
Quantum-enhanced tomography of unitary
processes: supplementary material

Xiao-Qi Zhou*, Hugo Cable*, Rebecca Whittaker*, Peter Shadbolt, Jeremy L. 
O’Brien, and Jonathan C. F. Matthews
Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, 

Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
*These authors contributed equally

Published 25 May 2015

This document provides supplementary material for “Quantum-enhanced tomography of unitary 
pro-cesses,” http://dx.doi.org/10.1364/optica.2.000510. © 2015 Optical Society of America
http://dx.doi.org/10.1364/optica.2.000510

1. PARAMETER DEPENDENCE OF THE PROBABILITY
DISTRIBUTIONS FOR MEASUREMENTS IN A FIXED
BASIS

Here we identify what information is obtainable from each measure-
ment in our protocol, for an arbitrary (unitary) linear-optical process
U on two modes. The action ofU on the mode operators is given by,a

†′

H

a†′V

 =
Ua†HU

†

Ua†VU
†

 = U t

a
†

H

a†V

 (S1)

where U is a unitary two-by-two matrix. The global phase of U is
unmeasurable in our setup and hence we assume U ∈ S U(2).

U also corresponds to the linear transformation by U of an ar-
bitrary single-photon superposition state in the Fock basis, |ψ1〉 =
cH |1, 0〉HV +cV |0, 1〉HV , so that |ψ1〉 7→ U|ψ1〉 is given by ( cH

cV ) 7→
U ( cH

cV ). We can represent |ψ1〉 geometrically on the Bloch sphere
with |0〉 ≡ |H〉 and |1〉 ≡ |V〉 in the usual qubit notation. U then
acts by rotating the Bloch vector of |ψ1〉 by an angle φ around the
rotation axis with unit vector n, where U = exp [−i(φ/2)n · σ]
(σ = (σx,σy,σz) denotes the Pauli matrices). For an arbi-
trary N-photon state, |ψN〉 =

∑N
M=0 cMa†MH a†N−M

V |vac〉, U |ψN〉 =∑N
M=0 cM

(
a†′H

)M (
a†′V

)N−M
|vac〉, and again the transformation is deter-

mined entirely by the coefficients of U.
Next we look at the general form of the probability distributions

for measuring nH(V) horizontally (vertically)-polarized photons at
the output, given state |M, N − M〉HV at the input, with notation
PHV (nH , nV ) = |〈nH , nV |HVU|M, N −M〉HV |

2. (M = N/2 in the
main text.) We can use an Euler-angle decomposition to write U as
a sequence of rotations on the Bloch sphere about the y and z axes:
U = [−i(ψ/2)σz] exp [−i(θ/2)σy] exp [−i(ζ/2)σz]. The z-axis rota-
tions generate phases which do not affect the value of PHV (nH , nV ),
which therefore depends only on the y-axis rotation with angle θ. As

in the main text, we can use pHV to parameterize PHV (nH , nV ), and
pHV = cos2(θ/2). The probability distributions are given explicitly
by rotational Wigner d-matrices as follows,

PHV (nH , nV , pHV ) =
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√
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(see Ref. [1] for a derivation of the d-matrices). For the case M = N/2,
PHV (nH , nV , pHV ) can be reexpressed using the associated Legendre
polynomials as given explicitly in Eq. 3 in the main text.

We note that even the full set of unitaries which are implementable
using linear-optical circuits on arbitrary numbers of modes does not
exhaust all unitary operations of interest for quantum information
protocols. In particular, a full set of circuits suitable for universal
quantum computing cannot be achieved using only linear optics. How-
ever, when linear-optical components are combined with feed-forward
techniques, photon-counting measurements and single-photon sources,
universal quantum computation is achievable [2], and the techniques
developed in this paper could be used to characterize the linear-optical
components in architectures which exploit measurement-induced non-
linearity. For example, a Controlled-NOT gate can be realised by a
linear-optical circuit on six modes with photon detectors at the outputs
of two modes [3, 4].

2. PERFORMANCE OF OUR PROTOCOL WITH IN-
CREASING NUMBER OF PROBE PHOTONS

Here we present the performance of our protocol for a variety of un-
knownU and varying numbers of probe photons. To quantify the close-
ness of an estimate of Ũ to U itself we use the process infidelity 1 − F,
defined as in the main text as

(
1 −min|〈ψ|Ũ†U |ψ〉|2

)
, where the mini-

mization is over single-photon states. A closed formula can be found

for this minimization which is 1 − F = 1 −
(
aã + bb̃ + cc̃ + dd̃

)2
,
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(a) Mean infidelity for Haar-sampled unitaries
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(b) Infidelity spread for Haar-sampled unitaries

Fig. S1. These plots display the results of a simulation of our pro-
tocol for 10,000 randomly-chosen unitary operations (using the
Haar-measure distribution). Each black point corresponds to one
unitary, and a randomly-chosen number of total probe photons, with
four-photon input states |2, 2〉HV(DA,RL) as the probe. The solid green
line shows the performance for unitaries at the centre of the physical
region, for which |a| = |b| = |c| = |d| = 1/2, while the solid orange
line shows the average performance for all the unitaries that were
sampled. The dashed green and orange lines show the corresponding
performance when single-photon input states are used in place of the
four-photon inputs.

where a + ib and c + id are the transmission and reflection amplitudes
for U, and ã + ib̃ and c̃ + id̃ are the corresponding estimated values.

Fig. S1 shows the performance of our protocol for randomly-chosen
U using four-photon input states. The choice of U affects both the
sensitivity of each of the measurements used in the protocol, as well as
the proportion of estimates (by linear inversion) that lie in the physical
region; both of these factors affect the mean and spread of the infidelity
(for a fixed total number of probe photons). Here we note that, because
the most sensitive unitary is known (see the caption of Fig. S1), we can
always achieve near-optimal performance (green, solid line shown in
Fig. S1) by combining our protocol with an adaptive method. Fig. S2
compares the results of a simulation of the performance of our protocol
with unitaries UA and UB for single and four-photon inputs states,
showing how the mean and spread of the infidelity converge to 0 as
the number of probe photons increases. We can observe that the errors
for estimating each unitary are always less using the four-photon input
states in our protocol than when single-photon input states are used
(for the same number of probe photons).
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(ii) Spread of infidelity
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Fig. S2. The plots show the results of a simulation of the perfor-
mance of our protocol for unitaries UA and UB, defined by com-
paring the cases of single-photon inputs states |1, 0〉HV(DA,RL) and
four-photon input states, |2, 2〉HV(DA,RL).

REFERENCES

1. J. J. Sakurai, Modern Quantum Mechanics (Addison Wesley, 1994),
vol. 1, chap. 3.8.

2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for effi-
cient quantum computation with linear optics,” Nature 409, 46–52
(2001).

3. T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear
optical controlled-NOT gate in the coincidence basis,” Phys. Rev.
A 65, 062324 (2001).

4. A. Politi, et al., “Silica-on-silicon waveguide quantum circuits,”
Science 320, 646–649 (2008).

2


	Parameter dependence of the probability distributions for measurements in a fixed basis
	Performance of our protocol with increasing number of probe photons



