SUPPORTING INFORMATION

Michael Acceptor-Based Peptidomimetic Inhibitor of Main Protease from Porcine Epidemic Diarrhea Virus

Fenghua Wang,^{†,+} Cheng Chen,^{†,‡,+} Kailin Yang,^{#,+} Yang Xu,[‡] Xiaomei Liu,[‡] Fan Gao,[‡] He Liu,[‡] Xia Chen,[†] Qi Zhao,[§] Xiang Liu,[‡] Yan Cai,^{‡,*} and Haitao Yang^{†,‡,*}

[†]School of Life Sciences, Tianjin University, Tianjin 300072, China

[‡]Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China

[#]Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland,

Ohio 44120, United States

[§]Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States

⁺F.W., C.C., and K.Y. contributed equally and are considered as co-first authors.

Corresponding Authors

*H.Y.: phone, +86 22 27403906; fax, +86 22 27403902; e-mail, yanght@tju.edu.cn. *C.Y.: phone, +86 22 65378009; fax, +86 22 65378036; e-mail, caiyan_86@163.com.

Table of Contents

Supplementary Figures S1–S6	
Supplementary Tables S1–S3	S9
Supplementary Experimental Methods	S16
Synthesis and Characterization of all Compounds	S19
Supplementary References	S109

Figure S1. Enzyme activity of PEDV M^{pro}. Reaction progress curves in the presence of increasing fluorescence-labeled substrate concentration.

Figure S2. Initial rate constant of PEDV M^{pro} . Plot initial rate constant V_0 over the concentration of fluorescence-labeled substrate.

Figure S3. Overview of PEDV M^{pro} homodimer (PDB ID 5GWZ) in one asymmetric unit (A: slate and B: deep salmon). Protomers are shown in cartoons, and compound **1** (inhibitor N3) are shown as green sticks.

Figure S4. Structural overview of PEDV M^{pro} interaction with compound **1** (PDB ID 5GWZ). The backbone of PEDV M^{pro} is shown in cartoons, and compound **1** is presented as green sticks.

Figure S5. Comparison of the complex structure of compound **1**-PEDV M^{pro} with those from other coronavirus species: PEDV (PDB ID 5GWZ), slate; TGEV (PDB ID 2AMP),¹ salmon; SARS-CoV (PDB ID 2AMQ),¹ yellow; HCoV-NL63 (PDB ID 5GWY),² cyan; and HCoV-HKU1 (PDB ID 3D23),³ light magentas.

Figure S6. Enzymatic inhibition of compounds **3** and **15** against PEDV M^{pro}. A: k_{obs} -[I] for compound **3**. B: k_{obs} -[I] for compound **15**.

Statistics	Value for the PEDV M ^{pro} -	
Statistics	compound 1 complex	
Data collection		
Wavelength (Å)	1.0000	
Resolution limit (Å)	50.0-2.44 (2.90-2.85)	
Space group	<i>R</i> 3	
Cell parameters		
a (Å)	175.3	
b (Å)	175.3	
c (Å)	58.7	
$\alpha = \beta(^{\circ})$	90	
γ (°)	120	
Total no. of reflections	144327	
No. of unique reflections	24884	
Completeness (%)	100.0 (99.2)	
Redundancy	5.8 (4.6)	
$R_{merge}(\%)$	5.2 (29.9)	
Sigma cutoff	0	
$I/\sigma(I)$	32.6 (5.3)	
Refinement		
Resolution range (Å)	50.0-2.44 (2.53-2.44)	
R _{work} (%)	18.5	
R _{free} (%)	21.9	
Rmsd from ideal geometry		
Bonds (Å)	0.005	
Angles (°)	0.99	
Avg B factor (Å ²)	46.3	
Protein	46.2	

Table S1. X-ray data-processing and refinement statistics.

Ligand		57.7
Solvent		42.3
Ramachandran plo	ot	
Favored (%)		96.0
Allowed (%)		4.0
Outliers (%)		0.0

PEDV	/ M ^{pro}	Compound 1	Bond longth ($^{\text{A}}$)	
 Residue	Atom	Atom	- Donu lengun(A)	
 Cys144	Sr	C20	1.83	
Thr189	Ο	N2	3.07	
Glu165	Ο	N3	2.88	
Glu165	$O\epsilon_2$	N6	3.01	
Gln163	Ο	N5	3.10	
Glu165	Ν	O4	3.05	
Phe139	Ο	N6	3.59	
Cys144	Ν	O6	3.48	
His162	$N\epsilon_2$	O8	2.38	

Table S2. Covalent and hydrogen bonds between PEDV $M^{\rm pro}$ and compound 1.

Compounds	Structure of compounds	Percentage purity (determined by analytical HPLC)	Exact mass (determined by ESI-MS)
2 (M1)	$ \begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & \\ & \\ \end{array} \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ & \\ \end{array} \end{array} \begin{array}{c} \\ & \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array}$ \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \\c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \\c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \\c} \end{array} \end{array} \\c} \\ \end{array} \end{array} \\c} \\c\\ \\c\\ \end{array} \\c} \\c\\ \end{array} \\c} \\c\\ \\c\\ \\c\\ \\c\\ \end{array} \\c} \\c\\ \\c\\ \\c\\ \\c\\ \end{array} \\c} \\c\\ \\c\\ \\c\\ \\c\\ \\c\\ \\c\\ \\c\\ \\c\\ \\c\\	99.4%	720.54
3 (M2)	$ \begin{array}{c} \overset{O-N}{\underset{O}{\overset{H}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{I}{\overset{O}{\underset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\atopO}{\underset{O}{\overset{O}{\atopO}{\underset{O}{\overset{O}{\atopO}{\atopO}{\atopO}{\atopO}{\atopO}{{O}}}}}}}}}$	97.7%	706.49
4 (M3)	$ \begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \end{array} \end{array} \xrightarrow{\begin{array}{c} \\ \end{array}} \begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \end{array} \end{array}$ \xrightarrow{\begin{array}{c} \\ \end{array} \xrightarrow{\begin{array}{c} \end{array} \end{array} \xrightarrow{\begin{array}{c} \end{array} \end{array}	96.6%	678.49
5 (M5)	$ \begin{array}{c} \overset{O-N}{\overset$	99.8%	682.51

Table S3. Design of 17 new Michael acceptor-based peptidomimetic inhibitors⁴ for PEDV M^{pro}.

