Supporting Information

Enzyme Cascades in Whole Cells for the Synthesis of Cyclic Chiral Amines.

Lorna J. Hepworth, Scott P. France, Shahed Hussain ${ }^{\dagger}$, Peter Both, Nicholas J. Turner, Sabine L. Flitsch ${ }^{*}$

[^0]* Corresponding author email address: Sabine.Flitsch@manchester.ac.uk

1. Materials and equipment S5
1.1 Chemicals and equipment. S5
1.2 HPLC, GC, and GCMS analysis S5
2. Molecular biology, whole cell biocatalyst preparation, and protein expression S6
2.1. Nucleotide sequences for plasmid pPB01, BioBrick prefix and suffix, operons and genesfor MCAR, NCAR, BsSfp, ATA-117, SitATA, (R)-IRED and (S)-IRED.S6
2.2. Operon designs S18
2.3. Cloning of operons into pPB01/BsSfp using BioBrick strategy to give pPB01/ATA-117 +MCAR + (R)-IRED + BsSfp (pLHO2).S19
2.4. Cloning of duplicate ATA-117 and (R)-IRED operons into pPB01/ATA-117 + MCAR $+(R)$ -IRED + BsSfp using BioBrick strategy.S20
2.5. Preparation of whole cell biocatalyst S21
2.6. Protein expression profile of transformed BL21 (DE3) cells via western blot analysis. S21
3. Analytical methods and sample preparation S23
3.1. Gas chromatography methods for conversion and ee determination S23
3.2. High performance liquid chromatography methods for consumption of keto acid substrates and ee determination S23
3.3. Calibration curve for the determination of conversion to product using compound4a.S24
3.4. Calibration curve for the determination of conversion to product using compound S26$4 f$.
3.5. Calibration curve for the determination of conversion to product using compound
$4 g$ S28
3.6. Extraction protocol and sample preparation for GC and HPLC analysis S29
4. Whole cell biotransformation parameter optimization using keto acid 1a, and final optimized conditions S30
4.1. Preliminary screen of expression constructs pLH01-08 against keto acid 1a S30
4.2. Optimization of protein expression S31
4.2.1. Effect of expression temperature on product formation. S31
4.2.2. Effect of optical density $\left(\mathrm{OD}_{600}\right)$ at protein expression induction on product
formation S32
4.2.3. Effect of expression time length on product formation S33
4.2.4. Effect of IPTG concentration on product formation S34
4.3. Optimization of reaction conditions. S35
4.3.1. Analysis of cell pellet and reaction supernatant to determine product diffusion out of the cell S35
4.3.2. Comparison of sacrificial amine donors for the ATA-117 reaction S36
4.3.3. Effect of PLP concentration on product formation S37
4.3.4. Effect of D / L-alanine concentration on product formation S38
4.3.5. Effect of glucose concentration on product formation. S39
4.3.6. Effect of keto acid substrate concentration on product formation S40
4.3.7. Effect of keto acid substrate concentration on extent of substrate consumption S41
4.3.8. Effect of wet cell mass on product formation S42
4.3.9. Effect of reaction time length on product formation S43
4.4. Optimized expression and reaction conditions. S44
5. Comparison of ATA-117 and ATA-113 in multi-component one pot hybrid reactions S45
5.1. Protein expression and reaction conditions for multi-component one pot hybrid S45reactions
5.2. Comparison of hybrid cascade reactions using ATA-117 or ATA-113 against keto acid
1a.S45
6. Preparative-scale biotransformations S46
6.1. Synthesis of 4-methyl-2-phenylpiperidine using whole cell biocatalyst. S46
6.2. Synthesis of 2-phenylpiperidine using whole cell biocatalyst. S46
6.3. Synthesis of keto alcohol intermediate using whole cell biocatalyst and 1a as S47substrate.
7. Synthesis of substrate 2-((2-oxo-2-phenylethyl)thio)acetic acid, $\mathbf{1 g}$ S47
8. GC and HPLC traces S48
8.1. GC traces and mass spectra for preparative-scale syntheses. S48
8.2. GC traces, HPLC traces and mass spectra for analytical-scale syntheses S53
9. NMR of amine products from preparative biotransformations S75
10. References S77

1. Materials and equipment.

1.1. Chemicals and equipment.

Commercial reagents and solvents were purchased from Sigma Aldrich, Alfa Aesar or Fluorochem and used without further purification. Specifically substrates $\mathbf{1 a}$ and $\mathbf{1 f}$ and amine standards $\mathbf{4 f}$ and $\mathbf{4 g}$ were purchased from Sigma Aldrich, $\mathbf{1 c}$ was purchased from Fluorochem, and amine standard $\mathbf{4 a}$ was purchased from TCI Chemicals. Substrates $\mathbf{1 b}$-e and amine standards $\mathbf{4 b}$-e were prepared as previously reported. ${ }^{[1-3]}$ NMR spectra were recorded using a Bruker Avance 400 spectrometer with chemical shifts reported in ppm relative to residual protic solvent signals $\left(\mathrm{CHCl}_{3}\right.$ in $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}=7.27 ; \mathrm{CDCl}_{3},{ }^{13} \mathrm{C}=77.0$; $\mathrm{CHD}_{2} \mathrm{OD}$ in $\mathrm{CD}_{3} \mathrm{OD},{ }^{1} \mathrm{H}=3.31 ; \mathrm{CD}_{3} \mathrm{OD},{ }^{13} \mathrm{C}=49.0 ; \mathrm{CHD}_{2} \mathrm{SOCD}_{3}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO},{ }^{1} \mathrm{H}=2.50 ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, $\left.{ }^{13} \mathrm{C}=39.52\right)$). ${ }^{[4]}$ The coupling constants (J) are quoted in Hz to the nearest 0.1 Hz . Signal multiplicities are assigned as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), sextet (sxt), multiplet (m), broad (br) or a combination of the above. Low resolution mass spectrometry (MS) was performed on a HP-6890 GC connected to a HP5973 MS detector.

1.2. HPLC, GC, and GCMS analysis.

Normal phase HPLC was performed on an Agilent system equipped with a G1379A degasser, G1312A binary pump, a G1367A well plate autosampler unit, a G1316A temperature controlled column compartment and a G1315C diode array detector. CHIRALPAK®IC analytical column was purchased from Daicel (Osaka, Japan). The column possesses dimensions of 250 mm length, 4.6 mm diameter, $5 \mu \mathrm{~m}$ particle size. An injection volume of $10 \mu \mathrm{~L}$ was used and chromatograms were monitored at 265 nm .

Gas chromatography was performed on an Agilent 6850 GC system using an Agilent Technologies 6850 Series Auto Sampler for injections and equipped with a flame ionization detector (FID) for detection, using a 25 m CP-Chirasil-DEX CB column with 0.25 mm inner diameter and $0.25 \mu \mathrm{~m}$ film thickness (Agilent, Santa Clara, CA, USA). Helium was used as the carrier gas ($1.2 \mathrm{~mL} \mathrm{~min}^{-1}$). Derivatization of samples for chiral GC-FID analysis was achieved using acetic anhydride and an excess of triethylamine at room temperature, where stated.

GCMS analysis was performed on a HP-6890 Series GC coupled to a HP5973 MS detector, EI positive mode with helium as the carrier gas.

Analysis and determination of ee for amines 4a-e based on previously reported HPLC or GCFID analysis on a chiral stationary phase. ${ }^{[1-3]}$

2. Molecular biology, whole cell biocatalyst preparation, and protein expression.

2.1. Nucleotide sequences for plasmid pPBO1, BioBrick prefix and suffix, operons and genes for MCAR, NCAR, BsSfp, ATA-117, SitATA, (R)-IRED and (S)-IRED.

pPB01 DNA sequence:

GGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCC CGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCGCGAATTGATCTGGTTTGACAGCTT ATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAG GTCGTAAATCACTGCATAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCGCCGACATC ATAACGGTTCTGGCAAATATTCTGAAGAATTCTGTTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATTG TGAGCGGATAACAATTTCACACAGGAAACAGCGCCGCTGAGAAAAAGCGAAGCGGCACTGCTCTTTAACAAT TTATCAGACAATCTGTGTGGGCACTCGACCGGAATTATCGATTAACTTTATTATTAAAAATTAAAGAGGTATAT ATTAATGTATCGATTAAATAAGGAGGAATAAACCATGGGGGGTTCTCATCATCATCATCATCATGGTATGGCT AGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCGATGGGGATCCGA GCTCGAGATCTGCAGCTGGTACCATATGGGAATTCGAAGCTTGGCTGTTTTGGCGGATGAGAGAAGATTTTCA GCCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGG TGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGTGGGGTCTCCCC ATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGCTGCAGCCTTTCGTTTT ATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGC AACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATC CTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCT CATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGT GTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAA GATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAG AGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCG TGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCA GTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGAT AACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGG GGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACA CCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCG GCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGG CTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGA TGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACA GATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGA TTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCC CTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTT

TTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAG CCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGT GGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA GCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGAT ACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGC GGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGT CGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAAC GCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCC CCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGC GCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTA TTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGC TATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTG TCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCG TCATCACCGAAACGCGCGAGGCAGCAGATCAATTCGCGCGCGAAGGCGAAGCGGCATGCATTTACGTTGACA CCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGA ATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGT GAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACA TTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGC CCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGT GTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAG TGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCG GCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACT GGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCG GCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAA GGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGA TGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTG CGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTCAACCACCATCAA ACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAA GGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCT

BioBrick prefix DNA sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTAC
 EcoRI Xbal

BioBrick suffix DNA sequence:
ACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATCGTTCACTGCAG
Spel
Pstl

MCAR operon sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGA ATTGTGAGCGGATAACAATTTCACACAGGAAACAGAATTGTAGAGGAGATATACATATGCACCATCATCATCA TCATTCTTCTGGTAGCCCGATTACCCGTGAAGAACGTCTGGAACGTCGTATTCAGGATCTGTATGCGAACGATC CGCAGTTCGCAGCAGCCAAACCGGCGACCGCGATTACCGCGGCGATTGAACGTCCGGGTCTGCCGCTGCCGC AGATCATCGAAACGGTGATGACCGGCTATGCGGATCGTCCGGCACTGGCACAACGTAGCGTGGAATTTGTGA CCGATGCGGGCACCGGTCATACCACCCTGCGTCTGCTGCCGCATTTTGAAACCATTAGCTATGGCGAACTGTG GGATCGTATTAGCGCGCTGGCCGATGTTCTGAGCACCGAACAGACCGTGAAACCGGGCGATCGTGTGTGCCT GCTGGGCTTTAACAGCGTGGATTATGCGACCATTGATATGACCCTGGCACGTCTGGGTGCTGTCGCTGTCCCG CTGCAAACCTCTGCTGCGATTACCCAGCTGCAACCGATTGTGGCGGAAACCCAGCCGACCATGATTGCGGCGA GCGTGGATGCCCTGGCCGATGCGACCGAACTGGCACTGAGTGGTCAAACGGCTACGCGTGTGCTGGTGTTTG ATCATCATCGTCAGGTGGATGCGCATCGTGCGGCGGTTGAAAGCGCGCGTGAACGTCTGGCCGGTAGCGCG GTGGTTGAAACCCTGGCCGAAGCGATTGCGCGTGGTGATGTGCCGCGTGGTGCGAGCGCGGGTAGCGCACC GGGCACCGATGTGAGCGATGATAGCCTGGCCCTGCTGATTTATACCTCTGGTAGTACGGGTGCGCCGAAAGG CGCCATGTATCCGCGTCGTAACGTGGCGACCTTTTGGCGTAAACGTACCTGGTTTGAAGGCGGCTATGAACCG AGCATTACCCTGAACTTTATGCCGATGAGCCATGTGATGGGCCGTCAGATTCTGTATGGCACCCTGTGCAACG GCGGCACCGCGTATTTTGTGGCGAAAAGCGATCTGAGCACCCTGTTTGAAGATCTGGCCCTGGTGCGTCCGAC CGAACTGACCTTCGTCCCGCGTGTTTGGGATATGGTGTTCGATGAATTTCAGAGCGAAGTGGATCGTCGTCTG GTGGATGGCGCGGATCGTGTTGCGCTGGAAGCGCAGGTGAAAGCGGAAATTCGTAACGATGTGCTGGGCGG TCGTTATACCTCTGCTCTGACGGGTTCTGCTCCGATTAGCGATGAAATGAAAGCGTGGGTGGAAGAACTGCTG GATATGCATCTGGTGGAAGGCTATGGCAGCACCGAAGCGGGCATGATTCTGATTGATGGCGCGATTCGTCGT CCGGCGGTGCTGGATTATAAACTGGTGGATGTTCCGGATCTGGGCTATTTTCTGACCGATCGTCCGCATCCGC GTGGCGAACTGCTGGTGAAAACCGATAGCCTGTTTCCGGGCTATTATCAGCGTGCGGAAGTGACCGCGGATG TGTTTGATGCGGATGGCTTTTATCGCACCGGCGATATTATGGCGGAAGTGGGCCCGGAACAGTTTGTGTATCT GGATCGTCGTAACAACGTGCTGAAACTGAGCCAGGGCGAATTTGTTACCGTGAGCAAACTGGAAGCGGTGTT TGGCGATAGCCCGCTGGTGCGTCAGATTTATATTTATGGCAACAGCGCGCGTGCGTATCTGCTGGCCGTGATT GTGCCGACCCAGGAAGCGCTGGACGCGGTCCCGGTTGAAGAACTGAAAGCGCGTCTGGGTGACTCTCTGCAA GAAGTGGCGAAAGCGGCGGGTCTGCAAAGCTATGAAATTCCGCGCGATTTTATTATCGAAACCACCCCGTGG ACCCTGGAAAACGGCCTGCTGACGGGTATTCGTAAACTGGCCCGTCCGCAGCTGAAAAAACATTATGGTGAA CTGCTGGAACAAATTTATACCGATCTGGCCCACGGCCAGGCGGATGAACTGCGTAGCCTGCGTCAGAGCGGT GCGGATGCGCCGGTGCTGGTGACCGTTTGTCGTGCGGCTGCGGCTCTGCTGGGTGGTAGCGCGAGCGATGT GCAGCCGGATGCGCATTTCACCGATCTGGGTGGTGATAGCCTGAGCGCCCTGAGCTTTACCAACCTGCTGCAT GAAATCTTTGATATTGAAGTGCCGGTGGGCGTGATTGTGAGCCCGGCGAACGATCTGCAAGCGCTGGCCGAT TATGTGGAAGCGGCGCGTAAACCGGGTAGCAGCCGTCCGACCTTTGCGAGCGTGCATGGCGCGAGCAACGG CCAGGTGACCGAAGTGCATGCGGGCGATCTGAGCCTGGATAAATTTATTGATGCGGCGACCCTGGCCGAAGC CCCGCGTCTGCCGGCTGCAAATACCCAGGTGCGTACCGTGCTGCTGACCGGTGCGACCGGCTTTCTGGGCCGT TACCTGGCCCTGGAATGGCTGGAACGTATGGATCTGGTTGATGGCAAACTGATTTGCCTGGTGCGTGCCAAAA GCGATACCGAAGCGCGTGCGCGTCTGGATAAAACCTTTGATAGCGGCGATCCGGAACTGCTGGCCCATTATC GTGCGCTGGCCGGCGATCATCTGGAAGTGCTGGCCGGTGATAAAGGCGAAGCGGATCTGGGCCTGGATCGT CAGACCTGGCAACGCCTGGCAGATACCGTGGATCTGATTGTTGACCCGGCTGCCCTGGTGAATCATGTGCTGC CGTATAGCCAGCTGTTTGGCCCGAATGCGCTGGGCACCGCTGAACTGCTGCGCCTGGCTCTGACCAGCAAAAT TAAACCGTATAGCTACACCAGCACCATTGGCGTGGCGGATCAGATTCCGCCGAGCGCGTTTACCGAAGATGC GGATATTCGTGTGATTAGCGCGACCCGTGCGGTGGATGATAGCTATGCGAACGGCTATAGCAACAGCAAATG

