Application of a new nanoporous sorbent for extraction and pre-concentration of lead and copper ions Vahid Zarezade¹, Azam Aliakbari², Moosa Es'haghi³, Mostafa M. Amini², Mohammad Behbahani^{4,*}, Fariborz Omidi⁵, Ghasem Hesam⁶ ¹ Behbahan Faculty of Medical Sciences, Behbahan, Iran ² Department of Chemistry, Shahid Beheshti University, Evin, Tehran, Iran ³ Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran ⁴ Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran ⁵ Department of Occupational Health Engineering, School of Public Health, Tehran ³ Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ⁶ Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran ## **Corresponding authors:** * Mohammad Behbahani. E-mail address: Mohammadbehbahani89@yahoo.com **Figure 1S.** The effect of sorption time in the retention of lead and copper ions by the synthesized sorbent. **Figure 2S.** The effect of sample volume on the recovery of target ions by the mesoporous sorbent. **Table 1S.** The effect of type, concentration, volume and time of the elution step on the extraction recovery of lead and copper ions. | Eluent | Concentration (mol L ⁻¹) | Desorption time (min) | Volume (mL) | R ^a % ±S ^b | | |-----------------------|--------------------------------------|-----------------------|-------------|----------------------------------|----------------| | | | | | Lead | Copper | | HNO ₃ | 2 | 10 | 5.0 | 86.0 ± 1.2 | 90.0 ± 1.4 | | HCl | 2 | 10 | 5.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | CH ₃ COOH | 2 | 10 | 5.0 | 41.0 ±2.1 | 52.0 ± 1.3 | | HNO ₃ :HCl | 1:1 | 10 | 5.0 | 81.0 ± 1.3 | 85.0 ± 1.4 | | HCl | 1.5 | 10 | 5.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 1 | 10 | 5.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 0.5 | 10 | 5.0 | 83.0 ± 1.4 | 85.0 ± 1.2 | | HCl | 0.25 | 10 | 5.0 | 70.0 ± 1.2 | 76.0 ± 1.4 | | HCl | 1 | 10 | 4.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 1 | 10 | 3.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 1 | 10 | 2.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 1 | 10 | 1.5 | 88.0 ± 1.2 | 79.0 ± 1.4 | | HCl | 1 | 5 | 2.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 1 | 3 | 2.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | | HCl | 1 | 2 | 2.0 | 99.0 ± 1.0 | 99.0 ± 1.0 | ^a Recovery ^b Standard deviation