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1. Alternate Mach‐Zehnder block configurations

In	the	implementations	of	Mach‐Zehnder	interferometers	(MZIs),	
in	general	two	phase	shifters	are	required	somewhere	so	that	both	
the	split	ratio	and	the	phase	of	at	least	the	“Right”	output	can	be	
controlled.	For	the	automatic	algorithms,	as	long	as	both	of	these	
degrees	of	 freedom	exist,	 various	configurations	are	possible	 for	
the	MZI	 blocks.	Additional	 possible	 configurations	 are	 shown	 in	
Fig.	 S1.	 The	 configuration	 (a)	 of	 Fig.	 S1	 shows	 a	 conceptual	
implementation	 based	 on	 a	 conventional	 beamsplitter	 with	 a	
controllable	reflector	and	a	phase	shifter	with	phase	delay		in	the	
path	from	the	“Right”	port.	The	waveguide	MZI	version	(b)	of	Fig.	
S1	is	functionally	equivalent	to	configuration	(a).	The	split	ratio	of	
the	MZI	in	version	(b)	–	the	ratio	between	the	“Right”	and	“Bottom”	
output	 powers	 for	 a	 power	 incident	 on	 the	 “Top”	 port	 –	 is	 the	
equivalent	of	the	reflectivity	of	the	controllable	reflector	in	version	
(a).	In	version	(b),	this	is	controlled	by	two	phase	shifters	driven	
differentially,	 which	 give	 a	 controlled	 phase	 difference	 of	 	
between	 the	 two	 interferometer	 arms.	 The	 configuration	 (c)	 is	
particularly	compact	and	symmetric,	using	differential	drive	of	the	
phase	shifters	to	control	the	split	ratio	and	common	mode	drive	to	
vary	the	output	phase.	
These	different	configurations	differ	functionally	in	that	they	can	

give	 rise	 to	 different	 phase	 shifts	 of	 the	 beam	 in	 the	 “Bottom”	
output	 port.	 For	 the	 automatic	 alignment	 algorithms,	 it	 is	 of	 no	
consequence	 whether	 the	 phase	 of	 that	 “Bottom”	 output	 is	
changed	or	not.	That	“Bottom”	output	is	fed	into	the	next	“Channel	
row”	of	the	linear	network,	and	that	next	row	is	configured	later	in	
the	algorithms;	that	next	row	can	configure	itself	to	take	any	phase	
of	 inputs	 to	 the	 “Top”	 of	 its	 MZIs	 from	 the	 “Bottom”	 of	 the	
preceding	 row.	 Though	 the	 automatic	 algorithm	 does	 not	 care	
about	which	implementation	of	the	MZI	blocks	is	used,	of	course	

the	calculated	values	of	the	settings	of	the		phase	shifters	will	be	
different	for	different	MZI	block	configurations.	In	the	illustrative	
calculated	 designs	 below	 in	 Section	 5,	 we	 presume	 the	
configurations	of	(a)	and	(b)	of	Fig.	S1.	It	would	be	straightforward	
to	repeat	the	calculations	for	other	configurations,	however.	

Fig.	S1.	Alternative	configurations	for	MZI	blocks.	
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2. Discussion of automatic beamsplitter adjustment 

“No relative phase change” condition 

In	the	main	text,	we	presumed	for	simplicity	a	“no	relative	phase	
change”	condition	 in	our	analysis,	by	which	we	mean	that,	 if	we	
shine	a	beam	in	the	“top”	port	T	in	Fig.	2	(a)	of	the	main	text,	the	
relative	phase	of	the	beams	transmitted	into	arms	C	and	D	is	not	
changed	as	we	vary	the	magnitude	of	the	reflectivity	rL	of	the	left	
beamsplitter.	That	is	the	behavior	that	the	Double	Mach‐Zehnder	
interferometer	 (DMZI)	 configuration	 (Fig.	 2(b)	 of	 the	main	 text)	
will	show.	This	is	not	quite	a	necessary	condition	in	general	for	a	
loss‐less	 beamsplitter	 –	 an	 arbitrary	phase	 shift	 could	 be	 added	
just	 before	 point	 C	 in	 Fig.	 2(b)	 of	 the	 main	 text,	 for	 example,	
without	 violating	 unitarity.	 If	 there	 were	 such	 a	 relative	 phase	
change,	in	the	algorithms	below	we	would	need	to	re‐optimize	the	
phase		 after	 each	 adjustment	 of	 rL,	 though	 that	 step	would	 be	
simple	to	add	to	the	algorithms.	

Graph of PRmin 

The	 explicit	 graph	 of	  ,Rmin L RP R R ,	 showing	 its	minimum	 of	
zero	 along	 the	 line	 RL		‐RR,	 is	 given	 in	 Fig.	 S2.	 This	 figure	
complements	Fig.	3(a)	of	the	main	text.	

	

Fig.	S2.	Graph	of	  ,Rmin L RP R R 	(or,	equivalently,	  1 ,Bmax L RP R R ).	

3. Algorithm for setting the beamsplitter ratios in the 
mesh of MZI blocks 

Before	 introducing	 the	 various	 algorithms	 formally,	 we	 can	
informally	introduce	the	algorithm	for	setting	up	all	the	MZI	blocks	
in	a	unitary	mesh	as	in	Fig.	1	of	the	main	text	so	that	all	the	blocks	
have	their	(effective)	beamsplitters	set	to	50:50.	We	will	call	this	
the	 “mesh	 50:50	 setup	 algorithm”	 or	 MFSA	 for	 short.	 For	 the	
moment,	we	presume	we	have	either	the	DR	or	DB	(or	possibly	
both)		(mostly‐transparent)	detectors	or	power	sampling	points	in	
the	 blocks,	 as	 shown	Fig.	 2	 of	 the	main	 text.	 For	 this	 setup,	we	
presume	we	have	sources	 that	we	can	shine	 into	 inputs	WI1	 to	
WI3	in	Fig.	1	of	the	main	text,	one	by	one.	Here,	we	will	describe	
the	algorithm	for	these	3	input	and	3	output	unitary	meshes,	but	
the	 extensions	 to	 larger	 meshes	 are	 straightforward.	 We	 give	
formal	general	versions	of	all	 the	algorithms	below	 in	section	4.	
BFSA	below	is	the	“beamsplitter	50:50	setup	algorithm”	as	in	the	
main	text.		
For	 this	 example	 case,	 then,	 the	mesh	 50:50	 setup	 algorithm	

(MFSA)	is	as	follows.	

Shine	power	into	WI1	only.	

Run	BFSA	for	B11.	After	completing	BFSA,	arrange	that	
some	power	emerges	from	the	lower	(“bottom”)	port	of	
B11	(e.g.,	by	adjusting		if	necessary).	
Run	BFSA	for	B21,	similarly	leaving	some	power	emerging	
from	its	“bottom”	port.	

Run	BFSA	for	B31	(if	needed	–	this	block	need	only	be	a	
phase	shifter)	

	Shine	power	into	WI2	only.	

Run	BFSA	for	B12,	leaving	some	power	emerging	from	its	
“bottom”	port.	

Run	BFSA	for	B22	(if	needed	–	this	block	need	only	be	a	
phase	shifter)	

Shine	power	into	WI3	only.	

Run	BFSA	for	B13	(if	needed	–	this	block	need	only	be	a	
phase	shifter)	

This	MFSA	algorithm	therefore	allows	us	to	set	all	the	(effective)	
beamsplitters	in	all	the	MZI	blocks	to	be	50:50.	
Thus	 far,	 we	 have	 described	 how	 to	 set	 up	 the	 (effective)	

beamsplitters	using	detectors	at	one	or	both	outputs	of	each	MZI	
block.	We	 already	 know	 it	 is	 possible	 to	 train	 the	mesh	 for	 its	
ultimate	 function	without	detectors	 in	 the	mesh	 (Appendix	B	of	
[1]).	 We	 can	 also	 run	 a	 slightly	 amended	 version	 of	 the	 MFSA	
algorithm	without	detectors	inside	each	MZI	block;	specifically,	we	
can	set	up	 the	beamsplitter	 ratios	 in	 the	entire	mesh	using	only	
detectors	D1	–	D3,	 external	 to	 the	mesh,	on	 the	outputs	WC1	–	
WC3	 respectively,	 effectively	 using	 them	 instead	 of	 the	 DR	
detectors	inside	the	blocks.	(Again,	these	need	only	sample	a	small	
amount	of	 the	power	emerging	 from	 these	waveguides.)	We	do	
this	 basically	 by	working	progressively	 first	 through	 all	 the	MZI	
blocks	on	a	given	input	row.	A	key	point	is	that,	after	setting	up	the	
50:50	ratios	in	all	the	MZI	blocks	in	a	row	(e.g.,	B11	–	B31)	in	this	
way,	we	add	an	algorithm,	working	backwards	up	through	the	row	
to	set	all	those	MZI	blocks	to	the	“bar”	state	–	equivalent	to	perfect	
“reflection”	 from	 “top”	 to	 “right”	 and	 from	 “left”	 to	 “bottom”;	
effectively,	this	makes	any	such	“bar”	state	MZI	block	appear	as	if	it	
were	not	there	at	all.	The	details	of	this	algorithm	are	given	below	
in	Section	4.			
By	this	additional	process	of	setting	all	the	MZI	blocks	to	the	bar	

state,	we	leave	the	mesh	in	the	starting	state	required	for	training	
the	mesh	for	its	ultimate	function	using	only	the	external	detectors	
D1	–	D3	to	run	the	“Self‐configuring	linear	component	algorithm”	
(SLCA)	[1,2]	for	the	final	training	of	the	mesh.		
If	we	are	using	the	mostly	transparent	detectors	DB	within	the	

mesh,	 it	 is	 not	 necessary	 to	 set	 the	MZI	 blocks	 to	 the	 bar	 state	
before	 training.	 Indeed,	 one	 major	 advantage	 of	 having	 the	
(mostly‐transparent)	DB	detectors	in	the	blocks	is	that	we	can	be	
continually	 retraining	 the	 mesh	 if	 necessary	 as	 the	 problem	
changes,	without	having	to	reset	all	 the	blocks	 to	 the	“bar”	state	
before	any	such	retraining;	hence,	having	the	DB	detectors	in	the	
blocks	 allows	 a	 more	 incremental	 retraining	 to	 proceed	 all	 the	
time,	as	in	tracking	moving	physical	sources,	for	example.	
With	 this	 informal	 introduction	 to	 the	 algorithms,	 in	 the	next	

section	we	present	the	formal	algorithms	for	configuring	both	the	
50:50	split	ratios	and	for	training	the	ultimate	function	of	the	now‐
“perfect”	set	of	MZIs.		
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4.  General  formal  versions  of  the  alignment 
algorithms 

