TESTING OF HPC
SCIENTIFIC SOFTWARE

SC16
Salt Lake City, Utah
November 14, 2016

The IDEAS project

A DOE project aimed at increasing
software productivity for extreme-
scale computational science

IDEAS resources

On various topics in software
engineering and productivity,
including testing

More info:

See last slide for info on additional
software testing resources

CSE Software Forum:

SC Tutorial, November 14, 2016

U.S. DEPARTMENT OF

ENERGY

Office of Science

Al
W
4 A o

Collaborators in
IDEAS project:

ANL

LANL

LBNL

LLNL

ORNL

PNNL

SNL

Colorado School
of Mines

IDEAS

productivity

Outline

Introduction
Motivation for verification and testing
Importance of granularity in testing
Definitions of test types and their role in the testing regime
Code coverage
Continuous integration
Scientific software verification and validation
Definitions
Challenges specific to scientific and high-performance computing
Examples
How to evaluate needs of a project and devise a testing regime
Examples - Alquimia, Amanzi, Trilinos
Testing during refactoring
General guidelines
Detailed case study with FLASH

TravisCl tutorial
IDEAS

SC Tutorial, November 14, 2016 productivity

- Introduction

Why is testing important?
Granularity of tests

Types of tests

Code coverage

Continuous integration

Benefits of testing

Promotes high-quality software that delivers
correct results and improves confidence

Increases quality and speed of development,
reducing development and maintenance costs

Maintains portability to a variety of systems and
compilers

Helps in refactoring

Avoid introducing new errors when adding new
features

Avoid reintroducing old errors

IDEAS

SC Tutorial, November 14, 2016 productivity

How common are bugs?

Programs do not acquire bugs as people acquire germs, by
hanging around other buggy programs. Programmers must

insert them.
- Harlan Mills

-1 Bugs per 1000 lines of code (KLOC)

o Industry average for delivered software
o 1-25 errors

-1 Microsoft Applications Division
11 10-20 defects during in-house testing
=1 0.5 in released product

Code Complete (Steven McConnell)

IDEAS

SC Tutorial, November 14, 2016 productivity

Why testing is important:

the protein structures of Geoffrey Chang

Some inherited code flipped two columns of data,
inverting an electron-density map

Resulted in an incorrect protein structure
Retracted 5 publications

One was cited 364 times

Many papers and grant applications conflicting
with his results were rejected

A\
SC Tutorial, November 14, 2016 L%Ecti\}%

Why testing is important:
the 40 second flight of the Ariane 5

Ariane 5: a European orbital launch vehicle meant to
lift 20 tons into low Earth orbit

Initial rocket went off course, started to disintegrate,
then self-destructed less than a minute after launch

Seven variables were at risk of leading to an Operand
Error (due to conversion of floating point to integer)
Four were protected

Investigation concluded insufficient test coverage as
one of the causes for this accident

Resulted in a loss of $370,000,000.

A
SC Tutorial, November 14, 2016 Iplggctivg

Why testing is important:
the Therac-25 accidents

Therac-25: a computer-controlled radiation therapy
machine

Minimal software testing
Race condition in the code went undetected

Unlucky patients were struck with approximately 100
times the intended dose of radiation, ~ 15,000 rads

Error code indicated that no dose of radiation was
given, so operator instructed machine to proceed

Recalled after six accidents resulting in death and
serious injuries
IDEAS

SC Tutorial, November 14, 2016 productivity

Granularity of tests

o Unit tests
o1 Test individual functions or classes
o1 Build and run fast
o1 Localize errors

o1 Usually written before or during code development
m Prevent faults from being introduced

o1 Example: Can | correctly compute a dot-product?

If a unit test fails, you should know

exactly what is broken.

IDEAS

SC Tutorial, November 14, 2016 productivity

Granularity of tests

Integration tests

Test interaction of larger pieces of software
Do not build or run as fast as unit tests

Example: Does the preconditioner class work with the
Krylov solver class?

A
SC Tutorial, November 14, 2016 L%Ecti{}%

Granularity of tests

System-level tests

Test the full software system at the user interaction
level

Example: Does my CFD code compute the correct
solution?

IDEAS

SC Tutorial, November 14, 2016 productivity

Types of tests

Verification tests

Does the code implement the intended algorithm
correctly?

Check for specific mathematical properties
Example

Solving Ax=b where A has 5 distinct eigenvalues
Does my Krylov solver converge in 5 iterations?

Can be any granularity

IDEAS

SC Tutorial, November 14, 2016 productivity

Types of tests

Acceptance tests

Assert acceptable functioning for a specific customer

Different from other types of tests, which don’t involve
customers

Generally at the system-level
Example: Does my linear solver achieve the correct

convergence rate for a particular customer’s linear
system?

A
SC Tutorial, November 14, 2016 IpQ)Ectivg

Types of tests

Regression (no-change) tests

Compare current observable output to a gold standard

Gold standard frequently comes from previous version of
software

Similar to verification tests
Must independently verify that the gold standard is correct
Example

My Krylov solver took 10 iterations last week; does it still take 10
iterations?

Does it achieve the same solution?

Bounded change tests are better for floating point
computations

A
SC Tutorial, November 14, 2016 LI%ECUVE

Types of tests

Performance tests
Focus on the runtime and resource utilization

Nothing to do with correctness
Orthogonal to other types of tests

Example: It took my code 10s to solve this linear
system last week; does it take longer now?

IDEAS

SC Tutorial, November 14, 2016 productivity

Types of tests

Installation tests

Verify that the configure-make-install is working as
expected

Example: Can | build and run a simple driver using my
library after the library is installed?

A
SC Tutorial, November 14, 2016 L[%Ectivg

Additional resources
R e

o https://www.udacity.com/course/software-
testing--cs258

O http://www.tutorialspoint.com/software testing/
software testing levels.htm

IDEAS

SC Tutorial, November 14, 2016 productivity

Good testing practices

Test-driven development — acceptance tests are
written before the software

Gain clarity on code
Guarantees tests will exist

Useful when testing is viewed as unsustainable tax on
resources

Provide users a regression test suite

Test software regularly, preferably daily

A
SC Tutorial, November 14, 2016 Iplggctivg

Policies on testing practices

Must have consistent policy on dealing with failed
tests

Issue tracking
How quickly does it need to be fixed?
Who is responsible for fixing it?

Add regression test afterwards (to avoid reintroducing
issue later)
Someone needs to be in charge of watching the
test suite

IDEAS

SC Tutorial, November 14, 2016 productivity

Policies on testing practices

When refactoring or adding new features, run a
regression suite before checkin

Be sure to add new regression tests for the new
features

Make sure at least two people are familiar with
every portion of code

Require a code review before releasing test suite
Another person may spot issues you didn’t
Incredibly cost-effective

A
SC Tutorial, November 14, 2016 Iplggctivg

Policies on testing practices

Avoid regression suites consisting of system-level
no-change tests

Tests often need to be re-baselined
Often done without verification of new gold-standard

Hard to maintain across multiple platforms
Loose tolerances can allow subtle defects to appear

IDEAS

SC Tutorial, November 14, 2016 productivity

Use of test harnesses

Essential for large code
Set up and run tests
Evaluate test results

Easy to execute a logical subset of tests
Pre-push
Nightly

Automation of test harness is critical for

Long-running test suites
Projects that support many platforms

SC Tutorial, November 14, 2016

IDEAS

productivity

Automated test harnesses

crontab
Time-based scheduler for Linux
Execute specific command at specific time

Newer tools...

Allow centralized servers to execute tests on multiple
platforms

Assist in load balancing and scheduling on available test
resources

Test execution can be triggered by
Time
An event (such as repository modification)
Manual request by developer

A
SC Tutorial, November 14, 2016 L%Ecmg

Reporting test results

Output results to screen
Appropriate for pre-push testing
Send email to a mail list
Can be generated by dashboard

Test results dashboard
Can display results from a range of dates
Can detect changes in pass/fail conditions
Allows results to be sorted and searched
Enhances visibility of failing builds and tests

A
SC Tutorial, November 14, 2016 IpQ)Ectivg

Motivating people to write tests

Tests protect YOU from other people from
breaking your work

If someone else’s changes break your code, they are
responsible for fixing it

Testing is cheaper and easier than debugging

You may already have some tests lying around
Drivers for generating conference or paper results
User submitted bugs
Examples

IDEAS

SC Tutorial, November 14, 2016 productivity

How do we determine what other tests are
needed?

