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Supplemental Calculations

The calculations in (a), (), (d), (e), (f), (g) and (h) were adapted from [29] and streamlined
whenever possible.

(a) Proof of Proposition 3.1

First, it is straightforward to show that vertical motions correspond to rigid translations
of the collective: drgs(vr) =[Vr1 — Vcom Vr2 — Vcom --- Vrn — Vcom| vanishes if and only if
Vrl = Vy2 = ... = Vrn = Veom. Hence:

Ve = ker(drps)(r) = {vr € TR s.t. ve =[v v ..v], ve R*}. 1)

Then it suffices to show that, Vvy € Tx'R, the vertical motion [Vcom Vcom .- Vecom| € Vr and the
residual vr — [Vcom Vcom .- Vecom] are orthogonal to each other:

tr([Vcom Vcom --- Vcom]M(VI‘ - [VCOm Vcom ... VcomDT) =

T
tr([Tnlvcom m2Vcom --- mnvcom} [Vrl — Vcom Vr2 — Vcom --- Vrn — Vcom] ) =

n n n

T T _ T T _

mitr(vcomvri — VcomVcom ) = M;Vyi Vcom — Mi;Vcom Vcom =
1=1

=1 =1
T T _
MtotVecom Vcom — MtotVcom Vcom = O,

where we have used the linearity of the trace operator and the property tr(ab’) =a’bVa,b e
R™. By the uniqueness of the orthogonal decomposition vy = Ay (vy) + hor(vy), with Ar(vr)
belonging in Vi as in (1) and (Ar(vr), hor(vr)) = 0, we conclude that (3.4) and (3.5) must hold. O



(b) Derivation of E,..; in terms of individual velocities (cf. (3.6))
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(c) Derivation of (4.8)
Let K be any given matrix in ]Ri’;i >0- Then, there exist Q@ € SO(3) (matrix of eigenvectors

of K) and A1, A, A3 e RT (eigenvalues of K) such that QKQT = A =diag(A1, A2, A3). Now
K =cMcT & A=¢&T where & = QcM %, i.e. the three rows of € are orthogonal to each other
and have norms /A1, VA2 and /A3 respectively. Moreover, each ¢ € C3¢ must satisfy the
condition >_7 ; m;c; =0, which can be compactly expressed as c[mims ... mn]T =0. This, in
turns, implies the following condition on &: €[\/m71 /M3 ... \/WT = 0. So the problem of finding
c such that K = cMc! reduces to finding three n-dimensional vectors (the rows of &) which are
orthogonal to each other and to the vector [/m1 /M3 ... v/mn]| and have norms /A1, v A2, V3.
One possible solution is to construct such vectors iteratively, by starting with as few non-zero
elements as possible and introducing the constraints one at a time (i.e. row 1 has only two non-
zero elements and is orthogonal to the vector of masses, row 2 has three non-zero elements and
is also orthogonal to row 1, and so on). It is easy to verify algebraically that the following ¢,
constructed in such fashion, satisfies all the requirements:

vV )\1m1

VAimy _Vama (my e

M1 0 0 ym (m4 0---0

VAamy vV Asma (maitmy 0 Agmy 0---0
M2 M2 mo 2

VAzmi VAzma _VAsm3 [ mi+maotmy Azmy 0---0
n3 2% H3 m3 3
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where p1, 12, 13 are normalizing factors given by:

m1 +m4 (m1 + ma)(m1 + ma)
mo

\/m1+m2+m4 m1+m2+m3+m4)
m3

M1

ps =

Finally, by taking c = QTeMm _%, we have the following configuration c € ¢3? with the specified
symmetric positive definite matrix K as its ensemble inertia tensor:

VA VA my .
Y 0 0 S () 000
T VA VA mi+m VA
c= Q /L22 - N22 ( 17712 4) 0 H22 0---0
Vs Vs Vs (m1+7rz2+7n4) VA3 0---0
3 3 Hn3 m3 M3

(d) Derivation of (4.11)-(4.12)

Let K = QT AQ be an eigenvalue decomposition of K with A =diag(A1, A2, A3) the diagonal

matrix of eigenvalues, and let A~ 3= =diag(); -1/2 A;l/Z, )\;1/2). Then:

m(c) =K & m(Qc) = A (A 2QcM?) (A" 2QeM?)T =

Hence: 7 (K) = {ce 3 s.t. (A" 2QcM )T €V, 3}.
Furthermore: ¢ € 3% < C[m1m2...mn]T =0&