6 (M6)	$ \begin{array}{c} \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $	>99.9%	638.46
7 (M7)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	97.2%	714.49
8 (M8)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	>99.9%	697.60
9 (M9)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	99.5%	605.46
10 (M10)	$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	99.1%	720.52

-			
11 (M11)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	98.5%	510.38
12 (M12)	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	99.4%	646.54
13 (M13)	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	98.8%	617.48
14 (M14)	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	98.6%	632.51
15 (M17)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	98.5%	712.51

16 (M18)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	96.1%	712.52
17 (M19)	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	>99.9%	694.50
18 (M25)	$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ $	98.6%	710.51

Supplementary Experimental Methods

Protein Expression and Purification

Protein expression and purification of PEDV main protease has been described previously.⁵ The coding sequence was synthesized and cloned into pGEX-6P-1 vector, and transformed into *E. coli* strain BL21 (DE3). Cell culture was grown in LB medium containing 100 μ g ml⁻¹ ampicillin at 37 °C until optical density (OD₆₀₀) reached 0.6. Protein expression was then induced by adding isopropyl β -D-1-thiogalactopyranoside to a final concentration of 0.5 mM and further cultured at 16 °C for 16 hours. Cell pellets were harvested by centrifugation, and resuspended in phosphate-buffered saline solution supplemented with 1 mM dithiothreitol (DTT) and 10% glycerol. Cell lysate was prepared with sonication and centrifugation (12,000 g, 50 min, 4 °C). GST-tagged PEDV M^{pro} fusion protein was bound to glutathione Sepharose 4B affinity resin, and GST tag was removed through on-column cleavage using commercial PreScission protease (GE Healthcare) at 4 °C for 18 hours. Recombinant PEDV M^{pro} protein was subject to an additional step of anion-exchange chromatography using HiTrap Q column (GE Healthcare), with a linear gradient of 25 to 250 mM NaCl (20 mM Tris-HCl pH=8.0, 10% glycerol, 1 mM DTT).

Crystallization and Data Collection

Purified protein was supplemented with 10% DMSO and concentrated to 1mg ml⁻¹. The complex of PEDV M^{pro} with compound **1** was prepared by adding compound **1** to PEDV M^{pro} protein at a molar ratio between 3:1 and 5:1, and incubating at 4 °C for 4 hours. The complex was then centrifuged at 12,000 g for 10 min, and concentrated to 10 mg ml⁻¹ in a buffer containing 10 mM HEPES pH 7.5, 150 mM NaCl, 1 mM DTT. Using hanging-drop vapor diffusion method at 16 °C,

best crystals were obtained after 1 day using a reservoir solution containing 25-29% (v/v) 2propanol, 0.1 M Tris pH 7.5-7.9, 5% (w/v) polyethylene glycol $8000.^5$

Data for PEDV M^{pro}-compound **1** complex was collected to a 2.44-Å resolution at 100K on beamlineBL-5A of the Photon Factory, KEK, Japan, using an ADSC Q315r detector. The cryoprotectant solution contained 25% (v/v) 2-propanol, 0.1 M Tris pH 7.7, 5% (w/v) polyethylene glycol 8000, and 20% glycerol. All data integration and scaling were performed using HKL2000.⁶ The Matthews coefficient of the crystal suggested two molecules per asymmetric unit, and the solvent content was 53.1%.

Enzymatic Activity and Inhibition Assays

Enzymatic assay was performed using a fluorogenic substrate with consensus sequence of CoV M^{pro} , MCA-AVLQ \downarrow SGFR-Lys(Dnp)-Lys-NH2 (>95% purity, GL Biochem Shanghai Ltd., Shanghai, China), as previously reported.^{1, 3, 7} Fluorescence intensity was monitored using a Fluoroskan Ascent instrument (Thermo Scientific, USA) with excitation and emission wavelengths of 320 nm and 405 nm, respectively. The assay was performed in a buffer solution consisted of 50 mM Tris-HCl (pH 7.3) and 1 mM EDTA at 30 °C. Kinetic parameters, including K_m and k_{cat} of PEDV M^{pro} and K_i and k_3 of compound **1**, were determined using methods described in detail in our previous work.^{1, 3} Briefly, the strict kinetic parameters were determined for compound **1**. First-order inhibition rate constant (k_{obs}) was obtained by fitting time-dependent inhibition progress curves to a first-order exponential equation (1).⁸ P is the product fluorescence; v_0 is the initial velocity; t is time; and D is a displacement term to account for the fact that the emission is nonzero at the start of data collection. The values of K_i and k_3 were calculated from plots of $1/k_{obs}$ obtained from equation (1) versus 1/[I] according to equation (2). [I] is inhibitor

concentration; [S] is substrate concentration; K_m is the Michaelis-Menten constant for the substrate; K_i is the equilibrium constant; and k_3 is the rate constant of inactivation.

(1)

(2)

The values of K_i and k_3 parameters for the irreversible inhibitors were obtained from reactions initiated by addition of PEDV M^{pro}. The substrate concentration was set at 40µM, depending on the enzymatic activity. The inhibitors vary from 6 different concentrations (10-60 µM). Data from the continuous assays were analyzed with the nonlinear regression analysis program Origin. The enzymatic assay of compound **3** and compound **15** is similar to compound **1**.