We	presume	there	are	MC	channel	rows	and	MI	input	rows;	these	
numbers	need	not	be	equal	in	general	for	such	processors	(though	
Fig.	1	of	the	main	text	is	drawn	for	MC	=	MI)	–	we	might	be	mapping	
MC	 orthogonal	MI‐dimensional	 vectors	 to	MC	 single‐mode	output	
waveguides	(or	channels),	for	example,	where		MC	<	MI.		
For	these	algorithms,	we	use	the	terminology	as	in	Figs.	1	and	2	

of	the	main	text,	though	for	greater	clarity	of	notation	we	will	write	
B(m,	n)	instead	of	Bmn	in	labelling	the	blocks,	WI(n)	and	WC(m)	
instead	of	WIn	and	WCm	respectively,	and	D(m)	instead	of	Dm.		
Several	of	these	algorithms	run	over	all	the	blocks	B(m,	n)	in	the	

mesh.	For	simplicity	in	stating	the	algorithms,	such	algorithms	can	
be	written	to	run	over	n	=	1	to	MI	and	m	=	1	to	MC.	Because	we	only	
actually	have	a	“triangle”	of	blocks	at	most	in	a	given	unitary	mesh	
(see,	e.g.,	Fig.	1	of	the	main	text)	,	or	fewer	if	MC	<	MI,	we	test	to	see	if	
the	 block	 exists	 using	 an	 “If	 block	 B(m,	 n)	 exists”	 statement.	
Formally,	a	block	exists	if		m		MI	–	n	+	1,	which	means	it	fits	within	
the	“triangle”,	and	if		m		MC,	which	means	it	is	in	one	of	the	channel	
rows	actually	implemented	in	the	device.		
There	are	two	versions	of	many	of	these	algorithms	depending	

on	whether	(i)	we	embed	mostly‐transparent	detectors	or	power	
sampling	points	inside	the	mesh	or	(ii)	we	use	only	detectors	or	
power	 sampling	 points	 D(1)	 –	 D(MC)	 at	 the	 channel	 “outputs”	
WC(1)	–	WC(MC).	We	presume	 the	MZIs	are	all	 loss‐less	or	 that	
they	all	have	the	same	loss.	If	the	MZIs	have	loss,	then	we	should	
add	dummy	blocks	as	discussed	at	the	end	of	this	section,	which	
means	 that	 all	 paths	 from	 input	 to	 output	 go	 through	 the	 same	
number	of	MZI	blocks.	 In	such	a	case,	 the	output	 is	 then	simply	
multiplied	by	a	constant	corresponding	to	the	loss	in	MI	successive	
blocks,	 though	 the	device	otherwise	performs	 the	desired	 linear	
operations.	The	algorithms	are	given	in	pseudo‐code	here,	with	a	
syntax	 that	 is	 self‐evident	 and	 similar	 to	 BASIC.	 Non‐executable	
commenting	 statements	 are	 given	 in	 italics,	 starting	 with	
“Comment:”.		
These	 algorithms	 are	 only	 representative	 and	 are	 meant	 to	

indicate	that	there	is	at	least	one	reasonable	way	of	implementing	
all	of	 these	configurations	and	adjustments.	There	are	variations	
possible,	 some	 of	 which	 are	 mentioned	 here,	 and	 alternative	
approaches	that	could	be	taken.		

Algorithm S1 – Beamsplitter 50:50 setup algorithm (BFSA) 

Note,	as	discussed	by	example	above	in	Section	3	and	explicitly	
below,	 that	 this	 algorithm	 will	 be	 run	 as	 part	 of	 Algorithm	 S2	
(MFSA)	below,	which	will	ensure	powering	of	appropriate	optical	
inputs	to	run	this	BFSA	algorithm.	

For	a	given	block	B(m,	n)	

Set	StoppingCondition	to	“False”	

While	StoppingCondition	is	“False”		
Comment:	if	the	StoppingCondition	variable	has	the	value	
“True”,	this	statement	will	exit	the	loop	without	executing	
further	statements	

Set	the	phase	shift		to	minimize	the	power	at	DR	(if	
present)	or	at	D(m)	or	to	maximize	the	power	at	DB	(if	
present)	

Adjust	 LR 	and	 RR 	together	in	the	same	sense	

(ideally	by	equal	amounts)	(e.g.,	by	adjusting	L	and	R	
together	in	the	same	sense	by	approximately	equal	

amounts)	to	minimize	the	power	at	DR	(if	present)	or	
at	D(m)	or	to	maximize	the	power	at	DB	(if	present)		

Set	the	phase	shift		to	maximize	the	power	at	DR	(if	
present)	or	at	D(m)	or	to	minimize	the	power	at	DB	(if	
present)	

Adjust	 LR 	and	 RR 	together	but	in	the	opposite	

sense	(ideally	by	equal	but	opposite	amounts)	(e.g.,	by	
adjusting	L	and	R	together	in	the	opposite	sense	by	
approximately	equal	amounts)	to	maximize	the	power	
at	DR	(if	present)	or	at	D(m)	or	to	minimize	the	power	
at	DB	(if	present)	

If	the	appropriate	stopping	condition	is	met,	set	
StoppingCondition	to	“True”	
Comment:	There	are	various	different	stopping	
conditions	that	could	be	set	here.	If	using	power	
minimization,	we	can	test	for	the	power	at	DB	being	
below	a	chosen	threshold.	If	using	power	maximization,	
at	DR	or	D(m),	we	can	test	to	see	how	close	we	are	to	the	
previous	measured	maximized	value	to	see	if	we	are	
below	some	chosen	threshold	of	difference.	Or,	we	can	
simply	run	the	loop	a	specified	number	of	times	that	we	
presume	is	enough	for	convergence,	setting	the	
StoppingCondition	to	“True”	after	a	loop	counter	
reaches	that	number		

Loop	Comment:	loop	back	to	the	“While”	statement	

Algorithm S2 – Mesh 50:50 setup algorithm (MFSA) 

Version with embedded detectors DR and/or DB in each block 

For	n	=	1	to	MI	

Shine	power	into	WI(n)	only	

For	m	=	1	to	MC	Comment:	it	may	not	be	necessary	to	run	
this	for	m	=	MI	–	n	+	1		since	that	block	may	just	be	a	phase	
shifter	

If	block	B(m,	n)	exists,	run	BFSA	for	B(m,	n)	using	DR	
and/or	DB	to	detect	minimum	and	maximum	powers	
as	required	

Arrange	that	some	(possibly	all)	power	emerges	from	
the	lower	(“bottom”)	port	of	B(m,	n)	by	adjusting		in	
block	B(m,	n)	so	some	(possibly	all)	power	is	detected	
in	DB	in	that	block	or	so	DR	power	is	reduced	at	least	
somewhat	from	its	maximum	(possibly	to	zero).	
Comment:	this	puts	the	block	in	a	partial	or	complete	
“cross”	state.	This	gives	some	power	into	the	“top”	port	of	
the	block	in	the	next	channel	row	(next	m)	so	we	will	be	
able	to	run	BFSA	on	it	next.	

Next	m	

Comment:	this	next	part	of	the	algorithm	works	back	up	
through	the	line	of	blocks	for	a	given	n	to	set	them	all	to	the	
“bar”	state.	This	is	optional,	since	it	is	not	required	just	to	set	
up	the	50:50	splits,	but	it	is	a	more	desirable	and	well‐defined	
final	state	of	the	mesh	for	subsequent	programming.	

For	m	=	MI	–	n	+	1	to	1	step	‐1	Comment:	it	may	not	be	
necessary	to	run	this	for	m	=	MI	–	n	+	1	since	that	block	may	
just	be	a	phase	shifter	

If	block	B(m,	n)	exists,	adjust	in	block	B(m,	n)	so	DB	
power	is	minimized	or	DR	power	is	maximized	Next	m	

Next	n	
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Version without embedded detectors  

For	n	=	1	to	MI	

Shine	power	into	WI(n)	only	

For	m	=	1	to	MC	Comment:	it	may	not	be	necessary	to	run	
this	for	m	=	MI	–	n	+	1	since	that	block	may	just	be	a	phase	
shifter	

If	block	B(m,	n)	exists,	run	BFSA	for	B(m,	n)	using	D(n)	
to	detect	minimum	and	maximum	powers	as	required	

Arrange	that	some	(possibly	all)	power	emerges	from	
the	lower	(“bottom”)	port	of	B(m,	n)	by	adjusting		in	
block	B(m,	n)	so	D(n)	power	is	reduced	at	least	
somewhat	from	its	maximum	(possibly	to	zero)	
Comment:	this	puts	the	block	in	a	partial	or	complete	
“cross”	state.	This	gives	some	power	into	the	“top”	port	of	
the	block	in	the	next	channel	row	(next	m)	so	we	will	be	
able	to	run	BFSA	on	it	next.	

Next	m	

Comment:	this	next	part	of	the	algorithm	works	back	up	
through	the	line	of	blocks	to	set	them	all	to	the	“bar”	state.	
Though	this	part	of	the	corresponding	algorithm	above	(for	
the	case	with	embedded	detectors)	was	optional,	here	it	is	
needed	so	that	input	row	of	blocks	we	have	just	set	now	
appears	as	if	it	is	essentially	not	there	as	we	set	up	the	blocks	
in	the	next	input	row.		

