Supporting Information

Catalytic Acceptorless Dehydrogenation of Amines with Ru(P^R₂N^{R'}₂) and Ru(dppp) Complexes *James M. Stubbs, Richard J. Hazlehurst, Paul D. Boyle, and Johanna M. Blacquiere**

Department of Chemistry University of Western Ontario London, Ontario, Canada, N6A 5B7

Table of Contents	
I NMR Spectra	S2
II Catalysis Graphs	S 8
III Crystallographic Details	S15
IV IR Spectra	
V MALDI Mass Spectra	S26
VI References	S26

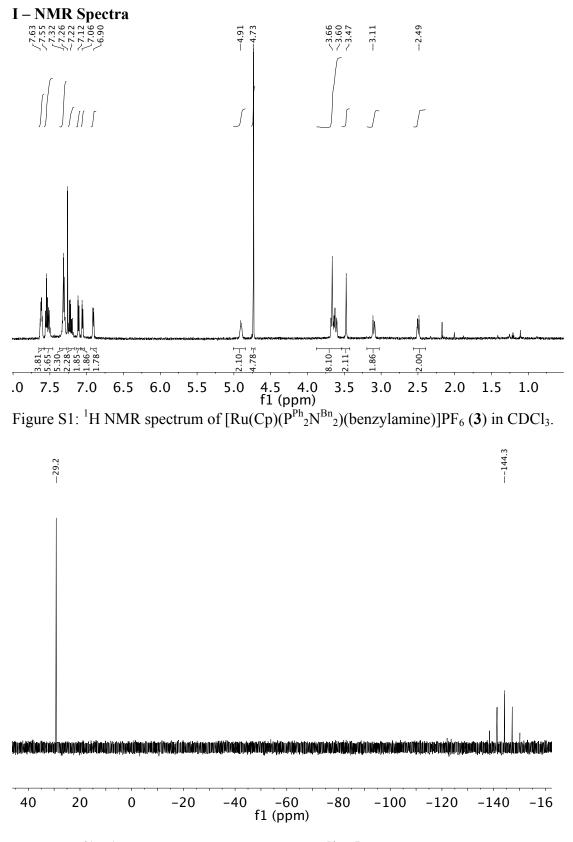
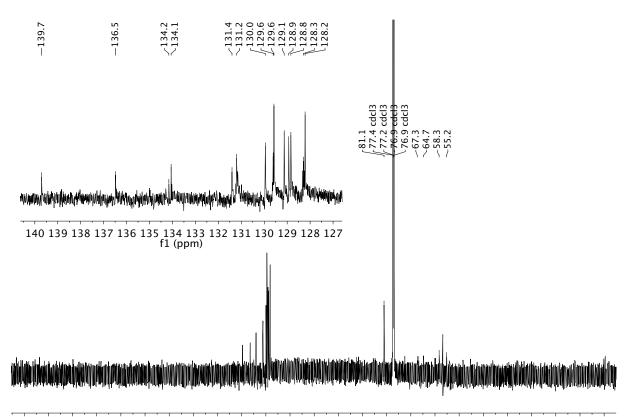



Figure S2: ${}^{31}P{}^{1}H$ NMR spectrum of [Ru(Cp)($P^{Ph}_2N^{Bn}_2$)(benzylamine)]PF₆ (**3**) in CDCl₃.

²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ^{Fi} ^(ppm) ^{Figure S3: ¹³C {¹H} (top) NMR spectrum of $[Ru(Cp)(P^{Ph}_{2}N^{Bn}_{2})(benzylamine)]PF_{6}$ (3) in CDCl₃. The inset displays a zoom-in of the aromatic carbon region.}

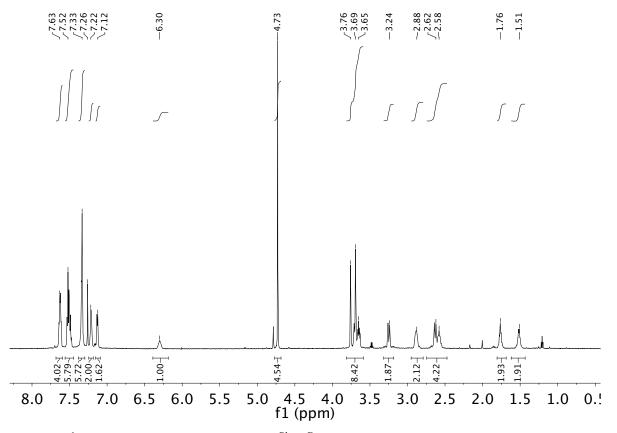
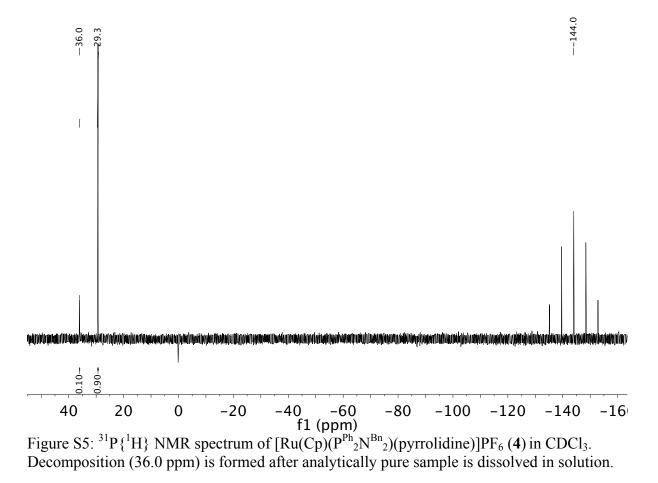



Figure S4: ¹H NMR spectrum of [Ru(Cp)(P^{Ph}₂N^{Bn}₂)(pyrrolidine)]PF₆ (4) in CDCl₃.