Synthesis and Characterization of Compounds 3 and 15

Compound 3 (inhibitor M2)

Synthetic Pathway:

¹H NMR (400 MHz, DMSO-d₆):

δ 8.56 (d, J = 7.6 Hz, 1H), 8.22 (d, J = 8.5 Hz, 1H), 7.97 -8.07 (m, 2H), 7.61 (d, J = 21.5 Hz, 1H), 7.37 (s, 5H), 6.91 (m, 1H), 6.55 (s, 1H), 5.86 -5.99 (m, 1H), 5.16 (s, 2H), 4.44 -4.59 (m, 2H), 4.14 -4.31 (m, 2H), 3.00 -3.18 (m, 2H), 2.46 (s, 3H), 2.29 (m, 1H), 2.05 -2.18 (m, 2H), 1.78 -1.93 (m, 1H), 1.36 -1.70 (m, 13H), 1.29 (d, J = 7.1 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H).

Compound 3

¹³C NMR (101 MHz, DMSO-d₆):

δ 178.77, 172.06, 171.91, 171.73, 171.41, 165.86, 159.07, 158.63, 150.51, 136.61, 128.91(2),
128.53, 128.44(2), 119.76, 101.78, 65.99, 56.17, 51.87, 49.06, 47.79, 42.72, 41.19, 38.01, 35.42,
29.47, 28.98, 28.80, 27.82, 25.28, 24.97, 24.72, 23.11, 22.34, 18.46,12.29.

Compound 3

ESI-MS:

Calculated mass for $[C_{37}H_{51}N_6O_8, M+H]^+$: 707.38 Found: 707.50.

Analytic HPLC:

Purity: 97.7%

Compound 3

Compound 15 (inhibitor M17)

Synthetic Pathway:

Compound 15

¹H NMR (400 MHz, DMSO-d₆):

δ 8.59 (d, *J* = 7.4 Hz, 1H), 8.15 -8.33 (m, 1H), 8.05 (d, *J* = 7.5 Hz, 1H), 7.92 (d, *J* = 8.7 Hz, 1H), 7.57 (s, 1H), 7.44 (m, 1H), 7.33 -7.40 (m, 1H), 7.18 -7.25 (m, 2H), 6.90 (m, 1H), 6.55 (s, 1H), 6.05 (d, *J* = 6.6 Hz, 1H), 5.88 (d, *J* = 15.8 Hz, 1H), 4.44 -4.63 (m, 2H), 4.14 -4.32 (m, 2H), 2.99 -3.17 (m, 2H), 2.47 (s, 3H), 2.06 -2.32 (m, 2H), 1.79 -1.97 (m, 2H), 1.60-1.70 (m, 1H), 1.52 (d, *J* = 6.6 Hz, 3H), 1.41 -1.49 (m, 3H), 1.28 -1.37 (m, 4H), 0.89 -0.93 (m, 3H), 0.79 -0.85 (m, 9H).

Compound 15

¹³C NMR (101 MHz, DMSO-d₆):

δ178.76, 172.13, 172.02, 171.75, 171.04, 165.09, 159.07, 158.65, 150.75, 150.64, 130.39 (d,C-F), 127.67, 125.15, 119.79, 116.09, 115.88, 101.79, 66.56, 57.83, 51.88, 49.11, 47.77, 41.17, 38.00, 31.28, 30.88, 27.78, 24.73, 23.09, 23.03, 22.43, 22.35, 19.51, 18.54, 18.45, 12.30.

Compound 15

ESI-MS:

Calculated mass for $[C_{36}H_{49}FN_6O_8Na, M+Na]^+$: 735.35 Found: 735.50.

Compound 15

Analytic HPLC:

Synthesis and Characterization of Compounds 1–2, 4–14, and 16–18

Compound 1 (Inhibitor N3)

Synthetic Pathway:

¹H NMR (400 MHz, DMSO-d₆):

 δ 8.59 (d, J = 7.5 Hz, 1H), 8.25 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.57 (s, 1H), 7.40 – 7.33 (m, 5H), 6.96 – 6.87 (m, 1H), 6.55 (s, 1H), 5.90 (d, J = 15.7 Hz, 1H), 5.16 (s, 2H), 4.60 – 4.47 (m, 2H), 4.30 – 4.16 (m, 2H), 3.17 – 3.02 (m, 2H), 2.46 (s, 3H), 2.30 (m, 1H), 2.15 – 2.05 (m, 1H), 1.99 – 1.80 (m, 2H), 1.70 – 1.52 (m, 2H), 1.51 – 1.41 (m, 3H), 1.30 (d, J = 7.1 Hz, 3H), 0.90 (d, J = 6.4 Hz, 3H), 0.83 (d, J = 6.0 Hz, 9H).

Compound 1

¹³C NMR (101 MHz, DMSO-d₆):

δ 178.77, 172.11, 172.03, 171.73, 171.05, 165.85, 159.07, 158.66, 150.50, 136.61, 128.91(2), 128.53, 128.44 (2), 119.79, 101.77, 65.99, 57.87, 51.87, 49.13, 47.80, 41.18, 38.00, 35.42, 31.27, 27.81, 24.72, 23.10, 22.33(2), 19.50, 18.53, 18.44, 12.28.

Compound 1

ESI-MS:

Calculated mass for $[C_{35}H_{49}N_6O_8, M+H]^+$: 681.36 Found: 681.42.

Analytic HPLC:

Purity: 99.9%

	Integration Result		
RT	Height	Area	Area%
8.46 9.37	552743	2547526	99.954
5. 51	553094	2548708	100.000
	RT 8. 46 9. 37	Integration Result RT Height 8.46 552743 9.37 351 553094	RT Height Area 8.46 552743 2547526 9.37 351 1182 553094 2548708

Compound 1

Compound 2 (Inhibitor M1)

Synthetic Pathway:

Compound 2

¹H NMR (400 MHz, DMSO-d₆):

δ 8.55 (d, J = 7.7 Hz, 1H), 8.21 (d, J = 9.1 Hz, 1H), 8.08 (d, J = 7.5 Hz, 1H), 7.93 (d, J = 8.9 Hz, 1H), 7.58 (s, 1H), 7.37 (s, 5H), 6.91 (m, 1H), 6.55 (s, 1H), 5.89 (d, J = 15.7 Hz, 1H), 5.15 (s, 2H), 4.44 -4.64 (m, 2H), 4.11 -4.33 (m, 2H), 3.00 -3.20 (m, 2H), 2.46 (s, 3H), 2.23 -2.37 (m, 1H), 1.93 -2.20 (m, 2H), 1.77 -1.91 (m, 1H), 1.34 -1.73 (m, 15H), 1.29 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.3 Hz, 3H).

