Supporting Information

Critical role of oxygen in silver-catalyzed Glaser-Hay coupling on Ag(100) in vacuum and in solution on Ag particles

Noé Orozco,¹ Georgios Kyriakou,^{2,3} Simon K. Beaumont,⁴ Javier Fernandez Sanz,⁵ Juan P. Holgado,¹ Martin J. Taylor,^{2,3} Juan P. Espinós,¹ Antonio M. Márquez,⁵ David J. Watson⁶, Agustin R. Gonzalez-Elipe¹ and Richard M. Lambert^{1,7}*

AUTHOR ADDRESSES

1 Instituto de Ciencia de Materiales de Sevilla (CSIC), Americo Vespucio 49, 41092 Seville, Spain

2 European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom

3 Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom

4 Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom

5 Departamento de Química Física, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain

6 Department of Chemistry, University of Surrey, Guildford, GU2 7XH, United Kingdom

7 Chemistry Department, Cambridge University, Cambridge, CB2 1EW, United Kingdom

CORRESPONDING AUTHOR

* rml1@cam.ac.uk

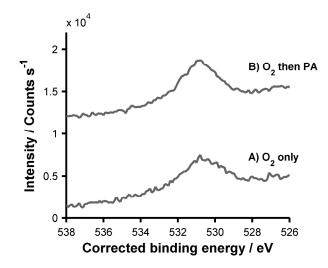

The ESI document includes:

Figure S1: Additional Laboratory O 1s XP Spectra

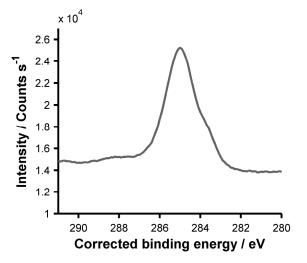
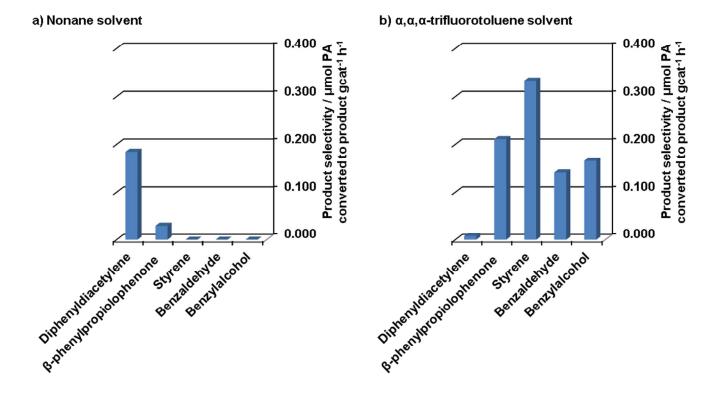

Figure S2: Additional Laboratory C 1s XP Spectrum

Figure S3: Additional selectivity data for phenylacetylene coupling reactions with and without oxygen.


Figure S4: Identification of β -phenylproiolophenone by GCMS of reaction product.

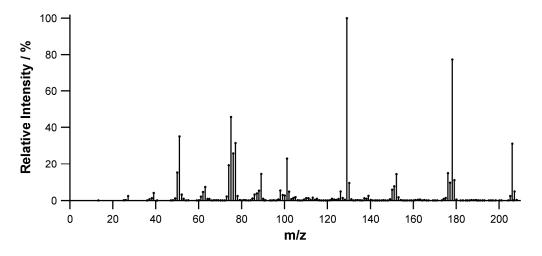

Figure S1. Laboratory XP spectra acquired at room temperature after dosing: A) 4500 L O2; B) 180,000 L O2 followed by 120 L phenyl acetylene. Dosing was carried out at room temperature and the energy scale is referenced to the Ag 3d5/2 peak at 368.3 eV. No significant differences between the two spectra are discernible.

Figure S2. Laboratory XP spectra acquired at room temperature after dosing 180,000 L O2 followed by 120 L phenyl acetylene. Dosing was carried out at room temperature and the energy scale is referenced to the Ag 3d5/2 peak at 368.3 eV. A clear low binding energy shoulder is (given the lower resolving power of the laboratory instrument) very consistent with the synchrotron data reported in the manuscript.

Figure S3. Product selectivity distribution for reaction of phenylacetylene (0.4 mmol) in 6 mL of solvent at 90 °C over 54 hours in the presence of oxygen in (a) nonane solvent and (b) the α, α, α -trifluorotoluene (a high oxygen solubility solvent). Notably in nonane the desired product DPDA is produced selectively, while in α, α, α -trifluorotoluene rapid formation of undesired products, but little DPDA, occurs. Selectivity data is given for the production of all detected products in µmol PA consumed per h per g of catalyst. Flame ionization detector sensitivities were calibrated by injection of known concentrations of decane with a known amount of a commercial sample of the analyte, for benzyl alcohol and β-phenylpropiolophenone peak identification was carried out by GCMS (Thermo scientific Trace 1300 GC fitted with an ISQ LT quadrupolar mass spectrometer, column: Thermo TG-SGC, 15m) and flame ionization detector sensitivities were estimated using the effective carbon number approach outlined in Scanlon and Willis.¹

Figure S4. EI MS of β -phenylproiolophenone side product by GCMS of reaction product mixture as used to identify unknown peak in routine GC measurements: m/z 206 (M⁺, 31%), 178 (77), 152 (14), 129 (100) (lit.,² (EI) m/z 206 (M+)).

REFERENCES:

(1) Scanlon, J. T.; Willis, D. E. J. Chromatogr. Sci. 1985, 23, 333-340.

(2) Atobe, S; Masuno, H; Sonoda, M; Suzuki, Y; Shinohara, H; Shibata, S; Ogawa, A. Tetrahedron Lett. 2012, 53, 1764-1767.