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This document provides supplementary information to "Far-field linear optical 
superresolution via heterodyne detection in a higher-order local oscillator 
mode," http://dx.doi.org/10.1364/optica.3.001148. We theoretically calculate the heterodyne 
detector output with a local oscillator in TEM01. We also show how we use the Fisher 
information to estimate our experimental uncertainties. © 2016 Optical Society of America
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Theoretical prediction for the signal. Here we calculate the het-
erodyne detector signal in response to the electromagnetic field
generated by an object of a specific shape. We used this method
to obtain the theoretical curves in Figs. 2 and 3 of the main text.
The calculation is for one-dimensional objects, but is readily
extended to two dimensions.

We start by briefly reviewing Abbe’s microscope resolution
theory.

Ẽ(k⊥) =
+∞∫
−∞

E(x)eik⊥xdx, (S1)

where k⊥ is the orthogonal component of the wavevector and
constant normalization factors are neglected throughout the cal-
culation. The objective lens is located in the far field at distance
L from the object plane. The position X in the lens plane is then
related to k⊥ according to

X = L
k⊥
k

=
Lλk⊥

2π
. (S2)

The lens, in turn, generates the inverse Fourier image in its focal

plane:

E′(x′) =
1

2π

+∞∫
−∞

Ẽ(k⊥)T̃(k⊥)e
−ik⊥x′dk⊥ (S3)

=
1

2π

+∞∫
−∞

+∞∫
−∞

E(x)T̃(k⊥)e
ik⊥(x−x′)dxdk⊥,

where T̃(k⊥) is the transmissivity of the lens as a function of
the transverse position in its plane. If this transmissivity is a
constant, corresponding to an infinitely wide lens, the image
is identical to the object: E′(x′) = E(x). If the lens is of finite
width, the image is distorted according to

E′(x′) =
+∞∫
−∞

E(x)T(x′ − x)dx, (S4)

where T(x′ − x) = 1
2π

+∞∫
−∞

T̃(k⊥)eik⊥(x−x′)dk⊥ is the Fourier im-

age of the lens. In other words, the image is a convolution of the
object with T(·).

Heterodyne detection of the image field yields the electronic
signal given by Eq.(3) in the main text. If the field E(x) is coher-
ent, that equation is sufficient to calculate the output signal.
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If the object is incoherent, we must take the average of the
signal over all realizations of E(x) to find the output power of
the heterodyne detector photocurrent:

〈P〉 ∝

〈∣∣∣∣∣∣
+∞∫
−∞

E′(x′)E∗LO(x′)dx′

∣∣∣∣∣∣
2〉

(S5)

=

+∞∫∫
−∞

〈
E′(x′)E′∗(x′′)

〉
E∗LO(x′)ELO(x′′)dx′dx′′

Now using Eq. (S4) we find〈
E′(x′)E′∗(x′′)

〉
(S6)

=

+∞∫∫
−∞

〈E(x1)E∗(x2)〉 T(x′ − x1)T∗(x′′ − x2)dx1dx2.

For an incoherent object,

〈E(x1)E∗(x2)〉 ∝ I(x1)δ(x1 − x2), (S7)

and hence

〈P〉 ∝
+∞∫∫∫
−∞

I(x)T(x′ − x)T∗(x′′ − x) (S8)

× ELO(x′)E∗LO(x′′)dxdx′dx′′.

Our goal is to determine the heterodyne detector signal as a
function of the object configuration, E(x) in the coherent case
and I(x) in the incoherent case. These calculations are simplified
if we assume the transmissivity function to be of top-hat shape:
T(k⊥) = θ(k⊥max − |k|) with k⊥max = 2πR/(Lλ) according to
Eq. (S2), R = 0.4± 0.05 mm is the radius of the diaphragm and
θ(·) is the Heaviside step function. In the Fourier domain this
translates into

T(x′ − x) ∝
sin(k⊥max(x− x′))

k⊥max(x− x′)
≈ e−(x−x′)2/4σ2

, (S9)

with σ ≈ 0.21λL/R = 0.31± 0.03 mm. In two dimensions, the
transmissivity function is given by the first-order Bessel function
whose Gaussian approximation is similar.

The LO field in the TEM00 mode is optimized to match the
mode E(x′) in the coherent case for E(x) ∝ δ(x), so ELO(x′) ∝
e−x′2/4σ2

. Subsequently it is switched to the TEM01 mode with
ELO(x′) ∝ x′e−x′2/4σ2

. Substituting this mode into the expres-
sion Eq.(3) in the main text for the coherent case, we find

P ∝ J2 ∝

 +∞∫
−∞

xE(x)e−x2/8σ2

2

dx. (S10)

For the incoherent case, the mean signal power (S8) equals

〈P〉 ∝
+∞∫
−∞

x2 I(x)e−x2/4σ2
dx. (S11)

While the above results are valid for coherent and incoher-
ent objects of any shape, a simple analysis leading to Eq.(5) in
the main text is sufficient for the purposes of our experiment,
as evidenced by Fig. S1. The only visible difference between
the two models is that the curve calculated for the incoherent
case using the complete model does not reach zero at the slit
position xp = 0. This is because an incoherent slit of a finite
width, which can be seen as a combination of multiple mutually
incoherent point sources positioned around xp = 0, makes a
nonzero contribution to TEM01.
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Fig. S1. Comparison of the theoretical predictions for the sig-
nal power taking into account the finite width of the slit (blue
thin solid line) and assuming an infinitely narrow slit (yellow
thick dashed line). a) Coherent case, b) incoherent case.

Error analysis. Our experimental setup yields the electronic
signal power P(xp) with root mean square (rms) uncertainty
∆(P(xp)) as a function of the slit position xp. Suppose the task
is to estimate xp from the observed power. Below, we present
a method for determining and minimizing the error of this esti-
mation.

We can treat the observed power as a random variable whose
probability distribution

f (P, xp) =
1√

2π∆
e−[P−P(xp)]2/2∆2

(S12)

is Gaussian with rms width ∆ centered on the mean power P(xp).
The problem then reduces to that of estimating parameter xp
from this random variable. The uncertainty of this estimation
can be found using the Cramér-Rao error bound, δxp ≥

√
1/F,

where

F =

+∞∫
−∞

[(
∂ f (P, xp)

∂xp

)2/
f (P, xp)

]
dP (S13)

is the Fisher information. In the neighborhood of xp = 0, the
power P(xp) can be approximated as ax2

p, while the uncertainty
∆2 = c2 + [gP(xp)]2 as discussed in the main text, with constants
a, c and g evaluated from the experimental data. Accordingly,
we find for the Fisher information in the limit g� 1

F =
4a2x2

p

a2g2x4
p + c2

. (S14)

Next, we determine the value of xp where the Fisher infor-
mation is maximized so the measurement is the most sensitive.
Taking the derivative of F, we find that the maximum value
Fmax = 2a/gc is reached at xp =

√
c/ag. It is these values that

we use to evaluate the estimation uncertainties of xp in the main
text.

Derivation of Eq. (10) in the main text. We use Eq. (S7) to write
the output power of the heterodyne detector as the average

〈P0n〉 ∝
〈

J2
0n

〉
=

+∞∫∫
−∞

〈E(x1)E(x2)〉 J(x1)J(x2)dx1dx2

=

+∞∫
−∞

I(x)J2(x)dx. (S15)

Substituting (8) from the main text into the above result, we
obtain (10).
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