Compound 2

¹³C NMR (101 MHz, DMSO-d₆):

δ178.81, 172.12, 171.92, 171.75, 170.99, 165.86, 159.07, 158.59, 150.53, 136.60, 128.91(2),
128.53, 128.45(2), 119.74, 101.77, 66.00, 57.29, 51.94, 49.05, 47.75, 41.17, 37.99, 35.49, 29.45,
28.53, 27.75, 26.31(2), 26.04(2), 24.72, 23.10(2), 22.33, 18.55, 12.29.

Compound 2
Calculated mass for $[C_{38}H_{52}N_6O_8Na, M+Na]^+$: 743.36 Found: 743.53.

Analytic HPLC:

Purity: 99.4%

PDA Ch3 254nm 4nm							
Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %	
1	10.036	1196	0.568	0.065	2715	0.406	
2	10.093	471	0.224	1.397	1287	0.192	
3	10.193	208969	99.209	0.084	664648	99.401	

Compound 2

Compound 4 (Inhibitor M3)

Synthetic Pathway:

¹H NMR (400 MHz, DMSO-d₆):

δ8.56 (d, J = 7.4 Hz, 1H), 8.17 (m, 2H), 7.99 (m, 1H), 7.62 (d, J = 15.0 Hz, 1H), 7.37 (d, J = 3.4 Hz, 5H), 6.85-6.94 (m, 1H), 6.50-6.56 (m, 1H), 5.93 (d, J = 19.4 Hz, 1H), 5.15 (d, J = 5.1 Hz, 2H),
4.57 (d, J = 6.9 Hz, 1H), 4.44- 4.54 (m, 1H), 4.20-4.31 (m, 1H), 3.77-3.93 (m, 1H), 3.03 -3.20 (m, 2H), 2.46 (s, 3H), 2.06- 2.34 (m, 2H), 1.81-2.03 (m, 1H), 1.39 -1.72 (m, 6H), 1.26 -1.35 (m, 2H)
1.03 (d, J = 7.6 Hz, 1H)0.89 (m, 3H), 0.83 (d, J = 6.2 Hz, 3H), 0.25-0.46 (m, 4H).

Compound 4

¹³C NMR (101 MHz, DMSO-d₆):

δ178.78, 172.00, 171.95, 171.70, 170.84, 165.87, 159.07, 158.69, 150.48, 136.60, 128.92(2), 128.53, 128.45(2), 119.77, 101.76, 66.00, 55.78, 55.37, 51.89, 48.93, 47.83, 41.11, 38.03, 35.37, 27.70, 24.75, 23.11, 22.37, 18.52, 13.87, 12.29, 3.21, 2.57.

Compound 4

Calculated mass for $[C_{35}H_{46}N_6O_8Na, M+Na]^+$: 701.33 Found: 701.48.

Analytic HPLC:

Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	1.223	29595	2.157	0.072	77592	1.173
2	1.332	41911	3.055	0.063	93410	1.413
3	2.784	3688	0.269	0.111	15582	0.236
4	4.498	5934	0.433	0.097	21210	0.321
5	4.725	4961	0.362	0.083	15253	0.231
6	7.260	1285878	93.725	0.122	6390019	96.627

Compound 4

Compound 5 (Inhibitor M5)

Synthetic Pathway:

¹H NMR (400 MHz, CDCl₃):

δ7.67 (d, J = 6.4 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.36 (s, 5H), 7.24 (s, 1H), 7.17 (d, J = 8.8 Hz, 1H), 6.63 (s, 1H), 6.43 (d, J = 0.7 Hz, 1H), 5.12 (s, 2H), 4.67 -4.82 (m, 1H), 4.50 -4.63 (m, 1H), 4.21 (m, 1H), 4.03 (d, J = 4.3 Hz, 1H), 3.20 -3.36 (m, 2H), 2.49 (s, 3H), 2.45 (m, 2H), 2.30 -2.38 (m, 2H), 1.89 - 2.07 (m, 5H), 1.53 -1.62 (m, 2H), 1.47 (d, J = 7.0 Hz, 3H), 0.85 -0.94 (m, 14H).

Compound 5

¹³C NMR (101 MHz, DMSO-d₆):

δ 178.76, 171.73, 167.43, 159.07, 158.65, 150.33, 132.20, 132.03, 129.11(2), 128.81(2), 126.61, 126.55, 101.78, 67.87, 57.85, 49.12, 38.56, 34.84, 31.28, 30.88, 30.27, 28.83, 24.75, 23.72, 22.86, 19.52, 19.29, 18.54, 18.46, 14.33, 12.28, 11.25, 10.12.

Compound 5

Calculated mass for $[C_{35}H_{50}N_6O_8Na, M+Na]^+$: 705.36 Found: 705.50.

Analytic HPLC:

Purity: 99.8%

PDA Ch3 25	54mm 4mm					
Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	9.219	337902	99.772	0.081	1042437	99.823
2	9.378	772	0.228	0.067	1851	0.177

Compound 5

Compound 6 (Inhibitor M6)

Synthetic Pathway:

¹H NMR (400 MHz, CDCl₃):

δ8.03 (d, J = 7.0 Hz, 1H), 7.70 (d, J = 6.6 Hz, 1H), 7.36 -7.39 (m, 5H), 7.19 (d, J = 7.5 Hz, 1H), 7.11 (d, J = 8.6 Hz, 1H), 6.85-6.92 (m, 1H), 6.63 (s, 1H), 6.40 (s, 1H), 5.96 -6.04 (m, 1H), 5.18 (s, 2H), 4.55 -4.66 (m, 3H), 4.24 -4.34 (m, 1H), 3.75-3.84 (m, 1H), 3.31 -3.36 (m, 1H), 2.48 (s, 3H), 1.95-2.00 (m, 3H), 1.79 -1.81 (m, 1H), 1.48 (d, J = 7.0 Hz, 3H), 1.26 -1.29 (m, 3H), 0.87-0.93 (m, 8H).

