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The ESI document includes: 

 

Figure S1: Additional Laboratory O 1s XP Spectra 

Figure S2: Additional Laboratory C 1s XP Spectrum 

Figure S3: Additional selectivity data for phenylacetylene coupling reactions with and without oxygen.  

Figure S4: Identification of β-phenylproiolophenone by GCMS of reaction product. 
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Figure S1. Laboratory XP spectra acquired at room temperature after dosing: A)  4500 L O2; B) 180,000 L O2 followed by  120 L phenyl 

acetylene.  Dosing was carried out at room temperature and the energy scale is referenced to the Ag 3d5/2 peak at 368.3 eV. No signifi-

cant differences between the two spectra are discernible.  

 

Figure S2. Laboratory XP spectra acquired at room temperature after dosing 180,000 L O2 followed by 120 L phenyl acetylene.  Dosing 

was carried out at room temperature and the energy scale is referenced to the Ag 3d5/2 peak at 368.3 eV. A clear low binding energy 

shoulder is (given the lower resolving power of the laboratory instrument) very consistent with the synchrotron data reported in the 

manuscript. 
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Figure S3. Product selectivity distribution for reaction of phenylacetylene (0.4 mmol) in 6 mL of solvent at 90 °C over 54 hours in the 

presence of oxygen in (a) nonane solvent and (b) the α,α,α-trifluorotoluene (a high oxygen solubility solvent). Notably in nonane the 

desired product DPDA is produced selectively, while in α,α,α-trifluorotoluene rapid formation of undesired products, but little DPDA, 

occurs.  Selectivity data is given for the production of all detected products in μmol PA consumed per h per g of catalyst. Flame ionization 

detector sensitivities were calibrated by injection of known concentrations of decane with a known amount of a commercial sample of 

the analyte, for benzyl alcohol and β-phenylpropiolophenone peak identification was carried out by GCMS (Thermo scientific Trace 1300 

GC fitted with an ISQ LT quadrupolar mass spectrometer, column: Thermo TG-SGC, 15m) and flame ionization detector sensitivities were 

estimated using the effective carbon number approach outlined in Scanlon and Willis.
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Figure S4. EI MS of β-phenylproiolophenone side product by GCMS of reaction product mixture as used to identify unknown peak in rou-

tine GC measurements: m/z 206 (M
+
, 31%), 178 (77), 152 (14), 129 (100) (lit.,

2 
(EI) m/z 206 (M+)). 
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