M (i3] = 0 A2 QeM ({7 /3o ] =

So we can also rewrite 7! (K) as:
Vm1/meot
U EK) = ce RP " s.t.V(e) 2 [M2cTQTA™2 : €Vna
vV mn/mtot

Now observe that, given any fixed Q € O(n), V(c) € Vy4 < QV( ) € V4 (in fact (QV)T(QV) =

VTV =1). In particular choose Q € O(n) in the form: Q = Qv Vi /mtOtW V/mn /mior ,
for any W € V,, ,—1 with columns orthogonal to the vector [\/ mi/Miot - - \/ mn/ mtot]T. Then:
f/(c) €EVha e QWV(C) €EVha e WTM%CTQT/F% =V forsomeV €V,_13

eWTM2TQTA 2 =WTWV « M3cTQTA 2 =WV, for some V €V,_1.3. Note that, in
the last two steps, we have used the facts that WTW =1 and that the columns of M2 Qa2
are in the range of W (in fact they are orthogonal to [,/m7 - - - \/mn]? , and thus to the kernel of

wT: [ /my--- w/mn]M%cTQTA_% =[my--- mn]cTQTA_% = 0). So we conclude that:

Y K) = {c eR¥ st M2cTQTA T =WV, Ve vn_l,g} .

Hence, given any fixed matrix W eV, ,—1 with columns orthogonal to the vector
[\/m1 - - - /mn) 7, the following diffeomorphism between 7~ ! (K) and the Stiefel manifold V,, - 1,3
can be established:

few im H(K) = Vo1 3
ce 7r71(K) =V =frw(c)= WTM%CTQT/r% €Vn—1,3,
with inverse:
frw Va-13 =7 (K)

VeVa s e= (V) =Q 22 vIW M2 ex ! (k).

H
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As a corollary of the above derivation, we obtain the following identity that will be useful later:
Q%{/QW = [\/ml/mtot t \/mn/mtot]T[\/m1/mtot ce \/mn/mtot] + WWT =1
= WWT =1 = [v/m1/miot -+ /mon /muor]” [v/m1/mior - /M /mior]- 2)

(e) Derivation of (4.14)

For any given K € K, the fiber over K is composed of all the configurations having K as their
ensemble inertia tensor, given by (using (4.12)):

7 ) = {QT AT VIWT M 354V €Vy_y 5}

Assume we have a reference configuration: é:QTA%f/TWTM “ie 7 1(K), for some V e
Vn-13. Since V,—13=0(n—1)/O(n —4) [22], V can be mapped to any other element
of the Stiefel manifold via premultiplication by orthogonal matrices in O(n —1): Vi
QOV,VQV €O0(n—1). This allows to map & into any other ce€n '(K) as follows:
Crr QTA%VTQgWTM_% = E‘(M%WQ€WTM_%)7 VQy € O(n —1). Hence, given any ¢¢€
7~ 1(K), we have the following alternative expression for 7! (K):

-1 JUR | Ter T 2 p— L
T (K)={eM>WQy;W" M 2 s.t.Qy €O0(n—1)}.
If we define the democracy group as:
1 1
D={D=M>WQLW M % st.Qy €O(n—1)},
then the fiber over K can be compactly expressed as:
Y K)={eDs.t. De D},

i.e. the orbit of the democracy group action starting from ¢.

If all the masses are equal, the orbits of the democracy group include the discrete family of
individual relabelings (or position exchanges between individuals). To show this, observe that
a configuration & is obtained from & via individual relabeling if and only if & = &P for some
permutation matrix P € P(n) C O(n). Now P €D if and only if M%WQ€WTM7% =P for
some Qy, € O(n — 1), i.e. if and only if WM~ 2PM2W e O(n — 1). If M =ml, i.e. the masses
are all equal, then wT M “3PM %W =wTpw certainly satisfies the orthogonality property:
wTpmTwTpw)=wTpPTwwTpw =
=1 - WIPT[\/m1/miot - - - \/mn Jaot) T [\/m1 [mitot - - - /n Jmitot) PW =1,
where we have used (2), the facts that WTW =1and PTP= 1, and the fact that a permutation
does not affect the range of a matrix (hence the columns of PW are, like those of W, orthogonal
to the vector [\/ml/mtot e \/mn/mtot]T).