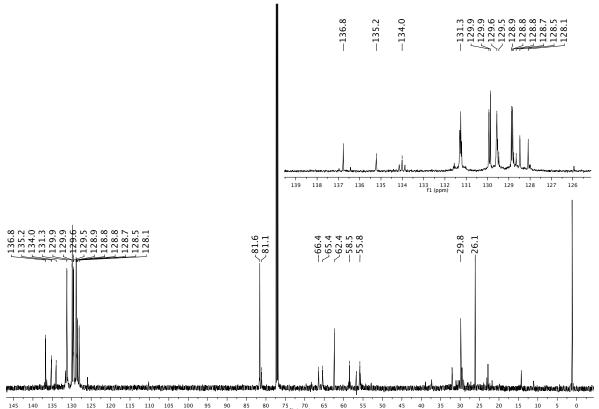


Figure S6: ¹³C {¹H} NMR spectrum of [Ru(Cp)($P^{Ph}_{2}N^{Bn}_{2}$)(pyrrolidine)]PF₆ (4) in CDCl₃. The inset is a zoom-in of the aromatic carbon region.

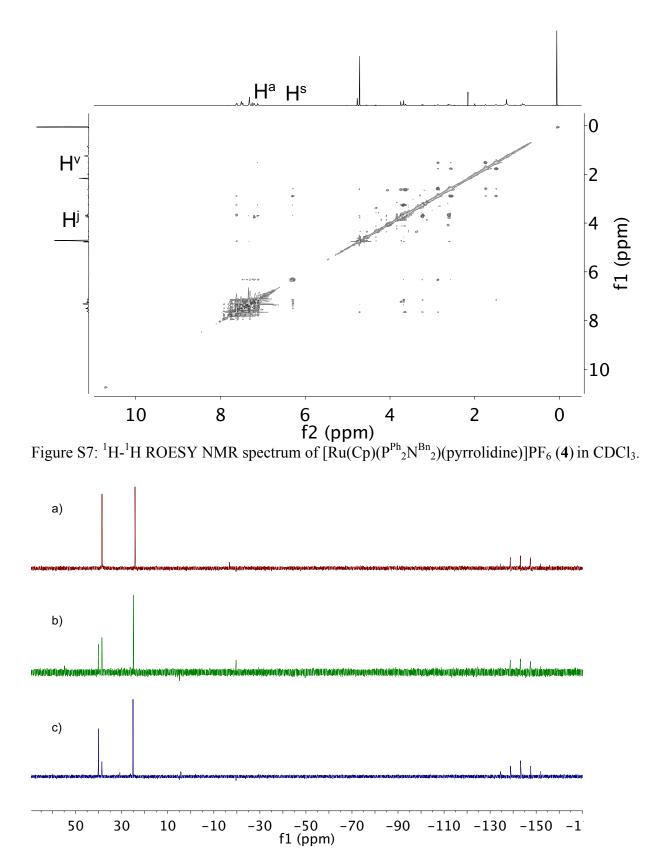


Figure S8: ${}^{31}P{}^{1}H$ NMR stacked spectra (proteo-THF) of a) [Ru(Cp)(dppp)(NCMe)]PF₆ (2) with O=PPh₃; and after addition of 5 eq. pyrrolidine at b) 4 h, 2 (38.6 ppm, 35%), 5 (40.1 ppm, 27%), missing (38%); and c) 21 h: 2 (38.6 ppm, 15%), 5 (40.1 ppm, 50%), missing (35%). Species at 40.1 ppm assigned to [Ru(Cp)(dppp)(pyrrolidine)]PF₆, 5, is not stable to isolation.

II – Catalysis Graphs

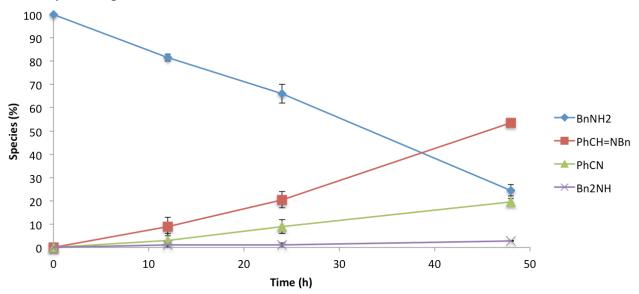


Figure S9. – Acceptorless dehydrogenation of benzylamine (250 mM) with 3 mol% 1 at 110 $^{\circ}$ C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

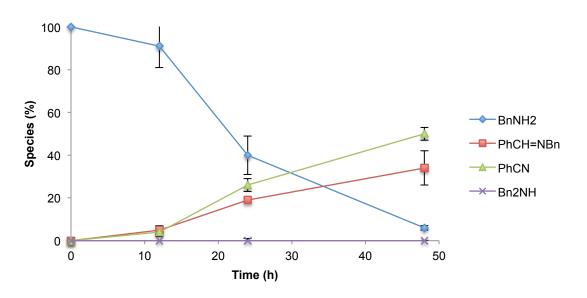


Figure S10. – Acceptorless dehydrogenation of benzylamine (250 mM) with 3 mol% 1 with 100 μ L of mercury at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

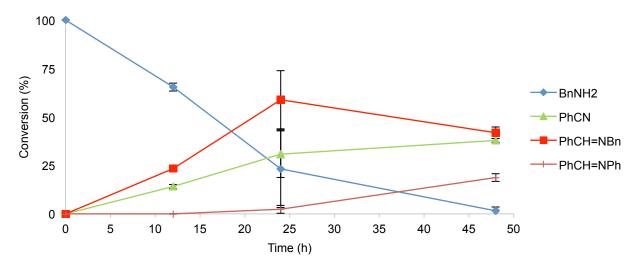


Figure S11. – Acceptorless dehydrogenation of benzylamine (250 mM) and aniline (250mM) with 3 mol% 1 at 110 $^{\circ}$ C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