GGCGGGTGAAGTGCTGCTGCGTGAAGCGCATGATCTGTGCGGTCTGCCGGTGGCGGTGTTTCGTTGCGATAT GATCCTGGCAGACACGACCTGGGCGGGTCAGCTGAACGTGCCGGATATGTTTACCCGTATGATTCTGTCTCTG GCAGCTACGGGTATCGCACCGGGTAGCTTTTATGAACTGGCCGCGGATGGTGCGCGTCAGCGTGCGCATTAT GATGGCCTGCCGGTGGAATTTATTGCGGAAGCGATTAGCACCCTGGGCGCGCAGAGCCAGGATGGCTTTCAT ACCTATCATGTGATGAATCCGTATGATGATGGCATTGGCCTGGATGAATTTGTGGATTGGCTGAACGAAAGCG GCTGCCCGATTCAGCGTATTGCGGATTATGGCGATTGGCTGCAACGTTTTGAAACCGCGCTGCGCGCTCTGCC GGATCGTCAGCGTCATAGCAGCCTGCTGCCGCTGCTGCATAACTATCGTCAGCCGGAACGTCCGGTGCGTGGT AGCATTGCGCCGACCGATCGCTTTCGTGCGGCCGTGCAGGAAGCGAAAATTGGCCCGGATAAAGATATTCCG CATGTGGGTGCGCCGATTATTGTGAAATATGTGAGCGATCTGCGCCTGCTGGGCCTGCTGTAACCGGCTTATC GGTCAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAAT GACTGTCCACGACGCTATACCCAAAAGAAAGCGGCTTATCGGTCAGTTTCACCTGGTTTACGTAAAAACCCGC TTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACTGTCCACGACACTATACCCAAAAGAAAGC GGCTTATCGGTCAGTTTCACCTGTTTTACGTAAAAACCCGCTTCGGCGGGTTTTTACTTTTGGAGGGGCAGAAA GATGAATGACTGTCCACGACACTATACCCAAAAGAAAACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATCGT tCACTGCAG

MCAR open reading frame (ORF) sequence [gene with N -terminal His_{6} tag]:

ATGCACCATCATCATCATCATTCTTCTGGTAGCCCGATTACCCGTGAAGAACGTCTGGAACGTCGTATTCAGGA TCTGTATGCGAACGATCCGCAGTTCGCAGCAGCCAAACCGGCGACCGCGATTACCGCGGCGATTGAACGTCC GGGTCTGCCGCTGCCGCAGATCATCGAAACGGTGATGACCGGCTATGCGGATCGTCCGGCACTGGCACAACG TAGCGTGGAATTTGTGACCGATGCGGGCACCGGTCATACCACCCTGCGTCTGCTGCCGCATTTTGAAACCATT AGCTATGGCGAACTGTGGGATCGTATTAGCGCGCTGGCCGATGTTCTGAGCACCGAACAGACCGTGAAACCG GGCGATCGTGTGTGCCTGCTGGGCTTTAACAGCGTGGATTATGCGACCATTGATATGACCCTGGCACGTCTGG GTGCTGTCGCTGTCCCGCTGCAAACCTCTGCTGCGATTACCCAGCTGCAACCGATTGTGGCGGAAACCCAGCC GACCATGATTGCGGCGAGCGTGGATGCCCTGGCCGATGCGACCGAACTGGCACTGAGTGGTCAAACGGCTAC GCGTGTGCTGGTGTTTGATCATCATCGTCAGGTGGATGCGCATCGTGCGGCGGTTGAAAGCGCGCGTGAACG TCTGGCCGGTAGCGCGGTGGTTGAAACCCTGGCCGAAGCGATTGCGCGTGGTGATGTGCCGCGTGGTGCGA GCGCGGGTAGCGCACCGGGCACCGATGTGAGCGATGATAGCCTGGCCCTGCTGATTTATACCTCTGGTAGTA CGGGTGCGCCGAAAGGCGCCATGTATCCGCGTCGTAACGTGGCGACCTTTTGGCGTAAACGTACCTGGTTTG AAGGCGGCTATGAACCGAGCATTACCCTGAACTTTATGCCGATGAGCCATGTGATGGGCCGTCAGATTCTGTA TGGCACCCTGTGCAACGGCGGCACCGCGTATTTTGTGGCGAAAAGCGATCTGAGCACCCTGTTTGAAGATCTG GCCCTGGTGCGTCCGACCGAACTGACCTTCGTCCCGCGTGTTTGGGATATGGTGTTCGATGAATTTCAGAGCG AAGTGGATCGTCGTCTGGTGGATGGCGCGGATCGTGTTGCGCTGGAAGCGCAGGTGAAAGCGGAAATTCGT AACGATGTGCTGGGCGGTCGTTATACCTCTGCTCTGACGGGTTCTGCTCCGATTAGCGATGAAATGAAAGCGT GGGTGGAAGAACTGCTGGATATGCATCTGGTGGAAGGCTATGGCAGCACCGAAGCGGGCATGATTCTGATT GATGGCGCGATTCGTCGTCCGGCGGTGCTGGATTATAAACTGGTGGATGTTCCGGATCTGGGCTATTTTCTGA CCGATCGTCCGCATCCGCGTGGCGAACTGCTGGTGAAAACCGATAGCCTGTTTCCGGGCTATTATCAGCGTGC GGAAGTGACCGCGGATGTGTTTGATGCGGATGGCTTTTATCGCACCGGCGATATTATGGCGGAAGTGGGCCC GGAACAGTTTGTGTATCTGGATCGTCGTAACAACGTGCTGAAACTGAGCCAGGGCGAATTTGTTACCGTGAGC AAACTGGAAGCGGTGTTTGGCGATAGCCCGCTGGTGCGTCAGATTTATATTTATGGCAACAGCGCGCGTGCG TATCTGCTGGCCGTGATTGTGCCGACCCAGGAAGCGCTGGACGCGGTCCCGGTTGAAGAACTGAAAGCGCGT CTGGGTGACTCTCTGCAAGAAGTGGCGAAAGCGGCGGGTCTGCAAAGCTATGAAATTCCGCGCGATTTTATT ATCGAAACCACCCCGTGGACCCTGGAAAACGGCCTGCTGACGGGTATTCGTAAACTGGCCCGTCCGCAGCTG

AAAAAACATTATGGTGAACTGCTGGAACAAATTTATACCGATCTGGCCCACGGCCAGGCGGATGAACTGCGT AGCCTGCGTCAGAGCGGTGCGGATGCGCCGGTGCTGGTGACCGTTTGTCGTGCGGCTGCGGCTCTGCTGGGT GGTAGCGCGAGCGATGTGCAGCCGGATGCGCATTTCACCGATCTGGGTGGTGATAGCCTGAGCGCCCTGAGC TTTACCAACCTGCTGCATGAAATCTTTGATATTGAAGTGCCGGTGGGCGTGATTGTGAGCCCGGCGAACGATC TGCAAGCGCTGGCCGATTATGTGGAAGCGGCGCGTAAACCGGGTAGCAGCCGTCCGACCTTTGCGAGCGTGC ATGGCGCGAGCAACGGCCAGGTGACCGAAGTGCATGCGGGCGATCTGAGCCTGGATAAATTTATTGATGCG GCGACCCTGGCCGAAGCCCCGCGTCTGCCGGCTGCAAATACCCAGGTGCGTACCGTGCTGCTGACCGGTGCG ACCGGCTTTCTGGGCCGTTACCTGGCCCTGGAATGGCTGGAACGTATGGATCTGGTTGATGGCAAACTGATTT GCCTGGTGCGTGCCAAAAGCGATACCGAAGCGCGTGCGCGTCTGGATAAAACCTTTGATAGCGGCGATCCGG AACTGCTGGCCCATTATCGTGCGCTGGCCGGCGATCATCTGGAAGTGCTGGCCGGTGATAAAGGCGAAGCGG ATCTGGGCCTGGATCGTCAGACCTGGCAACGCCTGGCAGATACCGTGGATCTGATTGTTGACCCGGCTGCCCT GGTGAATCATGTGCTGCCGTATAGCCAGCTGTTTGGCCCGAATGCGCTGGGCACCGCTGAACTGCTGCGCCTG GCTCTGACCAGCAAAATTAAACCGTATAGCTACACCAGCACCATTGGCGTGGCGGATCAGATTCCGCCGAGCG CGTTTACCGAAGATGCGGATATTCGTGTGATTAGCGCGACCCGTGCGGTGGATGATAGCTATGCGAACGGCT ATAGCAACAGCAAATGGGCGGGTGAAGTGCTGCTGCGTGAAGCGCATGATCTGTGCGGTCTGCCGGTGGCG GTGTTTCGTTGCGATATGATCCTGGCAGACACGACCTGGGCGGGTCAGCTGAACGTGCCGGATATGTTTACCC GTATGATTCTGTCTCTGGCAGCTACGGGTATCGCACCGGGTAGCTTTTATGAACTGGCCGCGGATGGTGCGCG TCAGCGTGCGCATTATGATGGCCTGCCGGTGGAATTTATTGCGGAAGCGATTAGCACCCTGGGCGCGCAGAG CCAGGATGGCTTTCATACCTATCATGTGATGAATCCGTATGATGATGGCATTGGCCTGGATGAATTTGTGGAT TGGCTGAACGAAAGCGGCTGCCCGATTCAGCGTATTGCGGATTATGGCGATTGGCTGCAACGTTTTGAAACC GCGCTGCGCGCTCTGCCGGATCGTCAGCGTCATAGCAGCCTGCTGCCGCTGCTGCATAACTATCGTCAGCCGG AACGTCCGGTGCGTGGTAGCATTGCGCCGACCGATCGCTTTCGTGCGGCCGTGCAGGAAGCGAAAATTGGCC CGGATAAAGATATTCCGCATGTGGGTGCGCCGATTATTGTGAAATATGTGAGCGATCTGCGCCTGCTGGGCCT GCTGTAA