Compound 6

¹³C NMR (101 MHz, DMSO-d₆):

δ178.78, 172.00, 171.95, 171.70, 170.84, 165.87, 159.07, 158.69, 150.48, 136.60, 128.92 (2), 128.53, 128.45 (2), 119.77, 101.76, 66.00, 55.78, 51.89, 48.93, 47.83, 38.03, 35.37, 27.70, 24.75, 23.11, 22.37, 18.52, 13.87, 12.29, 3.21.

Compound 6

Calculated mass for $[C_{32}H_{42}N_6O_8Na, M+Na]^+$: 661.30 Found: 661.45.

Analytic HPLC:

Purity: >99.9%

Compound 6

Compound 7 (Inhibitor M7)

Synthetic Pathway:

Compound 7

¹H NMR (400 MHz, DMSO-d₆):

δ 8.66 (d, *J* = 7.6 Hz, 1H), 8.54 (m, 2H), 7.50-7.64 (m, 1H), 7.25 -7.44 (m, 10H), 6.88 (m, 1H), 6.55 (s, 1H), 5.80 - 6.15 (m, 1H), 5.56 (d, *J* = 8.1 Hz, 1H), 5.17 (s, 2H), 4.47 -4.67 (m, 2H), 4.18 -4.34 (m, 1H), 2.84 -3.14 (m, 2H), 2.46 (s, 3H), 2.02 -2.40 (m, 2H), 1.68 -2.05 (m, 2H), 1.44 - 1.56 (m, 3H), 1.35 (d, *J* = 7.1 Hz, 3H), 1.19 -1.29 (m, 1H), 0.61 -0.95 (m, 7H).

Compound 7

¹³C NMR (101 MHz, DMSO-d₆):

δ 178.79, 178.74, 178.58, 171.93, 171.74, 169.82, 165.85, 159.06, 158.75, 150.37, 138.87, 136.61, 128.93, 128.55 (2), 128.45 (2), 127.56 (2), 127.34 (2), 119.77, 101.78, 66.00, 56.16, 49.08, 47.76, 41.17, 37.90, 35.35, 24.79, 23.23, 23.00, 22.49, 22.22, 21.71, 18.44, 12.29.

Compound 7

Calculated mass for $[C_{38}H_{46}N_6O_8Na, M+Na]^+$: 737.33 Found: 737.48.

Analytic HPLC:

Compound 7

Compound 8 (Inhibitor M8)

Synthetic Pathway:

Compound 8

¹H NMR (400 MHz, DMSO-d₆):

δ8.49 -8.64 (m, 2H), 8.15 (d, J = 8.8 Hz, 1H), 7.95-8.04 (m, 1H), 7.91 (d, J = 8.9 Hz, 1H), 7.55 (s, 1H), 7.24 -7.35 (m, 2H), 7.09-7.19 (m, 2H), 6.53 -6.63 (m, 2H), 5.92 -6.00 (m, 1H) 5.75 (s, 1H), 4.46-4.58 (m, 2H), 4.29 -4.34 (m, 2H) ,4.17 4.26 (m, 1H), 3.01 -3.18 (m, 2H), 2.47 (s, 3H), 2.23 - 2.34 (m, 1H), 2.04 -2.17 (m, 1H), 1.87 -2.00 (m, 2H), 1.56-1.67 (m, 2H), 1.34-1.48 (m, 3H), 1.31 (d, J = 7.1 Hz, 3H), 0.89-0.92 (m, 3H), 0.81 - 0.85 (m, 9H).

Compound 8

¹³C NMR (101 MHz, DMSO-d₆):

δ178.76, 172.02, 171.74, 171.04, 165.21, 159.07, 158.65, 151.93, 139.64, 128.51(t,C-F), 125.37, 120.04, 115.78(2), 115.57(2), 101.78, 71.60, 57.86, 51.88, 49.12, 47.76, 38.00, 34.84, 30.89, 29.48, 27.79, 24.73, 23.08, 22.55, 22.39, 19.52, 18.54, 14.41, 12.29.

Compound 8

Calculated mass for $[C_{35}H_{48}N_7O_7Na, M+Na]^+$: 720.35 Found: 720.49.

Analytic HPLC:

Compound 8

Compound 9 (Inhibitor M9)

Synthetic Pathway:

Compound 9

¹H NMR (400 MHz, DMSO-d₆):

δ 8.56 -8.63 (m, 1H), 8.03 (m, 2H), 7.90 (d, J = 8.7 Hz, 1H), 7.47 -7.57 (m, 1H), 6.55 (s, 1H), 4.47 -4.55 (m, 1H), 4.16 -4.27 (m, 2H), 3.68 -3.94 (m, 1H), 3.57 (d, J = 3.4 Hz, 1H), 3.14 (m, 1H), 2.98 -3.05 (m, 1H), 2.69 -2.89 (m, 1H), 2.46 (s, 3H), 2.16 -2.41 (m, 2H), 2.01 -2.13 (m, 1H), 1.89 -1.99 (m, 1H), 1.71 -1.87 (m, 1H), 1.37 -1.61 (m, 5H), 1.30 (d, J = 7.0 Hz, 3H), 0.78 -0.94 (m, 13H).

Compound 9

¹³C NMR (101 MHz, DMSO-d₆):

δ179.04, 178.56, 172.99, 172.87, 172.03, 171.75, 171.15, 159.07, 158.69, 158.64, 101.78, 62.25,
57.82, 55.37, 52.02, 49.15, 48.28, 41.00, 37.64, 33.12, 31.30, 27.90, 24.69, 23.16, 22.23, 19.51,
18.49, 12.29.