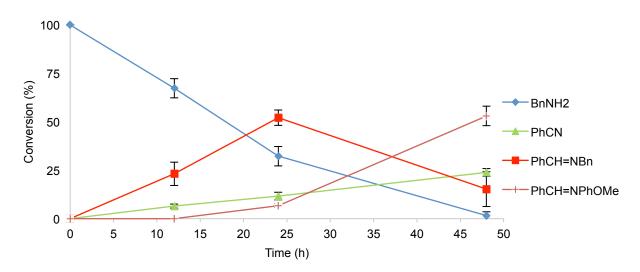


Figure S12. – Acceptorless dehydrogenation of benzylamine (250 mM) and p-anisidine (250 mM) with 3 mol% 1 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

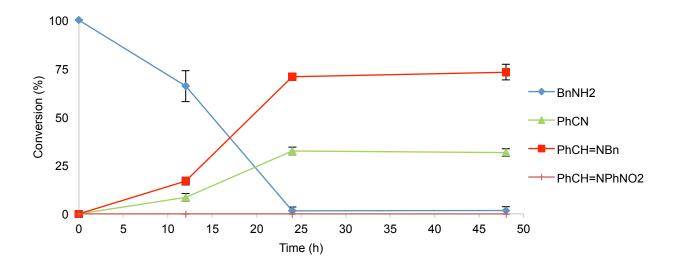


Figure S13. – Acceptorless dehydrogenation of benzylamine (250 mM) and p-nitroaniline (250 mM) with 3 mol% 1 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

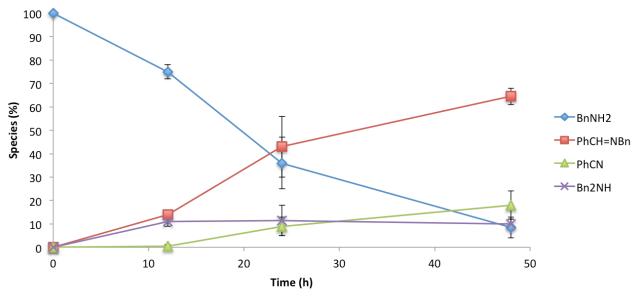


Figure S14. – Acceptorless dehydrogenation of benzylamine (250 mM) with 3 mol% 2 at 110 $^{\circ}$ C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

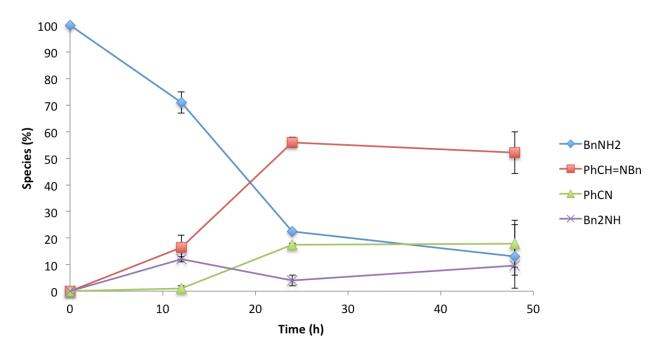


Figure S15. – Acceptorless dehydrogenation of benzylamine (250 mM) with 3 mol% 2 and 5 equiv. NEt₃ at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

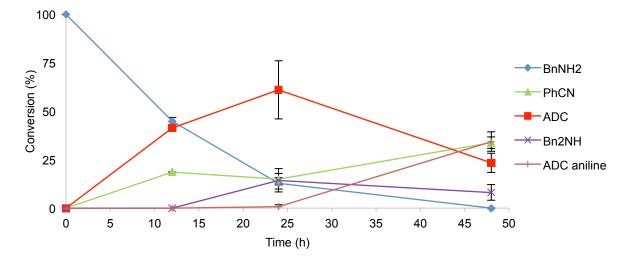


Figure S16. – Acceptorless dehydrogenation of benzylamine (250 mM) and aniline (250 mM) with 3 mol% 2 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

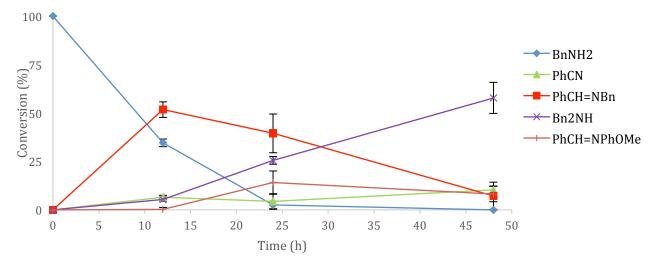


Figure S17. – Acceptorless dehydrogenation of benzylamine (250 mM) and p-anisidine (250 mM) with 3 mol% 2 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

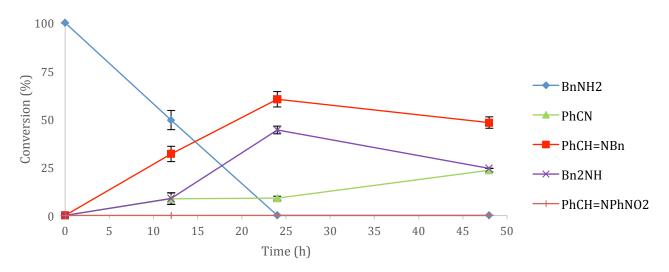


Figure S18. – Acceptorless dehydrogenation of benzylamine (250 mM) and p-nitroaniline (250 mM) with 3 mol% 2 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

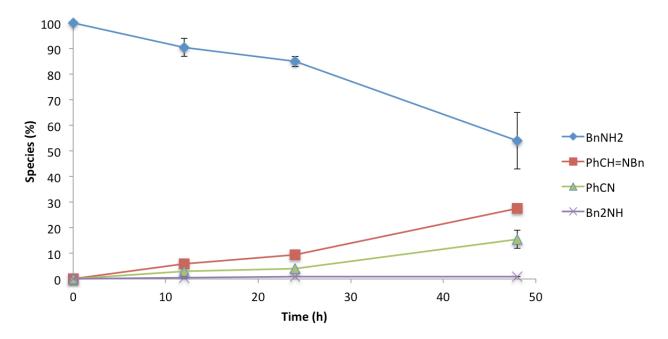


Figure S19. – Acceptorless dehydrogenation of benzylamine (250 mM) with 3 mol% 3 at 110 $^{\circ}$ C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

