0.7732	4.0883	2.2423	-0.6417
С	4.4329	1.6008	-2.3265	4.3958	1.8803	-2.2616	-3.4268	3.5004	-1.7121	3.8407	3.2473	-1.5643
С	3.2084	2.0064	-2.8620	3.1661	2.3161	-2.7606	-3.3676	2.2598	-2.3617	2.5678	3.3735	-2.1388
С	2.0646	1.5953	-2.1748	2.0285	1.8227	-2.1192	-2.3152	1.4248	-1.9942	1.6156	2.4404	-1.7396
С	3.0720	2.8882	-4.0990	3.0067	3.3148	-3.9046	-4.4558	1.7945	-3.3256	2.2508	4.5009	-3.1161
С	2.5972	4.2792	-3.6548	2.5446	4.6548	-3.3097	-3.9907	0.6058	-4.1738	0.8108	4.4212	-3.6269
С	4.4059	3.0238	-4.8350	4.3264	3.5237	-4.6486	-5.6590	1.3522	-2.4760	2.4460	5.8409	-2.3904
С	2.0359	2.2838	-5.0586	1.9485	2.8151	-4.9007	-4.8749	2.9347	-4.2606	3.2095	4.4198	-4.3124
Н	1.2686	-0.5869	3.3969	1.3108	-0.6414	3.3229	1.2697	3.0052	2.8216	2.9302	-1.2373	3.0473
Н	2.8896	-1.2285	3.0885	2.9213	-1.2752	2.9491	1.9571	2.7684	1.2122	2.7575	-1.9997	1.4682
Н	1.9715	-2.7592	1.3450	1.9514	-2.7439	1.1787	2.9319	1.2163	2.9013	1.1131	-2.8733	3.1205
H	1.1988	-3.0306	2.9071	1.2544	-3.0738	2.7685	1.3243	0.5562	3.2443	0.4692	-1.2391	3.3586
H	-0.6769	-1.4155	3.3268	-0.5922	-1.4599	3.3160	3.0556	-1.2700	2.7916	-1.3083	-3.0325	2.9029
H	-1.2897	-3.0094	2.8583	-1.2560	-3.0339	2.8491	2.7950	-1.9731	1.1892	-1.9730	-2.8151	1.2807
H	-2.7488	-1.9859	1.1415	-2.7875	-1.9445	1.2363	1.2725	-2.9629	2.8832	-3.0253	-1.2654	2.9020
H	-3.0926	-1.3142	2.7380	-3.0235	-1.2958	2.8652	0.6282	-1.3617	3.2710	-1.4455	-0.6263	3.3643
H	-1.4250	0.5644	3.2978	-1.3456	0.5448	3.3771	-1.2382	-3.0263	2.8375	-2.9972	1.2423	2.9364
H	-5.0099	1.2223	2.8626	-2.9464	1.2080	3.0086	-1.9657	-2./438	1.248/	-2./345	1.9918	1.55/5
H	-1.9575	2.7313	1.18/0	-1.9502	2.7451	1.3248	-2.8493	-1.2083	3.0226	-1.1493	2.8129	3.1380
H	-1.324/	3.0187	2.8098	-1.2595	5.0034	2.9311	-1.21/5	-0.5682	3.2/43	-0.5310	1.1023	3.3215
H	0.5024	1.5/60	3.3815	0.5/6/	1.3267	3.3992	-2.9645	1.2254	2.9750	1.2495	3.0011	3.0004
H	1.1649	2.9/33	3.0045	1.2331	2.9330	5.0481	-2.8403	1.9702	1.5/50	1.9803	2.8367	1.4003
H	2.7821	1.9752	1.4195	2.7902	1.9/31	1.3834	-1.2019	2.9567	2.94//	2.9864	1.24/9	3.0000
H	2.9559	1.2592	3.0262	3.0120	1.2021	2.9590	-0.5349	1.55/1	3.5004	1.59/9	0.5995	3.4144
п U	-1.3090	-5.1102	0.1038	-1.40/0	-3.1290	0.1634	3.3314	-0.3233	-0.0452	-0.43/3	-5.5407	1.2249
п U	-0.0/08	-4.13/0	0.9498	-0.1224	-4.1321	0.8/09	4.03/2	0.70/9	0.2220	0.7004	-4.0312	0.2021
Н	1.4406	3.2151	0.3921	1.4098	3.2392	0.4190	-3./184	0.0401	0.2230	0.4901	3.7449	0.2931
П	0.0839	4.1380	1.03/3	0.0768	4.1/11	1.1511	-4.0224	-0.8932	1.2089	-0.8942	4.0232	1.3501
п	5.1045 4.1791	-1.5882	0.4105	3.1013 4.1601	-1.5508	0.241/	0.5205	3.3029	-0.0380	3.4//I //1500	-0.03/3	1 3154
п	4.1/01	-0.204/	1.2/04	4.1001	-0.2332	1.1304	-0.03/9	4.1124	1.134/	4.1300	0.400/	1.3134