Code coverage tools
Expose parts of the code that aren’t being tested

gcov
standard utility with the GNU compiler collection suite
counts the number of times each statement is executed
lcov

a graphical front-end for gcov
available at

IDEAS

SC Tutorial, November 14, 2016 productivity

How to use Icov

Compile and link your code with --coverage flag
It’s a good idea to disable optimization

Run your test suite
Collect coverage data using lcov
Generate html output using genhtml

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example

#include<iostream>

#include “isEven.hpp”
int main ()
{

int num = 8;

if (isEven (num))

bool isFEven (int x)

{
1f(x%2 == 0)
return true;

return false;

std: :cout << num << “ is an even number.\nTEST PASSED”;

else

std::cout << num << ™ 1s an odd number.\nTEST FAILED”;

return 0;

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example

Compile and link with --coverage flag
gt+ —--coverage evenExample.cpp -0 evenExample
This creates a file called evenExample.gcno

Run the test

./evenExample
This creates a file called evenExample.gcda

Collect coverage data using lcov

lcov —--capture --directory . —--output-file
evenkExample.info

This creates evenExample.info

Generate html output using genhtml

genhtml evenExample.info —--output-directory
evenHTML

This generates html files in the directory evenHTML

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example
R

LCOV - code coverage report

Current view: top level - /home/amklinv/IDEAS/testingTalk/examples/simpleExample Hit Total Coverage
Test: evenExample.info Lines: 9 11 81.8 %
Date: 2016-05-24 14:13:07 Functions: 4 4 100.0%

ﬁm Line Coverage¢ | Functions ¢ |

1 85.7% 6/7 100.0% 3/3
nﬁmhpp /) 75.0% 3/4 100.0 % 1/1

Generated by: LCOV version 1.12-4-g04a3c0e

This is the file

we’re testing.

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example
S

LCOV - code coverage report

Current view: top level - home/amklinv/IDEAS/testingTalk/examples/simpleExample - IsEven.hpp (source ; functions) Hit Total Coverage
Test: evenExample.info Lines: 3 4 75.0 %
Date: 2016-05-24 14:13:07 Functions: 1 1 100.0 %
Line data Source code

1 : bool isEven(int x)

p

1 : if(x%2 == 0)
1 : return true;
@ : return false;
:)

Noups, WN =

We never tested this line of code

(which activates when x is odd)

IDEAS

SC Tutorial, November 14, 2016 productivity

Let’s add another test

#include<iostream> bool isFEven (int x)
#include “isEven.hpp” {

1f(x%2 == 0)
int main () return true;

{

return false;

if (isEven (num))
std::cout << num << Y i1s an even number.\nTEST FAILED”;
else

std::cout << num << ™ 1s an odd number.\nTEST PASSED”;

return 0;

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example

Compile and link with --coverage flag
g++ —--coverage oddExample.cpp -o oddExample
This creates a file called oddExample.gcno
Run the test
./oddExample
This creates a file called oddExample.gcda

Collect coverage data for BOTH TESTS using Icov

lcov —--capture --directory . —--output-file
twoExamples.info

This creates twoExamples.info

Generate html output using genhtml

genhtml twoExamples.info —--output-directory
totalHTML

This generates html files in the directory totalHTML

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example
I

LCOV - code coverage report

Current view: top level - /Thome/amklinv/IDEAS/testingTalk/examples/simpleExample Hit Total Coverage
Test: twoExamples.info Lines: 16 18 88.9 %
Date: 2016-05-24 15:17:38 Functions: 7 7 100.0 %
| Filename | LineCoverage$ _ __ Functions? |
evenExample.cpp 1 85.7% 6/7 100.0 % S
isEven.hpp T 1000 % 4/4 100.0 % 1/1

oddExample. |0 /1 85.7% 6/7 100.0% 3/3

Generated by: LCOV version 1.12-4-g04a3c0e

This is the file

we’re testing

IDEAS

SC Tutorial, November 14, 2016 productivity

A simple example
ST

LCOV - code coverage report

Current view: top level - home/amklinv/IDEAS/testingTalk/examples/simpleExample - IsEven.hpp (source ; functions) Hit Total Coverage
Test: twoExamples.info Lines: 4 3 100.0 %
Date: 2016-05-24 15:17:38 Functions: 1 1 100.0 %
Line data Source code

bool isEven(int Xx)

{
if(x%2 == 0)
return true;

2

-

return false;

}

1
2
3
4 1 :
5
6
7

We tested every line

of this function IDEAS

SC Tutorial, November 14, 2016 productivity

A real example - xXSDKTrilinos

Part of the Trilinos library, developed at SNL as
part of the IDEAS project

Contains the interfaces between Trilinos, PETSc,
and hypre (various DOE codes)

Available at

Ten automated tests are run nightly

Six are actually examples that were converted into
tests

Did we leave anything out?

IDEAS

SC Tutorial, November 14, 2016 productivity

A real example - xXSDKTrilinos

Step 1: Modify our CMake configuration file to use
the --coverage flag to compile and link

trilinos-build : vim

t View Soullback Bookmarks Settings Help

TPL _ENABLE PETSC:BOOL=ON \
PETSC LIBRARY DIRS:FILEPATH="${PETSC_LIB DIR}" \
PETSC INCLUDE DIRS:FILEPATH="${PETSC_INCLUDE_DIR}" \

-D TPL ENABLE ParMETIS:BOOL=0ON \
-D ParMETIS LIBRARY DIRS:FILEPATH="${SUPERLU_LIB_DIR}" \
-D ParMETIS INCLUDE DIRS:FILEPATH="${SUPERLU_INCLUDE_DIR}" \

-D TPL ENABLE HYPRE:BOOL=ON \
-D HYPRE_LIBRARY DIRS:FILEPATH="${HYPRE_LIB_DIR}" \
-D HYPRE INCLUDE DIRS:FILEPATH="${HYPRE_INCLUDE_DIR}" \

-D TPL ENABLE SuperLUDist:BOOL=ON \
-D SuperLUDist LIBRARY DIRS:FILEPATH="${SUPERLU_LIB_DIR}" \
-D SuperLUDist INCLUDE DIRS:FILEPATH="${SUPERLU_INCLUDE_ DIR}" \

-D Trilinos ENABLE Amesos2:BOOL=0N \
-D Trilinos ENABLE xSDKTrilinos:BOOL=0ON \

-D CMAKE_CXX FLAGS:STRING="--coverage" \

-D CMAKE C FLAGS:STRING="--coverage" \

-D CMAKE_EXE_LINKER_FLAGS:STRING:"--coverage"l\
-D Trilinos ENABLE Fortran:BOOL=0FF \

\
${TRILINOS_HOME}

-=- INSERT -- IDE A_S

~ productivity

A real example - xXSDKTrilinos

Build Trilinos (including xSDKTrilinos)
./do-configure
make -7

This will create a whole bunch of .gcno files

This will also build the xSDKTrilinos tests because
the configure file included

-D Trilinos ENABLE TESTS:BOOL=ON

-D Trilinos ENABLE EXAMPLES:BOOL=ON

-D Trilinos ENABLE ALL OPTIONAL PACKAGES=ON

IDEAS

SC Tutorial, November 14, 2016 productivity

A real example - xXSDKTrilinos

Run the tests using ctest

3 trilinos-build : ctest - x
Edit ew Scoollback 8Bockmarks Settings Help

[amkllnv@s995692 trilinos-build]$ ctest
Test project /home/amklinv/IDEAS/testingTalk/trilinos-build
Start 1: Amesos2 KLU2 UnitTests MPI 4

1/18 Test #1: Amesos2 KLU2 UnitTests MPI 4 v iviiininn, Passed 1.46 sec
Start 2: Amesos2 SuperLU DIST Solver Test MPI 4

2/18 Test #2: Amesos2 SuperlLU DIST Solver Test MPI 4 Passed 2.80 sec
Start 3: Amesos2 SolverFactory UnitTests MPI 4

3/18 Test #3: Amesos2 SolverFactory UnitTests MPI 4 Passed 1.46 sec
Start 4: Amesos2 Tpetra MultiVector Adapter UnitTests MPI 4

4/18 Test #4: Amesos2 Tpetra MultiVector Adapter UnitTests MPI 4 ... Passed 1.36 sec
Start 5: Amesos2 Tpetra CrsMatrix Adapter UnitTests MPI 4

5/18 Test #5: Amesos2 Tpetra CrsMatrix Adapter UnitTests MPI 4 Passed 1.42 sec
Start 6: Amesos2 Epetra MultiVector Adapter UnitTests MPI 4

6/18 Test #6: Amesos2 Epetra MultiVector Adapter UnitTests MPI 4 ... Passed 1.35 sec
Start 7: Amesos2 Epetra RowMatrix Adapter UnitTests MPI 4