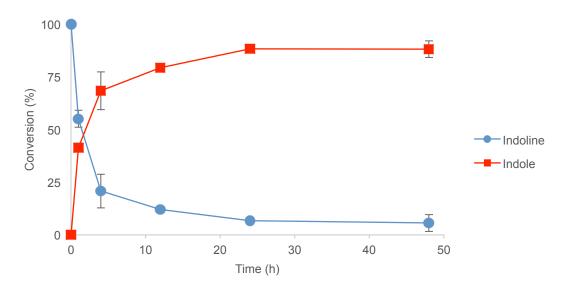


Figure S20. – Acceptorless dehydrogenation of indoline (250 mM) with 3 mol% 1 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

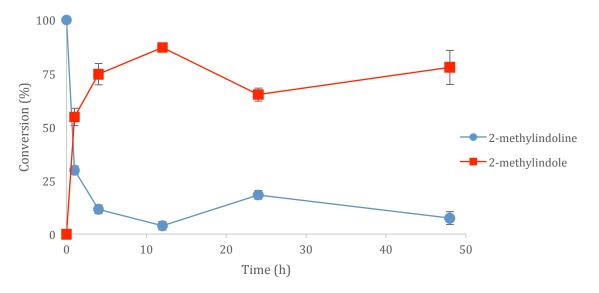


Figure S21. – Acceptorless dehydrogenation of 2-methylindoline (250 mM) with 3 mol% 1 at 110 $^{\circ}$ C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

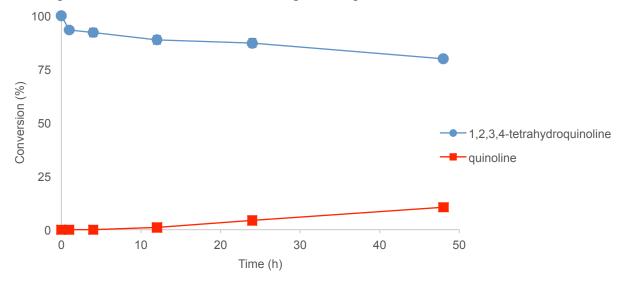


Figure S22. – Acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline (250 mM) with 3 mol% 1 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

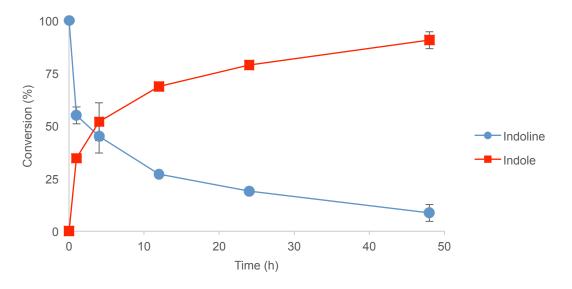


Figure S23. – Acceptorless dehydrogenation of indoline (250 mM) with 3 mol% 2 at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

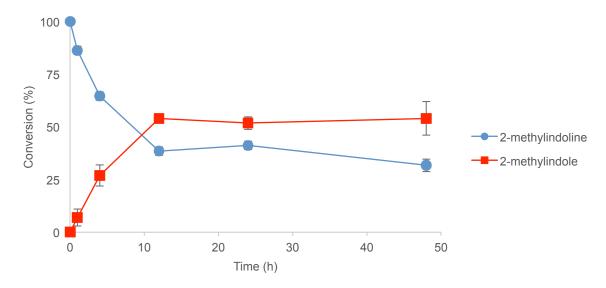


Figure S24. – Acceptorless dehydrogenation of 2-methylindoline (250 mM) with 3 mol% 2 at 110 $^{\circ}$ C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

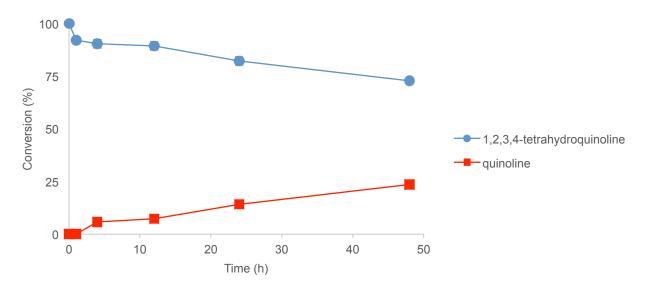


Figure S25. – Acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline (250 mM) with 3 mol% **2** at 110 °C in anisole monitored over 48 h. Amounts were determined by GC-FID by area count of calibrated signals relative to an internal standard. Reactions were conducted in duplicate. Data points represent the average of the two runs and the error bars give the span of the conversion values of each data set.

III - Crystallographic Details

Experimental for C₃₉H₄₆F₆N₃P₃Ru (4), CCDC 1545183

Data Collection and Processing. The sample was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 9960 reflections with $5.16^{\circ} < 2q < 51.32^{\circ}$. The data collection strategy was a number of w and j scans which collected data up to 51.722° (2q). The frame integration was performed using SAINT.¹ The resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.²

Structure Solution and Refinement. The structure was solved by using a dual space methodology using the SHELXT program.³ All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom. The structural model was fit to the data using full matrix least-squares based on F^2 . The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the SHELXL-2014 program from the SHELX suite of crystallographic software.⁴ Graphic plots were produced using the NRCVAX program suite.⁵

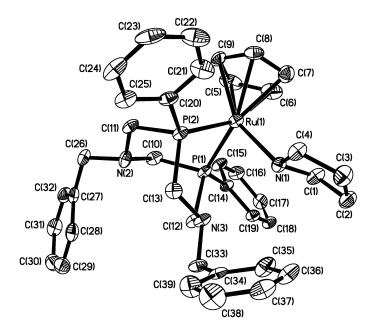


Figure S26. ORTEP drawing of 4 showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity. PF_6 counter-ion was omitted for clarity.

