Supporting information

Detecting Elusive Intermediates in Carbohydrate Conversion:

A Dynamic Ensemble of Acyclic Glucose-Catalyst Complexes

Sebastian Meier, 1* Magnus Karlsson, 2 and Pernille Rose Jensen 2*

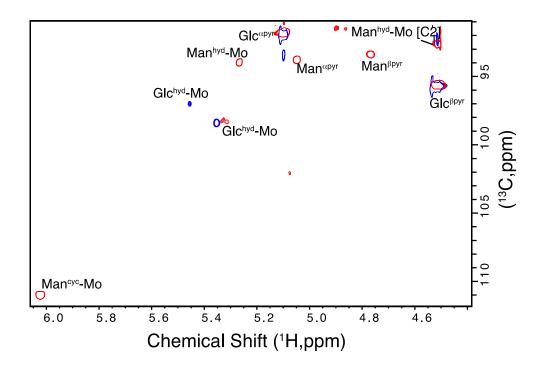
¹Department of Chemistry, Technical University of Denmark, Kemitorvet Builing 207, 2800 Kgs. Lyngby, Denmark

S.Meier: semei@kemi.dtu.dk P.R.Jensen: peroje@elektro.dtu.dk.

SI Contents (4 pages, 3 figures, 1 table)

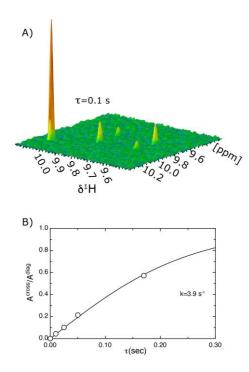
Assignment of molybdate-glucose and molybdate-mannose complexes (Fig S1): S2

Exchange NMR spectroscopy of molybdate-glucose complexes (Fig S2): S3

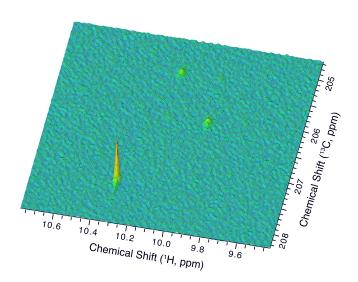

HSQC NMR spectroscopy of acylic glucose species (Fig S3): S4

Kinetic fit: Coefficients of determination (Table S1): S4

²Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads Building 349, 2800 Kgs. Lyngby, Denmark


^{*}Corresponding authors:

Assignment of molybdate-glucose and molybdate-mannose complexes.


Figure S1. Assignments of 40 mg carbohydrate forms in the presence of 40 mg/ml molybdate by ¹H-¹³C HSQC spectroscopy of the anomeric spectral region. Reaction progress at 323 K and pH 5.5 is followed 8 hours (red) after acquisition of the spectrum displayed in blue.

Exchange NMR spectroscopy of molybdate-glucose complexes.

Figure S2. A) The exchange spectrum for a sample of 40 mg/ml glucose and 40 mg/ml molybdate with a mixing time of 100 ms at 313 K and pH 5.5 shows that two species of non-hydrated aldehyde complexes are in exchange with each other on the NMR timescale under these conditions. A third aldehyde species is in slower exchange on this time scale under these conditions. B). The exchange rate between the two species is determined to 3.9 s⁻¹.

HSQC NMR spectroscopy of acylic glucose species.

Figure S3. The aldehyde region of a HSQC spectrum of a stabilized sample of [1-¹³C] glucose (40 mg, pH 5.5, 313 K) in the presence of 40 mg/ml molybdate, showing the presence of three different major acyclic aldehyde forms.

Kinetic fit: Coefficients of determination

Table S1. Individual coefficients of determination (R²) for the kinetic fits of the obtained data to coupled differential equations described in the data analysis section.

R^2	Substrate	Intermediates (I)	Products (P)
pH=3.3	0.99	0.91	0.98
pH=5.5	0.99	0.90	0.97