Ino	org. Chem. Supplementary Information						Mas	on, Roge	ers et al				
	Н	5.4071	0.5326	-0.7164	5.3828	0.6882	-0.7478	-2.4933	4.8091	-0.2646	5.0667	2.1356	-0.1737
	Н	5.3740	1.8789	-2.8012	5.3323	2.2179	-2.7053	-4.2336	4.2020	-1.9293	4.6382	3.9448	-1.8278
	Н	3.3098	4.7270	-2.9451	3.2945	5.0500	-2.6072	-3.8102	-0.2887	-3.5596	0.0805	4.5029	-2.8071
	Н	1.6122	4.2235	-3.1692	1.5918	4.5408	-2.7702	-3.0697	0.8430	-4.7283	0.6230	3.4781	-4.1630
	Н	2.5160	4.9447	-4.5285	2.4006	5.3933	-4.1139	-4.7752	0.3547	-4.9026	0.6289	5.2500	-4.3263
	Н	4.2740	3.6828	-5.7054	4.1671	4.2224	-5.4828	-6.4854	1.0304	-3.1291	2.2266	6.6743	-3.0753
	Η	4.7624	2.0473	-5.1985	4.7096	2.5780	-5.0616	-6.0202	2.1750	-1.8400	3.4794	5.9575	-2.0309
	Н	5.1873	3.4629	-4.1985	5.0989	3.9546	-3.9949	-5.3794	0.5056	-1.8284	1.7686	5.9166	-1.5255
	Н	1.9662	2.9055	-5.9637	1.8919	3.5072	-5.7543	-5.6487	2.5738	-4.9544	2.9941	5.2354	-5.0195
	Н	1.0357	2.2486	-4.5997	0.9461	2.7723	-4.4480	-4.0207	3.2935	-4.8549	3.0953	3.4624	-4.8433
	Н	2.3216	1.2647	-5.3614	2.2035	1.8149	-5.2841	-5.2975	3.7875	-3.7103	4.2589	4.5156	-3.9962
	Н	1.0755	1.8408	-2.5605	1.0416	2.1274	-2.4597	-2.1875	0.4470	-2.4551	0.6075	2.4723	-2.1504
	Н	-3.1429	1.3864	0.2099	-3.1379	1.4227	0.3313	-0.5582	-3.5465	-0.0041	-3.4501	0.5947	-0.0162
	Н	-4.1627	0.0960	0.8872	-4.1532	0.1470	1.0453	0.7781	-4.0693	1.0507	-4.1112	-0.6250	1.1068
	0				-0.3756	0.2139	-3.2705				-0.0601	-0.0024	-2.5241
	Н				0.1576	0.7222	-3.8990				-0.6690	0.7317	-2.7120
	Η				-0.6875	0.8918	-2.6427				0.7600	0.2396	-2.9817

Structure and analysis of magnetic properties of [Yb.L²]

Figure S19. X-ray molecular structure of **[Yb.L²]**, showing the two independent enantiomeric molecules. Thermal ellipsoids are drawn at the 50% probability level; H atoms are omitted for clarity.