Formula	$C_{39}H_{46}F_6N_3P_3Ru$
CCDC	1545183
Formula Weight (g/mol)	864.77
Crystal Dimensions (mm)	$0.165\times0.069\times0.037$
Crystal Color and Habit	yellow plate
Crystal System	monoclinic
Space Group	P 2 ₁ /n
Temperature, K	110
<i>a</i> , Å	10.564(3)
<i>b</i> , Å	23.741(9)
<i>c</i> , Å	15.120(6)
α,°	90
β,°	90.179(13)
γ,°	90
V, Å ³	3792(2)
Number of reflections to determine final unit cell	9960
Min and Max 20 for cell determination, °	5.16, 51.32
Z	4
F(000)	1776
ρ (g/cm)	1.515
λ, Å, (MoKα)	0.71073
μ , (cm ⁻¹)	0.603
Diffractometer Type	Bruker Kappa Axis Apex2
Scan Type(s)	ϕ and ω scans
Max 2θ for data collection, °	51.722
Measured fraction of data	0.998
Number of reflections measured	63314
Unique reflections measured	7239
R _{merge}	0.1119
Number of reflections included in refinement	7239
Cut off Threshold Expression	$I > 2\sigma(I)$
Structure refined using	full matrix least-squares using F ²
Weighting Scheme	w=1/[σ^2 (Fo ²)+(0.0841P) ² +5.2475P] where P=(Fo ² +2Fc ²)/3

Table S1. Summary of Crystal Data for 4

Number of parameters in least-squares	469
R ₁	0.0653
wR_2	0.1478
R_1 (all data)	0.1124
wR ₂ (all data)	0.1718
GOF	1.056
Maximum shift/error	0.001
Min & Max peak heights on final ΔF Map ($e^{-1/4}$)	-1.363, 2.418

Where:

 $R_{1} = \Sigma (|F_{o}| - |F_{c}|) / \Sigma F_{o}$ wR₂ = [$\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma (wF_{o}^{4})]^{\frac{1}{2}}$ GOF = [$\Sigma (w(F_{o}^{2} - F_{c}^{2})^{2}) / (No. of reflus. - No. of params.)]^{\frac{1}{2}}$

Table S2. Bond Lengths for 4

Ru1-N1	2.163(4)	C15-C16	1.366(8)
Ru1-C5	2.190(6)	С15-Н15	0.9500
Ru1-C9	2.201(6)	C16-C17	1.388(8)
Ru1-C6	2.238(6)	C16-H16	0.9500
Ru1-C8	2.252(6)	C17-C18	1.379(8)
Ru1-C7	2.253(7)	C17-H17	0.9500
Ru1-P1	2.2564(17)	C18-C19	1.385(8)
Ru1-P2	2.2646(17)	C18-H18	0.9500
P1-C14	1.809(6)	С19-Н19	0.9500
P1-C10	1.839(6)	C20-C21	1.379(9)
P1-C12	1.861(5)	C20-C25	1.382(8)
P2-C20	1.841(6)	C21-C22	1.387(9)
P2-C13	1.854(6)	C21-H21	0.9500
P2-C11	1.855(6)	C22-C23	1.377(10)
N1-C1	1.475(8)	C22-H22	0.9500
N1-C4	1.493(7)	C23-C24	1.387(10)
N1-H1	1.0000	С23-Н23	0.9500
N2-C11	1.453(7)	C24-C25	1.390(8)
N2-C10	1.455(7)	C24-H24	0.9500
N2-C26	1.482(7)	С25-Н25	0.9500
N3-C13	1.461(7)	C26-C27	1.491(8)
N3-C12	1.483(7)	C26-H26A	0.9900

N3-C33	1.484(7)	C26-H26B	0.9900
C1-C2	1.523(8)	C27-C32	1.392(8)
C1-H1A	0.9900	C27-C28	1.403(8)
C1-H1B	0.9900	C28-C29	1.366(9)
C2-C3	1.536(9)	C28-H28	0.9500
C2-H2A	0.9900	C29-C30	1.389(9)
C2-H2B	0.9900	С29-Н29	0.9500
C3-C4	1.534(8)	C30-C31	1.389(9)
СЗ-НЗА	0.9900	С30-Н30	0.9500
С3-Н3В	0.9900	C31-C32	1.384(9)
C4-H4A	0.9900	С31-Н31	0.9500
C4-H4B	0.9900	С32-Н32	0.9500
C5-C9	1.408(9)	C33-C34	1.509(7)
C5-C6	1.422(10)	С33-Н33А	0.9900
С5-Н5	0.9500	С33-Н33В	0.9900
C6-C7	1.388(9)	C34-C35	1.380(9)
С6-Н6	0.9500	C34-C39	1.385(8)
C7-C8	1.388(9)	C35-C36	1.405(8)
С7-Н7	0.9500	С35-Н35	0.9500
C8-C9	1.439(9)	C36-C37	1.361(9)
С8-Н8	0.9500	С36-Н36	0.9500
С9-Н9	0.9500	C37-C38	1.358(10)
C10-H10A	0.9900	С37-Н37	0.9500
C10-H10B	0.9900	C38-C39	1.401(9)
C11-H11A	0.9900	С38-Н38	0.9500
C11-H11B	0.9900	С39-Н39	0.9500
C12-H12A	0.9900	P3-F4	1.581(4)
C12-H12B	0.9900	P3-F1	1.595(4)
C13-H13A	0.9900	P3-F2	1.596(4)
C13-H13B	0.9900	P3-F5	1.597(4)
C14-C19	1.391(7)	P3-F6	1.600(4)
C14-C15	1.418(7)	P3-F3	1.608(4)