NCAR operon sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGA ATTGTGAGCGGATAACAATTTCACACAGGAAACAGAATTGTAGAGGAGATATACATATGCACCATCATCATCA TCATTCTTCTGGTGCGGTGGATAGCCCGGATGAACGTCTGCAACGTCGTATTGCGCAGCTGTTTGCGGAAGAT GAACAGGTGAAAGCAGCACGCCCGCTGGAAGCGGTTAGCGCAGCGGTGAGCGCACCGGGTATGCGTCTGGC CCAGATTGCGGCGACCGTGATGGCGGGCTATGCGGATCGTCCGGCAGCGGGTCAGCGTGCGTTTGAACTGA ACACCGATGATGCGACCGGCCGTACCAGCCTGCGTCTGCTGCCGCGTTTTGAAACCATTACCTATCGTGAACT GTGGCAGCGTGTGGGTGAAGTTGCGGCAGCGTGGCATCACGATCCGGAAAATCCGCTGCGTGCGGGCGATT TTGTGGCGCTGCTGGGCTTTACCAGCATTGATTATGCGACCCTGGATCTGGCCGATATTCATCTGGGCGCGGT GACCGTTCCGCTGCAAGCGAGCGCAGCAGTCAGCCAACTGATTGCGATTCTGACCGAAACGAGTCCGCGCCT GCTGGCATCTACCCCGGAACATCTGGATGCGGCGGTGGAATGTCTGCTGGCAGGTACGACGCCGGAACGCCT GGTGGTGTTTGATTATCATCCGGAAGATGATGATCAGCGTGCGGCGTTTGAAAGCGCGCGTCGTCGTCTGGC CGATGCGGGCAGCCTGGTGATTGTGGAAACCCTGGATGCGGTGCGTGCGCGTGGTCGTGATCTGCCGGCTGC TCCGCTGTTTGTGCCGGATACCGATGATGATCCGCTGGCCCTGCTGATTTATACCTCTGGTAGCACGGGTACG CCGAAAGGCGCCATGTATACCAACCGCCTGGCAGCAACGATGTGGCAAGGTAACAGCATGCTGCAAGGCAAT AGCCAGCGTGTGGGCATTAACCTGAACTATATGCCGATGAGCCATATTGCGGGCCGTATTAGCCTGTTTGGCG TGCTGGCCCGTGGTGGCACCGCGTATTTTGCGGCGAAAAGCGATATGAGCACCCTGTTTGAAGATATTGGCCT GGTGCGTCCGACCGAAATTTTTTTTGTGCCGCGTGTGTGCGATATGGTGTTTCAGCGTTATCAGAGCGAACTG

GATCGTCGTAGCGTGGCGGGTGCGGATCTGGATACCCTGGATCGTGAAGTGAAAGCGGATCTGCGTCAGAAC TATCTGGGCGGTCGTTTTCTGGTGGCGGTGGTGGGTAGCGCACCGCTGGCCGCGGAAATGAAAACCTTTATG GAAAGCGTGCTGGATCTGCCGCTGCATGATGGCTATGGCAGCACCGAAGCGGGTGCGAGCGTGCTGCTGGA TAACCAGATTCAGCGTCCGCCGGTGCTGGATTATAAACTGGTGGACGTCCCGGAACTGGGCTATTTTCGTACC GATCGTCCGCATCCGCGTGGCGAACTGCTGCTGAAAGCGGAAACCACCATTCCGGGCTATTATAAACGTCCGG AAGTGACCGCGGAAATTTTTGATGAAGATGGCTTCTATAAAACCGGCGATATTGTGGCGGAACTGGAACATG ATCGTCTGGTGTATGTGGATCGTCGCAACAACGTGCTGAAACTGAGCCAGGGCGAATTTGTGACCGTGGCGC ATCTGGAAGCGGTGTTTGCGAGCAGCCCGCTGATTCGTCAGATTTTTATCTACGGCTCTAGTGAACGCTCTTAT CTGCTGGCAGTGATTGTGCCGACCGATGATGCCCTGCGTGGCCGTGATACCGCGACCCTGAAAAGCGCGCTG GCCGAAAGCATTCAGCGTATTGCGAAAGATGCGAACCTGCAACCGTATGAAATTCCGCGTGATTTTCTGATTG AAACCGAACCGTTCACCATTGCGAACGGCCTGCTGTCTGGCATTGCGAAACTGCTGCGTCCGAACCTGAAAGA ACGTTATGGCGCGCAGCTGGAACAAATGTATACCGATCTGGCCACCGGCCAGGCGGATGAACTGCTGGCCCT GCGTCGTGAAGCGGCGGATCTGCCGGTTCTGGAAACCGTTAGCCGTGCGGCGAAAGCCATGCTGGGTGTGG CGAGCGCGGATATGCGTCCGGATGCGCATTTTACCGATCTGGGCGGCGATAGCCTGAGCGCCCTGAGCTTTA GCAACCTGCTGCATGAAATTTTTGGCGTGGAAGTGCCGGTGGGTGTGGTTGTGAGCCCGGCAAACGAACTGC GTGACCTGGCCAACTATATTGAAGCGGAACGTAACAGCGGCGCGAAACGTCCGACCTTTACCAGCGTGCATG GCGGCGGTAGCGAAATTCGTGCGGCCGATCTGACCCTGGATAAATTTATTGATGCGCGTACCCTGGCCGCAG CGGATAGCATTCCGCATGCACCGGTTCCGGCACAGACCGTCCTGCTGACGGGCGCAAATGGCTATCTGGGCC GTTTTCTGTGCCTGGAATGGCTGGAACGTCTGGATAAAACCGGTGGCACCCTGATTTGCGTGGTGCGTGGCA GCGATGCGGCGGCAGCCCGTAAACGCCTGGATAGCGCGTTTGATAGCGGCGATCCGGGCCTGCTGGAACATT ATCAGCAGCTGGCCGCACGCACCCTGGAAGTTCTGGCCGGTGATATTGGCGATCCGAACCTGGGCCTGGATG ATGCCACCTGGCAGCGTCTGGCCGAAACCGTGGATCTGATTGTGCACCCGGCTGCTCTGGTGAATCATGTGCT GCCGTATACCCAGCTGTTTGGCCCGAACGTTGTGGGCACCGCGGAAATCGTTCGTCTGGCTATTACCGCGCGT CGTAAACCGGTGACCTATCTGAGCACCGTGGGCGTGGCGGATCAGGTTGATCCGGCGGAATATCAGGAAGAT AGCGACGTCCGCGAAATGAGCGCAGTCCGCGTCGTTCGCGAAAGTTATGCAAACGGTTATGGTAACAGCAAA TGGGCGGGTGAAGTGCTGCTGCGTGAAGCGCATGATCTGTGCGGTCTGCCGGTGGCGGTGTTTCGTAGCGAT ATGATTCTGGCCCATAGCCGTTATGCGGGCCAGCTGAACGTGCAGGATGTGTTTACCCGTCTGATTCTGAGCC TGGTGGCGACCGGCATTGCGCCGTATAGCTTTTATCGCACCGATGCGGATGGCAACCGTCAGCGTGCGCATTA TGATGGCCTGCCGGCGGATTTTACCGCAGCAGCTATCACCGCACTGGGCATTCAGGCGACCGAAGGCTTTCGT ACCTATGATGTGCTGAATCCGTATGATGATGGCATTAGCCTGGATGAATTTGTCGATTGGCTGGTCGAATCTG GTCACCCGATTCAGCGCATTACCGATTATAGCGATTGGTTTCACCGCTTTGAAACCGCGATTCGTGCGCTGCCG GAAAAACAGCGTCAGGCGAGCGTTCTGCCGCTGCTGGATGCGTATCGTAATCCGTGTCCGGCGGTCCGTGGT GCAATTCTGCCGGCGAAAGAATTTCAGGCGGCGGTGCAGACCGCGAAAATTGGCCCGGAACAGGATATTCCG CATCTGAGCGCACCGCTGATTGATAAATATGTGAGCGATCTGGAACTGCTGCAACTGCTGTAACCGGCTTATC GGTCAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAAT GACTGTCCACGACGCTATACCCAAAAGAAAGCGGCTTATCGGTCAGTTTCACCTGGTTTACGTAAAAACCCGC TTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACTGTCCACGACACTATACCCAAAAGAAAGC GGCTTATCGGTCAGTTTCACCTGTTTTACGTAAAAACCCGCTTCGGCGGGTTTTTACTTTTGGAGGGGCAGAAA GATGAATGACTGTCCACGACACTATACCCAAAAGAAAACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATCGT TCACTGCAG

NCAR open reading frame (ORF) sequence [gene with N-terminal His ${ }_{6}$ tag]:

ATGCACCATCATCATCATCATTCTTCTGGTGCGGTGGATAGCCCGGATGAACGTCTGCAACGTCGTATTGCGCA GCTGTTTGCGGAAGATGAACAGGTGAAAGCAGCACGCCCGCTGGAAGCGGTTAGCGCAGCGGTGAGCGCAC CGGGTATGCGTCTGGCCCAGATTGCGGCGACCGTGATGGCGGGCTATGCGGATCGTCCGGCAGCGGGTCAG CGTGCGTTTGAACTGAACACCGATGATGCGACCGGCCGTACCAGCCTGCGTCTGCTGCCGCGTTTTGAAACCA TTACCTATCGTGAACTGTGGCAGCGTGTGGGTGAAGTTGCGGCAGCGTGGCATCACGATCCGGAAAATCCGC TGCGTGCGGGCGATTTTGTGGCGCTGCTGGGCTTTACCAGCATTGATTATGCGACCCTGGATCTGGCCGATAT TCATCTGGGCGCGGTGACCGTTCCGCTGCAAGCGAGCGCAGCAGTCAGCCAACTGATTGCGATTCTGACCGA AACGAGTCCGCGCCTGCTGGCATCTACCCCGGAACATCTGGATGCGGCGGTGGAATGTCTGCTGGCAGGTAC GACGCCGGAACGCCTGGTGGTGTTTGATTATCATCCGGAAGATGATGATCAGCGTGCGGCGTTTGAAAGCGC GCGTCGTCGTCTGGCCGATGCGGGCAGCCTGGTGATTGTGGAAACCCTGGATGCGGTGCGTGCGCGTGGTCG TGATCTGCCGGCTGCTCCGCTGTTTGTGCCGGATACCGATGATGATCCGCTGGCCCTGCTGATTTATACCTCTG GTAGCACGGGTACGCCGAAAGGCGCCATGTATACCAACCGCCTGGCAGCAACGATGTGGCAAGGTAACAGC ATGCTGCAAGGCAATAGCCAGCGTGTGGGCATTAACCTGAACTATATGCCGATGAGCCATATTGCGGGCCGT ATTAGCCTGTTTGGCGTGCTGGCCCGTGGTGGCACCGCGTATTTTGCGGCGAAAAGCGATATGAGCACCCTGT TTGAAGATATTGGCCTGGTGCGTCCGACCGAAATTTTTTTTGTGCCGCGTGTGTGCGATATGGTGTTTCAGCGT TATCAGAGCGAACTGGATCGTCGTAGCGTGGCGGGTGCGGATCTGGATACCCTGGATCGTGAAGTGAAAGC GGATCTGCGTCAGAACTATCTGGGCGGTCGTTTTCTGGTGGCGGTGGTGGGTAGCGCACCGCTGGCCGCGGA AATGAAAACCTTTATGGAAAGCGTGCTGGATCTGCCGCTGCATGATGGCTATGGCAGCACCGAAGCGGGTGC GAGCGTGCTGCTGGATAACCAGATTCAGCGTCCGCCGGTGCTGGATTATAAACTGGTGGACGTCCCGGAACT GGGCTATTTTCGTACCGATCGTCCGCATCCGCGTGGCGAACTGCTGCTGAAAGCGGAAACCACCATTCCGGGC TATTATAAACGTCCGGAAGTGACCGCGGAAATTTTTGATGAAGATGGCTTCTATAAAACCGGCGATATTGTGG CGGAACTGGAACATGATCGTCTGGTGTATGTGGATCGTCGCAACAACGTGCTGAAACTGAGCCAGGGCGAAT TTGTGACCGTGGCGCATCTGGAAGCGGTGTTTGCGAGCAGCCCGCTGATTCGTCAGATTTTTATCTACGGCTC TAGTGAACGCTCTTATCTGCTGGCAGTGATTGTGCCGACCGATGATGCCCTGCGTGGCCGTGATACCGCGACC CTGAAAAGCGCGCTGGCCGAAAGCATTCAGCGTATTGCGAAAGATGCGAACCTGCAACCGTATGAAATTCCG CGTGATTTTCTGATTGAAACCGAACCGTTCACCATTGCGAACGGCCTGCTGTCTGGCATTGCGAAACTGCTGC GTCCGAACCTGAAAGAACGTTATGGCGCGCAGCTGGAACAAATGTATACCGATCTGGCCACCGGCCAGGCGG ATGAACTGCTGGCCCTGCGTCGTGAAGCGGCGGATCTGCCGGTTCTGGAAACCGTTAGCCGTGCGGCGAAAG CCATGCTGGGTGTGGCGAGCGCGGATATGCGTCCGGATGCGCATTTTACCGATCTGGGCGGCGATAGCCTGA GCGCCCTGAGCTTTAGCAACCTGCTGCATGAAATTTTTGGCGTGGAAGTGCCGGTGGGTGTGGTTGTGAGCC CGGCAAACGAACTGCGTGACCTGGCCAACTATATTGAAGCGGAACGTAACAGCGGCGCGAAACGTCCGACCT TTACCAGCGTGCATGGCGGCGGTAGCGAAATTCGTGCGGCCGATCTGACCCTGGATAAATTTATTGATGCGCG TACCCTGGCCGCAGCGGATAGCATTCCGCATGCACCGGTTCCGGCACAGACCGTCCTGCTGACGGGCGCAAA TGGCTATCTGGGCCGTTTTCTGTGCCTGGAATGGCTGGAACGTCTGGATAAAACCGGTGGCACCCTGATTTGC GTGGTGCGTGGCAGCGATGCGGCGGCAGCCCGTAAACGCCTGGATAGCGCGTTTGATAGCGGCGATCCGGG CCTGCTGGAACATTATCAGCAGCTGGCCGCACGCACCCTGGAAGTTCTGGCCGGTGATATTGGCGATCCGAAC CTGGGCCTGGATGATGCCACCTGGCAGCGTCTGGCCGAAACCGTGGATCTGATTGTGCACCCGGCTGCTCTG GTGAATCATGTGCTGCCGTATACCCAGCTGTTTGGCCCGAACGTTGTGGGCACCGCGGAAATCGTTCGTCTGG CTATTACCGCGCGTCGTAAACCGGTGACCTATCTGAGCACCGTGGGCGTGGCGGATCAGGTTGATCCGGCGG AATATCAGGAAGATAGCGACGTCCGCGAAATGAGCGCAGTCCGCGTCGTTCGCGAAAGTTATGCAAACGGTT ATGGTAACAGCAAATGGGCGGGTGAAGTGCTGCTGCGTGAAGCGCATGATCTGTGCGGTCTGCCGGTGGCG GTGTTTCGTAGCGATATGATTCTGGCCCATAGCCGTTATGCGGGCCAGCTGAACGTGCAGGATGTGTTTACCC GTCTGATTCTGAGCCTGGTGGCGACCGGCATTGCGCCGTATAGCTTTTATCGCACCGATGCGGATGGCAACCG TCAGCGTGCGCATTATGATGGCCTGCCGGCGGATTTTACCGCAGCAGCTATCACCGCACTGGGCATTCAGGCG ACCGAAGGCTTTCGTACCTATGATGTGCTGAATCCGTATGATGATGGCATTAGCCTGGATGAATTTGTCGATT