Compound 9

Calculated mass for $[C_{28}H_{43}N_7O_8Na, M+Na]^+$: 628.31 Found: 628.45.

Compound 9

Analytic HPLC:

PDA Ch3 254	nm 4mn					
Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	6.937	303138	99.413	0.116	1402278	99.572
2	7.145	1791	0.587	0.082	6026	0.428

Compound 9

Compound 10 (Inhibitor M10)

Synthetic Pathway:

Compound 10

¹H NMR (400 MHz, DMSO-d₆):

δ8.51-8.62(m, 1H), 8.20-8.28 (m, 1H), 8.02-8.11 (m, 1H), 7.88-7.99 (m, 1H), 7.61 (d, J = 21.3 Hz, 1H), 7.34-7.42 (m, 5H), 6.92 (m, 1H), 6.55 (s, 1H), 5.92 (m, 1H), 5.10-5.18 (m, 2H), 4.44 -4.60 (m, 2H,), 4.10-4.32 (m, 2H), 2.99 -3.19 (m, 2H), 2.47 (s, 3H), 2.20-2.37 (m, 1H), 1.93 -2.18 (m, 2H), 1.76 -1.93 (m, 1H), 1.39 -1.70 (m, 14H), 1.36 (d, J = 5.3 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.3 Hz, 3H).

Compound 10

¹³C NMR (101 MHz, DMSO-d₆):

δ178.81, 172.12, 171.92, 171.75, 170.99, 165.86, 159.07, 158.59, 150.53, 136.60, 128.91(2),
128.53, 128.45(2), 119.74, 101.77, 66.00, 57.29, 51.94, 49.05, 47.75, 41.17, 37.99, 35.49, 29.45,
28.53, 27.75, 26.31(2), 26.04(2), 24.72, 23.10(2), 22.33, 18.55, 12.29.

Compound 10

Calculated mass for $[C_{38}H_{52}N_6O_8Na, M+Na]^+$: 743.36 Found: 743.51.

Compound 10
Purity: 99.1%

PDA Ch3 254	4mm 4mm					
Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	10.023	832	0.330	0.055	1955	0.247
2	10.098	1992	0.791	0.099	4827	0.609
3	10.181	248949	98.878	0.083	785731	99.144

Compound 10

Compound 11 (Inhibitor M11)

Synthetic Pathway:

M11

¹H NMR (400 MHz, DMSO-d₆):

δ 8.58 (d, J = 8.0 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 7.59 (s, 1H), 7.38 (s, 5H), 6.96 – 6.89 (m, 1H), 6.56 (s, 1H), 5.89 (d, J = 15.2 Hz, 1H), 5.16 (s, 2H), 4.58 – 4.45 (m, 2H), 3.15 – 3.06 (m, 2H), 2.45 (s, 3H), 2.36 – 2.28 (m, 1H), 2.14 – 2.05 (m, 1H), 1.72 – 1.47 (m, 6H), 0.91 (d, J = 6.3 Hz, 3H), 0.87 (d, J = 6.2 Hz, 3H).

Compound 11

¹³C NMR (101 MHz, DMSO-d₆):

δ 178.77, 171.77, 171.57, 165.87, 159.20, 159.11, 150.46, 136.61, 128.92(2), 128.54(2), 128.44, 119.88, 101.84, 66.00, 63.36, 52.26, 48.16, 38.08, 35.15, 27.75, 24.91, 23.35(2), 21.96, 12.28.

Compound 11

ESI-MS:

Calculated mass for $[C_{27}H_{35}N_4O_6, M+H]^+$: 511.26 Found: 511.39.

Purity: 98.5%

Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	9.453	7440	1.458	0.096	25704	1.471
2	9.543	502739	98.542	0.084	1721695	98.529

Compound 11

Compound 12 (Inhibitor M12)

Synthetic Pathway:

Compound 12

¹H NMR (400 MHz, DMSO-d₆):

δ 8.59 (d, *J* = 7.5 Hz, 1H), 8.19 (d, *J* = 8.7 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 6.74 (m, 1H), 6.55 (s, 1H), 5.73 (d, *J* = 15.8 Hz, 1H), 4.47 -4.58 (m, 2H), 4.26 (m, 1H), 4.16 -4.22 (m, 1H), 2.97 -3.19 (m, 2H), 2.47 (s, 3H), 2.23 -2.31 (m, 1H), 2.05 -2.13 (m, 1H), 1.81-1.99 (m, 2H), 1.50 -1.67 (m, 3H), 1.43 (s, 9H), 1.30 (d, *J* = 6.9 Hz, 3H), 1.20 -1.26 (m, 2H), 0.89 -0.92 (m, 3H), 0.81 -0.85 (m, 9H).

Compound 12

¹³C NMR (101 MHz, DMSO-d₆):

δ179.11, 172.26, 171.89, 171.12, 165.46, 158.96, 158.86, 148.81, 148.66, 121.73, 101.72, 80.48, 58.02, 51.92, 49.21, 47.68, 41.76, 41.03, 38.05, 31.11, 28.15, 27.68, 26.92, 24.69, 23.06, 22.23, 19.46, 18.47, 18.27, 12.23(3).

Compound 12

ESI-MS:

Calculated mass for $[C_{32}H_{50}N_6O_8Na, M+Na]^+$: 669.36 Found: 669.53.