N1-Ru1-C5	143.4(2)	N2-C11-H11B	109.2
N1-Ru1-C9	151.0(2)	P2-C11-H11B	109.2
C5-Ru1-C9	37.4(3)	H11A-C11-H11B	107.9
N1-Ru1-C6	106.7(2)	N3-C12-P1	112.8(4)
C5-Ru1-C6	37.4(3)	N3-C12-H12A	109.0
C9-Ru1-C6	62.2(3)	P1-C12-H12A	109.0
N1-Ru1-C8	113.4(2)	N3-C12-H12B	109.0
C5-Ru1-C8	62.1(2)	P1-C12-H12B	109.0
C9-Ru1-C8	37.7(2)	H12A-C12-H12B	107.8
C6-Ru1-C8	60.9(2)	N3-C13-P2	113.6(4)
N1-Ru1-C7	93.4(2)	N3-C13-H13A	108.8
C5-Ru1-C7	61.3(2)	Р2-С13-Н13А	108.8
C9-Ru1-C7	61.4(2)	N3-C13-H13B	108.8
C6-Ru1-C7	36.0(2)	P2-C13-H13B	108.8
C8-Ru1-C7	35.9(2)	H13A-C13-H13B	107.7
N1-Ru1-P1	91.91(13)	C19-C14-C15	117.6(5)
C5-Ru1-P1	92.29(18)	C19-C14-P1	122.0(4)
C9-Ru1-P1	116.38(19)	C15-C14-P1	120.2(4)
C6-Ru1-P1	104.37(18)	C16-C15-C14	120.7(5)
C8-Ru1-P1	153.10(15)	С16-С15-Н15	119.6
C7-Ru1-P1	139.37(18)	С14-С15-Н15	119.6
N1-Ru1-P2	93.76(13)	C15-C16-C17	120.7(5)
C5-Ru1-P2	122.7(2)	С15-С16-Н16	119.7
C9-Ru1-P2	97.43(18)	С17-С16-Н16	119.7
C6-Ru1-P2	158.98(19)	C18-C17-C16	119.7(5)
C8-Ru1-P2	106.71(17)	С18-С17-Н17	120.2
C7-Ru1-P2	140.25(18)	С16-С17-Н17	120.2
P1-Ru1-P2	79.32(6)	C17-C18-C19	120.1(5)
C14-P1-C10	103.3(3)	С17-С18-Н18	120.0
C14-P1-C12	105.5(3)	С19-С18-Н18	120.0
C10-P1-C12	100.0(3)	C18-C19-C14	121.2(5)
C14-P1-Ru1	116.7(2)	С18-С19-Н19	119.4
C10-P1-Ru1	112.2(2)	С14-С19-Н19	119.4
C12-P1-Ru1	117.07(18)	C21-C20-C25	119.0(6)
C20-P2-C13	103.5(2)	C21-C20-P2	119.3(5)

C20-P2-C11	100.5(3)	C25-C20-P2	121.7(5)
C13-P2-C11	100.7(3)	C20-C21-C22	121.5(7)
C20-P2-Ru1	121.6(2)	C20-C21-H21	119.3
C13-P2-Ru1	116.37(19)	С22-С21-Н21	119.3
C11-P2-Ru1	111.21(19)	C23-C22-C21	119.2(7)
C1-N1-C4	104.7(4)	С23-С22-Н22	120.4
C1-N1-Ru1	116.7(3)	С21-С22-Н22	120.4
C4-N1-Ru1	115.8(3)	C22-C23-C24	120.1(6)
C1-N1-H1	106.3	С22-С23-Н23	120.0
C4-N1-H1	106.3	С24-С23-Н23	120.0
Ru1-N1-H1	106.3	C23-C24-C25	120.1(6)
C11-N2-C10	114.2(5)	С23-С24-Н24	120.0
C11-N2-C26	110.1(4)	С25-С24-Н24	120.0
C10-N2-C26	110.0(4)	C20-C25-C24	120.2(6)
C13-N3-C12	114.1(4)	С20-С25-Н25	119.9
C13-N3-C33	109.6(4)	С24-С25-Н25	119.9
C12-N3-C33	108.6(4)	N2-C26-C27	112.0(5)
N1-C1-C2	105.6(5)	N2-C26-H26A	109.2
N1-C1-H1A	110.6	С27-С26-Н26А	109.2
С2-С1-Н1А	110.6	N2-C26-H26B	109.2
N1-C1-H1B	110.6	С27-С26-Н26В	109.2
С2-С1-Н1В	110.6	H26A-C26-H26B	107.9
H1A-C1-H1B	108.8	C32-C27-C28	117.7(6)
C1-C2-C3	103.2(5)	C32-C27-C26	121.8(5)
С1-С2-Н2А	111.1	C28-C27-C26	120.5(5)
С3-С2-Н2А	111.1	C29-C28-C27	120.6(6)
С1-С2-Н2В	111.1	С29-С28-Н28	119.7
С3-С2-Н2В	111.1	С27-С28-Н28	119.7
Н2А-С2-Н2В	109.1	C28-C29-C30	121.3(6)
C4-C3-C2	105.7(5)	С28-С29-Н29	119.4
С4-С3-НЗА	110.6	С30-С29-Н29	119.4
С2-С3-НЗА	110.6	C31-C30-C29	119.1(7)
С4-С3-Н3В	110.6	С31-С30-Н30	120.5
С2-С3-Н3В	110.6	С29-С30-Н30	120.5
НЗА-СЗ-НЗВ	108.7	C32-C31-C30	119.6(6)
N1-C4-C3	107.0(5)	С32-С31-Н31	120.2