For	m	=	MI	–	n	+	1	to	1	step	‐1	Comment:	it	may	not	be	
necessary	to	run	this	for	m	=	MI	–	n	+	1	since	that	block	may	
just	be	a	phase	shifter	

If	block	B(m,	n)	exists,	adjust		in	block	B(m,	n)	so	D(m	
–	n	+	1)	power	is	maximized	

Next	m	

Next	n	

This	version	has	both	set	up	all	the	(effective)	beamsplitters	in	the	
MZIs	to	50:50	and	set	all	the	MZI	blocks	are	in	their	bar	states	(i.e.,	
the	mesh	is	implementing	an	identity	matrix).	

Algorithm  S3  –  Self‐configuring  linear  component  algorithm 
(SLCA) 

This	algorithm	is	described	in	Ref.	[1],	and	we	give	a	formal	version	
here	for	completeness.	This	algorithm	sets	up	a	unitary	processor,	
e.g.,	as	in	Fig.	1(a)	of	the	main	text,	so	that	the	total	power	in	each	
specific	 orthogonal	 input	 “training”	 (column)	 vector	 Um 	 of	
(complex)	field	amplitudes	at	inputs	WI(1)	–	WI(MI)	is	mapped	to	
the	single	channel	output	WC(m),	for	all	m	from	1	to	MC.		
For	 this	 algorithm	 to	 work	 perfectly,	 the	 (effective)	

beamsplitters	in	the	Mach‐Zehnder	blocks	are	all	presumed	to	be	
50:50,	so	we	presume	we	have	already	run	Algorithm	S2	(MFSA).		

Version with embedded detectors DB in each block 

For	m	=	1	to	MC		

Comment:	if	MC	=	MI,	we	do	not	need	to	run	this	for	the	last	
case	m	=	MC	because	the	last	channel	row	in	that	case	is	just	
a	100%	“reflector”	(bar	state)	block	already.	
Mathematically,	since	all	the	columns	in	the	matrix	being	
implemented	are	orthogonal,	we	know	the	last	column	
anyway	because	it	has	to	be	orthogonal	to	all	the	others	we	
have	already	programmed	into	the	mesh	

Illuminate	all	the	inputs	WI(1)	–	WI(n)	with	fields	with	
(complex)	amplitudes	given	by	the	corresponding	MI	
elements	of	the	column	vector	 Um 				

Adjust		in	block	B(m,	MI	–	m	+	1)	to	minimize	power	at	DB	
in	that	block	Comment:	since	this	block	is	at	the	bottom	of	
the	set	of	blocks,	it	need	only	be	a	phase	shifter,	not	a	Mach‐
Zehnder	interferometer,	in	which	case	this	step	is	not	needed	

For	n	=	MI	to	2	step	‐1		

Comment:	i.e.,	starting	at	n	=	MI,	then	decrementing	n	by	1	
each	time,	and	executing	for	the	last	time	when	n	=	2	

If	block	B(m,	n	–	m)	exists			

adjust	in	block	B(m,	n	–	m	+	1)	to	minimize	
power	at	DB	in	block	B(m,	n	–	m)	

adjust		in	block	B(m,	n	–	m)	to	minimize	power	at	
DB	in	block	B(m,	n	–	m)	

End	if	
Comment:	this	should	take	the	power	to	zero	at	DB	in	
block	B(m,	n	–	m)	

Next	n	

Next	m	

Version with no embedded detectors in the blocks 

We	presume	we	have	already	also	run	the	version	of	Algorithm	S2	
(MFSA)	without	embedded	detectors	so	we	have	also	set	all	the	
MZI	blocks	to	their	“bar”	state	as	the	starting	condition.	If	we	are	
retraining	the	mesh	to	implement	a	new	unitary	operation,	then	
we	can	run	Algorithm	S5,	the	“Bar‐State	Setup	Algorithm”	(BSSA)	
below	before	this	retraining.		

For	m	=	1	to	MC		

Comment:	if	MC	=	MI,	we	do	not	need	to	run	this	for	the	last	
case	m	=	MC.	

Illuminate	all	the	inputs	WI(1)	–	WI(n)	with	fields	with	
(complex)	amplitudes	given	by	the	corresponding	MI	
elements	of	the	column	vector	 Um 		

Adjust		in	block	B(m,	MI	–	m	+	1)	to	maximize	power	in	
D(MI	–	m	+	1)	Comment:	since	this	block	is	at	the	bottom	of	
the	set	of	blocks,	it	need	only	be	a	phase	shifter,	not	a	Mach‐
Zehnder	interferometer,	in	which	case	this	step	is	not	needed	

For	n	=	MI	to	2	step	‐1		

Comment:	i.e.,	starting	at	n	=	MI,	then	decrementing	n	by	1	
each	time,	and	executing	for	the	last	time	when	n=2	

If	block	B(m,	n	–	m)	exists		

adjust		in	block	B(m,	n	–	m)	somewhat	away	from	
its	“bar”	setting	(e.g.,	by	adding	some	control	
expected	to	give	~	90°	change	in	)		
Comment:	this	step	ensures	that	there	is	finite	
interference	between	the	WI(n	–	m)	and	WI(n	–	m	
+1)	input	amplitudes	at	the	outputs	of	block	B(m,	n	–	
m)	so	that	there	is	something	to	minimize	as	we	
adjust		in	the	next	step	
adjust		in	block	B(m,	n	–	m	+	1)	to	minimize	
power	in	D(n	–	m	+	1)	

adjust		in	block	B(m,	n	–	m)	to	minimize	power	in	
D(n	–	m	+	1)	Comment:	this	should	take	the	power	
to	zero	in	D(n	–	m	+	1)		

End	if	
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Next	n	

Next	m	

Note:	This	algorithm	is	somewhat	different	from	the	algorithm	
in	Appendix	B	of	[1].	That	algorithm	works	by	maximizing	output	
progressively	in	only	one	output	detector	for	each	input	vector,	on	
the	presumption	that	all	the	MZIs	are	set	initially	to	their	“cross”	
state	 (i.e.,	 “top”	 directly	 through	 to	 “bottom”	 and	 “left”	 directly	
through	 to	 “right”,	 equivalent	 to	 the	 beamsplitter	 in	 Fig.	 2(a)	
having	 no	 reflectivity	 at	 all).	 The	 algorithm	here	 starts	with	 the	
MZIs	 in	 their	 bar	 state,	 and	 works	 by	 successively	 minimizing	
power	in	various	different	output	detectors.	We	could	construct	a	
version	 of	 Algorithm	 S2	 (MFSA)	 that	 finished	 by	 setting	 all	 the	
MZIs	 to	 their	 cross	 states	 (or	 we	 could	 run	 Algorithm	 S4,	 the	
“Cross‐State	 Setup	 Algorithm”	 (CSSA)	 below),	 and	 then	 use	 the	
previous	algorithm	in	Appendix	B	of	[1]	here	instead.		

Algorithm S4 – Cross‐State Setup Algorithm (CSSA) 

This	auxiliary	algorithm	can	be	used	to	set	up	all	the	blocks	(except	
the	 lowest	 row	 of	 blocks,	 which	 are	 operating	 only	 as	 phase	
shifters	and	hence	are	always	intended	to	be	in	their	“bar”	state	if	
they	 even	 contain	 MZIs)	 in	 their	 “cross”	 state,	 where	 “top”	 is	
transmitted	 completely	 to	 “bottom”	 and	 “left”	 is	 transmitted	
completely	to	“right”	in	each	block.	This	algorithm	should	be	run	
only	 after	 setting	 all	 the	 internal	 (effective)	 beamsplitters	 in	 the	
blocks	to	50:50,	i.e.,	after	running	Algorithm	S2	(MFSA).	The	blocks	
can	otherwise	be	in	any	internal	state,	i.e.,	with	any	starting	values	
of		and		in	each	block.	

For	n	=	1	to	MI	‐	1	

Comment:	the	upper	limit	of	n	=	MI	–	1	is	sufficient	since	the	only	
block	with	n	=	MI	is	in	the	lowest	row,	and	we	do	not	want	to	set	
any	of	the	blocks	in	the	lowest	row	to	the	cross	state	since	they	
are	only	operating	as	phase	shifters.		

Shine	power	into	WI(n)	only	

For	m	=	1	to	MI	–	n		

Comment:	this	choice	of	upper	limit	is	so	we	do	not	attempt	
to	put	the	lowest	row	of	blocks	(which	may	anyway	just	be	
phase	shifters)	into	the	cross	state.	

If	block	B(m,	n)	exists		

Adjust		in	B(m,	n)	to	maximize	power	in	DB	(if	
present)	or	maximize	power	in	any	of	D(1)	–	D(MC)	
in	which	power	is	present	except	for	D(m)	
Comment:	Because	we	do	not	yet	know	the	state	of	
any	blocks	of	larger	m	values,	we	have	to	consider	
that	power	from	the	“bottom”	port	of	block	B(m,	n)	
could	in	some	cases	be	routed	to	any	of	these	other	
outputs.	D(m)	is	the	detector	in	which	power	will	be	
present	if	power	is	coming	out	of	the	“right”	port	of	
block	B(m,	n)	(which	is	power	we	are	trying	to	
minimize	rather	than	maximize)	so	we	do	not	want	
to	maximize	with	respect	to	any	power	in	D(m);	note	
that	this	power	is	routed	there	because	all	of	the	
blocks	with	smaller	values	of	n	have	already	been	set	
to	the	“cross”	state.	

End	if	

Next	m	

Next	n	
We	 could	 also	 construct	 a	 version	 of	 this	 algorithm	 based	 on	
minimizing	power	in	DR	or	in	D(m).	