(f) Invariance of Riemannian metric (4.2) to the democracy group action

Let D € D be an arbitrary matrix belonging to the democracy group, and ve, we € TeC>? be
arbitrary tangent vectors to C 3d at configuration c. Then:

(veD,weD)ep :tr(chMDTWCT) =
—tr(veMEWQEWT M~ MM EW QW MEw,T) =
—tr(ve MEWWT MZwcT) =
:tr(VcchT) =

=(Vc,We)e,

10000000 V 908 Y 0014 B10-BuiysiandAisioosieoreds:



where we have used (2) and the fact that ve[my ---mn]? =[m1 ---mn]we? =0. Hence the
Riemannian metric (4.2) is invariant to the action of any D € D.

(g) Orthogonality property of the mechanical connection (5.1)

To prove that the mechanical connection (5.1) is the one giving orthogonal splitting of tangent
vectors, observe that, V¢ € g:

(J(p — (I " T ) p (@))€ = (vp— (I, " T(vp)) p(p), Ep(P))p =
= (vp,ép(P))p — <(Ip_1J(Up))P(p)a Ep(p))p =
(J(wp)) (&) = (Tp(I; ' T (vp)))(€) =0

Hence, Vvp € T P:

(vp — (I " T (0p) p(0), Iy " T (vp)) p(P))p = (J (vp — (I " T (vp)) p)) (L T (vp)) = 0.

(h) Proof of Lemma 5.1
The Lie algebra of the Lie group SO(3) is so(3) £ R3X3 _ the space of 3 x 3 skew-symmetric

skew’

matrices. In turns, ]Rg,:iu ~R3 using the following mapping:
EeR3 o EeRPstev=¢€xv,VWweR 6)

We will interchangeably use either side of (3) to describe elements of so(3). Given £ € so(3), the

infinitesimal generator of the group action ¢ on 2" induced by & is defined as:

d d
s = G| Bee©= 5| (entiene=ce. @
or alternatively:
{ortalc) =[x c1€& xc2...€ X cn]. )

Then the momentum map (5.2) can be computed as follows, Vc € c2rd.

n

(I(e,ve))(©) 2(ve,Epnt a(©)) = S mil(€ x e) vei) = 3 mi€ (c; x ver)
=1

i=1

n
=£" > “mi(e; x vei)  VEEs0(3), ©6)
i=1
which is simply the £&-component of the angular momentum with respect to the center of mass
(5.4). A similar computation specializing (5.3) yields the locked inertia tensor, Vc € C 2",

n

(Ie(m)(€) 2{ngatale), Eparale)) =Y mi((€ x ;)" (n x ¢))

=1
=Y " mig (i x m x ) =€ > mi(lei]’ L —cie;" ) Vn,E€50(3),  (7)
=1 =1

where we have used the triple product formulae for vectors in R®: (ax b)-c=(b xc) -a,
ax (b xc)=b(a-c)—c(a-b). Hence the locked inertia tensor is the moment of inertia tensor
with respect to the center of mass (5.5). O
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(i) Curvature of the ensemble connection
The curvature of an Ehresmann connection A on C3% is defined as the vertical-valued two-form:
Be(X(€),Y(c)) = —Ac([hor(X), hor(Y)](c)) Ve ¢, (8)

where XY € X(C3?) are any two tangent vector fields, hor(X), hor(Y) are their horizontal
projections and [hor(X), hor(Y)](c) is their Jacobi-Lie bracket (also a vector field on C3?) at ¢ (see
for example [25]). For most Ehresmann connections, even a trajectory with tangent vectors that
are horizontal everywhere produces some vertical displacement along the fibers. The curvature
form determines the infinitesimal vertical motion obtained from an infinitesimal loop constructed
using any two horizontal vector fields hor(X)(c) and hor(Y)(c) (which is how the Jacobi-Lie
bracket [hor(X), hor(Y)](c) can be interpreted).

Theorem 7.1 The curvature form of the ensemble connection (5.10) is:

Be(X(c), Y(c)) = Ac((Sx (¢)Sy (¢) — Sy (¢)Sx(c)) )

201~ 2M1 =
T 2,\0 xia; 12 )\5\_1}\3@3
=Q () | x50 0 a2 | Qe)e, )
—2Xs ~ —2)3 =~
/\1+>?3 a13 )\2+)?3 a23 0
where
y 0 ai2  ais .
Ale,ve)=| —a12 0 azs | =Q(c)(Sx(c)Sy(c) — Sy (c)Sx(c)Q (c), (10)

—ayz —azz O

K(c)=QT(c)A(c)Q(c), A(c)=diag(A1,A2,)3), form an eigendecomposition of K(c), and
Sx (c), Sy (c) are solutions to Lyapunov equations Sx (c) K (c) + K(c)Sx (c) = 2sym(cM X (c)T)
and Sy (c)K (c) + K(c)Sy (c) = 2sym(cMY (c)T) respectively.