GGCTGGTCGAATCTGGTCACCCGATTCAGCGCATTACCGATTATAGCGATTGGTTTCACCGCTTTGAAACCGC GATTCGTGCGCTGCCGGAAAAACAGCGTCAGGCGAGCGTTCTGCCGCTGCTGGATGCGTATCGTAATCCGTG TCCGGCGGTCCGTGGTGCAATTCTGCCGGCGAAAGAATTTCAGGCGGCGGTGCAGACCGCGAAAATTGGCCC GGAACAGGATATTCCGCATCTGAGCGCACCGCTGATTGATAAATATGTGAGCGATCTGGAACTGCTGCAACTG CTGTAA

BsSfp operon sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACTGTTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATT GTGAGCGGATAACAATTTCACACAGGAAACAGCGCCGCTGAGAAAAAGCGAAGCGGCACTGCTCTTTAACAA TTTATCAGACAATCTGTGTGGGCACTCGACCGGAATTATCGATTAACTTTATTATTAAAAATTAAAGAGGTATA TATTAATGTATCGATTAAATAAGGAGGAATAAACCATGGGTAAAATCTACGGGATCTATATGGATCGCCCCCT CAGCCAGGAAGAGAATGAACGCTTTATGTCATTTATTAGTCCCGAGAAACGTGAAAAGTGCCGCCGCTTTTAC CATAAAGAAGATGCACATCGTACCCTGTTAGGTGATGTGTTAGTCCGGTCGGTGATTAGTCGCCAGTACCAAT TGGATAAAAGCGATATCCGTTTTTCCACCCAGGAATATGGCAAACCGTGCATTCCGGATCTCCCTGACGCTCAT TTTAACATTTСТСАTTCAGGTCGCTGGGTCATCTGCGCATTTGACTCTCAGCCAATTGGCATTGATATTGAAAAA ACAAAACCCATTTCCCTGGAGATTGCAAAACGTTTCTTTGCTAAAACGGAGTATAGCGATCTGCTGGCGAAAG ACAAAGACGAACAGACGGATTACTTCTATCATTTGTGGAGCATGAAGGAAAGTTTTATCAAGCAAGAGGGAA AGGGCСТТТСТСТТССТСТGGATTCTTTCAGCGTCCGTCTTCACCAGGACGGCCAAGTTAGTATCGAACTCCCA GACTCACACAGTCCGTGTTATATCAAGACGTATGAGGTCGATCCGGGTTATAAAATGGCGGTATGTGCCGCAC ATCCAGATTTTCCGGAGGATATTACAATGGTGTCGTATGAGGAGTTGCTGCGCGGTAGCGGCGATTATAAGG ACGATGATGATAAATAATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGG CAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGT GGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGG GCCTTTCGTTTTATCTGACTAGTTAGCATCGTTCACTGCAG

BsSfp open reading frame (ORF) sequence [gene with C-terminal FLAG tag]:

ATGGGTAAAATCTACGGGATCTATATGGATCGCCCCCTCAGCCAGGAAGAGAATGAACGCTTTATGTCATTTA TTAGTCCCGAGAAACGTGAAAAGTGCCGCCGCTTTTACCATAAAGAAGATGCACATCGTACCCTGTTAGGTGA TGTGTTAGTCCGGTCGGTGATTAGTCGCCAGTACCAATTGGATAAAAGCGATATCCGTTTTTCCACCCAGGAAT ATGGCAAACCGTGCATTCCGGATCTCCCTGACGCTCATTTTAACATTTCTCATTCAGGTCGCTGGGTCATCTGC GCATTTGACTCTCAGCCAATTGGCATTGATATTGAAAAAACAAAACCCATTTCCCTGGAGATTGCAAAACGTTT CTTTGCTAAAACGGAGTATAGCGATCTGCTGGCGAAAGACAAAGACGAACAGACGGATTACTTCTATCATTTG TGGAGCATGAAGGAAAGTTTTATCAAGCAAGAGGGAAAGGGCCTTTCTCTTCCTCTGGATTCTTTCAGCGTCC GTCTTCACCAGGACGGCCAAGTTAGTATCGAACTCCCAGACTCACACAGTCCGTGTTATATCAAGACGTATGA GGTCGATCCGGGTTATAAAATGGCGGTATGTGCCGCACATCCAGATTTTCCGGAGGATATTACAATGGTGTCG TATGAGGAGTTGCTGCGCGGTAGCGGCGATTATAAGGACGATGATGATAAATAA

ATA-117 operon sequence:

Abstract

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACTGTTGACAATTAATCATCCGGCTCGTATAATGTGTGGAATT GTGAGCGGATAACAATTTCACACAGGAAACAGCGCCGCTGAGAAAAAGCGAAGCGGCACTGCTCTTTAACAA TTTATCAGACAATCTGTGTGGGCACTCGACCGGAATTATCGATTAACTTTATTATTAAAAATTAAAGAGGTATA TATTAATGTATCGATTAAATAAGGAGGAATAAACCATGGAACAAAAACTTATTTCTGAAGAAGATCTGACCAG CGAAATTGTTTATACCCATGATACCGGTCTGGATTATATCACCTATAGCGATTATGAACTGGATCCGGCAAATC CGCTGGCAGGCGGTGCAGCATGGATTGAAGGTGCATTTGTTCCGCCTAGCGAAGCACGTATTAGCATTTTTGA TCAGGGCTATCTGCATAGTGATGTTACCTATACCGTGTTTCATGTGTGGAATGGTAATGCATTTCGCCTGGATG ATCATATTGAACGTCTGTTTAGCAATGCAGAAAGCATGCGTATTATTCCGCCTCTGACCCAGGATGAAGTTAAA GAAATTGCACTGGAACTGGTTGCAAAAACCGAACTGCGTGAAGCATTTGTTAGCGTTAGCATTACCCGTGGTT ATAGCAGCACACCGGGTGAACGTGATATTACCAAACATCGTCCGCAGGTTTATATGTATGCAGTTCCGTATCA GTGGATTGTTCCGTTTGATCGTATTCGTGATGGTGTTCATGCAATGGTTGCACAGAGCGTTCGTCGTACACCGC GTAGCAGCATTGATCCGCAGGTTAAAAATTTTCAGTGGGGTGATCTGATTCGTGCAGTTCAAGAAACCCATGA TCGTGGTTTTGAAGCACCGCTGCTGCTGGATGGTGATGGTCTGCTGGCCGAAGGTAGCGGTTTTAATGTTGTT GTGATTAAAGATGGTGTGGTTCGTAGTCCGGGTCGTGCAGCACTGCCTGGTATTACCCGTAAAACCGTTCTGG AAATTGCAGAAAGCCTGGGTCATGAAGCAATTCTGGCAGATATTACCCTGGCAGAACTGCTGGATGCAGATG AAGTTCTGGGTTGTACCACCGCAGGCGGTGTTTGGCCGTTTGTTAGCGTGGATGGTAATCCGATTTCAGATGG TGTTCCGGGTCCGATTACCCAGAGCATTATTCGTCGTTATTGGGAACTGAATGTTGAAAGCAGCAGCCTGCTG ACACCGGTTCAGTATAACTGGTCTCACCCGCAGTTCGAAAAATAATACAGATTAAATCAGAACGCAGAAGCGG TCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGT GAAACGCCGTAGCGCCGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATA AAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATCGTTCACTGCAG

ATA-117 open reading frame (ORF) sequence [gene with c-Myc epitope and C-terminal Strep II tag]:

ATGGAACAAAAACTTATTTCTGAAGAAGATCTGACCAGCGAAATTGTTTATACCCATGATACCGGTCTGGATT ATATCACCTATAGCGATTATGAACTGGATCCGGCAAATCCGCTGGCAGGCGGTGCAGCATGGATTGAAGGTG CATTTGTTCCGCCTAGCGAAGCACGTATTAGCATTTTTGATCAGGGCTATCTGCATAGTGATGTTACCTATACC GTGTTTCATGTGTGGAATGGTAATGCATTTCGCCTGGATGATCATATTGAACGTCTGTTTAGCAATGCAGAAA GCATGCGTATTATTCCGCCTCTGACCCAGGATGAAGTTAAAGAAATTGCACTGGAACTGGTTGCAAAAACCGA ACTGCGTGAAGCATTTGTTAGCGTTAGCATTACCCGTGGTTATAGCAGCACACCGGGTGAACGTGATATTACC AAACATCGTCCGCAGGTTTATATGTATGCAGTTCCGTATCAGTGGATTGTTCCGTTTGATCGTATTCGTGATGG TGTTCATGCAATGGTTGCACAGAGCGTTCGTCGTACACCGCGTAGCAGCATTGATCCGCAGGTTAAAAATTTT CAGTGGGGTGATCTGATTCGTGCAGTTCAAGAAACCCATGATCGTGGTTTTGAAGCACCGCTGCTGCTGGATG GTGATGGTCTGCTGGCCGAAGGTAGCGGTTTTAATGTTGTTGTGATTAAAGATGGTGTGGTTCGTAGTCCGG GTCGTGCAGCACTGCCTGGTATTACCCGTAAAACCGTTCTGGAAATTGCAGAAAGCCTGGGTCATGAAGCAAT TCTGGCAGATATTACCCTGGCAGAACTGCTGGATGCAGATGAAGTTCTGGGTTGTACCACCGCAGGCGGTGTT TGGCCGTTTGTTAGCGTGGATGGTAATCCGATTTCAGATGGTGTTCCGGGTCCGATTACCCAGAGCATTATTC GTCGTTATTGGGAACTGAATGTTGAAAGCAGCAGCCTGCTGACACCGGTTCAGTATAACTGGTCTCACCCGCA GTTCGAAAAATAA

SitATA operon sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGC GGATAACAATTCCCCTCTTGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCCATCATCATCAT CATCATCATCATCATCACAGCAGCGGCCATATCGAAGGTCGTATGGCATTTAGCGCAGATACACCGGAAATTG

TTTATACCCATGATACCGGTCTGGATTATATCACCTATAGCGATTATGAACTGGACCCTGCAAATCCGCTGGCA GGCGGTGCAGCATGGATTGAAGGTGCATTTGTTCCGCCTAGCGAAGCACGTATTAGCATTTTTGATCAGGGCT TTTATACCAGTGATGCAACCTATACCACCTTTCATGTGTGGAATGGTAATGCATTTCGTCTGGGTGATCATATT GAACGTCTGTTTAGCAATGCCGAAAGCATTCGTCTGATTCCGCCTCTGACCCAGGATGAAGTTAAAGAAATTG CACTGGAACTGGTTGCAAAAACCGAACTGCGTGAAGCAATGGTTACCGTTACCATTACCCGTGGTTATAGCAG CACCCCGTTTGAACGTGATATTACCAAACATCGTCCGCAGGTTTATATGAGCGCATGTCCGTATCAGTGGATTG TTCCGTTTGATCGTATTCGTGATGGTGTTCATCTGATGGTTGCACAGAGCGTTCGTCGTACACCGCGTAGCAGC ATTGATCCGCAGGTTAAAAATTTTCAGTGGGGTGATCTGATTCGTGCAATTCAGGAAACCCACGATCGCGGTT TTGAACTGCCGCTGCTGCTGGATTGTGATAATCTGCTGGCCGAAGGTCCGGGTTTTAATGTTGTTGTTATTAAA GATGGCGTGGTTCGTAGTCCGGGTCGTGCAGCACTGCCTGGTATTACCCGTAAAACCGTTCTGGAAATTGCAG AAAGCCTGGGTCATGAAGCAATTCTGGCAGATATTACACCGGCAGAACTGTATGATGCAGATGAAGTTCTGG GTTGTAGCACCGGTGGTGGTGTTTGGCCGTTTGTTAGCGTTGATGGTAATAGCATTAGTGATGGCGTTCCGGG TCCGGTTACCCAGAGCATTATTCGTCGTTATTGGGAACTGAATGTTGAACCGAGCAGCCTGCTGACACCGGTT CAGTATTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTT GGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATCGTTCAC TGCAG

SitATA open reading frame (ORF) sequence [gene with \mathbf{N}-terminal His_{6} tag]:

