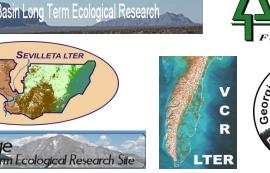


Earth Science Information Partners (ESIP) EnviroSensing Cluster


Don Henshaw¹, Janet Fredericks², and Alison Adams³

¹ U.S. Forest Service Pacific Northwest Research Station, ² Woods Hole Oceanographic Institution, ³ University of Vermont

EnviroSensing Cluster

Current emphasis

X-DOMES project (Cross-Domain Observational Metadata Environmental Sensing) funded by NSF as part of the EarthCube Integrative Activities

Mapping

Mapping Builder

Vocabulary

references terms in

SensorML

Generator

derived products.

SensorML

X-DOMES primary goal

 Work with sensor manufacturers to encourage them to begin to fully-describe sensors using a combination of controlled-vocabularies, OGC-SWE, SensorML and the Semantic Web

Capture Metadata using Semantics Web

(W3C) and SensorML (OGC-SWE)

Domain Communities create registered vocabularies and

Manufacturer (OEM) SensorML documents that describe

Access and Integrate

ontologies in an Ontology Registry for versioning

Sensor manufacturers create the Original Equipment

registered terms Content Access Modules (Python/Matlab) enable access to the registered SensorML documents and the associated RDF/OWL links.

Instrument

Community Engagement for Sustainability

- Engaging the Earth Science Information Partnership (ESIP) **EnviroSensing Cluster**

X-DOMES Team: Janet Fredericks (WHOI), Mike Botts (Bott, Inc.), Felimon Gayanilo (Texas A&M), John Graybeal (MMI), Krzysztof Janowicz (UCSB), Carlos Rueda (MBARI)

Sensor and Sensor Data Management Best Practices

http://wiki.esipfed.org/index.php/EnviroSensing_Cluster

Sensor, site, and platform selection

- Selection of sites, science platforms and support systems are interacting planning processes
- Communication among Pl's, techs, and information managers
- Data quality and longevity is ultimate goal
 - Robust and widely-used core systems and sensors
 - Standardize sensor and support hardware, software, designs
- Optimal siting for science objectives can be impeded
- land ownership/permitting, seasonal weather patterns, logistical access, availability of services (e.g., power sources, communications), operating budget

Data acquisition and transmission

- Manual downloads of sensor data
- May not be sufficient to assure data security
- Does not allow direct control of devices
- Remote data acquisition considerations:
- Collection frequency and need for immediate
- Uni- versus bi-directional transmission methods
- Bandwidth requirements to transfer the data
- Hardware and network protocols

• Line-of-site communication or repeaters

- Power consumption of the system components
- Physical and network security requirements
- Reliability and redundancy
- Expertise
- Budget

Sensor management, tracking, and documentation

- Documentation of field procedures and protocols:
- Site visits, sensor tracking, calibration and maintenance activities, datalogger programs
- Sensor event tracking
- Sensor event histories are essential for internal review of data, e.g., sensor failures, disturbances, method changes
- Integration of sensor documentation with the data
- Associate data qualifier flag with each data value
- Add a "methods_code" data column for easy user identification of methodology changes for a given sensor
- Communication between field and data personnel
- Example field note database:

SiteID	Datalogger ID	SensorID	date time begin	date time end	category	notes	Note taker
					controlled vocabulary		

Streaming data management workflow Data acquisition (drivers) Network and middleware health monitoring Permanent archive (processed data) @ 2 4 8 0 X 6 B

Licensing, cost, interoperability of components Proprietary middleware / software Campbell Scientific – LoggerNet Aquatic Informatics – Aquarius

- Vista Engineering Vista Data Vision (VDV)
- YSI EcoNet
- NexSens Technology WQData Live
- Open source environments for middleware GCE Data Toolbox (MATLAB required)
- CUAHSI Hydrologic Information System (HIS)
- DataTurbine Initiative

LTER Data Co-op

Sensor data quality assurance and quality control (QA/QC)

Quality assurance – preventative measures

Sensor data archiving

- Archiving strategies
- Create well documented data snapshots
- Assign unique, persistent identifiers Maintain data and metadata versioning
- Store data in text-based formats
- Partner with cross-institution supported archives
- Federated archive initiatives such as DataONE
- Community supported, e.g., the LTER NIS

- Develop an archival data management plan
- Implement a sound data backup plan
- Archive raw data (but they do not need to be online)
- Make data publicly available
- Assure appropriate QA/QC procedures are applied
- Assign QC level to published data sets

Planning with EarthCube and other existing data facilities