Algorithm S5 – Bar‐State Setup Algorithm (BSSA) 

This	 auxiliary	 algorithm	 can	 be	 used	 to	 set	 up	 all	 the	 blocks	
(including	the	lowest	row	of	blocks,	which	are	operating	only	as	
phase	shifters	and	hence	are	always	intended	to	be	in	their	“bar”	
state	if	they	even	contain	MZIs)	in	their	“bar”	state,	where	“top”	is	
transmitted	 completely	 to	 “right”	 and	 “left”	 is	 transmitted	
completely	to	“bottom”	in	each	block.	This	algorithm	should	be	run	
only	 after	 setting	 all	 the	 internal	 (effective)	 beamsplitters	 in	 the	
blocks	to	50:50,	i.e.,	after	running	Algorithm	S2	(MFSA).	The	blocks	
can	otherwise	be	in	any	internal	state,	i.e.,	with	any	starting	values	
of		and		in	each	block.	

Version with embedded detectors 

For	n	=	1	to	MI	

Shine	power	into	WI(n)	only	

For	m	=	1	to	MC		
If	block	B(m,	n)	exists		

adjust		in	block	B(m,	n)	so	DB	power	is	minimized	
or	DR	power	is	maximized	

End	if	

Next	m	

Next	n	

Version without embedded detectors 

Run	Algorithm	CSSA	to	set	all	blocks	(except	the	bottom	
blocks,	which	may	just	be	phase	shifters)	in	their	“cross”	
state.	
For	n	=	1	to	MI	

Shine	power	into	WI(n)	only	

For	m	=	MI	–	n	+	1	to	1	step	‐1	
If	block	B(m,	n)	exists		

adjust		in	block	B(m,	n)	so	D(m	+	n	–	1)	power	is	
maximized	

End	if	
Comment:	we	are	working	back	up	each	“Input”	row	of	
blocks,	from	largest	m	to	smallest	m	in	each	row,	
changing	them	from	“cross”	to	“bar”	states	

Next	m	

Next	n	
Note	that	the	function	of	this	algorithm	is	built	into	the	version	

of	Algorithm	S2	(MFSA)	for	the	case	without	embedded	detectors,	
but	is	only	optional	in	the	version	with	embedded	detectors.	

Note on requirements on phase shift elements 

All	 the	algorithms	presume	that	we	have	some	way	of	changing	
and	holding	the	values	of	the	phases	,	,	L,	and	R	that	we	may	
adjust	 for	each	block	while	running	the	algorithms.	We	could	be	
controlling	 the	 phases	 through	 heaters	 or	 through	 voltages	 on	
phase	shift	elements,	in	which	case	we	would	need	(e.g.,	electronic)	
memories	to	hold	the	necessary	drive	voltages	so	as	to	retain	these	
phases	between	algorithm	steps	and	after	we	are	finished	with	the	
algorithms.	Alternatively,	we	might	be	physically	trimming	phase	
shifting	elements	by	adding	or	subtracting	material	or	physically	
permanently	or	semi‐permanently	changing	refractive	index.		
To	 run	 the	 beamsplitter	 50:50	 setup	 algorithm,	Algorithm	S1	

(BFSA),	we	have	to	be	able	to	change		by	approximately		 (i.e.,	
180°)	multiple	times,	so	it	may	be	particularly	useful	to	make	that	
phase	shifter	voltage‐controlled	in	some	fashion,	at	least	during	the	
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initial	 training	 phase.	 Otherwise,	 if	 we	 only	 want	 a	 “set‐it‐and‐
forget‐it”	device	that	we	configure	only	once,	the	phase	shifts	could	
be	set	by	physical	trimming.	If	we	use	forms	of	the	MZIs	with	phase	
shifters	in	both	upper	and	lower	arms,	we	can	increase	(decrease)	
,	L,	and	R	by	adding	(subtracting)	phase	delay	in	the	upper	arm,	
and	 we	 can	 decrease	 (increase)	 them	 by	 adding	 (subtracting)	
phase	 delay	 in	 the	 lower	 arm;	 hence	 we	 can	 utilize	 trimming	
techniques	 that	 can	 only	 physically	 change	 phase	 delay	 in	 one	
sense	(e.g.,	by	adding	material	or	by	removing	material).	This	could	
be	particularly	attractive	for	the	L,	and	R	phase	shifts,	which	we	
would	 hope	 only	 to	 have	 to	 adjust	 once	 to	 compensate	 for	
fabrication	 tolerances.	 To	 adjust	 ,	 however,	 we	 do	 need	 to	 be	
physically	 capable	 of	 both	 increasing	 and	decreasing	 this	 phase.	
Also,	 having	 both	 the	 	 and	 	 phase	 shifters	 voltage‐controlled	
allows	the	overall	function	of	the	device	to	be	reprogrammed.		

Use of dummy blocks to equalize loss 

The	mesh	as	shown	explicitly	in	Fig.	1	of	the	main	text	has	all	the	
necessary	 blocks	 for	 arbitrary	 configuration	 of	 the	network,	 but	
has	 different	 numbers	 of	 blocks	 in	 different	 possible	 “paths”	
through	the	network.	For	example,	the	path	from	WI1	to	WC1	only	
passes	 through	 one	 block,	 whereas	 the	 path	 from	WI3	 to	WC3	
passes	 through	 three	blocks.	 If	we	want	 to	equalize	background	
loss	 or	 overall	 delay	 on	 all	 paths,	we	 can	 add	dummy	blocks1,2,	
ultimately	to	be	set	in	their	“bar”	state	(i.e.,	complete	transmission	
from	 “top”	 to	 “right”	 and	 from	 “left”	 to	 “bottom”).	 Such	 a	
configuration	for	a	4‐input,	4‐output	mesh	is	shown	in	Fig.	S3.	

	

	

Fig.	 S3.	 4‐input,	 4‐output	 mesh	 with	 added	 blocks	 (with	 dashed	
outlines)	so	all	paths	from	inputs	WI1	–	WI4	to	outputs	WC1	–	WC4	
through	the	network	encounter	the	same	number	of	blocks.	Ultimately,	
all	of	the	additional	blocks	here	will	be	set	to	their	“bar”	state	so	they	
perform	no	mathematical	function.		

To	achieve	the	equal	numbers	of	blocks	per	path,	we	only	need	
to	 add	 the	 dummy	 blocks	 that	 lie	 horizontally	 on	 the	 rows	
connected	 to	 the	actual	 signal	paths	 (i.e.,	 on	 the	horizontal	 lines	
from	WI3	to	WC3,	from	WI2	to	WC2	and	from	WI1	to	WC1	in	Fig.	
S3),	which	in	this	example	is	the	set	of	blocks	B03,	B02,	B01,	B10,	
B20,	 B30,	 B‐12,	 and	 B2‐1.	 To	 allow	 training	 of	 all	 of	 these	
additional	 dummy	 blocks	 so	 that	 their	 internal	 (effective)	
beamsplitters	are	50:50	and	so	 that	 they	are	all	 set	 to	 the	 “bar”	
state,	we	add	the	rest	of	the	dummy	blocks	(here	B‐10,	B‐1‐1,	B0‐1,	

B1‐1,	 and	 B00).	 We	 can	 essentially	 then	 use	 all	 the	 same	
algorithms	 as	 we	 would	 use	 for	 the	 simpler	 mesh	 without	 the	
dummy	blocks,	merely	extending	Algorithm	S2,	 the	mesh	50:50	
setup	algorithm	(MFSA),	to	also	include	these	dummy	blocks.	The	
simplest	way	to	view	that	extension	is	as	if	we	had	“completed	the	
triangle”	of	blocks	in	Fig.	S3,	imagining	that	we	extended	the	input	
rows	and	channel	rows	to	the	bottom	of	the	figure.	In	the	case	of	
Fig.	S3,	this	would	involve	hypothetically	adding	blocks	B‐13,	B‐14,	
B‐15	 to	 channel	 row	 ‐1,	 B04	 to	 channel	 row	 0,	 and	 similar	
hypothetical	extensions	for	input	rows	0	and	‐1.	Then	we	imagine	
running	MFSA	for	this	larger	mesh,	just	as	before,	though	of	course	
there	are	no	actual	settings	to	set	in	these	hypothetical	blocks.	The	
additional	inputs	(e.g.,	WI0,	WI‐1,	WI‐2,	and	WI‐3	in	Fig.	S3)	and	
outputs	 (e.g.,	 the	waveguides	WC0,	WC‐1,	WC‐2,	 and	WC‐3	 and	
detectors	 D0,	 D‐1,	 D‐2,	 and	 D‐3)	 are	 used	 during	 the	 MFSA	
algorithm	(which	should	also	be	run	to	leave	all	the	blocks	in	the	
“bar”	 state	 at	 the	 end).	 Otherwise,	 they	 are	 not	 used;	 the	main	
functional	 training	 Algorithm	 S3	 (SLCA)	 uses	 only	 the	 “active”	
inputs	 (WI1,	WI2,	WI3,	 and	WI4	 in	 Fig.	 S3)	 and	 outputs	 (WC1,	
WC2,	WC3,	and	WC4	and	detectors	D1,	D2,	D3,	and	D4	in	Fig.	S3).	
Note	 now	 that	 every	 pair	 of	 beams	 that	 interferes	 at	 a	 given	

block	has	passed	through	the	same	number	of	blocks.	So,	if	there	is	
equal	 loss	 in	every	block,	 the	pair	of	beams	has	experienced	the	
same	 attenuation.	 Hence,	 the	 settings	 the	 alignment	 algorithm	
gives	to	a	particular	block	are	the	same	as	if	there	was	no	loss	in	
the	blocks.	This	in	turn	leads	to	a	conservation	of	the	orthogonality	
properties	of	the	unitary	transform	even	if	the	blocks	are	lossy.	The	
resulting	mesh	of	blocks	will	behave	the	same	as	the	lossless	set	of	
blocks	except	for	multiplication	by	a	factor	that	corresponds	to	the	
loss	in	passing	through	one	complete	path	from	input	to	output.	Of	
course,	different	loss	in	different	blocks	does	not	lead	to	this	kind	
of	behavior.	This	does	mean,	however,	that	losses	like	waveguide	
loss	 and	 beamsplitter	 loss	 do	 not	matter	 to	 the	 function	 of	 the	
system,	within	an	overall	loss	factor,	as	long	as	the	waveguide	loss	
and	beamsplitter	 loss	are	sufficiently	uniform	for	all	waveguides	
and	beamsplitters.	