Purity: 99.4%

4mm 4mm						
Ret. Time	Height	Height %	USP Width	Area	Area %	
9.162	223298	99.373	0.082	719333	99.466	
9.317	1410	0.627	0.075	3863	0.534	
	4mm 4mm Ret. Time 9.162 9.317	4nm 4nm Ret. Time Height 9.162 223298 9.317 1410	4mm 4mm Ret. Time Height Height % 9.162 223298 99.373 9.317 1410 0.627	Jumi 4mm Height Height % USP Width 9.162 223298 99.373 0.082 9.317 1410 0.627 0.075	Annn Annn Ret. Time Height Height % USP Width Area 9.162 223298 99.373 0.082 719333 9.317 1410 0.627 0.075 3863	Jumi 4mm Area Area Area % Ret. Time Height Height % USP Width Area Area % 9.162 223298 99.373 0.082 719333 99.466 9.317 1410 0.627 0.075 3863 0.534

Compound 12

Compound 13 (Inhibitor M13)

Synthetic Pathway:

Compound 13

¹H NMR (400 MHz, DMSO-d₆):

δ 8.60 (d, J = 7.5 Hz, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.98 – 8.02 (m, 2H), 7.91 (d, J = 8.9 Hz, 1H), 7.55 (s, 1H), 6.55 (s, 1H), 6.47 – 6.52 (m, 1H), 5.87 (d, J = 14.3 Hz, 1H), 4.45 – 4.54 (m, 2H), 4.17 – 4.26 (m, 2H), 3.10 – 3.17 (m, 4H), 2.47 (s, 3H), 2.24 – 2.29 (m, 1H), 2.09 – 2.14 (m, 1H), 1.89 – 1.96 (m, 2H), 1.57 – 1.63 (m, 2H), 1.35 – 1.43 (m, 3H), 1.30 (d, J = 7.1 Hz, 3H), 1.01 – 1.05 (m, 3H), 0.90 (d, J = 6.5 Hz, 3H), 0.82 – 0.85 (m, 9H).

Compound 13

¹³C NMR (101 MHz, DMSO-d₆):

δ 179.53, 172.57, 172.36, 172.05, 171.36, 165.35, 159.14, 158.86, 143.07, 123.74, 101.67, 65.64, 58.27, 51.91, 49.37, 47.63, 40.74, 38.05, 35.56, 34.00, 30.96, 27.77, 24.62, 23.29, 21.81, 19.37, 18.42, 18.05, 14.94, 12.19.

Compound 13

ESI-MS:

Calculated mass for $[C_{30}H_{47}N_7O_7Na, M+Na]^+$: 640.34 Found: 640.47.

Compound 13

Purity: 98.8%

FDA CIIS 234	+11111 -+11111					
Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	7.094	3604	1.034	0.089	11968	1.181
2	7.367	345117	98.966	0.077	1001430	98.819

Compound 13

Compound 14 (Inhibitor M14)

Synthetic Pathway:

Compound 14

¹H NMR (400 MHz, DMSO-d₆):

δ 8.58 (d, *J* = 7.5 Hz, 1H), 8.20 (d, *J* = 8.7 Hz, 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 6.82 (m, 1H), 6.55 (s, 1H), 5.81 (d, *J* = 15.8 Hz, 1H), 4.94 (m, 1H), 4.48 -4.58 (m, 2H), 4.12 -4.31 (m, 2H), 3.02 -3.18 (m, 2H), 2.47 (s, 3H), 2.10 -2.33 (m, 2H), 1.92 -1.98 (m, 1H), 1.78 -1.90 (m, 1H), 1.53 -1.68 (m, 2H), 1.40 -1.50 (m, 3H), 1.30 (d, *J* = 7.1 Hz, 3H), 1.21 (d, *J* = 6.0 Hz, 6H), 0.89 -0.93 (m, 3H), 0.81 -0.86 (m, 9H).

Compound 14

¹³C NMR (101 MHz, DMSO-d₆):

δ178.77, 172.11, 172.03, 171.74, 171.04, 165.53, 159.06, 158.66, 149.61, 120.48, 101.78, 67.71,
57.87, 51.86, 49.12, 47.73, 41.19, 38.00, 35.45, 31.25, 30.89, 29.47, 27.81, 24.72, 23.16, 22.29,
22.08, 19.53, 18.53, 18.44, 12.29.

Compound 14

ESI-MS:

Calculated mass for $[C_{31}H_{48}N_6O_8Na, M+Na]^+$: 655.34 Found: 655.50.

Purity: 98.6%

Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	8.514	5404	1.528	0.079	15447	1.344
2	8.668	348344	98.472	0.083	1133682	98.656

Compound 14

Compound 16 (Inhibitor M18)

Synthetic Pathway:

M18

Compound 16

¹H NMR (400 MHz, DMSO-d₆):

δ 8.59 (d, *J* = 7.5 Hz, 1H), 8.23 (m, 1H), 8.05 (d, *J* = 7.4 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 7.37 -7.45 (m, 2H), 7.13 -7.25 (m, 2H), 6.89 (m, 1H), 6.55 (s, 1H), 5.87 -5.90 (m, 1H), 5.85 (d, *J* = 5.7 Hz, 1H), 4.41 -4.64 (m, 2H), 4.14 -4.31 (m, 2H), 3.00 -3.19 (m, 2H), 2.47 (s, 3H), 2.22 -2.34 (m, 1H), 2.03 -2.20 (m, 1H), 1.80 -1.99 (m, 2H), 1.60 -1.70 (m, 1H), 1.37 -1.58 (m, 7H), 1.30 (d, *J* = 7.1 Hz, 3H), 0.87 -0.94 (m, 3H), 0.78 -0.85 (m, 9H).

Compound 16

¹³C NMR (101 MHz, DMSO-d₆):

δ178.76, 172.09, 171.74, 171.04, 165.21, 159.07, 158.65, 151.93, 139.64, 128.51 (d,C-F), 125.37, 120.04, 115.78 (2), 115.57 (2), 101.78, 71.60, 57.86, 51.88, 49.12, 47.76, 41.18, 38.00, 34.84, 31.27, 30.89, 29.48, 24.73, 23.08, 22.55, 22.39, 21.49, 19.52, 18.45, 12.29.

Compound 16

ESI-MS:

Calculated mass for [C₃₆H₄₉FN₆O₈Na, M+Na]⁺: 735.35 Found: 735.51.