Figure S20. Crystal packing of [Yb.L²], showing hydrogen bonds. H atoms are omitted, except those of hydroxyl groups and water.

Figure S21. ³¹P{¹H} NMR spectra of **[Yb.L²]** (9.4 T, D₂O, pD 6, 298 K) showing the major and minor isomers in a 5:1 ratio (the resonance at -16.5 ppm contains overlapping signals).

Table S6. Assigned paramagnetic shifts of major conformer of **[Yb.L²]** protons (4.7 T, D₂O, 295 K) and phosphorus atoms.

Label	Shift, ppm	Width, Hz	R_1, s^{-1}	Diamagnetic reference, ppm
py6	115.60	160	332	8.60
c5ax	115.60	160	332	3.41
c3ax	85.57	137	248	3.41
c7ax	54.18	130	277	3.37
c4eq	50.90	79	101	2.50
c5eq	50.02	64	100	2.31
clax	36.30	136	250	3.51
c4ax	33.43	106	270	3.53

Inorg. Chem.

Supplementary	Information	Mason	Rogers
Supplementary	mormation	wiason,	Ruguis

Suppler	nentary Inform	nation N	lason, Roger	s et al
c3eq	27.07	72	89	2.40
c6eq	21.09	84	92	2.48
py4	18.98	53	9.8	7.97
tBu	16.33	45	11.1	1.24
a2eq	11.99	63	63	2.59
py3	6.12	47	18	7.35
c7eq	1.92	74	81	2.29
Me3	-9.37	70	42	1.26
Me1	-9.37	70	42	1.26
c6ax	-9.37	70	42	3.53
c2eq	-14.40	54	61	2.59
c8eq	-13.81	66	68	2.43
cleq	-18.60	81	64	2.47
Me2	-26.27	63	38	1.44
a3eq	-27.00	55	50	2.78
apeq	-28.33	77	50	3.65
aleq	-28.73	58	54	2.59
a2ax	-38.66	130	183	3.61
alax	-40.47	104	149	3.43
c8ax	-30.71	106	186	2.98
a3ax	-49.94	102	172	3.41
apax	-64.10	101	182	4.55
c2ax	-76.41	92	135	3.58
P1	-41.22	-	-	43.90
P2	-16.54	-	-	43.30
P3	-53 64	_	-	41.00

Figure S22. Comparison of the observed and the best fit PCS values for [Yb.L²].

Table S7. Traceless part of the magnetic susceptibility tensor (Å³ in SI units) for [Yb.L²] extracted from the paramagnetic shifts $(\pm 0.001 \text{ Å}^3)$ using the geometry of Λ - $\lambda\lambda\lambda\lambda$ conformer and computed by CASSCF (*T*=300.2 K) for various structures. Axiality, rhombicity (Å³ in SI units) and Euler angles in degrees are shown for convenience.

				(7)			(2.2.2.)		
		fit		(RRR)-Λ-(λλλλ)			$(RRR)-\Lambda-(\lambda\lambda\lambda\lambda)+H_2O$		
	-0.017	0.015	-0.037	0.150	0.026	-0.052	0.140	0.022	-0.043
×	0.015	-0.043	0.002	0.026	0.127	-0.017	0.022	0.121	0.009
	-0.037	0.002	0.060	-0.052	-0.017	0.232	-0.043	0.009	0.250
ax		0.113			0.139			0.142	
rh		0.016			0.016			0.024	
α	[185 23 300)]	[]	204 29 111]	[358 161 22		26]

 Table S8. DFT (M06-2X/cc-pVDZ SMD(water)) optimized geometry of [Yb.L²] used for the fitting.