5. Example designs 

Calculating device settings 

The	 overall	 method	 we	 are	 proposing	 in	 this	 work	 does	 not	
require	 we	 calculate	 anything	 for	 the	 settings	 inside	 the	 mesh	
because	it	works	based	on	feedback	loops.	To	see	what	the	method	
will	actually	do	in	a	given	design,	we	can	calculate	what	the	various	
device	 settings	 will	 be	 after	 training.	 This	 also	 enables	 us	 to	
compare	with	previous	designs.		
To	do	this	calculation,	we	use	the	method	in	Appendix	A	of	Ref.	

[2].	We	give	a	 simplified	and	condensed	version	of	 that	method	
here	 in	 the	 current	 notation.	 For	 definiteness,	 we	 choose	 the	
structures	as	in	Fig.	S1	(a)	and	(b),	which	are	equivalent.	In	these,	
changing	the	reflectivity	(e.g.,	by	changing	)	makes	no	change	in	
the	phases	of	either	the	“right”	or	“bottom”	exiting	beams,	and	the	
phase	change		only	acts	on	the	“right”	exiting	beam;	these	choices	
keep	the	mathematics	slightly	simpler.	It	is	straightforward	to	map	
the	results	onto	the	alternative	versions	in	Fig.	2	of	the	main	text	
and	 in	 Fig.	 S1	 (c).	 Also,	 we	 choose	 the	 phase	 delay	 for	 any	
“reflected”	path	(i.e.,	from	“left”	to	“bottom”,	“bottom”	to	“left”,	from	
“top”	to	“right”	or	“right”	to	“top”),	not	including	passing	through	
any		phase	shifter,	to	be	0	(or	some	multiple	of	2radians),	and	
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we	 choose	 the	 phase	 delay	 for	 any	 “transmitted”	 path	 (not	
including	passing	through	any		phase	shifter)	–	i.e.,	from	“left”	to	
“right”,	“left”	to	“right”,	“top”	to	“bottom”,	or	“bottom”	to	“top”	–	to	
be	 /2	 (possibly	 plus	 some	 multiple	 of	 radians).	 (To	 satisfy	
unitarity	 the	sum	of	 these	 “top”	 to	 “bottom”	and	 “left”	 to	 “right”	
phase	shifts	has	to	differ	by	,	within	an	additive	multiple	of	,	
from	the	sum	of	the	“left”	 to	“bottom”	and	“top”	to	“right”	phase	
shifts.)	With	these	choices,	we	can	write	the	field	reflectivity	of	the	
beamsplitter	or	MZI	in	block	Bmn	(not	including	passing	through	
any		 phase	 shifter)	 as	 a	 positive	 real	 number	 rmn	 and	 the	 field	
transmission	“through”	such	a	beamsplitter	or	MZI	(not	including	
passing	through	any		phase	shifter),	from	“left”	to	“right”,	“right”	
to	“left”,	“top”	to	“bottom”,	or	“bottom”	to	“top”	as	

	 21mn mnt i r  	 (1)	

where	 exp( / 2) 1i i   	 and	 we	 take	 the	 positive	 square	
root.	We	also	can	calculate		in	any	block	as	

	 1cosmn mnr  	 (2)	

and	we	write	the	phase	delay	setting		in	any	given	block	as	mn.		
Mathematically,	we	imagine	that	we	shine	light	backwards	into	

the	 “output”	 channel	 waveguides	 WCm,	 starting	 with	 WC1.	
Progressively,	 we	 calculate	 the	 device	 settings	 so	 that	 the	 field	
emerging	 from	 the	 “input”	 ports	 is	 the	 phase	 conjugate	 (or	
Hermitian	adjoint,	 Um )	of	the	training	vector	 Um 	(written	
as	a	vector	of	unit	mathematical	magnitude)	we	would	have	shone	
into	the	“input”	ports.	This	is	straightforward	for	the	first	channel	
“row”.		
We	 write	 the	 elements	 of	 the	 (column)	 vector	

 1 2, , , I
T

m m M mUm a a a   .		Generally,	we	will	write	the	vector	of	
training	amplitudes	that	would	actually	arrive	at	the	“top”	ports	of	
the	 mth	 channel	 row	 of	 blocks	 as	

  1 2, , , 1, T
m m IDm d d d M m m    .	 (We	 use	 the	 notation	

 , pqd p q d 	 wherever	 it	 is	 helpful	 for	 clarity,	 and	 we	 will	
similarly	use	the	notation	 ( , )B m n Bmn ).	For	the	first	channel	
row,	 1 1D U  .	 For	all	 subsequent	channel	 rows,	 Dm 	 is	
different	 from	 Um 	 because	 the	 training	 vectors	 must	 pass	
through	 all	 the	 earlier	 channels’	 rows	 of	 blocks;	 it	 is	 however,	
straightforward	 to	 calculate	 the	 Dm 	 from	 the	 Um 	 as	we	
calculate	 progressively	 through	 the	 rows.	 Note,	 that	 with	 each	
successive	 row,	 the	 vector	 Dm 	 becomes	 shorter	 by	 one	
element,	just	as	the	channel	rows	become	shorter	with	increasing	
channel	number	in	Fig.	1	of	the	main	text.		
The	settings	of	the	B11	block	are	trivial;	in	our	current	notation,	

we	 want	   *
11 11 11 11exp ( )r i d a   ,	 so	 11 11r d 	 and	

11 11arg d  .	 (Here	 we	 take	 the	 “arg”	 function	 to	 give	 a	 result	
between	‐	and	.	For	the	actual	physical	phase	shifter,	we	can	add	
a	positive	multiple	of	2	 to	 the	calculated	mn	 to	keep	 the	phase	
shift	physically	positive	if	we	wish.)	As	we	move	along	the	m	=	1	
channel	row,	the	settings	of	the	subsequent	blocks	have	to	account	
for	the	reflectivities	and	phase	shifts	of	the	previous	blocks	in	the	
row.	Generally,	in	a	given	row,	with		

	  
1 1

, 1 exp
n mn m

mn mp mp
p p

d m n m i t 




 

 
    

 
  		 (3)	

and	with	 the	understanding	that,	 for	n	=	1,	 the	summation	term	
will	be	zero	and	the	product	term	will	be	1,	then	

	
  and  argmn mn mn mnr    

	 (4)	

(Note	 that,	 if	 0mn  ,	 we	 can	 choose	 any	 phase	 setting;	 for	
definiteness,	we	can	choose	 0mn  	 in	that	case.)	In	Eq.	(3),	the	
“sum”	term	gives	the	sum	of	all	the	phases	of	the	phase	shifters	in	
the	preceding	blocks	in	the	channel	row	m,	and	the	“product”	term	
is	 the	 product	 of	 all	 the	 (field)	 transmissions	 of	 the	 preceding	
blocks	in	the	channel	row	m.	Note	that	the	last	block	in	a	given	row,	
which	will	be	block	B(m,	MI	–	m	+	1),	will	always	have	a	reflectivity	
of	1;	this	will	follow	from	the	unitarity	or	losslessness	of	the	optics	
and	 the	 normalization	 of	 the	 input	 training	 vectors,	 and	 in	 the	
calculations,	we	will	explicitly	always	set	this	to	1.	Note	that	if	any	

1mnr  	 (or	 1mn  ),	we	stop	calculating	any	 further	values	of	
mn 	on	that	channel	row;	those	values	will	not	matter	because	no	

light	will	 get	 to	 those	 blocks,	 and	 0mnt  	 for	 that	 block,	which	
would	 lead	to	a	“divide	by	zero”	error	 in	a	calculation	algorithm	
based	on	Eq.	(3)	for	any	further	blocks	on	that	channel	row.	For	
definiteness,	we	can	set	all	the	remaining	 mn 	(and	 mnr )	to	zero	
(except	for	the	last	block	B(m,	MI	–	m	+	1)	with	its	reflectivity	of	1).	
To	complete	the	calculation	method,	we	need	to	calculate	each	

successive	 Dm 	 from	its	corresponding	training	vector	 Um 	
using	the	known	values	of	the	rmn	and	mn	in	the	preceding	channel	
rows.	 Generally,	 this	 mathematical	 transformation	 from	 the	
“input”	into	the	“top”	ports	of	the	mth	row	to	the	“input”	into	the	
“top”	 ports	 of	 the	 (m	 +	 1)th	 can	 be	 accomplished	 using	 an	
   1I IM m M m    	matrix	C(m),	which	we	can	write2	as	

 

   

 
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c ct c c

t c

t

t c

  

   

 
 
 
   
 
 
  

C



  
  


		 (5)	

where	

	

 
1

11

exp
j j

m
sj mj ms mp mp

p sp s

c r r t i 


  

   
    

  


		 (6)	

is	understood	physically	as	the	(complex)	factor	relating	the	input	
field	on	the	“top”	of	block	Bmj	to	its	contribution	to	the	input	field	
on	the	“top”	of	block	  1,B m s .	Here,	as	we	can	see	from	the	
matrix,	 1j s  .	For	the	cases	where	 1j s  ,	the	product	term	
is	 understood	 to	 be	 1	 (there	 is	 no	 transmission	 term	 involved	
because	the	light	reflects	from	one	block	into	the	next	where	it	also	
reflects).	
So,	once	we	have	calculated	the	settings	in	a	given	row	m	from	

its	training	vector	 Um ,	we	calculate	the	matrix	C(m).	Then,	from	
the	 next	 training	 vector	 ( 1)U m  	 we	 calculate	 the	 vector	