Proof: Let X, Y € X(C3?) be two arbitrary vector fields. Their Jacobi-Lie bracket can be computed,
at each ¢ € C3%, in the ambient space R3*"™ (of which 3 isa subset):

[X,Y](c) =(DY)eX(c) - (DX)eY (c) =

d X d Y
= — Y(Flt C) _ — X(Flt C)
dt|,—o dt|,_
d d
= — Y(c+tX(c) — — X(c+tY(c)). (11)
dt|,—o dt|,—

Here we have denoted with FIX and F1} the flows of the vector fields. Now consider the
horizontal projections of X,Y with respect to connection (5.10). These are given by, Vc € c3d,
hor(X)(c) = Sx(c)c and hor(Y)(c) = Sy (c)c, with Sx(c) the solution to Lyapunov equation
Sx(c)K(c) 4+ K(c)Sx(c) =2sym(cM X (c)T) and Sy (c) the solution to Lyapunov equation
Sy (c)K (c) + K(c)Sy (c) =2sym(cMY (c)T).
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If we specialize the Jacobi-Lie bracket computation (11) to the case X (c) = Sx(c)c, Y(c) =
Sy (¢)c, we obtain:

[Sx (c)e, Sy (c)c](c)

dt

Sy (¢ + tSx (c)c)(c + tSx(c)c)
t=0

i

dt
i
dt
d
dt
Since Sx (c+tSy (c)c), Sy (c+tSx(c)c) € Rz’;r% Vt, their derivatives with respect to ¢ are also

symmetric; on the other hand, the matrix commutation of two symmetric matrices, and in
particular of Sx (c), Sy (c), is always skew-symmetric. Hence we can rewrite (12) as follows:

S (¢ +1tSy(c)e)(c + 1Sy (c)c)

S (c+tSx(c)c ))C+Sy(C)Sx(C)C

(e +15v(0)0) e~ Sx(@Sy(@)e. (D

[Sx (c)e, Sy (c)c](c) = Ixy,sym(c)c + Jxv,skew(C)C, (13)
where
Ixvam(@ 2 L Sy(etiSx(e)e) - & Sx(etiSy(e)e) (14)
t=0 t=0
Ixv,skew(€) = Sy (c)Sx (c) — Sx (c)Sy (c). (15)

Now, by the definition of curvature (8):

BC(X(C)a Y(C)) = _AC([SX (C)Ca SY (C)C}(C)) = _AC(JXY,sym(C)C + JXY,skew (C)C)
= AC(_JXY,skew(C)C): (16)

since the component Jxy, sym(c)c is horizontal (recall lemma 5.3) and thus its connection
vanishes. The formulae (9)-(10) then directly follow from the results of section (1) below. O

(j) Proof of Lemma 5.4

We start by deriving the differential map dr g0 3) for the projection map (5.21), VSx € Tk K™

d[tI‘( ](SK) tr(SK)
drgo(s)(Sk) = | 3dl(trK)? —tr(K?)](Sk) | = | te(K)tr(Sk) —tr(KSk) |, (17)
d[det(K)](Sk) det(K)tr(K ~Sk)

where we have used the linearity of the trace operator and Jacobi’s formula for the
derivative of the determinant of a matrix (d[det(K)]=tr(adj(K)dK), where the adjunct of
matrix K is equal to det(K)K ™! since K is invertible. From (17), it trivially follows
that the vertical space Vi =kerdmgo(s)(K) corresponds exactly to (5.22). Now consider
the unique eigendecomposition of K specified by (5. 20) K= QTAQ QeS03), A=
diag(A1, A2, A3), A1 > A2 > Az > 0, and define the matrix Sy £ QSKQ . By the invariance of the
trace operator to similarity transformations: tr(Sk ) = 0= tr(QSkQT) =tr(Sk) =0, tr(KSk) =

06 tr(QKSKQ") = tr(ASk) =0, and tr(K ' Sg) =0 & tr(QK 'Sk Q") = tr(A~"5x) = 0. In
terms of the elements Sy ; 5 of Sk, we have the following set of conditions equivalent to (5.22):

tr(Sk) =Sk11 + Sk22 + Sk3z3 =0
tr(ASk) =M Sk11 + AaSk22 + A3Sk33 =0

- 1 -
Sko2 + —Sk33=0,

1= 1 ~ 1
tr(A™ ' Sg) = —Sk11 + — 3
3

A1 A2

H
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which we can also rewrite in matrix form as follows:

11 1 Sk11 0

A1 A2 A3 Skos | =1 0 |. (18)
1 1 1 &

X% s Sks33 0

Finally, we can show that the matrix on the left side in (18) is always full rank when A1 > Ao >
A3 > 0 by putting it in upper triangular form via basic row operations:

1 1 1 , 1 1 1
RL=Ra—\ Ry
A1 A2 A3 —_— 0 A—A1 A3—A1
1 1 1 ! —Ra— L A1—A A1 —As
A X2 As m 0 iy\zz il)\;
1 1 1
) 0 A—X\ Az — A1 . (19)
RY=R,++L R (A1=A3) (A2 —A3)
=m0 0 T

Since A1 # A2, A1 75 Az and A9 # )\3, (19) can never be singular, and therefore the only possible
solution to (18) is Sr11="SKae =25 33 =0. Therefore we conclude that (5.23) is equivalent to
(5.22) for characterizing the vertical space Vi = ker dmgo3) (K).

Next we characterize the horizontal space orthogonal to the vertical space. A vector Sk €
Tk K* is defined as horizontal if and only if (Sk,Tk)x =0V Tk € V. From (5.23), vertical
vectors T € Vi have the property that all diagonal elements of Ti = QT QT are equal to zero.
Therefore, using (5.17),

Sk, Tre ) i = tr(Sx ATk 2)

Ski11 Skiz Skis 0 MTr12 MTras

2\ A1+A2 Ap+As - A1+A2 A1FA3
—tr SKi12 Sko22 Skas3 A2TK12 0 A2Tk23

A1+A2 2X2 A2+A3 A1FA2 N A2+A3

Ski13 Ska3 Sk33 A3Tki1s  AsTkoas 0

A1+As3 A2+A3 2X3 A1+As3 A2+A3
= SknTrin + ———SkasTrrs + ———SicasT (20)
7)\1_"_)\ K124 K12 )\ _"_)\ K134 K13 )\ _"_)\ K234 K23,

VT € Vi. Itis clear that (SK, Tk)k =0V Tk € Vi (i.e. for each possible Tr12, Tr13, Tias € R
in (20)) if and only if Sp19 = Sk13 = Ska3 =0. Equivalently, Sk € Tk K* is horizontal if and only
if S =0QSxkQ T isa diagonal matrix, i.e. (5.24) holds. O

(k) Proof of (5.27)

Any given inertia tensor transformation S(c, ve¢)c, starting at configuration ¢ with K (c) € ¥,
can be projected down to Tk KC* to find the corresponding tangent vector in base space, denoted
as Sk

dre(S(c, ve)e) = KS(c,ve) + S(c,ve) K = Sk (21)

Replacing K with its eigendecomposition K = QTAQ, A =diag(A1, A2, A3), we obtain:
QT AQS(c, ve) + S(e,ve)QT AQ = Sk.
Pre-multiplying by  and post-multiplying by QT both sides, and using the fact that QQT =1:
AS’(C,VC) +5’(C,VC)A:5’K, (22)
where we have introduced S’(c, ve) 2 QS(c, vc)QT and Sk 2 QSEQ".
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Considering only the diagonal elements of the matrices, and using the facts that
(AS(Cv VC))?l:'lag = A(S(C7 VC))Z?@_{;’ (S(C, VC)A)Z?ag = (S(C, VC))Z?@!}A:

A(g(c’ VC))Z?ag + (‘SN'(C7 VC))g?ag = (S'K)g?ag'

Pre-multiplying by Q7 and post-multiplying by @ both sides, and using again the fact that
QQT=1:

QT AQQ™ (5(c, ve))Ging@ + QT (S(c, ve)) 3y QQT 4Q = QT (Sk) 31y Q@ =
KQ"(5(c,ve))Fg@ + QT (5(c, ve)) Jrag @K = hor(Sg). (23)

Comparing (23) with (21), it’s evident that dre(Q” (S(c, ve))J?, 4Qc) =hor(Sk), and conversely
liftchor(Sk) = QT (S(c, ve)) g, Qe