	1		
Yb	0	0	0
P1	0.71371	-3.23288	-0.85119
P3	-0.84366	3.24873	-0.75455
P2	-3.26175	-0.60269	-0.8145
0	1.97553	-4.09332	-0.70558
0	0.9766	-1.70257	-1.08014
0	-4.12774	-1.86211	-0.68213
0	-2.27852	3.74505	-0.51685
0	-0 73359	1 75095	-1 21041
0	-1 74982	-0.86707	-1 14376
N	2 07533	0	1 44039
N	0.00118	-2 10665	1.53584
N	2 0512	0.00842	1.55504
N	0.02531	2 11508	1.57779
N	2.05264	2.11308	1.3931
N C	2.05204	0.78403	-1.19933
C	-3.95251	0.53649	-2.03803
C	1.96286	-0.9/418	2.55136
	1.35125	-2.29197	2.11461
C	-0.99964	-2.00272	2.61674
С	-2.28533	-1.36416	2.12677
С	-1.89707	0.93252	2.70946
С	-1.32601	2.26839	2.28286
С	1.05757	1.97646	2.58917
С	2.3098	1.35394	2.00061
С	-0.32681	-3.2606	0.67578
С	-3.20552	0.38757	0.74738
С	0.21124	3.3059	0.75655
С	3.23397	-0.35256	0.59914
С	3.23936	0.38599	-0.71574
С	4.41159	0.5638	-1.44296
С	4.33952	1.09297	-2.72953
С	3.10206	1.44675	-3.27429
С	1.99153	1.29059	-2.43744
С	2.91001	1.92224	-4.71354
С	2.11762	3.2361	-4.73925
С	4.25011	2.13875	-5.41803
С	2.1165	0.84376	-5.46924
С	0.00796	4.31959	-1.9354
С	-0.3528	-3.85457	-2.17146
clax	1.34179	-0.52203	3.33523
cleq	2.95806	-1.15757	2.99351
c2ax	1.98737	-2.78464	1.36775
c2eq	1.30494	-2.97304	2.98307
c3ax	-0.5656	-1.40873	3.43167
c3ea	-1.21929	-3.00265	3.03143
c4ax	-2.74583	-1.98239	1.34518
c4ea	-3.01239	-1.31473	2.95744
c5ax	-1.23148	0.46641	3.44844
c5eg	-2.87225	1.09088	3.20422
c6ax	-2.01536	2 78301	1 60246
сбел	-1.21133	2.91702	3.16979
c7ax	0.68281	1.36343	3.41924
c7ea	1.31408	2.9637	3.01356
c8ax	2 70003	1 98928	1 19304
c8eg	3 09278	1 30543	2 77798
alax	-1 37754	-3 18934	0 35996
alen	-0 18843	-4 21566	1 21484
	0.10075	7.21500	1.21707

Inorg. Chem.	Supplementary Ir	oplementary Information			Mason, Rogers et al		
		a3eq	0.04778	4.23989	1.32521		
		apax	3.18549	-1.42646	0.36552		
		apeq	4.17769	-0.17106	1.1427		
		py3	5.36822	0.2652	-1.01389		
		py4	5.25765	1.21163	-3.30482		
		tBu	2.63535	4.02414	-4.17062		
		tBu_1	1.1095	3.10848	-4.32007		
		tBu_2	2.00602	3.57954	-5.77915		
		tBu_3	4.06843	2.49567	-6.44243		
		tBu_4	4.83013	1.20632	-5.48468		
		tBu_5	4.86246	2.89199	-4.89908		
		tBu_6	1.95299	1.15847	-6.51168		
		tBu_7	1.13358	0.67539	-5.00334		
		tBu_8	2.6628	-0.11179	-5.47675		
		py6	0.98778	1.56443	-2.76849		
		Me3	0.01394	5.34587	-1.54113		
		Me3_1	-0.54388	4.3033	-2.88609		
		Me3_2	1.03914	3.9765	-2.09368		
		Mel	-1.23737	-3.21093	-2.26526		
		Me1_1	-0.6586	-4.88579	-1.94545		
		Mel 2	0 21616	-3 84715	-3 11212		

a2ax a2eq

Me2

Me2_1

Me2_2

-3.09587

-4.15668

-4.96183

-4.01689

-3.31111

1.44094

0.28061

0.83692

0.02051

1.4237

0.45047 1.30133

-1.72202 -3.00652

-2.12697