N1-C4-H4A	110.3	С30-С31-Н31	120.2
С3-С4-Н4А	110.3	C31-C32-C27	121.8(6)
N1-C4-H4B	110.3	С31-С32-Н32	119.1
С3-С4-Н4В	110.3	С27-С32-Н32	119.1
Н4А-С4-Н4В	108.6	N3-C33-C34	112.5(5)
C9-C5-C6	108.1(6)	N3-C33-H33A	109.1
C9-C5-Ru1	71.7(3)	С34-С33-Н33А	109.1
C6-C5-Ru1	73.1(3)	N3-C33-H33B	109.1
С9-С5-Н5	125.9	С34-С33-Н33В	109.1
С6-С5-Н5	125.9	H33A-C33-H33B	107.8
Ru1-C5-H5	121.0	C35-C34-C39	118.6(5)
C7-C6-C5	107.4(6)	C35-C34-C33	119.6(5)
C7-C6-Ru1	72.6(4)	C39-C34-C33	121.8(6)
C5-C6-Ru1	69.5(3)	C34-C35-C36	120.3(6)
С7-С6-Н6	126.3	С34-С35-Н35	119.8
С5-С6-Н6	126.3	С36-С35-Н35	119.8
Ru1-C6-H6	123.3	C37-C36-C35	120.6(6)
C8-C7-C6	110.2(6)	С37-С36-Н36	119.7
C8-C7-Ru1	72.0(4)	С35-С36-Н36	119.7
C6-C7-Ru1	71.4(4)	C38-C37-C36	119.5(6)
С8-С7-Н7	124.9	С38-С37-Н37	120.3
С6-С7-Н7	124.9	С36-С37-Н37	120.3
Ru1-C7-H7	123.2	C37-C38-C39	121.0(6)
С7-С8-С9	107.2(6)	С37-С38-Н38	119.5
C7-C8-Ru1	72.1(4)	С39-С38-Н38	119.5
C9-C8-Ru1	69.2(3)	C34-C39-C38	119.9(6)
С7-С8-Н8	126.4	С34-С39-Н39	120.1
С9-С8-Н8	126.4	С38-С39-Н39	120.1
Ru1-C8-H8	123.9	F4-P3-F1	91.1(3)
С5-С9-С8	107.2(6)	F4-P3-F2	179.9(3)
C5-C9-Ru1	70.9(3)	F1-P3-F2	89.0(2)
C8-C9-Ru1	73.1(3)	F4-P3-F5	91.0(2)
С5-С9-Н9	126.4	F1-P3-F5	90.1(2)
С8-С9-Н9	126.4	F2-P3-F5	88.8(2)
Ru1-C9-H9	121.4	F4-P3-F6	89.7(2)
N2-C10-P1	110.3(3)	F1-P3-F6	90.1(2)

N2-C10-H10A	109.6	F2-P3-F6	90.4(2)
P1-C10-H10A	109.6	F5-P3-F6	179.2(2)
N2-C10-H10B	109.6	F4-P3-F3	91.0(3)
P1-C10-H10B	109.6	F1-P3-F3	177.7(3)
H10A-C10-H10B	108.1	F2-P3-F3	88.9(2)
N2-C11-P2	112.2(4)	F5-P3-F3	90.8(2)
N2-C11-H11A	109.2	F6-P3-F3	89.0(2)
P2-C11-H11A	109.2		

C4-N1-C1-C2	37.3(6)	Ru1-P1-C14-C15	-82.7(5)
Ru1-N1-C1-C2	166.8(4)	C19-C14-C15-C16	-0.2(9)
N1-C1-C2-C3	-34.9(6)	P1-C14-C15-C16	175.9(5)
C1-C2-C3-C4	18.9(7)	C14-C15-C16-C17	1.3(9)
C1-N1-C4-C3	-24.7(6)	C15-C16-C17-C18	-2.1(9)
Ru1-N1-C4-C3	-154.8(4)	C16-C17-C18-C19	1.9(9)
C2-C3-C4-N1	3.0(7)	C17-C18-C19-C14	-0.9(9)
C9-C5-C6-C7	0.5(7)	C15-C14-C19-C18	0.0(9)
Ru1-C5-C6-C7	-63.1(4)	P1-C14-C19-C18	-176.0(4)
C9-C5-C6-Ru1	63.6(4)	C13-P2-C20-C21	119.0(5)
C5-C6-C7-C8	-0.9(7)	C11-P2-C20-C21	-137.2(5)
Ru1-C6-C7-C8	-62.0(4)	Ru1-P2-C20-C21	-14.1(5)
C5-C6-C7-Ru1	61.1(4)	C13-P2-C20-C25	-60.7(5)
C6-C7-C8-C9	0.9(7)	C11-P2-C20-C25	43.1(5)
Ru1-C7-C8-C9	-60.7(4)	Ru1-P2-C20-C25	166.2(4)
C6-C7-C8-Ru1	61.6(4)	C25-C20-C21-C22	-1.3(9)
C6-C5-C9-C8	0.1(7)	P2-C20-C21-C22	179.0(5)
Ru1-C5-C9-C8	64.6(4)	C20-C21-C22-C23	0.0(10)
C6-C5-C9-Ru1	-64.5(4)	C21-C22-C23-C24	1.1(10)
С7-С8-С9-С5	-0.6(7)	C22-C23-C24-C25	-1.0(9)
Ru1-C8-C9-C5	-63.1(4)	C21-C20-C25-C24	1.4(8)
C7-C8-C9-Ru1	62.5(4)	P2-C20-C25-C24	-178.9(4)
C11-N2-C10-P1	68.7(5)	C23-C24-C25-C20	-0.3(8)
C26-N2-C10-P1	-167.0(4)	C11-N2-C26-C27	-161.1(5)
C14-P1-C10-N2	159.4(4)	C10-N2-C26-C27	72.3(6)
C12-P1-C10-N2	50.8(4)	N2-C26-C27-C32	-122.4(6)
Ru1-P1-C10-N2	-74.1(4)	N2-C26-C27-C28	59.3(7)
C10-N2-C11-P2	-68.6(5)	C32-C27-C28-C29	0.4(9)
C26-N2-C11-P2	167.1(4)	C26-C27-C28-C29	178.7(6)
C20-P2-C11-N2	-158.3(4)	C27-C28-C29-C30	-1.1(10)
C13-P2-C11-N2	-52.2(4)	C28-C29-C30-C31	0.4(10)
Ru1-P2-C11-N2	71.7(4)	C29-C30-C31-C32	1.0(10)
C13-N3-C12-P1	65.0(5)	C30-C31-C32-C27	-1.8(10)
C33-N3-C12-P1	-172.4(4)	C28-C27-C32-C31	1.0(9)
C14-P1-C12-N3	139.5(4)	C26-C27-C32-C31	-177.3(6)

