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1. SINGLE PIXEL RETRODICTION INCLUDING DARK
COUNTS

Any real photon detection device will suffer from dark counts,
thermal fluctuations in the photon detectors causing erroneous
detection signals. These can be modelled as an additional inde-
pendent Poisson processes such that the number of dark counts d
is distributed as p(d|δ) = Pois(d; δ) where δ is the average dark-
count rate. If we knew that we had n photons and d dark counts,
the probability for m detection events would be

p(m|n, d, δ) = p(m− d|n)Pois(d; δ), (S1)

where p(m− d|n), the probability to get m− d counts given the
presence of n photons, is the binomial distribution shown in
Eq. (1).

A. Intensity retrodiction

As we know neither the original number of photons n nor the
number of dark counts d we find

p(m|λ, δ) =
m

∑
d=0

Pois(d; δ)
∞

∑
n=m−d

p(m− d|n)Pois(n; λ)

= Pois(m; δ + ηλ). (S2)

This is simply the convenient result that the sum of two inde-
pendent Poisson distributed variables again follows a Poisson
distribution.

If the images show on average m > δ counts per pixel we
expect the true intensity λ approximately at (m− δ)/η which
gives us a prior p(λ|m, δ) ' exp(−ηλ/(m− δ)). To calculate

p(λ|m, m, δ) we need

p(m|λ, δ)p(λ|m, δ) =
m

∑
k=0

Pois(m− k; δ)Geom(k; m− δ)

×Gam
(

λ; k + 1, [η(1 + 1/(m− δ))]−1
)

(S3)

and p(m|m, δ) =
∫ ∞

0 p(m|λ, δ)p(λ|m, δ)dλ, that is

p(m|m, δ) =
m

∑
k=0

Pois(m− k; δ)Geom(k; m− δ). (S4)

Using the known expectation values of the gamma distribution
we get immediately

E(λ|m, m, δ) =
1

p(m|m, δ)

m

∑
k=0

Pois(m− k; δ)Geom(k; m− k)

× k + 1
η(1 + 1/(m− δ))

. (S5)

The sums appearing above can be condensed into incomplete
gamma functions, but the current form of the expressions is far
more intuitive: For instance, the probability to measure m counts
in Eq. (S4) is a result of combining m − k Poisson distributed
dark-counts with k events from the geometric distribution with
mean m− δ corresponding to “true” photodetections, see also
Eq. (5).

The effect of increasing values of δ on the probability distri-
bution for λ is shown in figure S1.
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Fig. S1. Illustration of the change in single-pixel intensity dis-
tribution p(λ|m, m, δ) for an increasing dark-count rate δ as
given in Eq. (S3) for m = 0 (green lines) and m = 2 (red lines).
With an average count-rate m = 2 and η = 0.2 the solid lines
show the case without dark-counts, δ = 0, the dashed lines are
for δ = 0.1 and the dash-dotted lines are for δ = 1.5.

B. Transmission retrodiction

Just as above we can derive the probabilities for the transmission
coefficients τ given that we measured m and that the incoming
photons follow a Poisson distribution of mean value ν such that
p(n|τ, ν) = Pois(n; τν). Then the equivalent to Eq. (S2) from
intensity retrodiction is p(m|τ, ν, δ) = Pois(m; την + δ) such
that the probability distribution for the transmission parameter τ
reads

p(τ|m, ν, δ) =
ην(δ + ητν)me−(δ+ητν)

Γ(m + 1, δ + ην)− Γ(m + 1, δ)
(S6)

with a mean value

E(τ|m, ν, δ) =
1

ην

Γ(m + 2, δ + ην)− Γ(m + 2, δ)

Γ(m + 1, δ + ην)− Γ(m + 1, δ)
− δ

ην
. (S7)

2. MIXED RETRODICTION INCLUDING DARK-COUNTS

In section 3 we discussed the probability distribution for a sit-
uation where we a priori assume that there is a chance W that
the intensity λ was responsible for a measurement m, cf. Eq. (14).
Adding an average dark-count rate δ gives

p(m|λ, λ′, W, δ) = Pois(m; ηWλ + η(1−W)λ′ + δ). (S8)

Using the exponential prior p(λ′|m, δ) ∼ exp
(
− ηλ′/(m− δ)

)
we find

p(m|λ, W, m, δ) =

=
m

∑
k=0

Geom (m− k; (m− δ)(1−W))Pois(k; δ + ηWλ), (S9)

which is the equivalent to Eq. (15). Similarly we have
p(λ|m, W, m, δ) ∼ p(m|λ, W, m, δ)p(λ|m, δ),

p(λ|m, W, m, δ) ∼
m

∑
k=0

Geom(m− k; (m− δ)(1−W))

×
m

∑
l=0

Pois(k− l; δ)Geom(l; W(m− δ))

×Gam
(

λ; l + 1, [η(W + 1/(m− δ))]−1
)

. (S10)

As described in Eq. (20), a Bayesian update of the probability
distribution for λi using measurements m1, . . . , mN , the corre-
sponding weights Wi1, . . . , WiN and a dark-count rate δ is then
calculated as

p(λ|{mj, Wij}j=1,...,N , m, δ) ∼
∼∏

j 6=i
p(mj|λ, Wij, m, δ)p(λ|mi, Wii, m, δ). (S11)

3. EXPECTED DISTANCE BETWEEN TWO PIXELS

In section 3D we introduce the weights for the retrodiction in-
spired by the non-local means averaging algorithm and use the
expected distance between two retrodicted intensities as a mea-
sure for the similarity between two pixels. The expression given
there in Eq. (22) is derived below.

Having measurements m1 and m2 we may also calculate the
probability distribution of the difference ∆ = λ1 − λ2. If ∆ ≥
0, then λ1 = λ2 + ∆ and for ∆ < 0 we have λ2 = λ1 + |∆|.
Therefore the probability to measure a certain distance is

Pr
(
{∆ = λ1 − λ2}

)
=

=

{∫ ∞
0 Pr

(
{λ1 = λ2 + ∆}

)
Pr
(
{λ2}

)
dλ2 for ∆ ≥ 0∫ ∞

0 Pr
(
{λ2 = λ1 + |∆|}

)
Pr
(
{λ1}

)
dλ1 for ∆ < 0

such that using p(λi|mi, m) = Gam(λi; mi + 1, 1/η) from Eq. (7)
we get

p(∆|m1, m2, m) =

=

{
∑m2

k=0 (
m1+m2−k

m1
)

Gam(∆;k+1,1/η)

2m1+m2−k+1 for ∆ ≥ 0

∑m1
k=0 (

m1+m2−k
m2

)
Gam(|∆|;k+1,1/η)

2m1+m2−k+1 for ∆ < 0
(S12)

with a mean value

E(∆|m1, m2, m) =
m2

∑
k=0

(
m1 + m2 − k

m1

)
k + 1

2m1+m2−k+1η

−
m1

∑
k=0

(
m1 + m2 − k

m2

)
k + 1

2m1+m2−k+1η
. (S13)
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