7/18 Test #7: Amesos2 Epetra RowMatrix Adapter UnitTests MPI 4 Passed 1.35 sec
Start 8: Amesos2 CrsMatrix Adapter Consistency Tests MPI 4

8/18 Test #8: Amesos2 CrsMatrix Adapter Consistency Tests MPI 4 Passed 1.47 sec
Start 9: xSDKTrilinos PETScAIJMatrix MPI 4

9/18 Test #9: xSDKTrilinos PETScAIJMatrix MPI 4 Passed 1.42 sec
Start 10: xSDKTrilinos PETSc Amesos2 example MPI 4

10/18 Test #10: xSDKTrilinos PETSc Amesos2 example MPI 4 Passed 1.42 sec
Start 11: xSDKTrilinos PETSc Anasazi example MPI 4

11/18 Test #11: xSDKTrilinos PETSc Anasazi example MPI 4 Passed 2.71 sec
Start 12: xSDKTrilinos PETSc Ifpack2 example MPI 4

12/18 Test #12: xSDKTrilinos PETSc Ifpack2 example MPI 4 Passed 1.47 sec

Start 13: xSDKTrilinos PETSc MuelLu example MPI 4

A noG-Duild : ctest

A real example - xXSDKTrilinos

All tests passed. Ya

3 trilinos-build : ctest

e Edt View Somliback Bookmas geting: Halp

Start 1@ xHERTrI s PETSC Aazs06e exeaip ¢ M1 4

10/18 Test #10: xSDKTrilinos PETSc Amesos2 example MPI 4
Start 11: xSDKTrilinos PETSc Anasazi example MPI 4

11/18 Test #11: xSDKTrilinos PETSc Anasazi example MPI 4
Start 12: xSDKTrilinos PETSc Ifpack2 example MPI 4

12/18 Test #12: xSDKTrilinos PETSc Ifpack2 example MPI 4

Start 13: xSDKTrilinos PETSc MueLu example MPI 4
13/18 Test #13: xSDKTrilinos PETSc MuelLu example MPI 4
Start 14: xSDKTrilinos example TpetrakSP MPI 4

14/18 Test #14: xSDKTrilinos example TpetrakKSP MPI 4 ..

Start 15: xSDKTrilinos example EpetrakKSP MPI 4

15/18 Test #15: xSDKTrilinos example EpetrakSP MPI 4 ..

Start 16: xSDKTrilinos HypreTest MPI 4

16/18 Test #16: xSDKTrilinos HypreTest MPI 4

Start 17: xSDKTrilinos Hypre Belos example MPI 4
17/18 Test #17: xSDKTrilinos Hypre Belos example MPI 4
Start 18: xSDKTrilinos Hypre Solve example MPI 4
18/18 Test #18: xSDKTrilinos Hypre Solve example MPI 4

100% tests passed, O tests failed out of 18
Label Time Summary:

Amesos?
xSDKTrilinos

12.67 sec (8 tests)
16.39 sec (10 tests)

Total Test time (real) = 29.11 sec
[amk1inv@s995692 trilinos-build]$ B

A noG-Dusld : ctest

Passed
Passed
Passed
Passed
Passed
Passed
Passed
Passed

Passed

.42
1
.47
.34
.50
LD
.42
.38
.36

sec

sec

sec

sec

sec

sec

sec

SEC

S

A real example - xXSDKTrilinos

Collect coverage data for the tests using lcov

lcov —--capture --directory . —-
output-file xSDKTrilinos.1info

This creates xSDKTrilinos.info

lcov processes 634 gcda files in this step, so this does
take a few minutes

IDEAS

SC Tutorial, November 14, 2016 productivity

A real example - xXSDKTrilinos

Generate html output using genhtml

genhtml xSDKTrilinos.info —--output-
directory xSDKTrilinos

This generates html files in the directory xSDKTrilinos
This step takes a few minutes too

IDEAS

SC Tutorial, November 14, 2016 productivity

A real example - xXSDKTrilinos
R

LCOV - code coverage report

Current view: top level - xSDKTrilinos/petsc/src Hit Total Coverage
Test: xSDKTrilinos.info Lines: 342 420 81.4 %
Date: 2016-06-02 15:36:10 Functions: 77

___Filename | Line Coverage# | Functions$
BelosPETScSolMgr.hpg [| 84.7 % 166/ 19¢ [|CSI2ESN B0

| | 75.3% 67/89 |G2ISEGI 20N
| | 80.7% 109/135 |GSISNEGRMEN

Generated by: LCOV version 1.12-4-g04a3c0e

Let’s take a look at

the solver interface.

IDEAS

SC Tutorial, November 14, 2016 productivity

766
767
768
769
770
771
772
773
7ia
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

192 :
102 -

192 :
102 :

192 :
102
102

192 :
102 -

s // =
: template<class ScalarType, class MV, class OP>
192 :

Ao

PetscErrorCode PETScSolMgr<ScalarType,MV,0P>::applyPrec(PC M, Vec x, Vec Mx)

using Teuchos: :RCP;
typedef PETScSolMgrHelper<ScalarType,MV,0P> Helper;

PetscErrorCode ierr;

const PetscScalar * xData;
PetscScalar * MxData;

void * ptr;

// Get the problem out of the context
ierr = PCShellGetContext(M,&ptr); CHKERRQ(ierr);
LinearProblem<ScalarType,MV,0P> * problem = (LinearProblem<ScalarType,MV,0P>*)ptr;

// Rip the raw data out of the PETSc vectors
ierr VecGetArrayRead(x, &xData); CHKERRQ(ierr);
ierr = VecGetArray(Mx, &MxData); CHKERRQ(ierr);

// Wrap the PETSc data in a Trilinos Vector

RCP<MV> trilinosX, trilinosMX;

Helper::wrapVector(const cast<PetscScalar*>(xData), *problem->getLHS(), trilinosX);
Helper: :wrapVector(MxData, *problem->getLHS(), trilinosMX);

// Perform the multiplication
if(problem->isLeftPrec()) {
problem->applyLeftPrec(*trilinosX, *trilinosMX);

}

else {

192 :

192 :
102 :

192

}

// Unwrap the vectors; this is necessary if we copied data in the wrap step
Helper: :unwrapVector(MxData, trilinosMX);

// Restore the PETSc vectors

ierr = VecRestoreArrayRead(x,&xData); CHKERRQ(ierr);
ierr = VecRestoreArray(Mx,&MxData); CHKERRQ(ierr);
; return 0; :
P} SC Tutorial, November 14, 2016 ,(%,msy

A real example - xSDKTrilinos
T

791 : // Perform the multiplication
792 192 : if(problem->isLeftPrec()) {

793 192 : problem->applyLeftPrec(*trilinosX, *trilinosMX);

Oops. | never tested the right
preconditioning branch...

IDEAS

SC Tutorial, November 14, 2016 productivity

A hands-on gcov tutorial
o
o https://amklinv.github.io/morpheus/index.html

SC Tutorial, November 14, 2016 productivity

Coverity scan

A free cloud-based static analysis product for open
source code

Also available for non open source code, but not free
Analyzes over 4000 open source projects
Used to analyze

Sudden unintended acceleration of Toyota vehicles
Large Hadron Collider software

Mars Curiosity rover flight software

Libre Office

A
SC Tutorial, November 14, 2016 IDII:“%ECUVE

Coverity scan

Automatically looks at all the different paths

Finds
Resource leaks
Dereferences of null pointers
Use of uninitialized data
Memory corruptions
Control flow issues
Use of resources that have been freed
And more!

IDEAS

SC Tutorial, November 14, 2016 productivity

How to use coverity scan

Create a project

Tell it about your open source license

Options for performing the scan:
Upload a tarball

Point it to a URL
Use TravisCl ()

IDEAS

SC Tutorial, November 14, 2016 productivity

Coverity analysis of Trilinos
s 4
O https://scan.coverity.com/projects/1680

SC Tutorial, November 14, 2016 L%Eﬁ@

Continuous integration (Cl): a master
branch that always works

Code changes trigger automated builds/tests on target
platforms

Builds/tests finish in a reasonable amount of time,
providing useful feedback when it’'s most needed

Immensely helpful!