     1 1
( 1) ( 1)

m m
D m U m 

 C C C ,	 which	 we	 use	 to	
calculate	all	the	 ( 1)m nr  	and	 ( 1)m n  	in	channel	row	m+1,	and	so	on.		
In	this	way,	we	can	calculate	all	the	settings	in	the	mesh	for	a	

given	set	of	orthogonal,	normalized	training	vectors,	and	hence	for	
any	desired	unitary	or	loss‐less	transform	between	the	inputs	and	
the	channel	outputs.	
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Unitary linear operations 

Three‐way beamsplitter (“tritter”) 

A	three‐way	beamsplitter	or	“tritter”	splits	each	of	its	three	inputs	
so	that	the	input	power	in	any	one	input	is	divided	equally	among	
its	three	output	(see,	e.g.,	Ref.	[3]	for	a	recent	discussion).	This	is	a	
good	example	to	illustrate	the	method	here;	it	is	just	complicated	
enough	to	be	a	non‐trivial	example,	 it	has	been	demonstrated	in	
real	 systems	 (e.g.,	 [3]),	 and	 is	 of	 specific	 interest	 for	 quantum	
applications.	We	will	work	through	this	example	in	detail	to	clarify	
definitions,	notations,	and	the	overall	process.	
One	unitary	matrix	D for	such	a	device	is3	

	

2 /3 4 /3

4 /3 8 /3

1 1 1
1

D = 1
3

1

i i
T

i i

e e

e e

 

 

 
 
 
   		 (7)	

Other	matrices	could	also	describe	such	a	device4.	Columns	or	
rows	 in	 this	 matrix	 could	 be	 interchanged,	 which	 would	
correspond	to	a	re‐ordering	of	the	inputs	or	outputs,	respectively;	
any	 column	 could	 be	 multiplied	 by	 an	 arbitrary	 unit	 complex	
number,	which	corresponds	 to	changing	 the	phase	delay	 from	a	
given	 input	 to	 the	whole	 set	 of	 outputs,	 and	 similarly	 any	 row	
could	 be	 multiplied	 by	 a	 unit	 complex	 number,	 which	 would	
change	the	relative	phase	of	a	given	output	compared	to	the	other	
outputs.		

	

Fig.	S4.	Example	calculated	settings	to	implement	a	tritter.	Settings	for	
intensity	reflectivity	R,	as	set	in	a	MZI	with		radians	of	phase	lead	in	
one	arm	compared	to	the	other,	and	phase	lead		radians	in	the	phase	
shifter	(using	configurations	as	in	Fig.	2	(a)	or	(b))	are	given	for	each	
block	for	a	configuration	as	 in	Fig.	1	of	the	main	text.	(The	numbers	
shown	for	phases	are		and	,	as	indicated	in	the	legend	block	on	
the	right	of	the	figure.)	

The	 input	 mathematical	 vectors	 correspond	 to	 sets	 of	 field	
amplitudes	in	the	input	waveguides	WI1	–	WI3.	Obviously,	such	a	
device	takes	the	set	of	input	vectors	corresponding	to	illuminating	
the	waveguides	WI1	–	WI3	one	at	a	time,			
	

	

1 2 3

1 0 0

0 , 1 , and 0

0 0 1
I I I  

     
            
           		 (8)	

and	turns	them,	one	by	one,	into	the	output	vectors	of	sets	of	field	
amplitudes	in	the	channel	waveguides	WC1	–	WC3	

2 /3 4 /3
1 2 3

4 /3 8 /3

1 1 1
1 1 1

1 , , 
3 3 3

1

i i
O O O

i i

e e

e e

 

 

  
     
            
           (9)	

In	our	method,	we	train	the	FPLA	to	perform	this	function	using	
input	vectors	that	are	the	columns	 Um

	
of	the	matrix	 †

TU=D 	
(or,	 equivalently,	 that	 are	 the	Hermitian	 adjoints	 of	 the	 rows	 of	

TD ). Specifically,	 for	 TD 	 we	 train	 with	 the	 vector	 of	 input	
amplitudes	

1 1to give output vector

1 1
1

1  0
3

1 0

 U T U 
   
       
      

D

	 (10)	

(Note:	 though	we	 show	normalized	 training	 vectors	 here,	 the	
actual	 power	 in	 the	 training	 vector	 makes	 no	 difference	 to	 the	
ultimate	settings	of	the	devices.)	With	this	incident	beam,	we	run	
Algorithm	S3,	 the	SLCA	algorithm	along	 the	 first	channel	 row	of	
blocks	so	all	the	power	emerges	from	channel	waveguide	WC1	to	
give	the	desired	output	vector	(within	some	overall	phase	delay	for	
propagating	through	the	device).	Similarly,	we	train	with		

3 /4
2 2

3 /2

to give output vec

1 0
1

 1t  
3

r

0

oi
U T U

i

e

e




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       
      

D 	

	 	 (11)	

Here	we	can	use	the	convention	that	a	positive	phase			(as	in	
the	factor	  exp i )	corresponds	to	a	phase	lead	and	a	negative	
one	 corresponds	 to	 a	phase	 lag	or	delay.	 So,	 the	 training	vector	
here	has	relative	phase	lags	of	 3 / 4 	and	 3 / 2 	radians	in	the	
inputs	 to	 waveguides	 WI2	 and	 WI3	 respectively.	 Similarly,	 we	
train	with	

4 /3
3 3

8 /3

to give output vec

1 0
1

 0t  
3

r

1

oi
U T U

i

e

e





 



   
       
      

D 	

	 	 (12)	

Though	our	method	does	not	require	any	calculations	to	set	it	up,	
we	 can	 use	 the	 calculation	method	 above	 to	 calculate	what	 the	
settings	 of	 the	 phase	 shifters	 and	 reflectivities	 would	 be.	 The	
results	are	shown	in	Fig.	S4.	

Linear optics quantum computing CNOT gate 

The	 linear	 optics	 quantum	 computing	 CNOT	 gate	 has	 been	
investigated	 extensively	 following	 its	 original	 proposal	 [5].	 The	
version	proposed	in	Ref.	[6]	has	been	demonstrated	in	discrete	[7]	
and	 integrated	 [7,8]	 optical	 versions,	 including	 a	 generalized	
interferometer	mesh	with	 fixed	 couplings	of	 two	different	 kinds	
[8].	 Using	 the	 relations	 between	 the	 input	 and	 output	 photon	
annihilation	 operators	 for	 the	waveguide	modes	 (Eq.	 (2)	 of	Ref.	
[6]),	we	can	directly	write	down	the	unitary	device	matrix	for	such	
a	gate	as		

	

1 0 0 0 02

0 0 0 02 1

1 1 1 01 0 0

1 1 0 10 03
1 0 1 10 0

0 1 1 10 0

G

 
 
 
 

  
 
 
 

   

D

		 (13)	

where	 the	 field	 variables	 for	 the	 input	 column	 vector,	 in	 the	
notation	of	Ref.	[6],	are	in	the	order,	from	top	to	bottom,	cH,	cV,	tH,	tV,	
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vc,	and	vt,	and	similarly	for	the	resulting	output	column	vector,	with	
variables	in	the	order,	from	top	to	bottom,	cHO,	cVO,	tHO,	tVO,	vcO,	and	
vtO.	For	the	physical	mesh,	the	training	vectors	are	the	columns	of	
the	matrix	 †

G GU D .	

Using	this	matrix	and	our	algorithms	here,	we	can	automatically	
generate	the	design	shown	in	Fig.	S5	for	a	6‐input,	6‐output	mesh.	
The	 result	 is	 has	 both	 similarities	 to	 and	 differences	 from	 the	
layouts	 deduced	 in	 the	 original	 proposal	 [5].	 (By	 “essentially	
identical”	here	we	mean	within	phase	shifts	of	various	multiples	of	

/ 2 	 that	 can	 arise	 because	 of	 differences	 of	 definitions	 and	
choices	 of	 phases	 associated	with	 beamsplitter	 operation.)	 First,	
the	 present	 mesh	 obviously	 contains	 more	 beamsplitter	 blocks	
than	 the	 original,	 quite	 economical	 and	 symmetrical	 design	 [5];	
many	 of	 additional	 blocks	 are	 performing	 only	 simple	 “bar”	 or	
“cross”	routing	through	this	network,	though	(in	some	cases	with	

/ 2 	or	 / 2 	phase	shifts	on	the	“upper”	output	arm).		