Considering instead the off-diagonal elements of the matrlces m (22), and using the facts that
(AS(c,ve)) T = A(S(e,ve))%T , (S(e,ve) )T = (S(c,ve))%! A, we obtain:

diag diag diag diag

KQ"(S(e,ve)3ll @+ Q" (S(e,ve)gl) @Kk = Q" (k)] @ = Ak (k). (24)

Thus dre(Q (S(c, ve)) dngc) A (Sk) and lifte A (Sx) = QT (S(c, ve)) dmch

(I) Ensemble connection applied to v, = A(c, VC)C S Tcng,
VA<C7 VC) < Rj?fu
From the ensemble connection definition (theorem 5.2):
F(c,ve) =2sym(cMve’ ) =2sym(cMc’ A(c,ve)T) = 2sym(K (c)A(c, ve)T)
= A(c,ve)K(c) — K(c)A(c, ve), (25)
thus the horizontal component of v is:
hor(A(c,ve)e) = Sa(e, ve)c, (26)
where S 4(c, vc) is the solution to the Lyapunov equation:
Sale,ve)K(c) + K(€)Sa(e, ve) = Ale, ve) K (¢) — K () A(c, ve). @7)

We now specialize (5.13) to the Lyapunov equation (27). First of all, we can express F' as follows:

F=Q(c)[Alc, ve)Q" () A(e)Q(c) — Q" (¢)A(c)Q(c) Ale, ve)]Q (c)
= A(c,ve)A(c) — A(c)A(c, ve), (28)
where A(c, ve) £ Q(c)A(c, ve)QT () € RIS,
Let @12, a13, a2z be the components of A(c, ve):
y 0 ai2  a13
A(C, Vc) = —&12 0 &23 . (29)
—ai3 —agzz 0
Then:
R [ 0 A2a12  A3a13 0 Ataie2  Aiai13
F=| —\a2 0 Azagz | — | —A2a12 0 A2a23
| —AM1a13  —A2dz3 0 —A3d13  —A3a23 0
[ 0 (A2 — A)aiz (A3 — Ar)dis
= | (A2 — A1)z 0 (A3 — Ag)dos | . (30)
| (A3 —Ar)ars (A3 — Az)aos 0
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From (5.13), we thus obtain:

Aa—A1 ~ As—A1 ~
. R S M, 312 §1+§§a13
SA(C7VC):Q (C) ,\f+)\; a2 0 )\2+A§a’23 Q(C), (31)
)\37}\1& )\37}\2& O
AFAas M3 oA 923
and hence:
Aa—AL ~ Az—AL ~
. R S NiTap 012 §f+§§“13
hor(A(e, ve)e) =Sa(e, ve)e=Q" (c) | REF5tar2 0 Srazags | Qc)e.  (32)
)\3—)\1& )\3_>\2d 0
AtAas M3 RpFag 423

Finally, the ensemble connection Ac (9) applied to vec = A(c, ve)c can be indirectly obtained as
the residual component vc — hor(A(c, ve)ce):

Ac(A(e, ve)e) = A(c, ve)e — Sa(c, ve)e

=Q"(e) | Ale,ve) — | 3253arz 0 N732423 | | Q(e)e
NFan s Ngadzs 0
T —2>\0 ~ Afil}“" 2 A;—i})\s' (:113
=Q" (c) W):\Qzau 2)\0 kg a2 | Qle)e, (33)
L A:+fsal3 A;+A33a23 0

with A(c, ve) as in (29).

(m) Verification of the orthogonality between the terms in (5.30)

From theorem 5.4, the rigid rotation (vc)rot and the inertia tensor deformation (ve)ens.des
are certainly orthogonal. Moreover, (vc)rot is orthogonal to any other shape transformation,
including the residual shape transformation (ve¢)snp.res NOt accounted for by the inertia tensor
deformation. Hence we only need to verify that the two shape transformation terms (vec)ens.def
and (Vc)shp.res are orthogonal to each other. Combining (5.29) and (5.30), we can rewrite

(VC)Shp"I’ES as:
(VC)ShllTes =Ve — (Vc)ens.def — (Ve)rot
= (Vc)ens.rot + (Vc)dem - (VC)TOta

i.e. as the sum of an inertia tensor rotation, a democratic motion, and a rigid rotation. All three
motions are orthogonal to any inertia tensor deformation, and in particular to (Ve)ens.de - Hence
(Ve)shp.res and (Ve)ens.de s are orthogonal to each other.