Requires some work, though:
A reasonably automated build system
An automated test system with significant test coverage

A set of systems on which tests will be run, and a
controller

A
SC Tutorial, November 14, 2016 Iplggcti\}g

Continuous integration (Cl): a master
branch that always works

Has existed for some time
Adoption has been slow

Setting up and maintaining Cl systems is difficult,

labor-intensive (typically requires a dedicated staff
member)

You have to be doing a lot of things right to even
consider Cl

SC Tutorial, November 14, 2016 L%Eca/g

Formulating a continuous testing
regime

|dentify verification needs within software
Defines code-coverage requirements

Pick features of the code necessary for correct behavior
Individual units

Interaction between units

Know the purpose of testing each feature
Reduces wasted effort and computing resources
Helps identify the most appropriate type of test

|Identify behaviors of code with detectable response to
changes

IDEAS

SC Tutorial, November 14, 2016 productivity

Cloud-based Cl is available as a service
on GitHub

Automated builds/tests can be triggered via pull
requests

Builds/tests can be run on cloud systems — no
server in your closet. Great use of the cloud!

Test results are reported on the pull request page
(with links to detailed logs)

Already being used successfully by scientific

computing projects, with noticeable benefits to
productivity

Not perfect, but far better than not doing Cl

A
SC Tutorial, November 14, 2016 Iplggctivg

Travis Cl is a great choice for HPC

Integrates easily with GitHub
Free for Open Source projects

Supports environments with C/C++/Fortran
compilers (GNU, Clang, Intel[?])

Linux, Mac platforms available
Relatively simple, reasonably flexible configuration
file
Documentation is sparse, but we now have working
examples

IDEAS

SC Tutorial, November 14, 2016 productivity

Travis Cl live demo
o7
o https://github.com/amklinv/morpheus

SC Tutorial, November 14, 2016 productivity

- Verification and Validation

Challenges specific to scientific software
V&YV during different stages

Model validation

Verification of methods and implementation

Simplified schematic of science
through computation

Physical World

This is for simulations,
but the philosophy
applies to other

Model 5 mputations too.
Model
fidelity
Validation Equations
Discretize Many stages in the

lifecycle have
components that
may themselves be
under research =>
need modifications

Implementation

Verify accuracy

Difference
eguations
stability
Numerical
solvers

IDEAS

productivity

Definitions

At highest level

Verification — the implementation has expected
behavior

Validation — the model reflects the phenomenon it is
meant to capture

Different validation definitions can be applied in
other circumstances

IDEAS

SC Tutorial, November 14, 2016 productivity

Verification

Code verification uses tests
It is much more than a collection of tests

It is the holistic process through which you ensure
that

Your implementation shows expected behavior,
Your implementation is consistent with your model,

Science you are trying to do with the code can be
done.

IDEAS

SC Tutorial, November 14, 2016 productivity

Validation

Model validation

Compare with observations
From sensors, telescopes, experiments
Others
Not necessary to capture whole reality

Features of interest
Are the approximations appropriate?

Method validation
Validate method order
Construct code-to-code comparisons

SC Tutorial, November 14, 2016

IDEAS

productivity

CSE testing challenges

Floating point issues

Different results
On different platforms and runs

lll-conditioning can magnify these small differences
Final solution may be different
Number of iterations may be different

Unit testing

Sometimes producing meaningful testable behavior
too dependent upon other parts of the code

Definitions don’t always fit

IDEAS

SC Tutorial, November 14, 2016 productivity

CSE verification challenges

Integration testing may have hierarchy too

Particularly true of codes that allow composability
in their configuration
Codes may incorporate some legacy components
Its own set of challenges
No existing tests of any granularities
Examples — multiphysics application codes that
support multiple domains

FLASH case study later

IDEAS

SC Tutorial, November 14, 2016 productivity

CSE validation challenges

Interdisciplinary
Domain knowledge
Applied mathematics
Software engineering

Exploring uncharted territories
Existing knowledge is of limited interest
Need to push the boundaries

The behavior of solvers not always predictable in
regimes of interest

IDEAS

SC Tutorial, November 14, 2016 productivity

Stages and types of verification
o6

-1 During initial code development
o1 Accuracy and stability during development of the algorithm
1 Matching the algorithm to the model
o Interoperability of algorithms
o In later stages
o While adding new major capabilities or modifying existing capabilities
2 Ongoing maintenance
o1 Preparing for production

o If refactoring
o Ensuring that behavior remains consistent and expected

o1 All stages have a mix of automation and human-intervention

Note that the stages apply to the whole code as well as its components

IDEAS

SC Tutorial, November 14, 2016 productivity

Development phase

Development of tests and diagnostics goes hand-in-hand
with code development
Non-trivial to devise good tests, but extremely important
Compare against simpler analytical or semi-analytical solutions
They can also form a basis for unit testing

In addition to testing for “correct” behavior, also test for
stability, convergence, or other such desirable
characteristics

Many of these tests will be worth preserving for the
maintenance phase

IDEAS

SC Tutorial, November 14, 2016 productivity

Development phase — adding on

Few more steps when adding new components to
existing code
Know the existing components it interacts with
Verify its interoperability with those components
Verify that it does not inadvertently break some
unconnected part of the code
May need addition of tests not just for the new
component but also for some of the old components

This part is often overlooked to the detriment of the
overall verification

IDEAS

SC Tutorial, November 14, 2016 productivity

Maintenance phase

Concerns mature, mostly unchanging code
Testing mostly automated

Verify ongoing correctness
With incremental changes

Code and interoperability coverage are critical

Software process should include policies about
handling failures

Prioritization
Turn-around time

IDEAS

SC Tutorial, November 14, 2016 productivity

Examples: Tpetra verification

Distributed basic linear algebra subroutines
Sparse matrices
Dense matrices

Check for correct linear algebra

Check for correct errors

Does the program throw an exception if | try to
multiply things with incompatible dimensions?

IDEAS

SC Tutorial, November 14, 2016 productivity

Belos verification

Krylov solvers

Use problems with known solutions

Given A and Y, generate B=AY
Ensures B is in the range of A

Solve AX=B
Some tests use Belos matrix and vector classes
Some tests use Epetra/Tpetra classes

Test with and without preconditioning
Left and right

IDEAS

SC Tutorial, November 14, 2016 productivity

Anasazi verification

Eigensolvers

Use problems with known solutions
Generated using Matlab’s sprand

Problems with analytic solutions
Discretization of the Laplace operator

Measure the residual of the computed
eigenvectors

P=AX—FBX\
Number of iterations are compared to a gold
standard

IDEAS

SC Tutorial, November 14, 2016 productivity

Zoltan(2) verification

Graph partitioning
Some Sandia-developed code
Some TPL wrappers

Gold standard solutions
Labor intensive
Gold standard changes when algorithms change
Upgrades to a TPL such as ParMETIS require gold standard
to be updated
Uses metrics to determine whether the solution is
correct

Edge cuts
Balance criteria

IDEAS

SC Tutorial, November 14, 2016 productivity

SuperlLU verification

SuperLU — sparse Gaussian elimination code

Test suite
Many unit and integration level tests
Entire suite can be run in a few minutes

Demonstrates validation and acceptance testing, also
no-change or bounded-change testing

Demonstrates how to deal with floating point issues

IDEAS

SC Tutorial, November 14, 2016 productivity

SuperLU test suite

Suite has two main goals
Tests query functions to floating-point parameters
Machine epsilon, underflow and overflow thresholds, etc

Provide coverage of all routines
Tests all functions of the user-callable routines

IDEAS

SC Tutorial, November 14, 2016 productivity

SuperLU test suite

Many input matrices are generated

Different numerical and structural properties
Uses several numerical metrics to assert accuracy
of solution

Stable LU factorization
Small forward and backward errors

IDEAS

SC Tutorial, November 14, 2016 productivity

Example: SuperLU test suite

Performs exhaustive testing of a large number of input
parameters

For each set of wvalid values {
For each set of valid values {

For each set of valid wvalues {
For each matrix type {
Generate the 1nput matrix A and rhs b;
Call a user-callable routine with input values {, ,.., 1}
Compute the test metrics;
Check whether each metric is smaller than a prescribed
threshold;
}
}

o
}

Runs over 10,000 tests in a few minutes

IDEAS

SC Tutorial, November 14, 2016 productivity

FLASH verification and validation

Note the combination of unit/composite tests
Terminology is inconsistent with standard definitions
It serves the developers and users well

Unit tests compare against analytical, semi-analytical
or manufactured solutions

Composite tests are integrated or system level
Compare output against gold standard

IDEAS

SC Tutorial, November 14, 2016 productivity

Against manufactured solution

nyb + 2 nguard

- Verification of guard
cell fill

n Use two variables A & B

o Initialize A including
guard cells and B
excluding them

-1 Apply guard cell fill to B + nxbmgmn\

IDEAS

SC Tutorial, November 14, 2016 productivity

Against analytical solution
& J

Density (g/cm?)
—T— —

1 Sedov blast wave

o1 High pressure at the center Apiuull

—~

7 Shock moves out spherically © |
7 FLASH with AMR and hydro Bess i
= Known analytical solution |

0.4 0.6
x (cr)

Though it exercises both mesh, hydro and eos, if mesh

and eos are verified first, then this test verifies hydro

IDEAS

SC Tutorial, November 14, 2016 productivity

Building confidence

Use ghost cell fill and Sedov tests, add one more
Eos unit
Use initial conditions from a known problem

Apply eos in two different modes — at the end all variables should
be consistent within tolerance

First two tests are stand-alone

The third test depends on Grid and Eos
Not all of Grid functionality it uses is tested
Flux correction in AMR
If Grid and Eos tests passed and Hydro failed
If UG version failed then fault is in hydro
If UG passed and AMR failed the fault is likely in flux correction

11/15/16 IDEAS

Go to "Insert | Header & Footer" to productivity

Validation single-mode Rayleigh-Taylor

Ji

4 8 16 32 64 128 256
A (grid points)

t=3.1sec

Density (g/cc) IDEAS

SC Tutorial, November 14, 2016 productivity

- Methodology

Evaluating project needs
Devising testing regime

Examples from Alquimia, Amanzi and Trilinos

Why not always use the most
stringent testing?