	

Fig.	S5.	Calculated	settings	of	the	mesh	for	the	CNOT	gate,	showing	the	
reflectivity	R	and	the	phase	shift	setting	(phase	lead)		for	each	block.	
Blocks	that	in	either	the	“bar”	or	“cross”	state	are	shown	with	dashed	
outlines	

The	kind	of	mesh	of	Fig.	S5	is	capable	of	much	more	complicated	
operations	with	more	fully	populated	matrices,	which	is	why	these	
additional	 blocks	 are	 present.	 Nonetheless,	we	 can	 see	 that	 this	
automated	design	has	separated	out	the	2x2	block	between	the	vc	
and	 cH	 inputs	 and	 the	 vcO	 and	 cHO	 outputs	 and	 the	 4x4	 block	
connecting	the	other	inputs	and	outputs.	The	arrangement	for	the	
2x2	block	is	essentially	identical	to	that	of	the	original	proposal	[5].	
The	 setup	 for	 handling	 the	 lower,	 4x4	 block	 is	 similar	 to	 the	
original	proposal	 [5]	but	employs	5	rather	 than	4	beamsplitters.	
Note,	 though,	 that,	 unlike	 the	 original	 proposal,	 all	 the	 paths	
through	 this	 network	 pass	 through	 the	 same	number	 of	 blocks,	
which	 equalizes	 loss	 (hence	 preserving	 orthogonality	 in	 the	
presence	of	finite	but	equal	loss	in	the	blocks)	and	the	optical	path	
length	for	all	paths	is	nominally	the	same,	which	allows	the	device	
to	 function	 identically	 over	 some	 range	 of	 wavelengths.	
Furthermore,	the	present	mesh	approach	can	work	just	as	well	for	
any	 rearrangement	 of	 the	 inputs	 or	 outputs	 (equivalent	 to	
swapping	rows	or	columns,	respectively,	in	the	matrix	 GD ),	and	is	
not	restricted	to	the	particular	ordering	of	the	original	proposal	[5].		
We	can	“prefactor”	the	network	into	a	2x2	unit	and	a	4x4	unit,	

then	 our	 automated	 algorithm	 run	 on	 each	 of	 these	 separately,	
using	the	device	matrix	

	
22

1 21

3 2 1
G

 
  
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D

		 (14)	

to	 construct	 the	 training	 vectors	 to	 shine	 into	 the	 top	 two	
waveguides,	WI1	and	WI2,	and	the	matrix		
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	 (15)		

to	construct	the	training	vectors	for	the	bottom	four	waveguides,	
WI3	–	WI6.	This	process	produces	 results	 shown	 in	Fig.	 S6.	We	
omit	 showing	 blocks	 that	would	be	 performing	 no	 function,	 i.e.,	
operating	 in	 the	 “bar”	 (zero‐reflection)	 state	 blocks	 with	 no	
additional	phase	shift.	These	additional	blocks	are	not	 trained	in	
this	process,	and	should	be	preset	in	the	bar	state	(by,	for	example,	
running	Algorithm	S5	(BSSA)	before	training.)	The	results	now	are	
essentially	identical	with	the	original	proposal	[5].		

	

Fig.	 S6.	 Results	 of	 automatic	 design	 for	 the	 CNOT	 gate	 when	 run	
separately	as	a	2x2	unit	(top	two	waveguides)	and	a	4x4	unit	(bottom	
four	waveguides).		

Hadamard transform 

The	 Hadamard	 transform	 is	 an	 example	 of	 a	 unitary	 linear	
transform	with	a	broad	range	of	applications	in	signal	processing,	
encryption	and	data	compression,	and	Hadamard	transforms	also	
have	 applications	 in	 quantum	 computing.	 	 The	mth	 Hadamard	
transform	Hm	 transforms	 an	 input	 vector	 of	 2m	 elements	 to	 an	
output	vector	of	the	same	dimension.	For	example,	the	operator	H3	
would	be	described	by	a	device	matrix	

3 3 3

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11
D H

1 1 1 1 1 1 1 12
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

H

 
     
    
 

          
 

    
     

      		 (16)		

The	training	vectors	are	the	complex	conjugates	of	the	rows	of	
3HD ;	since	these	rows	are	real	then	the	rows	themselves	are	the	

training	 vectors,	which	 are	 known	as	 the	Walsh	 functions.	Note	
this	matrix	is	symmetric	(and	Hermitian).	The	resulting	calculated	
design	is	shown	in	Fig.	S7.	In	this	case,	all	 the	blocks	(except	the	
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bottom	row)	have	non‐trivial	reflectivities.	The	concept	of	making	
Hadamard	 transforms	using	sets	of	MZIs	and	phase	shifters	has	
been	known	in	principle	for	some	time	[9]	

Fourier transform 

The	 concept	 of	 performing	 discrete	 Fourier	 transforms	 using	
combinations	of	Mach‐Zehnder	 interferometers	and	phase	 shifts	
has	 also	 been	 known	 for	 some	 time	 [9].	 An	 example	 form	 of	
discrete	Fourier	transform	for	a	dimensionality	 8N  	is	given	by	
the	matrix	

8
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		 	 (17)	

where	the	matrix	elements	for	such	an	N‐dimensional	
transform	are	given	by	the	expression	

	
 ,

1
exp 2 /FNp q ipq N

N
D

		 (18)	

Using	 our	 FPLA	 architecture,	 the	 resulting	 calculated	 design	
would	be	as	shown	in	Fig.	S8.	

Lens 

With	 this	 FPLA	 approach,	 discrete	 Fourier	 transforms	 are	 not	
restricted	to	dimensionalities	that	are	powers	of	2	(as	is	the	case	
for	 fast	 Fourier	 transforms,	 for	 example),	 and	 we	 can	 recenter	

them	 as	 desired.	 Another	 example	 of	 a	 Fourier	 transform	 is	 a	
device	 configured	 to	 emulate	 the	 action	 of	 a	 lens	 in	 forming	 a	
Fourier	transform	in	its	back	focal	plane	of	the	field	in	its	front	focal	
plane.	We	specifically	want	a	uniform	input	to	result	in	a	“spot”	in	
the	 middle	 of	 the	 output.	 We	 can	 correspondingly	 center	 the	
transform	by	using	the	expression	

   
,

1 11 2
exp

2 2LNp q

N Ni
p q

NN

    
     

    
D

		 (19)	

Choosing	N	to	be	odd	allows	an	output	in	the	middle	of	the	set	of	
output	waveguides	for	a	uniform	input.	For	 5N  	the	resulting	
calculated	device	matrix	would	be	(to	three	significant	figures)	
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	 (20)		

with	 0.138a  ,	 0.425b  ,	 0.362c  ,	 0.263f  ,	and	
0.447g  .	This	leads	to	the	calculated	design	as	in	Fig.	

S9.	

Non‐unitary linear operations 

Many	common	and	useful	linear	operations	are	non‐unitary,	and	
so	 in	 an	 FPLA	 architecture	 can	 be	 implemented	 using	 the	
configuration	 discussed	 in	 Ref.	 [2].	 Such	 an	 approach	 formally	
decomposes	the	device	matrix	D	by	singular	value	decomposition	
into		

	

†

1

M

diag m Vm Um
m

s  


 D = VD U
		 (21)	

involving	two	unitary	blocks	 †U 	and	V respectively,	separated	by	
a	 set	 of	 modulators	 whose	 field	 transmissions	 implement	 the	
singular	 values	 sm.	 Each	unitary	block	 is	 then	 trained	 separately	
with	the	appropriate	training	vectors.	Now	to	find	the	two	sets	of	
training	 vectors,	 Um 	 to	 train	 the	 †U 	 block	 from	 the	 left	 and	

	

Fig.S7.	Results	of	automatic	design	for	the	 3H 	Hadamard	transform,	using	the	same	notation	as	in	Fig.	S6	
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Vm 	 to	 train	 the	 V	 block	 from	 the	 right,	 we	 can	 therefore	
formally	perform	the	singular	value	decomposition	as	in	Eq.	(21)	
of	 the	 device	 matrix	D.	 The	 vectors	 Um 	 and	 Vm 	 are,	 of	
course,	 just	 the	 columns	 of	 the	 resulting	 matrices	 U	 and	 V,	
respectively.		
One	minor	mathematical	point	here	relates	to	the	choice	of	signs	

for	 the	singular	values.	The	eigen	equations	 for	 †D D 	and	 †DD 	
that	we	solve	in	singular	value	decomposition	give	us	the	numbers	

2
ms 	 as	 eigenvalues,	 so	 the	 singular	 values	 themselves,	 ms ,	 are	

ambiguous	within	unit	complex	factors.	The	eigenvectors	of	 †D D 	
and	 †DD 	that	we	will	calculate	numerically	when	performing	the	
singular	value	decomposition	of	D	are	themselves	also	ambiguous	
within	 unit	 complex	 factors	 and	 different,	 valid	 eigenvector	
algorithms	 might	 generate	 different	 resulting	 eigenvectors.	 In	
constructing	the	full	singular	value	decomposition,	we	will	have	to	
add	 some	 process	 to	 make	 sure	 we	 have	 chosen	 these	 unit	
complex	numbers	consistently.		

	

Fig.	 S9.	 Results	 of	 automatic	 design	 for	 the	 5N  	 discrete	 “lens”	
Fourier	transform,	using	the	same	notation	as	in	Fig.	S6.	

For	simplicity,	for	example,	we	might	choose	all	of	the	 ms 	to	be	
real	 and	 positive,	 and	 we	 could	 leave	 the	 vectors	 Um 	 (the	
columns	of	U)	in	whatever	(normalized)	form	is	generated	by	the	
eigenvector	 algorithm	 for	 the	 matrix	 †D D 	 .	 Then	 we	 should	
construct	 the	 final	 versions	 of	 Vm 	 (the	 columns	 of	 V)	 by	
multiplying	 the	 initial	 (normalized)	 results	 generated	 by	 the	

eigenvector	 algorithm	 for	 the	 matrix	 †DD 	 by	 whatever	 (unit)	
complex	factor	leads	to	the	results	 †

Vm m Ums  U .	With	this	
set	of	choices,	the	product	 †

diagVD U 	will	correctly	reconstruct	the	
original	device	matrix	D.		
This	is	actually	only	a	mathematical	point	because	the	absolute	

phase	of	the	individual	training	vectors	has	no	meaning	physically.	
In	the	end	with	this	approach	for	a	physical	device	we	are	going	to	
have	to	choose	the	phase	relationship	between	an	input	training	
vector	and	its	corresponding	output	vector	manually,	for	example	
by	 setting	 the	 phase	 of	 the	modulators	 in	 the	middle,	 by	 some	
other	process,	if	we	care	about	the	relative	phases	or	signs	of	these	
different	outputs.			