ATGGGCCATCATCATCATCATCATCATCATCATCACAGCAGCGGCCATATCGAAGGTCGTATGGCATTTAGCGC AGATACACCGGAAATTGTTTATACCCATGATACCGGTCTGGATTATATCACCTATAGCGATTATGAACTGGACC CTGCAAATCCGCTGGCAGGCGGTGCAGCATGGATTGAAGGTGCATTTGTTCCGCCTAGCGAAGCACGTATTA GCATTTTTGATCAGGGCTTTTATACCAGTGATGCAACCTATACCACCTTTCATGTGTGGAATGGTAATGCATTT CGTCTGGGTGATCATATTGAACGTCTGTTTAGCAATGCCGAAAGCATTCGTCTGATTCCGCCTCTGACCCAGGA TGAAGTTAAAGAAATTGCACTGGAACTGGTTGCAAAAACCGAACTGCGTGAAGCAATGGTTACCGTTACCATT ACCCGTGGTTATAGCAGCACCCCGTTTGAACGTGATATTACCAAACATCGTCCGCAGGTTTATATGAGCGCAT GTCCGTATCAGTGGATTGTTCCGTTTGATCGTATTCGTGATGGTGTTCATCTGATGGTTGCACAGAGCGTTCGT CGTACACCGCGTAGCAGCATTGATCCGCAGGTTAAAAATTTTCAGTGGGGTGATCTGATTCGTGCAATTCAGG AAACCCACGATCGCGGTTTTGAACTGCCGCTGCTGCTGGATTGTGATAATCTGCTGGCCGAAGGTCCGGGTTT TAATGTTGTTGTTATTAAAGATGGCGTGGTTCGTAGTCCGGGTCGTGCAGCACTGCCTGGTATTACCCGTAAA ACCGTTCTGGAAATTGCAGAAAGCCTGGGTCATGAAGCAATTCTGGCAGATATTACACCGGCAGAACTGTATG ATGCAGATGAAGTTCTGGGTTGTAGCACCGGTGGTGGTGTTTGGCCGTTTGTTAGCGTTGATGGTAATAGCAT TAGTGATGGCGTTCCGGGTCCGGTTACCCAGAGCATTATTCGTCGTTATTGGGAACTGAATGTTGAACCGAGC AGCCTGCTGACACCGGTTCAGTATTAA

(R)-IRED operon sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGA ATTGTGAGCGGATAACAATTTCACACAGGAAACAGAATTGTAGAGGAGATATACATATGGGCAGCAGCCATC ATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGGCGACAATCGTACGCCGGTCACGG TTATCGGTCTGGGTCTGATGGGTCAAGCACTGGCAGCAGCATTTCTGGAAGCAGGTCACACCACGACCGTGT GGAACCGTAGCGCGGGTAAAGCCGAACAGCTGGTTTCTCAGGGTGCGGTTCAGGCCGCAACCCCGGCAGAT GCTGTTGCAGCTTCAGAACTGGTGGTTGTCTGCCTGTCGACCTATGATAACATGCATGACGTCATTGGTAGTCT

GGGCGAATCCCTGCGTGGTAAAGTCATCGTGAATCTGACGAGCGGTAGCTCTGATCAGGGTCGTGAAACCGC CGCATGGGCAGAAAAACAGGGTGTTGAATACCTGGACGGCGCAATTATGATCACGCCGCCGGGTATTGGCAC GGAAACCGCAGTCCTGTTTTATGCTGGTACCCAGTCTGTGTTCGAAAAATACGAACCGGCTCTGAAACTGCTG GGCGGTGGCACGACCTATCTGGGTACCGATCATGGCATGCCGGCCCTGTACGACGTGTCACTGCTGGGTCTG ATGTGGGGCACGCTGAACTCGTTTCTGCATGGCGTGGCAGTGGTTGAAACCGCGGGTGTTGGCGCCCAGCAA TTTCTGCCGTGGGCACACATGTGGCTGGAAGCTATTAAAATGTTCACCGCGGATTATGCAGCTCAAATCGATG CGGGTGACGGCAAATTCCCGGCAAATGACGCTACGCTGGAAACCCACCTGGCGGCCCTGAAACATCTGGTTC ACGAATCAGAAGCGCTGGGCATTGATGCCGAACTGCCGAAATACAGTGAAGCGCTGATGGAACGCGTGATCT CCCAGGGTCACGCTAAAAACAGCTATGCGGCAGTCCTGAAAGCCTTCCGTAAACCGTCCGAATAACCGGCTTA TCGGTCAGTTTCACCTGATTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGA ATGACTGTCCACGACGCTATACCCAAAAGAAAGCGGCTTATCGGTCAGTTTCACCTGGTTTACGTAAAAACCC GCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACTGTCCACGACACTATACCCAAAAGAAA GCGGCTTATCGGTCAGTTTCACCTGTTTTACGTAAAAACCCGCTTCGGCGGGTTTTTACTTTTGGAGGGGCAGA AAGATGAATGACTGTCCACGACACTATACCCAAAAGAAAACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATC GTTCACTGCAG

(R)-IRED open reading frame (ORF) sequence [gene with \mathbf{N}-terminal His_{6} tag]:

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGGCGACAAT CGTACGCCGGTCACGGTTATCGGTCTGGGTCTGATGGGTCAAGCACTGGCAGCAGCATTTCTGGAAGCAGGT CACACCACGACCGTGTGGAACCGTAGCGCGGGTAAAGCCGAACAGCTGGTTTCTCAGGGTGCGGTTCAGGCC GCAACCCCGGCAGATGCTGTTGCAGCTTCAGAACTGGTGGTTGTCTGCCTGTCGACCTATGATAACATGCATG ACGTCATTGGTAGTCTGGGCGAATCCCTGCGTGGTAAAGTCATCGTGAATCTGACGAGCGGTAGCTCTGATCA GGGTCGTGAAACCGCCGCATGGGCAGAAAAACAGGGTGTTGAATACCTGGACGGCGCAATTATGATCACGCC GCCGGGTATTGGCACGGAAACCGCAGTCCTGTTTTATGCTGGTACCCAGTCTGTGTTCGAAAAATACGAACCG GCTCTGAAACTGCTGGGCGGTGGCACGACCTATCTGGGTACCGATCATGGCATGCCGGCCCTGTACGACGTG TCACTGCTGGGTCTGATGTGGGGCACGCTGAACTCGTTTCTGCATGGCGTGGCAGTGGTTGAAACCGCGGGT GTTGGCGCCCAGCAATTTCTGCCGTGGGCACACATGTGGCTGGAAGCTATTAAAATGTTCACCGCGGATTATG CAGCTCAAATCGATGCGGGTGACGGCAAATTCCCGGCAAATGACGCTACGCTGGAAACCCACCTGGCGGCCC TGAAACATCTGGTTCACGAATCAGAAGCGCTGGGCATTGATGCCGAACTGCCGAAATACAGTGAAGCGCTGA TGGAACGCGTGATCTCCCAGGGTCACGCTAAAAACAGCTATGCGGCAGTCCTGAAAGCCTTCCGTAAACCGTC CGAATAA

(S)-IRED operon sequence:

GAATTCGAGCAGTGTCTCTAGAAGAGACGTACGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGA ATTGTGAGCGGATAACAATTTCACACAGGAAACAGAATTGTAGAGGAGATATACATATGGGCAGCAGCCATC ATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGAGCAAACAGTCAGTTACGGTGATTG GTCTGGGTCCGATGGGTCAAGCGATGGTCAATACCTTTCTGGATAATGGTCACGAAGTGACCGTGTGGAACC GTACGGCGTCAAAAGCAGAAGCTCTGGTGGCGCGCGGCGCAGTTCTGGCACCGACCGTCGAAGATGCTCTGA GCGCGAATGAACTGATTGTTCTGTCTCTGACCGATTATGACGCCGTGTACGCAATCCTGGAACCGGTTACGGG CTCACTGTCGGGTAAAGTGATTGCAAACCTGAGCTCTGATACCCCGGACAAAGCGCGTGAAGCGGCCAAATG GGCAGCTAAACATGGTGCGAAACATCTGACCGGCGGTGTGCAGGTTCCGCCGCCGCTGATCGGCAAACCGGA

Abstract

AAGTTCCACCTATTACTCCGGTCCGAAAGATGTTTTTGACGCCCATGAAGATACCCTGAAAGTCCTGACGAAC GCCGATTATCGTGGTGAAGATGCAGGTCTGGCCGCAATGTATTACCAGGCGCAAATGACCATTTTCTGGACCA CGATGCTGAGCTATTACCAGACGCTGGCTCTGGGCCAAGCGAATGGTGTTAGTGCTAAAGAACTGCTGCCGT ATGCCACCATGATGACGTCCATGATGCCGCATTTTCTGGAACTGTATGCTCAGCACGTCGATTCTGCGGACTAT CCGGGTGATGTGGACCGTCTGGCGATGGGCGCAGCTTCAGTCGATCACGTGCTGCATACCCACCAAGATGCG GGTGTTAGCACCGTCCTGCCGGCCGCAGTGGCCGAAATCTTCAAAGCCGGTATGGAAAAAGGCTTTGCTGAA AATTCGTTCTCСTCTCTGATTGAAGTCCTGAAAAAACCGGCAGTGTAACCGGCTTATCGGTCAGTTTCACCTGA TTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCTTTTGGAGGGGCAGAAAGATGAATGACTGTCCACGACGCT ATACCCAAAAGAAAGCGGCTTATCGGTCAGTTTCACCTGGTTTACGTAAAAACCCGCTTCGGCGGGTTTTTGCT TTTGGAGGGGCAGAAAGATGAATGACTGTCCACGACACTATACCCAAAAGAAAGCGGCTTATCGGTCAGTTT CACCTGTTTTACGTAAAAACCCGCTTCGGCGGGTTTTTACTTTTGGAGGGGCAGAAAGATGAATGACTGTCCA CGACACTATACCCAAAAGAAAACTGGGCCTTTCGTTTTATCTGACTAGTTAGCATCGTTCACTGCAG

(S)-IRED open reading frame (ORF) sequence [gene with N -terminal His_{6} tag]:

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGAGCAAACAG TCAGTTACGGTGATTGGTCTGGGTCCGATGGGTCAAGCGATGGTCAATACCTTTCTGGATAATGGTCACGAAG TGACCGTGTGGAACCGTACGGCGTCAAAAGCAGAAGCTCTGGTGGCGCGCGGCGCAGTTCTGGCACCGACC GTCGAAGATGCTCTGAGCGCGAATGAACTGATTGTTCTGTCTCTGACCGATTATGACGCCGTGTACGCAATCC TGGAACCGGTTACGGGCTCACTGTCGGGTAAAGTGATTGCAAACCTGAGCTCTGATACCCCGGACAAAGCGC GTGAAGCGGCCAAATGGGCAGCTAAACATGGTGCGAAACATCTGACCGGCGGTGTGCAGGTTCCGCCGCCG CTGATCGGCAAACCGGAAAGTTCCACCTATTACTCCGGTCCGAAAGATGTTTTTGACGCCCATGAAGATACCCT GAAAGTCCTGACGAACGCCGATTATCGTGGTGAAGATGCAGGTCTGGCCGCAATGTATTACCAGGCGCAAAT GACCATTTTCTGGACCACGATGCTGAGCTATTACCAGACGCTGGCTCTGGGCCAAGCGAATGGTGTTAGTGCT AAAGAACTGCTGCCGTATGCCACCATGATGACGTCCATGATGCCGCATTTTCTGGAACTGTATGCTCAGCACG TCGATTCTGCGGACTATCCGGGTGATGTGGACCGTCTGGCGATGGGCGCAGCTTCAGTCGATCACGTGCTGC ATACCCACCAAGATGCGGGTGTTAGCACCGTCCTGCCGGCCGCAGTGGCCGAAATCTTCAAAGCCGGTATGG AAAAAGGCTTTGCTGAAAATTCGTTCTCCTCTCTGATTGAAGTCCTGAAAAAACCGGCAGTGTAA

2.2. Operon designs.

Figure S1. Operon designs for the genes used in this study. A) Operon design used for ATA-117, BsSfp. B) Operon design used for MCAR, (R)-IRED.
2.3. Cloning of operons into pPB01/BsSfp using BioBrick strategy to give
pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp.

Figure S2. Subcloning of operons into pPB01/(R)-IRED using the BioBrick cloning strategy to generate the final expression plasmid pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp (pLH02). EcoRI and Xbal (BioBrick prefix) and Spel and Pstl (BioBrick suffix) are restriction endonucleases that recognize and cleave specific palindromic DNA sequences. Scar denotes the mixed ligation site of Spel and Xbal
which is no longer recognized by any of these endonucleases. DNA ligation was performed by T4 DNA ligase.

2.4. Cloning of duplicate ATA-117 and (R)-IRED operons into pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp using BioBrick ${ }^{\text {TM }}$ strategy.

Figure S3. Subcloning of operons into pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp using the BioBrick cloning strategy to generate the two new expression plasmids pPB01/ATA-117 + ATA117 + MCAR+ $(R)-I R E D+B s S f p(p L H 09)$ and $\mathrm{pPB} 01 /(R)$-IRED + ATA117 + MCAR + (R)-IRED + BsSfp (pLH10). EcoRI and Xbal (BioBrick prefix) and Spel and Pstl (BioBrick suffix) are restriction endonucleases that recognize and cleave specific palindromic DNA sequences. Scar denotes the mixed ligation site of Spel and Xbal which is no longer recognized by any of these endonucleases. DNA ligation was performed by T4 DNA ligase.