Effort spent in devising tests and testing regime
are a tax on team resources

When the tax is too high...
Team cannot meet code-use objectives

When is the tax is too low...
Necessary oversight not provided
Defects in code sneak through

IDEAS

SC Tutorial, November 14, 2016 productivity

Evaluating project needs

Objectives
Proof of concept
Limited research use
Library
Production — simulations and analysis

Team
Number of developers
Background of developers
Geographical spread

SC Tutorial, November 14, 2016

IDEAS

productivity

Evaluating project needs

Lifecycle stages
Lifetime
How long a code is expected to live
New code versus some legacy components
Complexity
Number of modules, models, data structures, solvers
Degree of coupling and interoperability requirements

IDEAS

SC Tutorial, November 14, 2016 productivity

Commonalities

Unit testing is always good
It is unlikely to be sufficient

Verification of expected behavior

Understanding the range of validity and
applicability is always important
Especially for individual solvers

IDEAS

SC Tutorial, November 14, 2016 productivity

Building a test suite for CSE codes

When software is mature, must ensure new code
does not break old features

Without regular testing, adding new code is error-
prone

Structural changes are tedious without a way to verify
ongoing correctness

Regular automated testing can provide a huge savings

IDEAS

SC Tutorial, November 14, 2016 productivity

Consider the project scope

Proof of concept
Nothing more than the common testing of previous slide

Limited use

Manually run test-suite before each use may suffice
Coverage is still important

Library
Depends on team and complexity
Regular simulation and analysis
Depends on team and complexity
Testing coverage needs system level integrated coverage

IDEAS

SC Tutorial, November 14, 2016 productivity

Customizing for project needs: Team

One to two developers — periodic manual testing
and verification

Mid-size to large team — automated test suite
running regularly

Subgroups within the team — automated test suite
with tests of different granularity

May also need multiple suites run on their own
schedules

IDEAS

SC Tutorial, November 14, 2016 productivity

Considering complexity and lifetime
[
1 What runs in the regular test-suite?

o If there are subgroups, what goes into the
separate test-suites?

1 How often should each test-suite run?
7 How do you ensure interoperability coverage?

The question to answer: how do you balance the tax

amount for maximum productivity?

IDEAS

SC Tutorial, November 14, 2016 productivity

Other factors

Frequency of testing depends upon lifecycle stage

Mid-size to large team working on the same code
component doing rapid development — ideally
continuous integration

Stable mature code - regular automated testing
Refactoring — needs its own strategy

Complexity and lifetime
Affect the testing regime being devised

Testing needs and strategy differ when code
incorporates legacy components

IDEAS

SC Tutorial, November 14, 2016 productivity

Maintenance of a test suite

Testing regime is only useful if it is
Maintained
Monitored regularly
Has rapid response to failure

Maintenance includes
Updating tests and benchmarks
Adjustments to software stack

Archiving and retrieval of test suite output
Helpful in tracing change in code behavior

IDEAS

SC Tutorial, November 14, 2016 productivity

Maintenance of a test suite

Monitoring individual tests manually is
unreasonable and should be automated
Manual inspection should be limited to failing tests

For repository code, failure can be correlated to
check-ins within a particular time-frame

Only certain developers need to be involved

IDEAS

SC Tutorial, November 14, 2016 productivity

Maintenance of a test suite

Tests should pass most of the time
Easy when code changes are infrequent

Harder when code is large and rapidly changing

Difficult to determine cause of failure
Pre-commit test suites are a good idea

SC Tutorial, November 14, 2016

IDEAS

productivity

Maintenance of a test suite

Periodically review collection of tests
Look for gaps and redundancies
Pruning is important to conserve testing resources
Deprecated features can be removed

New tests may be necessary when new features are
added

IDEAS

SC Tutorial, November 14, 2016 productivity

Selection of tests

Important to aim for quick diagnosis of error

A mix of different granularities works well
Unit tests for isolating component or sub-component level faults

Integration tests with simple to complex configuration and
system level

Some rules of thumb
Simple
Enable quick pin-pointing
Coverage
For a large code experience with test selection see

IDEAS

SC Tutorial, November 14, 2016 productivity

Selection of tests

Hydro EOS Gravity Burn Particles
AMR CL CL CL CL
UG SV SV SV
Multigrid WD WD WD WD
FFT PT
Tests Symbol A test on the same row indicates
Sedov SV interoperability between corresponding
Cellular CL physics
Poisson PT Similar logic would apply to tests on the
White Dwarf WD same column for infrastructure

More goes on, but this is the primary

methodology

SC Tutorial, November 14, 2016

IDEAS

productivity

Examples

From Alquimia, amanzi and Trilinos
Focus on different team sizes and objectives
Different lifetime spans

IDEAS

SC Tutorial, November 14, 2016 productivity

How is real DOE code tested?

<1FTE O(1,000) Every few
lines of code months

About a 0(100,000) A few commits

dozen lines of code every day

A few dozen 0O(1,000,000) About 12 per
lines of code day

IDEAS

SC Tutorial, November 14, 2016 productivity

What is Alquimia?

Biogeochemistry APl and wrapper library

Provides a unified interface to existing
geochemistry engines

CrunchFlow
PFLOTRAN

Allows subsurface flow and transport simulators to
access a range of functionality

NOT an implementation of a biogeochemistry
reaction library

Does NOT perform geochemical calculations

IDEAS

SC Tutorial, November 14, 2016 productivity

How is Alguimia tested?

Continuous integration testing using Travis Cl

Works for them because
Alquimia builds fast
Test suite runs fast
Commits happen in short bursts

IDEAS

SC Tutorial, November 14, 2016 productivity

What is Amanzi/ATS?

Amanzi

A parallel flow and reactive transport simulator
Used to analyze multiple DOE waste disposal sites

Example application: modeling hydrological and
biogeochemical cycling in the Colorodo River System

Carbon cycling is especially important because of its role in
regulating atmospheric CO,

IDEAS
SC Tutorial, November 14, 2016 productivity

What is Amanzi/ATS?

ATS
Advanced Terrestrial Simulator

Built on Amanzi

Adds physics capability to solve equations for
ecosystem hydrology

IDEAS
SC Tutorial, November 14, 2016 productivity

Amanzi/ATS testing practices

156 tests that can be run via “ctest”

No continuous integration, but developers are
expected to run the test suite before committing

New physics contributions are required to come
with new system-level tests

Various granularity tests

IDEAS

SC Tutorial, November 14, 2016 productivity

Amanzi/ATS testing granularity

Unit tests
Code is highly componentized

Medium-grained component tests
Discretizations
Solvers

Coarse-grained system-level tests
Test full capability
Serve as example for new users

SC Tutorial, November 14, 2016

IDEAS

productivity

What is Trilinos?

A collection of libraries intended to be used as
building blocks for the development of scientific
applications
Organized into 66 packages

Linear solvers

Nonlinear solvers

Eigensolvers

Preconditioners (including multigrid)

And more!

IDEAS

SC Tutorial, November 14, 2016 productivity

How is Trilinos tested?

Trilinos has 1500 tests between its 66 packages

Developers are strongly advised to run a checkin
test script when committing

Automated testing on a variety of different
platforms

IDEAS

SC Tutorial, November 14, 2016 productivity

Checkin test script

Detects which packages were modified by your
commits

Determines which packages you potentially broke

Configures, builds, and tests those packages

On success, pushes to repo
On failure, reports why it failed

Useful for ensuring your changes don’t break
another package

May take a while, but many people run it

overnight
IDEAS

SC Tutorial, November 14, 2016 productivity

Why do we do automated testing if
everyone uses the checkin script?