Differentiation 

One	generally	useful	non‐unitary	problem	is	differentiation	or,	at	
least,	its	approximation	by	finite	differences.	We	can	work	through	
a	 particular	 example	 here	 to	 show	 the	method	 of	 tackling	 non‐
unitary	problems	with	 the	FPLA	architecture.	We	could	 imagine	
that	the	set	of	amplitudes	at	the	input	waveguides	corresponds	to	
a	 set	 of	 amplitudes	 of	 some	 function	 at	 a	 set	 of	 equally	 spaced	
points;	 then	we	could	 construct	 an	approximation	 to	 the	 spatial	
first	 derivative	 of	 that	 function	 based	 on	 the	 differences	 in	 the	
function	values	at	adjacent	points	(i.e.,	the	amplitudes	in	adjacent	
waveguides).	We	can	consider	a	system	with	5	input	waveguides,	
which	will	have	a	device	matrix	we	could	write	as		

	

1 1 0 0 0

0 1 1 0 01

0 0 1 1 08
0 0 0 1 1

D

 
  
 
 

 

D 		 (22)	

Note,	 first,	 that	 this	matrix	 is	 not	 square;	 there	 are	 only	 four	
differences	between	five	adjacent	values,	so	here	we	obtain	a	 4 5 	
matrix	 (and	 we	 will	 correspondingly	 only	 have	 4	 output	
waveguides).	 Note	 also	 that	 the	 rows	 of	 this	 matrix	 are	 not	
orthogonal.	Hence,	no	matter	what	we	choose	for	the	prefactor	in	
front	 of	 this	matrix	 (here	 1/ 8 ),	 DD 	 is	 not	 unitary	 (and	 it	 is	
already	not	technically	unitary	because	it	is	not	square).	The	choice	
of	the	prefactor	here	is	to	some	extent	arbitrary	because	it	depends	

 
Fig.	S8.	Results	of	automatic	design	for	the	 8N  	discrete	Fourier	transform,	using	the	same	notation	as	in	Fig.S6.	
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on	what	we	regard	as	 the	“distance”	between	adjacent	points	 in	
our	derivative.	The	choice	of	1/ 8 	here	conveniently	makes	the	
sum	of	the	squares	of	the	matrix	elements	equal	to	1,	which	also	
ensures	 that	 none	 of	 the	 singular	 values	 is	 greater	 than	 1	 (and	
hence	can	be	implemented	by	a	modulator	element	without	gain),	
but	other	values	could	be	chosen	instead.		
In	 the	 usual	 fashion	 for	 singular	 value	 decomposition,	 the	

columns	of	the	matrix	U	are	the	eigenvectors	of		

†

1 0 0 0
1 1 0 0 0

1 1 0 0
0 1 1 0 01

0 1 1 0
0 0 1 1 08

0 0 1 1
0 0 0 1 1

0 0 0 1

1 1 0 0 0

1 2 1 0 0
1

0 1 2 1 0
8

0 0 1 2 1

0 0 0 1 1

D D

 
        
  

       
 

   
   
 

  
  

D D =

	 (23)	

Note,	incidentally	that,	once	we	get	away	from	the	edges	of	the	
matrix,	the	rows	of	this	matrix	are	taking	on	the	character	of	the	
second	difference	or	 second	derivative	with	 the	 form	 “‐1,	 2,	 ‐1”.	
The	eigenfunctions	of	such	a	second	derivative	are,	of	course,	just	
the	 various	 Fourier	 functions	 (sines,	 cosines,	 exponentials	 with	
imaginary	 exponents).	 Solving	 for	 the	 eigenvectors	 numerically	
(and	normalizing	them)	therefore	gives	the	matrix	

	

0.602 0.512 0.372 0.195

0.372 0.195 0.602 0.512

0 0.632 0 0.632

0.372 0.195 0.602 0.512

0.602 0.512 0.372 0.195

  
    
 
 

   
  

U = 		 (24)	

The	 eigenvalues	 corresponding	 to	 the	 columns,	 from	 left	 to	
right,	 are	 2

1 0.048s  ,	 2
2 0.173s  ,	 2

3 0.327s  ,	 and	
2

4 0.452s  .	We	choose	the	singular	values	as	the	positive	real	
square	roots,	which	become	the	diagonal	values	in		

	

0.219 0 0 0

0 0.416 0 0

0 0 0.572 0

0 0 0 0.672

diag

 
 
 
 
 
 

D 		 (25)	

There	is	technically	a	fifth	column	(with	all	elements	equal)	that	
we	could	add	to	U,	which	would	make	it	square,	but	it	corresponds	
to	an	eigen	value	of	zero;	as	a	result	it	will	play	no	further	part	in	
the	 singular	 value	 decomposition,	 so	 we	 can	 drop	 it	 (and	 the	
corresponding	column	we	would	have	had	in	 diagD ).	Without	this	
column,	the	matrix	U	is	technically	not	unitary,	though	this	will	not	
matter	in	practice	for	the	subsequent	mathematics.	Similarly,	we	
can	find	the	eigen	vectors	of		

†

1 0 0 0
1 1 0 0 0

1 1 0 0
0 1 1 0 01

0 1 1 0
0 0 1 1 08

0 0 1 1
0 0 0 1 1

0 0 0 1

2 1 0 0

1 2 1 01

0 1 2 18

0 0 1 2

D D

 
          
   

       
 

   
  
 

 

D D

		 (26)	

which	leads	to		

	

0.372 0.602 0.602 0.372

0.602 0.372 0.372 0.602

0.602 0.372 0.372 0.602

0.372 0.602 0.602 0.372

  
   
  
 
    

V = 		 (27)	

where	we	have	applied	the	procedure	discussed	above	to	choose	
the	signs	of	the	columns	of	V.	(Note	that	the	eigenvalues	of	 †

D DD D 	
are	 identical	 to	 those	 of	 †

DDD D ,	 as	 is	 always	 the	 case	 in	 this	
singular	 value	 decomposition	 procedure.)	 The	 reader	 can	 now	
verify	that	indeed	the	resulting	product	 †

diagVD U 	constructs	the	
original	matrix	 DD .		
Hence	we	have	found	all	the	training	vectors	for	setting	up	this	

non‐unitary	transformation	in	the	FPLA	architecture.	Additionally,	
we	 have	 to	 manually	 set	 the	 modulators	 in	 the	 middle	 to	
implement	 the	 required	 singular	 value	 amplitudes,	 and	we	may	
have	 to	 additionally	 set	 a	 phase	 also	 in	 these	 to	 get	 the	 correct	
relative	 phases	 of	 the	 different	 input‐vector‐to‐output‐vector	
mappings	(which	is	not	set	by	the	training	procedures).	Depending	
on	the	precise	training	vectors,	such	relative	phases	could	be	set,	
for	example,	based	on	shining	 two	 input	 training	vectors	on	 the	
device	 at	 once	 and	 adjusting	 the	 appropriate	 (singular	 value)	
modulator	phase	to	maximize	(minimize)	 the	output	power	 in	a	
particular	 output	 port	 where	 the	 two	 corresponding	 output	
vectors	are	meant	to	be	 in	(out	of)	phase,	and	repeating	this	 for	
different	pairs	of	beams	until	all	appropriate	relative	phases	have	
been	 set.	 This	 process	 will	 work	 for	 the	 present	 differentiation	
example	since	all	the	vectors	are	meant	to	be	real.			

Power splitters and integration 

The	 self‐aligning	beam	coupler	previously	described1	 can	 take	 a	
set	of	inputs	of	arbitrary	amplitudes	and	phases	and	combine	all	
the	power	to	one	output.	This	device	corresponds	to	just	one	row	
of	MZIs	(for	example,	channel	row	1	in	Fig.	1	in	the	main	text).	If	we	
train	such	a	device	with	a	vector	of	inputs	of	equal	amplitudes	and	
phases	(here	for	 3N  	such	inputs	as	a	concrete	example),	then	it	
will	correspond	to	the	following	device	matrix	

	  1
1 1 1

3
I D 		 (28)	

This	 matrix	 is	 sufficiently	 simple	 that	 the	 singular	 value	
decomposition	 is	 trivial.	 The	 matrix	 †

IU D ,	 the	 one	 singular	
value	 1 1s  ,	 and	 the	 matrix	  1V 	 (i.e.,	 the	 trivial	 1 1 	 unit	
matrix).	The	power	reflectivities	of	the	beamsplitter	blocks	B11,	B12,	
and	 B13	will	 be	 1/3,	 1/2	 and	 1,	 respectively.	 This	matrix	 is	 not	
unitary	since	it	is	not	square.	It	will	be	lossless	for	this	one	specific	
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input	of	equal	amplitudes	with	equal	phases.	Otherwise,	it	will	add	
the	(complex)	field	amplitude	at	each	input	to	present	the	result	at	
the	 output	 (i.e.,	 in	 waveguide	 WC1).	 Such	 an	 operation	
corresponds	 to	 a	 discrete	 approximation	 to	 an	 integral	 (i.e.,	 a	
summation).		
Note	that,	while	it	adds	the	fields	correctly,	it	does	not	in	general	

add	 the	powers	 in	 the	different	waveguides.	 For	 example,	 if	 the	
input	had	one	unit	of	power	in	WI1,	2	units	of	power	in	WI2	(with	
both	 of	 these	 beams	 in	 phase),	 and	 no	 power	 in	 WI3,	 the	
corresponding	 input	 (field	 amplitude)	 vector	 would	 be	
 1 4 0 T 	(in	units	where	power	is	the	modulus	squared	of	the	
field	 amplitude).	 The	 output	would	 be	 5 / 3 	 	 units	 of	 field	 in	
WC1,	corresponding	to	a	power	of	25/9	units.	Note,	though,	that	
the	total	input	power	was	3	units,	which	is	greater	than	25/9.	The	
device	has	correctly	added	the	input	fields	(with	a	scale	factor	of	
1/ 3 )	but	has	not	added	the	powers.	(The	remaining	power	will	
be	dumped	out	of	the	lower	right	ports	of	blocks	B11	and	B12.)	
A	device	such	as	this	run	backwards,	with	an	input	beam	into	

WC1,	will	operate	as	an	equal	power	splitter,	with	 the	“outputs”	
appearing	 at	 waveguides	 WI1	 –	 WI3.	 The	 extension	 to	 larger	
number	of	waveguides	WIn	 is	straightforward,	 for	both	the	field	
integration	(summation)	and	the	power	splitting.		 
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