2.5. Preparation of whole cell biocatalyst.

Chemically competent E. coli BL21 (DE3) expression cells were transformed with plasmid pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp (pLH02), pPB01/ATA-117 + ATA-117 + MCAR + $(R)-$ IRED $+B s S f p(p L H 09)$ or pPB01/(R)-IRED + ATA-117 + MCAR + (R)-IRED + BsSfp (pLH10) following the manufacturer's protocol (NEB). Pre-cultures were inoculated using either a single colony picked from a transformation plate or from a glycerol stock and grown in LB media (supplemented with $100 \mu \mathrm{~g} \mathrm{~m}^{-1}$ ampicillin) for 16 h at $37^{\circ} \mathrm{C} .400 \mathrm{~mL} \mathrm{LB}$ media (supplemented with $100 \mathrm{mg} \mathrm{mL}^{-1}$ ampicillin) was inoculated with pre-culture (1:100 dilution) and grown at $37^{\circ} \mathrm{C}$ until an optical density $\left(\mathrm{OD}_{600}\right)$ of 0.6 was reached. Flasks were then cooled for 20 min at $20^{\circ} \mathrm{C}$ before induction of protein expression using isopropyl- β-D-1thiogalactopyranoside (IPTG, 0.4 mM). Protein expression at $20^{\circ} \mathrm{C}$ and 250 rpm was stopped after 16 h by centrifugation ($3200 \mathrm{rcf}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}$). Wet cell mass was recorded and resuspended in 500 mM sodium phosphate buffer (pH 7) to a final concentration of 40 mg mL^{-1} cells, ready to be used in biotransformation reactions.

2.6. Protein expression profile of transformed E. coli BL21 (DE3) cells via western blot analysis.

Figure S4 Western blot analysis of protein expression profile of E. coli BL21 (DE3) cells harboring plasmid pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp (pLH02) using Anti-polyHis, Anti-c-Myc IgG and Anti-FLAG antibodies. Analysis shown for the soluble fraction of cell lysate.

Figure S5 Western blot analysis of protein expression profile of E. coli BL21 (DE3) cells harboring plasmid pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp (pLH02), pPB01/ATA-117 + ATA-117 + MCAR + (R)-IRED + BsSfp (pLH09), or pPB01/(R)-IRED + ATA-117 + MCAR + (R)-IRED + BsSfp (pLH10) using Anti-polyHis and Anti-c-Myc IgG antibodies. Increased expression of (R)-IRED is seen when pLH10 is used, and increased expression of ATA-117 is seen when pLH09 is used. Analysis shown for the soluble fraction of cell lysate.

3. Analytical methods and sample preparation

3.1. Gas chromatography methods for conversion and ee determination.

Chiral GC equipped with a 25 m CP-Chirasil-DEX CB column with 0.25 mm inner diameter and $0.25 \mu \mathrm{~m}$ film thickness (Agilent, Santa Clara, CA, USA) was used for the detection of all imine intermediates and piperidine products, and for the determination of $\mathbf{4 a}, \mathbf{4 f}$ and $\mathbf{4 g}$ production using a calibration curve (sections 3.3, 3.4 and 3.5). Determination of conversion and ee for 4 a : injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $90^{\circ} \mathrm{C}$ $200^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 5 min . Determination of ee for $\mathbf{4 d}$-e: injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 5{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 2 min .

GCMS equipped with a HP1-MS column (Agilent, $30.0 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) was used for the detection of all keto alcohol and imine intermediates, and piperidine products (method: $50^{\circ} \mathrm{C}-175^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, followed by $175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, inlet temperature $270^{\circ} \mathrm{C}$).

Percentage conversion of keto acid to imine, keto alcohol and amine was determined based on integration of these corresponding peaks (after comparison with authentic commercial or chemically obtained standards), except for amine $\mathbf{4 a}, \mathbf{4 f}$ and $\mathbf{4 g}$, where amine production was calculated by integration of its peak with decane as an external standard (sections 3.3, 3.4 and 3.5).

3.2. High performance liquid chromatography methods for consumption of keto acid substrates and ee determination.

HPLC equipped with a $250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ CHIRALPAK ${ }^{\circledR}$ IC column was used for the analysis of keto acid substrate consumption. Solvent: n-hexane/isopropanol/trifluoroacetic acid (90/10/0.1), $1 \mathrm{~mL} \mathrm{~min}^{-1}, 265 \mathrm{~nm}$. Retention times for keto acids 1a-e using this method were reported previously. ${ }^{[1]}$

Determination of ee for 4b-c was carried out by normal phase HPLC using a Daicel CHIRALPAK ${ }^{\circledR}$ IC column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), solvent: $\mathrm{n}-$
hexane/isopropanol/diethylamine = 98/2/0.1 (4b) or 90/10/0.1 (4c), 1 mL/min, 265 nm .

3.3. Calibration curve for the determination of conversion to product using compound 4a.

Reactions of compound 1a were extracted in the presence of external standard decane (1 $\mathrm{mg} \mathrm{mL}^{-1}$) to enable the calculation of conversion to product 4 a by use of a calibration curve of decane standard vs. 4a authentic standard.

The calibration curve was constructed using $1 \mathrm{mg} \mathrm{mL}^{-1}$ decane against varying concentrations of 4 a authentic standard in triplicate.

Figure S6. Calibration curve used to determine the conversion to product amine 4a for the reactions of substrate $\mathbf{1 a}$.

Figure S7. GC chromatograms used for the construction of the calibration curve used to determine the conversion to product amine 4a for reactions using substrate 1a. A) $1 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 a}$. B) $0.5 \mathrm{mg} \mathrm{mL}^{-1}$ 4a. C) $0.25 \mathrm{mg} \mathrm{mL}^{-1}$ 4a. D) $0.125 \mathrm{mg} \mathrm{mL}^{-1}$ 4a. (CP-Chirasil-DEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $90^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 5 min ; carrier gas helium.)

3.4. Calibration curve for the determination of conversion to product using compound 4 f .

Reactions of compound $1 f$ were extracted in the presence of external standard decane (1 $\mathrm{mg} \mathrm{mL}{ }^{-1}$) to enable the calculation of conversion to product $\mathbf{4 f}$ by use of a calibration curve of decane standard vs. $4 f$ authentic standard.

The calibration curve was constructed using $1 \mathrm{mg} \mathrm{mL}^{-1}$ decane against varying concentrations of $\mathbf{4 f}$ authentic standard in triplicate.

Figure S8. Calibration curve used to determine the conversion to product amine $\mathbf{4 f}$ for the reactions of substrate $\mathbf{1 f}$.

Figure S9. GC chromatograms used for the construction of the calibration curve used to determine the conversion to product amine $\mathbf{4 f}$ for reactions using substrate $\mathbf{1 f}$. A) $1 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 f}$. B) $0.5 \mathrm{mg} \mathrm{mL}^{-1}$ 4f. C) $0.25 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 f}$. D) $0.125 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 f}$. (CP-Chirasil-DEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $90^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 5 min ; carrier gas helium.)

3.5. Calibration curve for the determination of conversion to product using compound 4 g .

Reactions of compound $\mathbf{1 g}$ were extracted in the presence of external standard decane (1 $\mathrm{mg} \mathrm{mL}^{-1}$) to enable the calculation of conversion to product $\mathbf{4 g}$ by use of a calibration curve of decane standard vs. $\mathbf{4 g}$ authentic standard.

The calibration curve was constructed using $1 \mathrm{mg} \mathrm{mL}^{-1}$ decane against varying concentrations of 4 g authentic standard in triplicate.

Figure S10. Calibration curve used to determine the conversion to product amine $\mathbf{4 g}$ for the reactions of substrate $\mathbf{1 g}$.

Figure S11. GC chromatograms used for the construction of the calibration curve used to determine the conversion to product amine $\mathbf{4 g}$ for reactions using substrate $\mathbf{1 g}$. A) $1 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 g}$. B) $0.5 \mathrm{mg} \mathrm{mL}^{-1}$ $\mathbf{4 g}$. C) $0.25 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 g}$. D) $0.125 \mathrm{mg} \mathrm{mL}^{-1} \mathbf{4 g}$. (CP-Chirasil-DEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $90^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}, 3^{\circ} \mathrm{C} \mathrm{min}^{-1}$, hold at $300^{\circ} \mathrm{C}$ for 5 min ; carrier gas helium.)

3.6. Extraction protocol and sample preparation for GC and HPLC analysis.

For extraction of the amine product (and keto aldehyde, imine and keto alcohol intermediates), reactions were quenched after 24 h with $500 \mu \mathrm{~L}$ ethyl acetate (EtOAc, containing $1 \mathrm{mg} \mathrm{mL}^{-1}$ decane external standard for compound 1a) and basified to pH 12.0
using sodium hydroxide ($\mathrm{NaOH}, 10 \mathrm{M}$). Samples were vortexed (2 m), separated using a benchtop centrifuge ($16000 \mathrm{rcf}, 5 \mathrm{~m}$), and the organic layer dried over anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ before being transferred to a clean vial ready for analysis by GCFID on a chiral column and GCMS.

For analysis of keto acid (starting material) consumption, samples were extracted as before but acidified to pH 4.0 using hydrochloric acid ($\mathrm{HCl}, 37 \%$). Analysis of keto acid was performed using HPLC.

To determine the ee of some the chiral amine products by GC-FID on a chiral column, derivatisation of the sample was required. In these cases, the samples were extracted as described above and acetic anhydride ($5 \mu \mathrm{~L}$) and triethylamine ($10 \mu \mathrm{~L}$) were added. The mixture was vortexed (2 m) before the addition of $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$. The mixture was vortexed again and separated using a benchtop centrifuge ($16000 \mathrm{rcf}, 5 \mathrm{~m}$), with the organic phase then dried over anhydrous MgSO_{4} and transferred to a clean vial ready for analysis.

4. Whole cell biotransformation optimization and final optimized conditions.

5-Oxo-5-phenylvaleric acid (compound 1a) was used as the model substrate for all optimization experiment screens due to the commercial availability of both substrate and expected amine product 4a.

4.1. Preliminary screen of expression constructs pLH01-08 using keto acid 1a.

An initial screen of whole cell biocatalysts harboring expression constructs pLH01-08 against the selected keto acid substrate 1a was used in order to select the construct displaying the highest conversion to product amine 4a.

Expression Construct	Relative conversion to 2-phenylpiperidine, 4a (\%)
pPB01/ATA-117 + MCAR + (S)-IRED + BsSfp (pLH01)	n.d.
pPBO1/ATA-117 + MCAR + (R)-IRED + BsSfp (pLH02)	100
pPB01/ATA-117 + NCAR + (S)-IRED + BsSfp (pLH03)	13
pPB01/ATA-117 + NCAR + (R)-IRED + BsSfp (pLH04)	88
pPB01/SitATA + MCAR + (S)-IRED + BsSfp (pLH05)	n.d.

pPB01/SitATA + MCAR + (R)-IRED + BsSfp (pLH06)	n.d.
pPB01/SitATA + NCAR + (S)-IRED + BsSfp (pLH07)	n.d.
pPB01/SitATA + NCAR + (R)-IRED + BsSfp (pLH08)	n.d.

n.d., not detected.

The lack of conversion for the cascades utilizing SitATA is likely a result of the intermediate aldehyde produced from the CAR reaction not being a suitable substrate for this heavily mutated variant of ATA-117. The expression constructs utilizing (S)-IRED resulted in significantly lower conversions to 4a than their (R)-IRED counterparts. However, the nucleotide sequence of (S)-IRED was verified and biotransformations using whole cells containing the (S)-IRED individually demonstrated the expected activity against model IRED substrate 1-methyl-3,4-dihydroisoquinoline. Therefore it can be concluded that the use of (S)-IRED in combination with ATA-117 and either MCAR or NCAR results in a much less efficient cascade than with (R)-IRED, and also metabolic burden may affect the expression levels of (S)-IRED when it is expressed in conjunction with the other cascade proteins. Further experimentation revealed that inserting an additional copy of the (S)-IRED gene into constructs pLHO1 and pLH03 resulted in conversions to 4 a comparable to those seen for pLHO2 and pLHO4 (around 40% conversion, calculated using the calibration curve described in section 3.3), suggesting that an increased expression level of (S)-IRED is needed for these cascades to be successful.

This preliminary screen revealed that pLHO2 gave the highest conversion to product 4a, and so this construct was selected for all further optimization experiments.

4.2. Optimization of protein expression.

E. coli BL21 (DE3) cells harboring plasmid pLH02 (pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp) were used as the biocatalyst for all optimization experiment screens.

4.2.1. Effect of expression temperature on product formation.

An investigation into the effect of different expression temperatures for the cascade proteins, ranging from $20-37^{\circ} \mathrm{C}$, on final amine production revealed that lower expression temperatures $\left(20^{\circ} \mathrm{C}\right)$ are needed for effective conversion to amine product. Temperatures of $30^{\circ} \mathrm{C}$ still yielded some active protein, yet accumulation of imine suggested that (R)-IRED is not expressed optimally at higher temperatures. Neither amine product nor imine intermediate were detected when cells harboring protein expressed at $37^{\circ} \mathrm{C}$ were used in biotransformations.

Figure S12. Effect of protein expression temperature on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, 250 rpm . Reaction conditions: $5 \mathrm{mM} 1 \mathrm{a}, 50 \mathrm{mM}$ glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP}{ }_{\mathrm{i}} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.2.2. Effect of optical density $\left(\mathrm{OD}_{600}\right)$ at protein expression induction on product formation.

Probing the effect of the optical density of the E. coli BL21 (DE3) cells prior to expression of the cascade proteins, with OD_{600} values ranging from 0.4 to 1.3 , it was seen that an OD_{600} value of 0.6 was optimal for increased conversion to amine product. Optical densities higher than 0.6 still resulted in conversion to amine product, yet to a lesser extent, potentially due to the fact that fewer cells are in the exponential growth stage when higher cell densities are reached.