May test a different set of packages

May test different environments

Do your changes work with Intel compilers as well as
GNU?

Do your changes work on a mac?
Do your changes work with CUDA?

|dentifies a small set of commits that could have
broken a build or test

ldentifies the person who knows how to un-break it
Bugs are easier to fix if caught early

IDEAS

SC Tutorial, November 14, 2016 productivity

What if “bad people” don’t use the
checkin script?

o Their commit doesn’t include the checkin script
information

@

O This repository ~ Search Pull requests Issues Gist A +- A v
trilinos / Trilinos ® Unwatchv 73 W Unstar 98 ¥ Fork 58
<> Code Issues 276 Pull requests 28 Wiki Pulse Graphs

Tpetra: Add "compare Maps" utility executable to examples Browse files

@trilinos/tpetra This is useful for #438 and #558, among others.

Build/Test Cases Summary

Enabled Packages: TpetraCore

Disabled Packages: FEI,PyTrilinos,Moertel,STK,SEACAS,ThreadPool,OptiPack,Rythmos,Intrepid,ROL
@) MPI_DEBUG => passed: passed=100,notpassed=0 (5.17 min)

1) SERIAL_RELEASE => passed: passed=74,notpassed=0 (2.29 min)

Other local commits for this build/test group: b945495

P master
a mhoemmen committed 4 days ago 1 parent b945495 commit 566b@db7a2dac6455644bcc3ebblde2f47dac3c
Showing 5 changed files with 226 additions and 0 deletions. Unified | Split

IDEAS

SC Tutorial, November 14, 2016 productivity

Checkin test script examples

Examp
Examp
Examp

e 1: a harmless change to a comment
e 2: breaking the build
e 3: breaking some tests

SC Tutorial, November 14, 2016

U_
30
Q
>

=
<

Example 1: a harmless change

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

Questions? Contact Michael A. Heroux (maherou@sandia.gov)

2k 3k 2k 2k 3k 3 2 o 3k 3 A ok 2k e o ok 2k o ok 2k 2k ok ke 2k 3k e 3k 3k 3 A ok 3k e o ok 2k o ok vk 2k ok 2k 2k ok Sk 2k ok 3k 2 ok 3k 3 e ok 2k o ok ok 2k ok ok 2k 2k ok ok 2k ok 5k 3k

@HEADER

/*! \file AnasaziTraceMinDavidson.hpp
\brief Implementation of the TraceMin-Davidson eigensolver]j

* / ‘I
#ifndef ANASAZI TRACEMIN_ DAVIDSON_HPP
#define ANASAZI TRACEMIN DAVIDSON HPP

#include "AnasaziConfigDefs.hpp"
#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
-- INSERT -- 30,61

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 1: a harmless change

Now | run the checkin test script
to make sure | didn’t break
anything.

IDEAS

productivity

SC Tutorial, November 14, 2016

Example 1: a harmless change

Determining the set of packages to enable by examining /home/amklinv/TrilinosDir/githu
b/Trilinos/CHECKIN/modifiedFiles.out

Modified file: 'packages/anasazi/src/AnasaziTraceMinDavidson.hpp'
=> Enabling 'Anasazi'!

Full package enable list: [Anasazi]

Removing package enables: [FEI,Moertel,STK,Phalanx,PyTrilinos]

Filtering the set of enabled packages according to allowed package types
Final package enable list: [Anasazi]

Enabling forward packages on request!

Adding hard disables for specified packages ,Moertel,STK,Phalanx,PyTrilinos'

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 1: a harmless change

E) Analyze the overall results and send email notification (MPI DEBUG)

E.1) Determine what passed and failed

The pull passed!

The configure passed!

The build passed!
testResultsLine = '100% tests passed, 0 tests failed out of 237°

All of the tests ran passed!

E.2) Construct the email message

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 1: a harmless change

READY TO PUSH: Trilinos: s995692.srn.sandia.gov

Enabled Packages: Anasazi
Disabled Packages: FEI,Moertel,STK,Phalanx,PyTrlilinos
Enabled all Forward Packages

Build test results:

©) MPI DEBUG => passed: passed=237,notpassed=0 (8.42 min)
1) SERIAL RELEASE => passed: passed=243,notpassed=0 (2.71 min)

*** Commits for repo
982db3b Anasazi: Modified a comment in TraceMin-Davidson

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 2: broken build

const Teuchos: :RCP<MatOrthoManager<ScalarType,MV,0P> > &ortho,
Teuchos: :ParameterList ¶ms
) ;

private:
//
// Convenience typedefs

//

typedef MultiVecTraits<ScalarType,MV> MVT;

typedef OperatorTraits<ScalarType,MV,0P> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;

// TraceMin specific methods
void addToBasis(const Teuchos::RCP<const MV> Delta);

void harmonicAddToBasis(const Teuchos::RCP<const MV> Delta);

H

== INSERT -- 99,4 26%

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 2: broken build

C) Do the build (MPI DEBUG)

Running: make -j48

Writing console output to file make.out

Runtime for command = 8.235778 minutes
Build failed returning 2!
Traceback (most recent call last):

File "/home/amklinv/TrilinosDir/github/Trilinos/cmake/tribits/ci support/CheckinTest
.py", line 1586, in runBuildTestCase

raise Exception("Build failed!")
Exception: Build failed!

E) Analyze the overall results and send email notification (MPI DEBUG)

E.1) Determine what passed and failed

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 2: broken build

from /home/amklinv/temp/Trilinos/packages/anasazi/tpetra/example/Trac
eMinDavidson/TraceMinDavidsonUserOpEx.cpp:8:
/home/amklinv/temp/Trilinos/packages/anasazi/src/AnasaziTraceMinDavidson.hpp:99:3: err
or: expected ‘;’' after class definition
In file included from /home/amklinv/temp/Trilinos/packages/anasazi/src/AnasaziTraceMin
DavidsonSolMgr.hpp:40:0,

from /home/amklinv/temp/Trilinos/packages/anasazi/tpetra/example/Trac
eMinDavidson/TraceMinDavidsonLaplacianEx.cpp:8:
/home/amklinv/temp/Trilinos/packages/anasazi/src/AnasaziTraceMinDavidson.hpp:99:3: err
or: expected ‘;’' after class definition
make[2]: *** [packages/anasazi/tpetra/test/TraceMinDavidson/CMakeFiles/Anasazi Tpetra
TraceMinDavidson largest standard test.dir/cxx_main_standard noprec.cpp.o] Error 1
make[1l]: *** [packages/anasazi/tpetra/test/TraceMinDavidson/CMakeFiles/Anasazi Tpetra
TraceMinDavidson largest standard test.dir/all] Error 2
make[1l]: *** Waiting for unfinished jobs....
make[2]: *** [packages/anasazi/tpetra/example/TraceMinDavidson/CMakeFiles/Anasazi Tpet
ra TD UserOp example.dir/TraceMinDavidsonUserOpEx.cpp.o] Error 1
make[1l]: *** [packages/anasazi/tpetra/example/TraceMinDavidson/CMakeFiles/Anasazi Tpet
ra TD UserOp _example.dir/all] Error 2
make[2]: *** [packages/anasazi/tpetra/example/TraceMinDavidson/CMakeFiles/Anasazi Tpet

The checkinscrpt also creates a 0g file with the build error__

IDEAS

SC Tutorial, November 14, 2016 productivity

//K

Example 3: broken tests

// set the block size and allocate data
int bs = params.get("Block Size", problem ->getNEV());
int nb = params.get("Num Blocks", 1);

ESESEER (bs, nb) ;
NEV = problem ->getNEV();

// Create the Ritz shift operator
ritzOp = rcp (new tracemin ritz op type (Op , MOp , Prec));

// Set the maximum number of inner iterations
const i1nt innerMaxIts = params.get ("Maximum Krylov Iterations"', 200);
ritzOp ->setMaxIts (innerMaxIts);

alpha = params.get ("HSS: alpha", ONE);

Added alogic eror tothe code_

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 3: broken tests

FAILED CONFIGURE/BUILD/TEST: Trilinos: s9962.srn.sandlia.gov
Thu Apr 21 17:14:53 MDT 2016

Enabled Packages: Anasazi
Disabled Packages: FEI,Moertel,STK,Phalanx,PyTrilinos
Enabled all Forward Packages

Build test results:

©) MPI DEBUG => FAILED: passed=233,notpassed=4 => Not ready to push! (8.43 min)
1) SERIAL RELEASE => FAILED: passed=239,notpassed=4 => Not ready to push! (2.74 min)

Failed because one of the build/test cases failed!