(n) Proof of theorem 5.5

Any arbitrary inertia tensor deformation is in the form QTdiag(Su, S92, 533)Qc, for some
S11, S22, 533 € R. Given any o € R, we can rewrite it as follows:

Q" diag(S11, S22, S33)Qc = ac + QT diag(S11 — @, S22 — a, S33 — @) Qc, (34)

i.e. as the sum of a volume-changing motion (« c) and a residual inertia tensor transformation.
However, we are interested in the only choice of o € R that makes the two components orthogonal
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to each other:
(ac, QT diag(S11 — @, S22 — v, S33 — @)Qc) =
tr(acMcTQTdiag(S’n — o, S22 — a, S33 — a)Q) =
tr(aQ” Adiag(S11 — @, S22 — @, S33 — @)Q) =
atr(diag(A1 (S11 — @), A2 (S22 — @), A3(S33 — ))) =
a(A1S11 + A2S22 + A3S33 — (A1 + A2 + A3)) =0, (35)

where we have first used the fact that cMc” = K = QTAQ and then the invariance of the trace to
similarity transformations. Clearly the choice that satisfies (35) is:

a=(A1511 + A2S22 + A3533) /(A1 4 A2 + A3) = tr(AS) /tr(K). (36)

We finally need to specialize this result to the inertia tensor deformation component of an
arbitrary collective motion ve € TeC3¢, which is given by (5.28). Hence we need to replace
S11 = Fll/(2A1 ), S99 = F‘gg/(QAg) and S35 = Fgg/(2/\3) in (36), where F‘ij are the entries of matrix
F=Q2sym(cMveT))QT. In particular:

_ _ _ _ 1 - - - 1 -
tr(/lS) =A1511 + A2S29 + A3S33 = §(F11 + Foo + F33) = §tr(F)

= %tr(Q(2 sym(cMVcT))QT) = %tr(2 sym(chcT)) = tr(cMVcT)7 37)

where we have used the property that tr(sym(M)) = tr(M%MT) =tr(M) for any matrix M €
R3*3. Replacing (37) in (36) completes the proof. O
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(o) Derivation of energy contributions in (5.32)

1
N
Eens.rot = §<(Vc)ens.rot7 (Vc)ens.rot>c
0 Fip Fis
T h A+A2 AifAs o
_ = Fig Fos
tr(Q pYES ~0 Nk QcMc” Q
Fi3 Fas 0
A1+As3 A2+A3
0 Fio Fis 0 A Fyo
B A1+ )\1:‘*}\3 A1+
_ = Fiy Fos A2 Fp
tr A1tA2 0 A2+As A1tz 0
Fi3 Fos 0 A3Fi3 A3 Fo3

A1+A3 A2+A3

fl( Py Py F
T2\ 4+ N A+ A3 A2+ A3

1
Een&def £ Q((Vc)ens.defa (Vc)en&def>c

F
o 0 0 > vl
= —tr(Q . QeMmcTQT | o Lo
0 0 £ 0 0

B0 o 8 0 o

1 ~ ~
= Str 0 5 0 0o 2 o
0 0 fgg L 0o o0 s

n
Z I(e,ve) I H(leil*1 — cie;" ) Ie ' I(e, ve))

Hl>

VC vols (Vc)vol>

( chc oM Ttr(chcT)) _ tr?(cMveT) tr(K)
tr’(eMveT)
tr

tr(K)
Mvc
B (K

)
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(p) Analysis and visualization of the pigeon flocking data (figure 8)

The pigeon flocking data that we analysed is part of the dataset studied in [14], which can be
downloaded from the webpage http://hal.elte.hu/pigeonflocks. The dataset includes 11 free flights
and 4 homing flights of a small pigeon flock (7-10 individuals), and consists of pre-processed
positions and velocities acquired at 5Hz via miniature GPS devices mounted on the pigeons.

In our analysis, we excluded time samples at which the data from one or more pigeons was
missing, or at which some pigeons were still stationary or taking off. To exclude the latter, we
started considering the data only once all the birds had reached a speed of at least 2 m/s.
We considered 240 seconds for each trial, or up to the sample when either the speed of the
fastest pigeon dropped below 2 m/s, or that of the slowest pigeon dropped below 1 m/s. The
last two criteria were introduced to exclude time samples in which the whole flock or some
of its members may have started to land. Five of the free flights were excluded from analysis,
since no time samples were available with all the pigeons flying simultaneously. Each of the
remaining six free flights provided more than 80 seconds of data (400 time-samples). Two of the
free flights and all of the homing flights provided 240 seconds of data. From this set, we chose
one representative homing flight and one representative free flight for figure 8(a)-8(f). The energy
ratios were computed as described in the main text, with unit masses for all pigeons. For the
free flight, which had a more interesting distribution of energy, we also computed the histogram
relevant to the energy ratios (6.2) (figure 8(g), bins width 0.05). We chose these energy ratios
over the alternative ones (6.1) because we observed that typically Erot > Eens.rot (cf. fig.8(c),8(f)).
However, the alternative histogram would have been almost identical to the one we displayed.