Figure S13. Effect of cell culture density on final amine production. Expression conditions: 0.4 mM IPTG, 16 h expression, $20^{\circ} \mathrm{C}$, 250 rpm . Reaction conditions: $5 \mathrm{mM} 1 \mathrm{a}, 50 \mathrm{mM}$ glucose, $250 \mathrm{mM} \mathrm{D} / \mathrm{L}-$ alanine, $500 \mathrm{mM} \mathrm{NaP}{ }_{i} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.2.3. Effect of expression time length on product formation.

An investigation into the effect of increased protein expression time lengths was conducted, with cell cultures being allowed to express protein for 2 hours, 3.5 hours, or 16 hours. It was apparent that protein expression needed to be carried out for at least 3.5 hours to improve biocatalyst efficiency and increase conversion to product amine. Alternatively, leaving cells expressing protein overnight for 16 hours showed no detrimental effect when the cells were used for production of amine 4a.

Figure S14. Effect of protein expression time length on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: $5 \mathrm{mM} 1 \mathrm{a}, 50 \mathrm{mM}$ glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}$, 250 rpm .

4.2.4. Effect of IPTG concentration on product formation.

Probing the effect of the concentration of IPTG used to induce protein expression in the whole cell biocatalyst, using $0.2-0.8 \mathrm{mM}$ IPTG, demonstrated that a concentration of 0.8 mM resulted in higher conversion to amine product 4a.

Figure S15. Effect of IPTG concentration used to induce protein expression on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,16 \mathrm{~h}$ expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 50 mM glucose, 250 mM D/L-alanine, $500 \mathrm{mM} \mathrm{NaP} \mathrm{i}_{\mathrm{i}} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3. Optimization of reaction conditions.

4.3.1. Analysis of cell pellet and reaction supernatant to determine product diffusion out of the cell.

Separate extractions ($500 \mu \mathrm{~L}$ of ethyl acetate for $500 \mu \mathrm{~L}$ reaction volume) for both the cell pellet and the reaction buffer after 24 hour reaction indicated that very little amine product remained within the cell (around 4\%), suggesting that the amine product freely diffuses out of the cell and into the reaction buffer.

Figure S16. Extraction into ethyl acetate of reaction buffer and of cell pellet after biotransformation. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 50 mM glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP} ; \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3.2. Comparison of sacrificial amine donors for the ATA-117 reaction.

Both D/L-alanine and isopropylamine (IPA) are known to be accepted as amine donors for ATA-117. ${ }^{[5,6]}$ It was seen that using either of these amine donors gave a similar conversion to amine, so we opted for use of D / L-alanine for all further experiments.

Figure S17. Comparison of D / L-alanine and IPA as amine donor for ATA-117. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}$, 250 rpm . Reaction conditions: $5 \mathrm{mM} 1 \mathrm{a}, 50 \mathrm{mM}$ glucose, $500 \mathrm{mM} \mathrm{NaP} \mathrm{i}_{\mathrm{pH}} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3.3. Effect of PLP concentration on product formation.

PLP is an essential cosubstrate for ω-transaminases, and is also found endogenously within E. coli bacterial cells. ${ }^{[7]}$ Assessing the effect of PLP concentration on product formation, ranging from 0-2 mM, revealed that the supplementation of PLP resulted in a decrease in conversion to amine when compared to biotransformations performed in the absence of additional PLP. This suggests that the presence of higher concentrations of PLP may inhibit one or more of the enzymes in this cascade.

Figure S18. Effect of different concentrations of PLP ranging from $0-2 \mathrm{mM}$ on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 50 mM glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaPi} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3.4. Effect of D / L-alanine concentration on product formation.

Probing the effect of D / L-alanine concentration on the conversion to amine, ranging from 0 350 mM , showed that an increase in the concentration of D / L-alanine lead to an increased conversion to amine, peaking at 250 mM . Neglecting to supplement the reactions with $\mathrm{D} / \mathrm{L}-$ alanine still yielded some conversion to amine (around 7%), but addition of extra D/Lalanine was needed to obtain the best results.

Figure S19. Effect of D / L-alanine concentration ranging from $0-350 \mathrm{mM}$ on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 50 mM glucose, $500 \mathrm{mM} \mathrm{NaP} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}$, 250 rpm .

4.3.5. Effect of glucose concentration on product formation.

Probing the effect of glucose concentrations ranging from 0-100 mM on the conversion to amine demonstrated that a higher level of glucose equates to a higher conversion to amine, but peaks at 50 mM . As seen with the D / L-alanine concentration experiment, the absence of exogenous glucose supplementation still leads to some production of amine (around 12%) but a concentration of 50 mM glucose yields the best conversion.

Figure S20. Effect of glucose concentration ranging from $0-100 \mathrm{mM}$ on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP} \mathrm{i} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}$, 250 rpm.

4.3.6. Effect of keto acid substrate concentration on product formation.

Probing the effect of substrate concentration on conversion to amine product, various concentrations of keto acid were investigated ranging from $1-50 \mathrm{mM} .3 \mathrm{mM}$ concentration resulted in the highest conversion to amine product, with conversion to amine product dropping as substrate concentration increases above 3 mM .

Figure S21. Effect of keto acid 1a concentration ranging from $0-50 \mathrm{mM}$ on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 50 mM glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP} \mathrm{i}_{\mathrm{i}} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3.7. Effect of keto acid substrate concentration on extent of substrate consumption.

The same substrate concentration range as in 4.3.6. was also assessed for keto acid consumption by CAR. It was seen that keto acid substrate is completely consumed after 24 hours for concentrations up to 5 mM , with concentrations higher than 5 mM leading to incomplete consumption of substrate for the same 24 hour reaction length. Increasing the reaction length to 48 hours gave only a negligible increase in consumption of keto acid, suggesting that the whole cell system loses some activity after the initial 24 hour period.

Figure S22. Effect of keto acid 1a concentration ranging from $0-50 \mathrm{mM}$ on substrate consumption. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 50 mM glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaPi} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3.8. Effect of wet cell mass on product formation.

Probing the effect of wet cell concentrations, ranging from $20-240 \mathrm{mg} \mathrm{mL}^{-1}$, on product formation it was seen that $40 \mathrm{mg} \mathrm{mL}^{-1}$ was the optimum amount of cells needed to maximize product output. Higher concentrations of cells ($120 \mathrm{mg} \mathrm{mL}^{-1}, 240 \mathrm{mg} \mathrm{mL}^{-1}$) resulted in a significantly lower apparent conversion to amine, possibly due to the fact that it is increasingly more difficult to efficiently extract amine product from higher masses of cells.

Figure S23. Effect of wet cell mass, ranging from $20-240 \mathrm{mg} \mathrm{mL}^{-1}$, on final amine production. Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 50 mM glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP} \mathrm{i} \mathrm{pH} 7,24 \mathrm{~h}, 30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.3.9. Effect of reaction time length on product formation.

Probing the effect of reaction time length, ranging from 0.5-24 h, on product formation indicated that the biotransformation proceeds steadily, reaching maximum conversion to amine 4 a at around 9 h and remaining this way until 24 h is reached. Increasing the time length to 48 h resulted in no further conversion to amine compared with 24 h (not shown).

Figure S24. Effect of reaction time length, ranging from 0.5-24h, on final amine production.
Expression conditions: $\mathrm{OD}_{600} 0.6,0.4 \mathrm{mM}$ IPTG, 16 h expression, $20^{\circ} \mathrm{C}, 250 \mathrm{rpm}$. Reaction conditions: 5 mM 1a, 50 mM glucose, 250 mM d/L-alanine, $500 \mathrm{mM} \mathrm{NaP} \mathrm{i}_{\mathrm{i}} \mathrm{pH} 7,30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$.

4.4. Optimized expression and reaction conditions.

Transformed E. coli BL21 (DE3) cells harboring plasmid pLH02, pLH09 or pLH10 were grown in a shaking incubator $\left(37^{\circ} \mathrm{C}, 250 \mathrm{rpm}\right)$ until an optical density $\left(\mathrm{OD}_{600}\right)$ of 0.6 was achieved. The cultures were then cooled to $20^{\circ} \mathrm{C}$ before protein induction with 0.8 mM IPTG and left to express for 16 h .

For analytical-scale biotransformations, 3 mM keto acid substrate, 50 mM glucose, 250 mM D / L-alanine, $40 \mathrm{mg} \mathrm{mL}^{-1}$ E. coli BL21 (DE3) cells containing plasmid pLH02, pLH09 or pLH10 in 500 mM sodium phosphate (pH 7.0) reaction buffer ($300 \mu \mathrm{~L}$) was added to a 1.7 mL Eppendorf tube, with a final volume of $500 \mu \mathrm{~L}$. Reactions were then incubated at $30^{\circ} \mathrm{C}$ with shaking (250 rpm) for 24 h to allow full consumption of starting material.

5. Comparison of ATA-117 and ATA-113 in multi-component one pot hybrid reactions.

5.1. Protein expression and reaction conditions for multi-component hybrid one pot reactions.

Biotransformations containing 5 mM keto acid substrate, $75 \mathrm{mg} \mathrm{mL}^{-1}$ MCAR wet whole cells, $50 \mathrm{mg} \mathrm{mL}^{-1}(R)$-IRED wet whole cells, $2.5 \mathrm{mg} \mathrm{mL}^{-1}$ ATA-113 or ATA-117, $1 \mathrm{mg} \mathrm{mL}^{-1} \mathrm{GDH}$ (CDX901), $0.5 \mathrm{mg} \mathrm{mL}^{-1} \mathrm{LDH}$ (LDH-103), 250 mM racemic D/L-alanine, 100 mM glucose, 1.5 mM , NAD+ and 1 mM PLP in 500 mM pH 7.0 sodium phosphate buffer and $1 \% \mathrm{v} / \mathrm{v}$ DMSO (from addition of substrate as a solution in DMSO) were incubated at $30^{\circ} \mathrm{C}, 250 \mathrm{rpm}$ for 24 h . Reactions were then extracted following the procedure in section 3.6 and analyzed using GC-FID.

5.2. Comparison of hybrid cascade reactions using ATA-117 or ATA-113 against keto acid 1a.

5 mM keto acid 1a was transformed to 4a following the method described in section 5.1, and conversion was calculated using the calibration curve shown in section 3.3. The \% conversion to amine 4a for each reaction is shown below.

Cascade System	Conv. To 4a/\%
Hybrid (ATA-117 + MCAR + (R)-IRED)	26
Hybrid (ATA-113 + MCAR + (R)-IRED)	58

6. Preparative-scale biotransformations.

6.1. Synthesis of (S)-2-phenylpiperidine, $(S)-4 \mathrm{a}$, using whole cell biocatalyst.

Following the optimized expression and reaction conditions described in section 4.4, preparative-scale synthesis of (S)-2-phenylpiperidine, (S)-4a, was achieved through conversion of 1 a ($144 \mathrm{mg}, 0.75 \mathrm{mmol}$) using cells harboring pLH10 in a 500 mL baffled flask. After 24 h the biotransformation was basified to pH 12.0 using 10 M NaOH and extracted twice into EtOAc. The crude extract was subjected to further purification by dissolving the residue into EtOAc (20 mL) and extracting the amine product into $1 \mathrm{M} \mathrm{HCl}(3 \times 20 \mathrm{~mL})$. The aqueous layers were then combined, basified with 10 M NaOH to pH 12.0 and the product extracted into $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The organic layers were then combined, dried over anhydrous MgSO_{4} and the solvent removed under reduced pressure to yield $(S)-4 a(70 \mathrm{mg}$, $0.43 \mathrm{mmol}, 58 \%$, ee 30%) as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{\delta H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.42-7.30(\mathrm{~m}, 4 \mathrm{H})$, 7.30-7.23 (m, 1H), 3.70-3.58 (m, 1H), 3.24-3.15 (m, 1H), $2.80(\mathrm{td}, \mathrm{J}=11.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.45(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta \mathrm{C}(100 \mathrm{MHz}$ CDCl_{3}) 145.3, 128.4, 127.1, 126.7, 62.3, 47.7, 34.8, 25.8, 25.4; MS m/z 161 [$\left.\mathrm{M}^{+}\right]$. Data consistent with literature values. ${ }^{[8]}$

6.2. Synthesis of (\pm)-cis-4-methyl-2-phenylpiperidine, (\pm)-cis-4e, using whole cell biocatalyst.

Following the optimized expression and reaction conditions described in section 4.4, preparative-scale synthesis of (\pm)-cis-4-methyl-2-phenylpiperidine, $(\pm$)-cis-4e, was achieved through conversion of $\mathbf{1 e}(100 \mathrm{mg}, 0.49 \mathrm{mmol})$ using cells harboring pLH10 in a 500 mL baffled flask. After 24 h the biotransformation was basified to pH 12.0 using 10 M NaOH and extracted twice into EtOAc. The crude extract was subjected to further purification by dissolving the residue into $\mathrm{EtOAc}(20 \mathrm{~mL})$ and extracting the amine product into $1 \mathrm{M} \mathrm{HCl}(3 x$ 20 mL). The aqueous layers were then combined, basified with 10 M NaOH to pH 12.0 and the product extracted into EtOAc ($4 \times 25 \mathrm{~mL}$). The organic layers were then combined, dried over anhydrous MgSO_{4} and the solvent removed under reduced pressure to yield (\pm)-cis-4e ($50 \mathrm{mg}, 0.29 \mathrm{mmol}, 59 \%$, de $>98 \%$) as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.30$ ($\mathrm{m}, 4 \mathrm{H}$), 7.29-7.23 (m, 1H), 3.62 (dd, $J=11.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (ddd, $J=11.6,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.82 (app td, J = 12.0, 2.5 Hz, 1H), 2.15 (br s, 1H), 1.85-1.77 (m, 1H), 1.74-1.58 (m, 2H), 1.30$1.15(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta \mathbf{C}\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 145.2,128.4,127.1$, $126.7,61.9,47.3,43.5,34.4,32.0,22.5 . \mathrm{MS} \mathrm{m} / \mathrm{z} 175\left[\mathrm{M}^{+}\right]$. Data consistent with literature values. ${ }^{[1]}$