*** Commits for repo

6bb949b Anasazi: Broke some TraceMin tests. OQops!

The checkinscrpt detected that roke several tests

IDEAS

SC Tutorial, November 14, 2016 productivity

Example 3: broken tests

08% tests passed, 4 tests failed out of 237

Label Time Summary:

Anasazi 100.15 sec
\[0).4 165.35 sec
Rythmos 124,19 sec

Total test time (real) = 389.89 sec

The following tests FAILED:

56 - Anasazi Tpetra TraceMin smallest proj test MPI 4 (Failed)

57 - Anasazi Tpetra TraceMin smallest schur test MPI 4 (Failed)

58 - Anasazi Tpetra TraceMin largest standard test MPI 4 (Failed)

59 - Anasazi Tpetra TraceMinDavidson largest standard test MPI 4 (Failed)
Errors while running CTest

IDEAS

SC Tutorial, November 14, 2016 productivity

Trilinos automated testing

k. 9 Trilinos
Q‘M,’}Igglimard Calendar Previous Current Project

Project

Configure
Project
Error Warning
Trilinos W 531
SubProjects

Project Configure

Error Warning
Teuchos 21
ThreadPool 1
Sacado 2
RTOp 20
Kokkos 19
Epetra 21
Zoltan 21
Shards 1
GlobiPack 1

IDEAS

productivity

Trilinos automated testing
sy

artemis.srn.sandia.gov

lightsaber.srn.sandia.gov

enigma.sandia.gov

hansel.sandia.gov

enigma.sandia.gov

enigma.sandia.gov

enigma.sandia.gov

enigma.sandia.gov

Build Name

Linux-intel-15.0.2-MPI_RELEASE_DEV_DownStream_ETI_SERIAL-
OFF_OPENMP-ON_PTHREAD-OFF_CUDA-OFF_COMPLEX-OFF

Linux-GCC-4.7.2-RELEASE_DEV_MuelLu_Matlab
Linux-GCC-4.8.3-OPENMPI_1.6.4_DEBUG_DEV_MuelLu_Basker
Linux-GCC-4.4.7-MPI_OPT_DEV_XYCE
Linux-GCC-4.8.3-OPENMPI|_1.6.4_DEBUG_DEV_Muelu_KLU2
Linux-GCC-4.8.3-OPENMPI_1.6.4_DEBUG_DEV_Muelu_ExtraTypes_EIl
Linux-GCC-4.8.3-SERIAL_DEBUG_DEV_Muelu_ExtraTypes

Linux-GCC-4.8.3-SERIAL_RELEASE_DEV_MuelLu_Experimental

SC Tutorial, November 14, 2016

Update Configure Build Test

Not
Ru

Files irror Warn Error Warn

6 hours
ago
10 hours
ago
9 hours
ago
9 hours
ago
8 hours
ago
8 hours
ago
7 hours
ago
6 hours
ago

= Fail Pass Build Time l.&*l

(44
labels)

(25
labels) -

(25
labels)

(13
labels)

(25
labels)

(25
labels)

(25
labels)

(25
labels)

IDEAS

productivity

Trilinos automated testing
B
-1 Several Amesos?2 (direct solver) tests are broken

SubProject Dependencies

Project Last submission

Teuchos 2016-06-06 09:01:20
Epetra 2016-06-06 09:02:05
Triutils 2016-06-06 09:02:16
Tpetra 2016-06-06 08:10:13

EpetraExt 2016-06-06 08:11:16

ThreadPool 2016-06-06 02:51:44

Amesos 2016-06-06 08:16:59

o1 Are any of its dependencies broken?
o1 Yes, there is a broken Epetra (basic linear algebra) test
o1 Maybe this broke Amesos2?

IDEAS

SC Tutorial, November 14, 2016 productivity

Trilinos automated testing

127

= Which tests were broken in Amesos2?
Testing started on 2016-06-06 07:42:35

Site Name:enigma.sandia.gov
Build Name:Linux-GCC-4.8.3-SERIAL_DEBUG_DEV_MuelLu_ExtraTypes
Total time:16s 840ms
OS Name:Linux
OS Platform:x86 64
OS Release:3.10.0-229.4.2.el7.x86 64
OS Version:#1 SMP Fri Apr 24 15:26:38 EDT 2015
Compiler Version:unknown

3 tests failed.

Status Time Details Labels Summary

Amesos2_Epetra_RowMatrix_Adapter_UnitTests_MPI_4
Amesos2_Epetra_MultiVector_Adapter_UnitTests MPI_4
Amesos2_Tpetra_CrsMatrix_Adapter_UnitTests MP|_4

IDEAS

SC Tutorial, November 14, 2016 productivity

Trilinos automated testing

o If you may have broken something, you will get an
email about it

CDash <trilinos-regression@sandia.gov> 4:05 AM (5 hours ago) « v
to anasazi-regres. |~
A submission to CDash for the project Trilinos has failing tests.

You have been identified as one of the authors who have checked in changes that are part of this
submission or you are listed in the default contact list.

Details on the submission can be found at http://testing.sandia.gov/cdash/buildSummary.php?
buildid=2469557

Project: Trilinos

SubProject: Anasazi

Site: artemis.srn.sandia.gov

Build Name: Linux-intel-15.0.2-MPI_RELEASE_DEV_DownStream_ETI|_SERIAL-OFF_OPENMP-
ON_PTHREAD-OFF_CUDA-OFF_COMPLEX-OFF

Build Time: 2016-06-06T03:59:42 MDT

Type: Nightly

Tests failing: 1

Tests failing
Anasazi_Epetra_ MVOPTester MPI_4 (http://testing.sandia.gov/cdash/testDetails.php?test=
33891492&build=2469557)

IDEAS

SC Tutorial, November 14, 2016 productivity

New master/develop workflow

Want master branch to remain stable

All developer changes are now pushed to develop
branch
If changes are “okay”, merge develop to master

Currently a manual process for Trilinos framework
team

If no new tests are failing on the dashboard, merge
Will eventually be automated

IDEAS

SC Tutorial, November 14, 2016 productivity

Refactoring

Testing needs during code refactor
Case study with FLASH

Considerations

Know why you are refactoring
Is it necessary?
Where should the code be after refactoring?

Know the scope of refactoring
How deep a change?
How much code will be affected?

Know the type of refactor

Is the behavior expected to remain unchanged?
To what degree?

SC Tutorial, November 14, 2016

IDEAS

productivity

Verification methodology

Map from here to there
Know bounds on acceptable behavior change

Know your error bounds

Bitwise reproduction of results unlikely after
transition

Check for coverage provided by existing tests
Develop new tests where there are gaps

IDEAS

SC Tutorial, November 14, 2016 productivity

New software vs legacy code

I I ——————

- Legacy code often has insufficient tests

o1 First step in doing new, nontrivial development: add
more tests

o1 The issue: legacy code is not organized for unit tests

The key to working with legacy code is getting it to a
place where it is possible to know that you are

making changes one at a time.

- Michael Feathers, Working Effectively with Legacy
Code

IDEAS

SC Tutorial, November 14, 2016 productivity

Challenges

Legacy codes can have many gotchas
Dead code
Redundant branches

Interactions between sections of the code may be
unknown

Can be difficult to differentiate between just bad
code, or bad code for a good reason

Nested conditionals

IDEAS

SC Tutorial, November 14, 2016 productivity

Mitigating challenges

How to differentiate between “to be pruned” code
and “to be kept but not covered” code?
If experts are around, they can help

Run the code in all useful configurations, tag unused
code

Reduces the chance of useful code remaining uncovered

IDEAS

SC Tutorial, November 14, 2016 productivity

Other options

Test coverings

Set of tests used to introduce an invariant

Cover a small area of the system

Unit tests might not be possible, given legacy code
organization

Correct behavior is defined by what the code did
yesterday, not an external standard of correctness

If the original legacy code was incorrect, that’s a separate
issue

Build the invariant, then refactor to make the code
clear

IDEAS

SC Tutorial, November 14, 2016 productivity

137

On ramp plan

——)

All at once

—)

All at once

SC Tutorial, November 14, 2016

May be
OK

Bad
idea

IDEAS

productivity

On ramp plan 1

Applicable when refactor is shallow
Individual components change
The backbone and global data structures do not

IDEAS

SC Tutorial, November 14, 2016 productivity

Methodology for plan 1

Verify current code version test coverage
No need to develop complete new testing regime
Unit tests for isolatable components