To verify that the energy distribution in figure 8(g) was representative of a typical free flight,
we computed a similar histogram for the other five free flights and then computed the mean and
standard deviation of the normalized bin counts across all six flights. Normalization consisted
in dividing the bin counts in each trial by the total number of time samples. The resulting mean
distribution of the energy ratios was plotted in figure 8(h), along with error bars denoting the
standard deviation across six flights. The results were consistent with figure 8(g), confirming that
the most relevant energy contributions were Ecom, Frot and E,, 4, in this order. We then assessed
how much of the total kinetic energy could be accounted for by the first energy term alone (Ecom),
the first two terms alone (Ecom + Erot) and the first three terms alone (Ecom + Erot + Eypp)- T
do that, we computed histograms of these quantities for each trial, normalized, and then derived
the mean and standard deviation across trials. The results, plotted in figure 8(i), showed that on
average the translational term Ecom accounted for more than 90% of the energy (last two bins)
roughly 80% of the time, with the percentage growing to 91% and then to 97% when E;o¢ and then
Eyo were included. This highlighted that the energy contributions of the other terms Eyj,, res
and Fens.res, especially the latter, were almost always negligible. This fact was visualized in
figure 8(i) by also plotting the distribution of Ecom + Erot + Eyoi + Eens.res, almost identical to
Ecom + Erot + Eyol-

Finally, we verified that the energy distributions for the free flights (fig.8(g)-8(i)) could not be
explained by chance. We produced artificial datasets from the true datasets by independently
drawing, at each time step, the individual pigeon velocities from a multivariate normal
distribution with mean equal to the true center of mass velocity and covariance equal to the
sample covariance of the pigeon velocities (given by ﬁvcch). At each time step, the artificial
pigeon trajectories were updated forward in time with Euler method. From each free flight, we
produced ten artificial flocking events in this fashion, computed the histograms of the energy
ratios of interest for each of them, and then averaged across the ten events. This yielded a
representative artificial distribution of energy for each of the six free flights. We then computed
the mean and standard deviation of these distributions across the six flights and compared
with those obtained from the true datasets. Figure 9 shows the results of the comparison. Since
the distribution of Ecom in true and artificial trials was analogous by construction, we plotted
the fraction of the relative kinetic energy (E,¢; = E — Ecom) accounted for by each elementary
motion, rather than the fraction of the total energy E.
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Figure 9. Comparison of mean probability distributions obtained from actual pigeon free flights (data, n = 6) with those
obtained in comparable artificial flocking events generated with random pigeon velocities relative to the center of mass
(control). All energy ratios are relative to Eye; = E — Ecom: (@) Eshp.res/Erets (0) Erot/Erel, (€) Eyot/Eret, (d)
Egem/Erels () Eens.rot/Erets () Fens.res/Erer- The height of the bars reflects the standard deviation of the
distributions (£1std).

The results clearly show that the shape transformation energy Egpp.res Would have been
much larger, and the rotation and volume-changing energies E,.t, E,, smaller, if the pigeon
velocities were random fluctuations relative to a common velocity vector (fig.9(a)-9(c)). This is
not surprising, since shape transformations are horizontal tangent vectors relative to the shape
fibering, and the dimensionality of the base space is much higher than that of the fiber space
in this fibering (fig.4(a),5(a)). Hence a tangent vector picked at random is likely to have a larger
projection onto the horizontal subspace than the vertical one. Similarly, democratic motions are
vertical tangent vectors for the ensemble fibering, for which the fiber space has higher dimension
than the base space (fig.4(b),5(b)), so they would account for a large fraction of energy in the
case of random pigeon velocities. The data, instead, show a smaller contribution of F,, and
a larger contribution of Fens.rot (fig.9(d)-9(e)) than what would be obtained by chance. Only
the distribution of the energy term Eens.res, which is almost negligible in both the real and the
artificial datasets, appears to be explainable by chance alone (fig.9(f)).
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