6.3. Synthesis of keto alcohol intermediate using whole cell biocatalyst and 1a as substrate.

An adaptation of the reaction conditions outlined in section 4.3 was used for the preparative-scale synthesis of keto alcohol intermediate 5-hydroxy-1-phenyl-1-pentanone, through conversion of $\mathbf{1 a}$ ($75 \mathrm{mg}, 0.46 \mathrm{mmol}$) using glucose (50 mM) and cells harboring plasmid pPB01/MCAR + BsSfp in a 250 mL baffled flask. After 24 h the biotransformation was basified to pH 12.0 using 10 M NaOH and extracted twice into EtOAc. The organic layers were then dried over MgSO_{4} and the solvent removed under reduced pressure to yield 5-hydroxy-1-phenyl-1-pentanone ($63 \mathrm{mg}, 0.35 \mathrm{mmol}, 91 \%$) as a yellow oil: ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta \mathrm{H}(400$ $\mathrm{MHz}, \mathrm{CDCl} 3)$ 8.00-7.94 (m, 2H), 7.60-7.55 (m, 1H), 7.51-7.44 (m, 2H), $3.69(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.05(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) 2.63(2 \mathrm{H}, \mathrm{s}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta \mathrm{C}(100$ MHz CDCl 3) $200.5,136.9,133.0,128.6,128.0,62.4,38.1,32.3,20.1 ; \mathrm{MS} m / z 160\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$. Data consistent with literature values. ${ }^{[9]}$

7. Synthesis of substrate 2-((2-oxo-2-phenylethyl)thio)acetic acid, 1 g .

Preparation of methyl 2-((2-oxo-2-phenylethyl)thio)acetate

To a flask under N_{2} were added 2-bromoacetophenone ($3.34 \mathrm{~g}, 16.8 \mathrm{mmol}$), methyl thioglycolate ($1.5 \mathrm{~mL}, 16.8 \mathrm{~mL}$) and anhydrous THF (22 mL). Oven-dried $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{x}, 11.6 \mathrm{~g}$, 83.9 mmol) was added to the flask and the mixture was stirred for 24 h . The mixture was then filtered and the residue filter cake was washed with ethyl acetate (20 mL). The organic layers were pooled together and concentrated in vacuo to yield the crude product. The final product was obtained by Kugelrohr distillation ($180^{\circ} \mathrm{C}$ under high vacuum, $3.39 \mathrm{~g}, 90 \%$ yield) as clear oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C9}-\mathrm{CH}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 11-$ CH), 7.51 - 7.45 (m, 2H, C10-CH), 4.03 (s, 2H, C2-CH), 3.73 (s, 3H, C7-CH3) 3.53 (s, 2H, C4CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 194.2$ (C1), 170.5 (C5), 135.5 (C8), 133.7 (C11), 128.9 (C9), 128.8 (C10), 52.6 (C2), 37.9 (C4), 33.3 (C7).

Preparation of 2-((2-oxo-2-phenylethyl)thio)acetic acid, 1g

Methyl 2-((2-oxo-2-phenylethyl)thio)acetate (1.55g, 6.91 mmol$)$ was dissolved in a flask containing $2 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$. The mixture was stirred for 4 h before the pH was adjusted to pH 2 by addition of 1 M HCl . The mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The organic phases were pooled together, dried over MgSO_{4} and concentrated in vacuo to yield the ketoacid $\mathbf{1 g}(1.31 \mathrm{~g}, 90 \%)$ as a crystalline orange solid. ${ }^{\mathbf{1}} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.95$ - 7.90 (m, 2H, C7-CH), 7.63 - 7.57 (m, 1H, C9-CH), 7.51 - 7.46 (m, 2H, C8-CH), 4.06 (s, 2H, C4-CH2), 3.38 (s, 2H, C2-CH $)^{23}{ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 194.4$ (C5), 175.6 (C1), 135.3 (C8), 133.9 (C9), 129.0 (C7), 128.8 (C8), 37.9 (C4), 33.4 (C2).

8. GC and HPLC traces.

8.1. GC traces and mass spectra for preparative-scale syntheses.

a)

b)

Figure S25 a) GC trace and b) MS trace from GCMS analysis for purified 4a from preparative-scale conversion of 1a using E. coli BL21 (DE3) cells harboring plasmid pLH10. (HP1-MS (Agilent, 30.0 mx $320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10$ ${ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$).

Figure S26 GC-FID analysis of cascade biotransformation of 1a to determine ee. (CP-Chirasil-DEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $90^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C} \mathrm{min}^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 5 min). Samples were derivatized with acetic anhydride prior to analysis. a) racemic amine standard; b) biotransformation of 1a using E. coli BL21 (DE3) cells harboring plasmid pLH10.
a)

b)

Figure S27 a) GC trace and b) MS trace from GCMS analysis for purified $4 \mathbf{e}$ from preparative-scale conversion of $\mathbf{1 e}$ using E. coli BL21 (DE3) cells harboring plasmid pLH10. (HP1-MS (Agilent, 30.0 mx $320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10$ ${ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$).

Figure S28 GC trace from GCMS analysis for purified keto alcohol over-reduction product from preparative-scale conversion of 1a using E. coli BL21 (DE3) cells harboring pPB01/MCAR +BsSfp. (HP1-MS (Agilent, $30.0 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C}$ $\mathrm{min}^{-1}, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} \mathrm{min}^{-1}$). This compound is known to form the cyclic hemiacetal over time. ${ }^{[10]}$

a)

b)

Figure S29 MS traces from GCMS analysis for purified keto alcohol over-reduction product from preparative-scale conversion of 1a using E. coli BL21 (DE3) cells harboring pPB01/MCAR +BsSfp. a) cyclized keto alcohol product; b) linear keto alcohol product.

8.2. GC traces, HPLC traces and mass spectra for analytical-scale syntheses.

a)

b)

c)

Figure S30 GC traces from GCMS analysis of cascade biotransformation of 1b to determine conversion. (HP1-MS (Agilent, $30.0 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}$ $175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} \mathrm{min}^{-1}$). a) cascade using cells harboring plasmid pLHO2 (pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp); b) cascade using cells harboring plasmid pLH09 (pPB01/ATA-117 + ATA-117 + MCAR + (R)-IRED + BsSfp); c) cascade using cells harboring plasmid pLH10 (pPB01/(R)-IRED + ATA-117 + MCAR + (R)-IRED + BsSfp).

a)

b)

c)

Figure S31 MS traces from GCMS analysis of cascade biotransformation of 1b. a) MS data for amine;
b) MS data for imine; c) MS data for linear keto alcohol.

b)

Figure S32 GC-FID analysis of cascade biotransformation of $\mathbf{1 b}$ to determine ee. (CP-Chirasil-DEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 2 min). a) racemic amine standard; b) biotransformation of $\mathbf{1 b}$ using E. coli BL21 (DE3) cells harboring plasmid pLH10. Absolute configuration based on known selectivity of (R)-IRED with 1b. ${ }^{[2]}$
a)

b)

c)

Figure S33 GC traces from GCMS analysis of cascade biotransformation of 1 c to determine conversion. (HP1-MS (Agilent, $30.0 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}$ $175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}$ - $, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} \mathrm{min}^{-1}$). a) cascade using cells harboring plasmid pLHO2 (pPB01/ATA-117 + MCAR $+(R)$-IRED + BsSfp); b) cascade using cells harboring plasmid pLH09 (pPB01/ATA-117 + ATA-117 + MCAR + (R)-IRED + BsSfp); c) cascade using cells harboring plasmid pLH10 (pPB01/(R)-IRED + ATA-117 + MCAR + (R) -IRED + BsSfp).
a)

b)

Figure S34 MS traces from GCMS analysis of cascade biotransformation of 1c. a) MS data for amine;
b) MS data for imine; c) MS data for linear keto alcohol.
a)

Figure S35 HPLC analysis of cascade biotransformation of $\mathbf{1 c}$ to determine ee and de. (CHIRALPAK ${ }^{\circledR}$ IC column ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$), solvent: n -hexane/isopropanol/diethylamine $=90 / 10 / 0.1,1$ $\mathrm{mL} / \mathrm{min}, 265 \mathrm{~nm}$). a) racemic amine standard; b) biotransformation of $\mathbf{1 c}$ using E. coli BL21 (DE3) cells harboring plasmid pLH10.
a)

b)

Figure S36 GC traces from GCMS analysis of cascade biotransformation of 1d to determine conversion. (HP1-MS (Agilent, $30.0 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}$ $175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$). a) cascade using cells harboring plasmid pLHO2 (pPB01/ATA-117 + MCAR + (R)-IRED + BsSfp); b) cascade using cells harboring plasmid pLH09 (pPB01/ATA-117 + ATA-117 + MCAR + (R)-IRED + BsSfp); c) cascade using cells harboring plasmid pLH10 (pPB01/(R)-IRED + ATA-117 + MCAR + (R)-IRED + BsSfp).

b)

Figure S37 MS traces from GCMS analysis of cascade biotransformation of 1d . a) MS data for amine;
b) MS data for linear keto alcohol.
a)

b)

Figure S38 GC-FID analysis of cascade biotransformation of 1d to determine ee and de. (CP-ChirasilDEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 2 min). a) racemic amine standard; b) biotransformation of 1d using E. coli BL21 (DE3) cells harboring plasmid pLH10. Absolute configuration based on known selectivity of (R)-IRED with $1 \mathbf{d} .{ }^{[1]}$

b)

Figure S 39 GC traces from GCMS analysis of cascade biotransformation of $\mathbf{1 e}$ to determine conversion. (HP1-MS (Agilent, $30.0 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$), Inlet temperature $270^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}$ $175^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}, 175^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$). a) cascade using cells harboring plasmid pLHO2 (pPB01/ATA-117 + MCAR $+(R)$-IRED + BsSfp); b) cascade using cells harboring plasmid pLH09 (pPB01/ATA-117 + ATA-117 + MCAR + (R)-IRED + BsSfp); c) cascade using cells harboring plasmid pLH10 (pPB01/(R)-IRED + ATA-117 + MCAR + (R)-IRED + BsSfp).
a)

b)

Figure S40 MS traces from GCMS analysis of cascade biotransformation of 1e. a) MS data for amine; b) MS data for imine; c) MS data for linear keto alcohol.

Figure S41 GC-FID analysis of cascade biotransformation of 1 e to determine ee and de. (CP-ChirasilDEX CB (Agilent, $25.0 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$), injector temperature $200^{\circ} \mathrm{C}$, detector temperature $250^{\circ} \mathrm{C}$. Method: $50^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$, hold at $200^{\circ} \mathrm{C}$ for 2 min). Samples were derivatized with acetic anhydride prior to analysis. a) racemic amine standard; b) biotransformation of $\mathbf{1 e}$ using E. coli BL21 (DE3) cells harboring plasmid pLH02.
9. NMR of amine and keto alcohol products from preparative biotransformations.

10. References.

[1] S. P. France, S. Hussain, A. M. Hill, L. J. Hepworth, R. M. Howard, K. R. Mulholland, S. L. Flitsch, N. J. Turner, ACS Catal. 2016, 6, 3753-3759.
[2] S. Hussain, F. Leipold, H. Man, E. Wells, S. P. France, K. R. Mulholland, G. Grogan, N. J. Turner, ChemCatChem 2015, 7, 579-583.
[3] F. Leipold, S. Hussain, D. Ghislieri, N. J. Turner, ChemCatChem 2013, 5, 3505-3508.
[4] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
[5] D. Koszelewski, I. Lavandera, D. Clay, G. M. Guebitz, D. Rozzell, W. Kroutil, Angew. Chem., Int. Ed. 2008, 47, 9337-9340; Angew. Chem. 2008, 47, 9477-9480.
[6] P. Both, H. Busch, P. P. Kelly, F. G. Mutti, N. J. Turner, S. L. Flitsch, Angew. Chem., Int. Ed. 2016, 55, 1511-1513; Angew. Chem. 2016, 128, 1533-1536.
[7] J. Kim, J. P. Kershner, Y. Novikov, R. K. Shoemaker, S. D. Copley, Mol. Syst. Biol. 2010, 6, 436.
[8] H. Prokopcova, S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B. Van Der Veken, L. Meerpoel, B. U. W. Maes, Chem. - A Eur. J. 2010, 16, 13063-13067.
[9] J. Xie, L. Guo, X. Yang, L. Wang, Q. Zhou, Org. Lett. 2012, 14, 4758-4761.
[10] L. Miao, S. C. Dimaggio, M. L. Trudell, Synthesis (Stuttg). 2010, 1, 91-97.

[^0]: School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom.
 ${ }^{\dagger}$ Present address: Dr. Reddy’s Laboratories, Chirotech Technology Centre, 410 Cambridge Science Park, Milton Road, Cambridge, CB4 0PE, United Kingdom.