Higher granularity unit-like tests for separately
developed code section

Incorporate new tests into the suite during
migration for each new component

May be eliminated later if needed

IDEAS

SC Tutorial, November 14, 2016 productivity

140

On ramp plan 2

SC Tutorial, November 14, 2016

Methodology for plan 2
ar

-1 Develop a comparison utility

o Understand the error-bars

-1 Backbone development treated as new development
1 Migrated modules tested in the new infrastructure

o1 Unit tests may not need to migrate

-1 Applicable tests migrate to the new infrastructure

7 New tests added if new features develop

Takeaway message — devise the methodology for refactoring and then plan a testing

regime that meets the combined requirements of code verification within the
refactor methodology

IDEAS

SC Tutorial, November 14, 2016 productivity

Case study : FLASH

FLASH is a multiphysics multicomponent community
code for

Astrophysics,cosmology,high energy density physics
Also used by other communities
Solar physics, computation fluid dynamics, combustion

Began with an intent to develop a single code usable
for multiple applications

2+ codes - Prometheus, PARAMESH and other
research codes smashed together into one code

IDEAS

SC Tutorial, November 14, 2016 productivity

Verifying version 1

Version created from legacy codes
refactoring challenges applied

Objective —a more capable code

Moving to a more numerically complex meshing and
previously unexplored behavior

Fused code underwent verification of numerical
stability and convergence as though a new code

First set of tests used comparison against analytical
solutions

For all practical purposes a new code

IDEAS

SC Tutorial, November 14, 2016 productivity

Version 1

The Good

Desire to use the same code for many different
applications necessitated some thought to infrastructure
and architecture

Concept of alternative implementations, with a script for
plugging different EOS — the setup tool

Beginning of inheriting directory structure

The Bad
F77 style of programming; Common blocks for data sharing

Inconsistent data structures, divergent coding practices
and no coding standards

More capabilities needed but extensibility limited because
of code design

IDEAS

SC Tutorial, November 14, 2016 productivity

Version 1

And the ugly

Two camps
Camp 1 —do it right, think about design and then build
Camp 2 —do it right, enable science as soon as possible
For a while there were parallel efforts
The two camps did not communicate

The resources were not enough for parallel efforts
The science centric view won out

Additional reason for code verification following
the methods of a new code testing

IDEAS

SC Tutorial, November 14, 2016 productivity

Version 2

Objective — make the code manageable and
extensive

More physics solvers needed for simulations

Some even required new models and numerics
Introduce uniformity in coding standards

Interfaces

Data inventory

IDEAS

SC Tutorial, November 14, 2016 productivity

Transition methodology

L

-1 Closer to on ramp plan 1
o1 Though objectives were closer to plan 2

1 Version 2 features embedded within version 1 code

1 Complete backward compatibility, no need for new
tests

11 Code tested by configuring with old version and new
version and comparing output

-1 Developers heavily relied upon nightly testing to catch
violations of interoperability

Because methodology did not match the objectives, the

refactor had only partial success

IDEAS

SC Tutorial, November 14, 2016 productivity

Version 2 successes

Addressed the worst of the bad in version 1
Eliminated common blocks
Data inventoried
Variable types classified them

Enhanced “good”
Setup tool
Config files
Automate testing

In summary code cleanup, but not extensibility

Many new tests were added
Code coverage was significantly enhanced

IDEAS

SC Tutorial, November 14, 2016 productivity

Causes for partial success

Keep the development and production branches
synchronized

Enforced backward compatibility in the interfaces
Precluded needed deep changes

Hugely increased developer effort

High barrier to entry for a new developer

Delayed adoption for production

Development continued in FLASH1.6, and so had to be
brought simultaneously into FLASH2 too.

IDEAS

SC Tutorial, November 14, 2016 productivity

Motivation for another refactor

Version 2 collected data into a central database

Navigating the source tree became more confusing and Config file
dependencies became more verbose

No possibility of data scoping; every data item was equally accessible
to every routine in the code

When parsing a function, one could not tell the source of data
Lateral dependencies were further hidden
Overhead of database querying slowed the code by about 10-15%

The queries caused huge amount of code replication and source
files became ugly

Encapsulation became nearly impossible

IDEAS

SC Tutorial, November 14, 2016 productivity

Version 3

Overarching objective essentially the same as that for
version 2

Other specific objectives from lessons learned
Articulate data ownership in the architecture
Arbitrate on modifiability of data

Define component architecture
Encapsulation

The institution of nightly testing with various
granularities came in very handy

IDEAS

SC Tutorial, November 14, 2016 productivity

Version transition 2 to 3

Controlled by the developers

Sufficient time and resources made available to
design and prototype

No attempt at backward compatibility

No attempt to keep development synchronized
with production

All focus on a forward looking modular, extensible
and maintainable code

IDEAS

SC Tutorial, November 14, 2016 productivity

Version 3 achievements

Kept inheriting directory structure, configuration and
customization mechanisms from earlier versions
Defined naming conventions

Differentiate between namespace and organizational
directories

Differentiate between APl and non-API functions in a unit
Prefixes indicating the source and scope of data items

Formalized the unit architecture

Defined API for each unit Resolved data ownership and
scope

Resolved lateral dependencies for encapsulation
Achieved extensibility

IDEAS

SC Tutorial, November 14, 2016 productivity

The methodology

On ramp plan 2
Build the framework in isolation from the production code base

Infrastructure units first implemented with a homegrown
Uniform Grid.
Helped define the APl and data ownership

Unit tests for infrastructure built (new code)

Infrastructure thoroughly tested before adding physics
components

Test-suite was started on multiple platforms with various
configurations (1/2/3D, UG/PARAMESH, HDF5/PnetCDF)

This took about a year and a half, the framework was very
well tested and robust by this time

IDEAS

SC Tutorial, November 14, 2016 productivity

The methodology

Results could not be bitwise identical

Utility for comparing outputs of the two versions

Tolerances built into the utility to account for error-bars
New tests needed for physics interaction with
infrastructure

Some advancements in solvers created need for new tests
Unit tests — verifying computed solution against analytical
one

Or generating same values in two different ways
The test-suite advanced simultaneously

Better methodology for verifying coverage

Policies and process

IDEAS

SC Tutorial, November 14, 2016 productivity

The methodology

In the next stage the mature solvers (ones that were
unlikely to have incremental changes) were
transitioned to the code

Once a code unit became designated for FLASH3, no users

could make a change to that unit in FLASH2 without
consulting those doing the refactor.

The next transition was the simplest production
application (with minimal amount of physics)

Scientists were in the loop for verification and in
prioritizing the units to be transitioned at this stage

IDEAS

SC Tutorial, November 14, 2016 productivity

The outcome

FLASH2 took more than 1.5 years before users
transitioned to it

FLASH3 was in production in the Center long
before its official 3.0 release
The ugly had been addressed: the science centric view

had given way to a more balanced one; took
tremendous effort on the part of the center’s leaders

More mutual trust and respect

More reliable code; unit tests provided more
confidence, and it was easier to add capabilities

IDEAS

SC Tutorial, November 14, 2016 productivity

The outcome

Transition was completed in 2006

Until platform revolution no need for another deep
change

Code is fully extensible

Lagrangian framework imposed on existing framework

Many capabilities added with minimal changes to the
backbone

Code is very well tested
Testing on multiple platforms
By many users in diverse fields

Bugs still prop up
Many fewer than earlier code versions

IDEAS

SC Tutorial, November 14, 2016 productivity

QOutcomes

A strong culture of verification and validation
Propagates with alumni

Provenance of obtained results

Reproducibility possible within constraint of
variations in platforms

IDEAS
SC Tutorial, November 14, 2016 productivity

Acknowledgments

Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-
AC02-06CH11357.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. SAND
NO. 2016-8466 C.

IDEAS

SC Tutorial, November 14, 2016 productivity

Other resources

Software testing levels and definitions:
http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

Working Effectively with Legacy Code, Michael Feathers. The legacy software change algorithm
described in this book is very straight-forward and powerful for anyone working on a code that has

insufficient testing.

Code Complete, Steve McConnell. Excellent testing advice. His description of Structure Basis Testing
is good, and it is a simple concept: Write one test for each logic path through your code.

Organization dedicated to software testing: https://www.associationforsoftwaretesting.org/
Software Carpentry: http://katyhuff.github.io/python-testing/

Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

Papers on testing:

http://www.sciencedirect.com/science/article/pii/S0950584914001232
https://www.researchgate.net/publication/

264697060 Ongoing_verification_of _a_multiphysics_community_code_ FLASH

Resources for Trilinos testing:

Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

IDEAS

SC Tutorial, November 14, 2016 productivity