C10-P1-C12-N3	-113.6(4)	C13-N3-C33-C34	-69.2(6)
Ru1-P1-C12-N3	7.8(5)	C12-N3-C33-C34	165.5(5)
C12-N3-C13-P2	-62.9(6)	N3-C33-C34-C35	-63.5(7)
C33-N3-C13-P2	175.0(4)	N3-C33-C34-C39	115.5(6)
C20-P2-C13-N3	-147.6(4)	C39-C34-C35-C36	0.6(9)
C11-P2-C13-N3	108.8(4)	C33-C34-C35-C36	179.7(5)
Ru1-P2-C13-N3	-11.6(5)	C34-C35-C36-C37	1.5(9)
C10-P1-C14-C19	-143.2(5)	C35-C36-C37-C38	-0.8(10)
C12-P1-C14-C19	-38.7(6)	C36-C37-C38-C39	-2.0(11)
Ru1-P1-C14-C19	93.2(5)	C35-C34-C39-C38	-3.3(9)
C10-P1-C14-C15	40.9(5)	C33-C34-C39-C38	177.6(6)
C12-P1-C14-C15	145.4(5)	C37-C38-C39-C34	4.1(11)

Table S5. Potential Hydrogen Bonds for 4

Hydrogen Bond	D—H (Å)	H…A (Å)	D…A (Å)	D—H…A (°)
N1-H1…N3	1.00	2.06	2.953(7)	147.6
$C12-H12B\cdots F1^1$	0.99	2.56	3.356(7)	137.5
$C15-H15\cdots F6^2$	0.95	2.51	3.454(7)	171.2
$C19-H19\cdots F1^1$	0.95	2.47	3.420(6)	175.8
C19-H19 \cdots F2 ¹	0.95	2.61	3.254(6)	125.0
$C25-H25\cdots F5^3$	0.95	2.62	3.566(8)	175.4
C33-H33A \cdots F1 ¹	0.99	2.50	3.269(7)	134.7

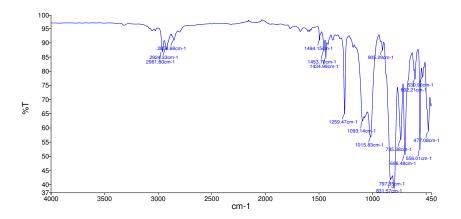


Figure S27. A solid IR spectrum of complex **3** collected with a PerkinElmer UATR Two FT-IR Spectrum Two

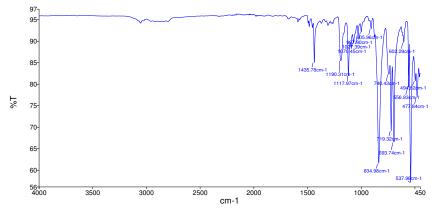


Figure S28. A solid IR spectrum of complex **4** collected with a PerkinElmer UATR Two FT-IR Spectrum Two

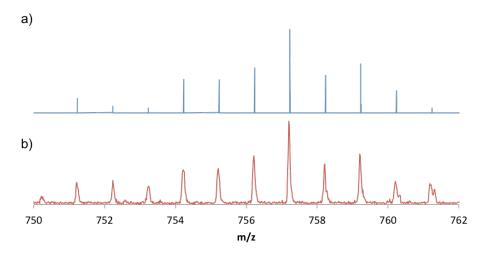


Figure S29. a) Simulation⁶ of the mass spectrometry signal for $[\mathbf{3} - PF_6 + H)]^+$. b) Zoom-in of MALDI-TOF mass spectrometry analysis of **3** with pyrene as the matrix.

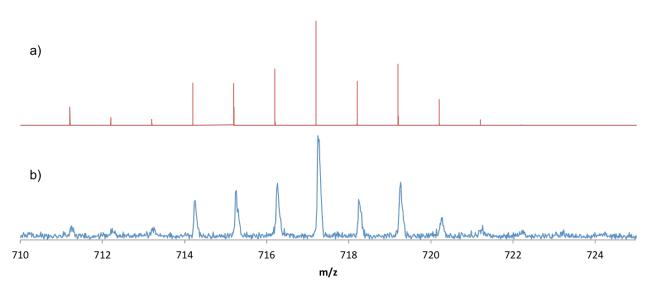


Figure S30. a) Simulation⁶ of the mass spectrometry analysis for $[4 - PF_6 - 3H]^{+}$. b) Zoom-in of MALDI-TOF mass spectrometry analysis of 4 with anthracene as the matrix.

VI – References

- 1. Bruker-Nonius; SAINT; version; 2012.12, 2012, Bruker-Nonius, Madison, WI 53711, USA
- 2. Bruker-Nonius; SADABS; version; 2012.1, 2012, Bruker-Nonius, Madison, WI 53711, USA.
- 3. Sheldrick, G., *Acta Crystallogr. Sect. A* **2015**, *A71*, 3-8.
- 4. Sheldrick, G., Acta Crystallogr. Sect. C 2015, C71, 3-8.
- 5. Gabe, E. J.; Le Page, Y.; Charland, J. P.; Lee, F. L.; White, P. S., *J. Appl. Crystallogr.* 1989, 22, 384-387.
- 6. Patiny, L.; Borel, A., J. Chem. Inf. Model. 2013, 53, 1223-1228.