Compound 16

Purity: 96.1%

PDA Ch1 2	20nm 4nm					
Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	9.605	6792	0.534	0.080	19875	0.352
2	9.857	1211930	95.268	0.106	5434092	96.159
3	9.973	53411	4.199	0.111	197185	3.489

Compound 16

Compound 17 (Inhibitor M19)

Synthetic Pathway:

M19

Compound 17

¹H NMR (400 MHz, DMSO-d₆):

δ 8.58 (d, *J* = 7.5 Hz, 1H), 8.18 -8.31 (m, 1H), 8.05 (d, *J* = 6.8 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.57 (s, 1H), 7.32 -7.39 (m, 5H), 6.89 (m, 1H), 6.55 (s, 1H), 5.84 -5.91 (m, 2H), 4.48 -4.59 (m, 2H), 4.16 -4.28 (m, 2H), 3.01 -3.18 (m, 2H), 2.47 (s, 3H), 2.25 -2.34 (m, 1H), 2.06 -2.13 (m, 1H), 1.82 -1.98 (m, 2H), 1.55 -1.68 (m, 2H), 1.45 -1.51 (m, 6H), 1.30 (d, *J* = 7.1 Hz, 3H), 0.92 (d, *J* = 6.2, 4.7 Hz, 3H), 0.81 -0.85 (m, 9H).

Compound 17

¹³C NMR (101 MHz, DMSO-d₆):

δ178.77, 172.02, 171.74, 171.04, 165.25, 159.07, 158.65, 150.29, 142.19, 128.90(2), 128.23(2),
126.28, 126.20, 120.10, 101.79, 72.19, 57.83, 51.88, 49.12, 47.76, 41.19, 38.00, 31.29, 27.79,
24.74, 23.05, 22.68, 22.61, 22.43, 22.36, 19.52, 18.55, 18.45, 12.30.

Compound 17

ESI-MS:

Calculated mass for $[C_{36}H_{50}N_6O_8Na, M+Na]^+$: 717.36 Found: 717.49.

 PDA Ch3 254nm 4nm
 Height
 Height %
 USP Width
 Area
 Area %

 1
 9.732
 442076
 100.000
 0.083
 1468938
 100.000

Compound 17

Compound 18 (Inhibitor M25)

Synthetic Pathway:

Compound 18

¹H NMR (400 MHz, DMSO-d₆):

 δ 8.58 (d, J = 7.5 Hz, 1H), 8.22 (d, J = 8.7 Hz, 1H), 8.03 (d, J = 7.7 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.56 (s, 1H), 7.32 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H,), 6.84 – 6.91 (m, 1H), 6.55 (s, 1H), 5.86 (d, J = 15.7 Hz, 1H), 5.08 (s, 2H), 4.48 – 4.57 (m, 2H), 4.16 – 4.28 (m, 2H), 3.75 (s, 3H), 3.00 – 3.16 (m, 2H), 2.47 (s, 3H), 2.25 – 2.33 (m, 1H), 2.05 – 2.13 (m, 1H), 1.81 – 1.96 (m, 2H), 1.53 – 1.67 (m, 2H), 1.42 – 1.50 (m, 3H), 1.30 (d, J = 7.1 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H), 0.80 – 0.84 (m, 9H).

Compound 18

¹³C NMR (101 MHz, DMSO-d₆):

δ 178.76, 172.10, 172.02, 171.74, 171.04, 165.90, 159.67, 159.07, 158.66, 150.27, 130.47, 128.50(2), 119.92(2), 114.31, 101.78, 65.85, 57.87, 55.58, 55.37, 51.85, 49.12, 47.77, 41.17, 37.99, 35.44, 31.26, 27.81, 24.71, 23.12, 22.31, 19.50, 18.52, 18.44, 12.29.

Compound 18

ESI-MS:

Calculated mass for $[C_{36}H_{50}N_6O_9Na, M+Na]^+$: 733.35 Found: 733.50.

Compound 18

Purity: 98.6%

Peak#	Ret. Time	Height	Height %	USP Width	Area	Area %
1	9.257	19005	1.520	0.102	54776	0.916
2	9.350	1223330	97.821	0.107	5898721	98.665
3	9.738	8248	0.660	0.078	25029	0.419

Compound	18
----------	----
Supplementary References:

1. Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; Hilgenfeld, R.; Yuen, K. Y.; Wong, L.; Gao, G.; Chen, S.; Chen, Z.; Ma, D.; Bartlam, M.; Rao, Z. Design of wide-spectrum inhibitors targeting coronavirus main proteases. *PLoS Biol.* **2005**, *3*, e324.

2. Wang, F.; Chen, C.; Tan, W.; Yang, K.; Yang, H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. *Sci. Rep.* **2016**, *6*, 22677.

3. Zhao, Q.; Li, S.; Xue, F.; Zou, Y.; Chen, C.; Bartlam, M.; Rao, Z. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. *J. Virol.* **2008**, *82*, 8647-8655.

4. Rao, Z.; Yang, H.; Fu, S.; Yang, C.; Wang, Z.; Cai, Y.; Li, S.; Guo, Y.; Liu, H. Small molecule inhibitors of coronavirus main protease: their preparation and application. China Patent 201510079787, Feb 15, 2015.

5. Tan, Y.; Wang, F.; Chen, X.; Wang, J.; Zhao, Q.; Li, S.; Wang, Z.; Fu, S.; Chen, C.; Yang, H. Crystallization and preliminary crystallographic study of Porcine epidemic diarrhea virus main protease in complex with an inhibitor. *Acta Crystallogr. Sect. F Struct. Biol. Commun.* **2014**, *70*, 1608-1611.

6. Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. In *Macromolecular Crystallography, part A*, Carter, C. W., Jr.; Sweet, R. M., Eds. Academic Press: New York, NY, 1997; Vol. 276, pp 307-326.

7. Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X. C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. *J. Virol.* **2008**, *82*, 2515-2527.

8. Tian, W. X.; Tsou, C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. *Biochemistry* **1982**, *21*, 1028-1032.