Application of a new nanoporous sorbent for extraction and pre-concentration of lead and copper ions

Vahid Zarezade¹, Azam Aliakbari², Moosa Es'haghi³, Mostafa M. Amini², Mohammad Behbahani^{4,*}, Fariborz Omidi⁵, Ghasem Hesam⁶

¹ Behbahan Faculty of Medical Sciences, Behbahan, Iran

² Department of Chemistry, Shahid Beheshti University, Evin, Tehran, Iran

³ Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran

⁴ Research Center for Environmental Determinants of Health (RCEDH), Kermanshah

University of Medical Sciences, Kermanshah, Iran

⁵ Department of Occupational Health Engineering, School of Public Health, Tehran

³ Department of Occupational Health Engineering, School of Public Health, Tehran
University of Medical Sciences, Tehran, Iran

⁶ Department of Occupational Health Engineering, School of Public Health, Shahroud
University of Medical Sciences, Shahroud, Iran

Corresponding authors:

* Mohammad Behbahani. E-mail address: Mohammadbehbahani89@yahoo.com

Figure 1S. The effect of sorption time in the retention of lead and copper ions by the synthesized sorbent.

Figure 2S. The effect of sample volume on the recovery of target ions by the mesoporous sorbent.

Table 1S. The effect of type, concentration, volume and time of the elution step on the extraction recovery of lead and copper ions.

Eluent	Concentration (mol L ⁻¹)	Desorption time (min)	Volume (mL)	R ^a % ±S ^b	
				Lead	Copper
HNO ₃	2	10	5.0	86.0 ± 1.2	90.0 ± 1.4
HCl	2	10	5.0	99.0 ± 1.0	99.0 ± 1.0
CH ₃ COOH	2	10	5.0	41.0 ±2.1	52.0 ± 1.3
HNO ₃ :HCl	1:1	10	5.0	81.0 ± 1.3	85.0 ± 1.4
HCl	1.5	10	5.0	99.0 ± 1.0	99.0 ± 1.0
HCl	1	10	5.0	99.0 ± 1.0	99.0 ± 1.0
HCl	0.5	10	5.0	83.0 ± 1.4	85.0 ± 1.2
HCl	0.25	10	5.0	70.0 ± 1.2	76.0 ± 1.4
HCl	1	10	4.0	99.0 ± 1.0	99.0 ± 1.0
HCl	1	10	3.0	99.0 ± 1.0	99.0 ± 1.0
HCl	1	10	2.0	99.0 ± 1.0	99.0 ± 1.0
HCl	1	10	1.5	88.0 ± 1.2	79.0 ± 1.4
HCl	1	5	2.0	99.0 ± 1.0	99.0 ± 1.0
HCl	1	3	2.0	99.0 ± 1.0	99.0 ± 1.0
HCl	1	2	2.0	99.0 ± 1.0	99.0 ± 1.0

^a Recovery ^b Standard deviation